Struct rustc_data_structures::small_c_str::SmallCStr

source ·
pub struct SmallCStr {
    data: SmallVec<[u8; 36]>,
}
Expand description

Like SmallVec but for C strings.

Fields§

§data: SmallVec<[u8; 36]>

Implementations§

source§

impl SmallCStr

source

pub fn new(s: &str) -> SmallCStr

source

pub fn new_with_nul(s: &str) -> SmallCStr

source

pub fn as_c_str(&self) -> &CStr

source

pub fn len_with_nul(&self) -> usize

source

pub fn spilled(&self) -> bool

Methods from Deref<Target = CStr>§

1.0.0 · source

pub fn as_ptr(&self) -> *const i8

Returns the inner pointer to this C string.

The returned pointer will be valid for as long as self is, and points to a contiguous region of memory terminated with a 0 byte to represent the end of the string.

The type of the returned pointer is *const c_char, and whether it’s an alias for *const i8 or *const u8 is platform-specific.

WARNING

The returned pointer is read-only; writing to it (including passing it to C code that writes to it) causes undefined behavior.

It is your responsibility to make sure that the underlying memory is not freed too early. For example, the following code will cause undefined behavior when ptr is used inside the unsafe block:

use std::ffi::CString;

// Do not do this:
let ptr = CString::new("Hello").expect("CString::new failed").as_ptr();
unsafe {
    // `ptr` is dangling
    *ptr;
}

This happens because the pointer returned by as_ptr does not carry any lifetime information and the CString is deallocated immediately after the CString::new("Hello").expect("CString::new failed").as_ptr() expression is evaluated. To fix the problem, bind the CString to a local variable:

use std::ffi::CString;

let hello = CString::new("Hello").expect("CString::new failed");
let ptr = hello.as_ptr();
unsafe {
    // `ptr` is valid because `hello` is in scope
    *ptr;
}

This way, the lifetime of the CString in hello encompasses the lifetime of ptr and the unsafe block.

1.79.0 · source

pub fn count_bytes(&self) -> usize

Returns the length of self. Like C’s strlen, this does not include the nul terminator.

Note: This method is currently implemented as a constant-time cast, but it is planned to alter its definition in the future to perform the length calculation whenever this method is called.

§Examples
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"foo\0").unwrap();
assert_eq!(cstr.count_bytes(), 3);

let cstr = CStr::from_bytes_with_nul(b"\0").unwrap();
assert_eq!(cstr.count_bytes(), 0);
1.71.0 · source

pub fn is_empty(&self) -> bool

Returns true if self.to_bytes() has a length of 0.

§Examples
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
assert!(!cstr.is_empty());

let empty_cstr = CStr::from_bytes_with_nul(b"\0")?;
assert!(empty_cstr.is_empty());
1.0.0 · source

pub fn to_bytes(&self) -> &[u8]

Converts this C string to a byte slice.

The returned slice will not contain the trailing nul terminator that this C string has.

Note: This method is currently implemented as a constant-time cast, but it is planned to alter its definition in the future to perform the length calculation whenever this method is called.

§Examples
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
assert_eq!(cstr.to_bytes(), b"foo");
1.0.0 · source

pub fn to_bytes_with_nul(&self) -> &[u8]

Converts this C string to a byte slice containing the trailing 0 byte.

This function is the equivalent of CStr::to_bytes except that it will retain the trailing nul terminator instead of chopping it off.

Note: This method is currently implemented as a 0-cost cast, but it is planned to alter its definition in the future to perform the length calculation whenever this method is called.

§Examples
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
assert_eq!(cstr.to_bytes_with_nul(), b"foo\0");
source

pub fn bytes(&self) -> Bytes<'_>

🔬This is a nightly-only experimental API. (cstr_bytes)

Iterates over the bytes in this C string.

The returned iterator will not contain the trailing nul terminator that this C string has.

§Examples
#![feature(cstr_bytes)]
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
assert!(cstr.bytes().eq(*b"foo"));
1.4.0 · source

pub fn to_str(&self) -> Result<&str, Utf8Error>

Yields a &str slice if the CStr contains valid UTF-8.

If the contents of the CStr are valid UTF-8 data, this function will return the corresponding &str slice. Otherwise, it will return an error with details of where UTF-8 validation failed.

§Examples
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"foo\0").expect("CStr::from_bytes_with_nul failed");
assert_eq!(cstr.to_str(), Ok("foo"));
1.4.0 · source

pub fn to_string_lossy(&self) -> Cow<'_, str>

Converts a CStr into a Cow<str>.

If the contents of the CStr are valid UTF-8 data, this function will return a Cow::Borrowed(&str) with the corresponding &str slice. Otherwise, it will replace any invalid UTF-8 sequences with U+FFFD REPLACEMENT CHARACTER and return a Cow::Owned(&str) with the result.

§Examples

Calling to_string_lossy on a CStr containing valid UTF-8:

use std::borrow::Cow;
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"Hello World\0")
                 .expect("CStr::from_bytes_with_nul failed");
assert_eq!(cstr.to_string_lossy(), Cow::Borrowed("Hello World"));

Calling to_string_lossy on a CStr containing invalid UTF-8:

use std::borrow::Cow;
use std::ffi::CStr;

let cstr = CStr::from_bytes_with_nul(b"Hello \xF0\x90\x80World\0")
                 .expect("CStr::from_bytes_with_nul failed");
assert_eq!(
    cstr.to_string_lossy(),
    Cow::Owned(String::from("Hello �World")) as Cow<'_, str>
);

Trait Implementations§

source§

impl Clone for SmallCStr

source§

fn clone(&self) -> SmallCStr

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Deref for SmallCStr

§

type Target = CStr

The resulting type after dereferencing.
source§

fn deref(&self) -> &CStr

Dereferences the value.
source§

impl From<&CStr> for SmallCStr

source§

fn from(s: &CStr) -> Self

Converts to this type from the input type.
source§

impl<'a> FromIterator<&'a str> for SmallCStr

source§

fn from_iter<T: IntoIterator<Item = &'a str>>(iter: T) -> Self

Creates a value from an iterator. Read more

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Aligned for T

source§

const ALIGN: Alignment = const ALIGN: Alignment = Alignment::of::<Self>();

Alignment of Self.
source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Pointable for T

source§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

impl<'a, T> Captures<'a> for T
where T: ?Sized,

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 48 bytes