Enum rustc_middle::ty::instance::ReifyReason

source ·
pub enum ReifyReason {
    FnPtr,
    Vtable,
}
Expand description

Describes why a ReifyShim was created. This is needed to distingish a ReifyShim created to adjust for things like #[track_caller] in a vtable from a ReifyShim created to produce a function pointer from a vtable entry. Currently, this is only used when KCFI is enabled, as only KCFI needs to treat those two ReifyShims differently.

Variants§

§

FnPtr

The ReifyShim was created to produce a function pointer. This happens when:

  • A vtable entry is directly converted to a function call (e.g. creating a fn ptr from a method on a dyn object).
  • A function with #[track_caller] is converted to a function pointer
  • If KCFI is enabled, creating a function pointer from a method on an object-safe trait. This includes the case of converting ::call-like methods on closure-likes to function pointers.
§

Vtable

This ReifyShim was created to populate a vtable. Currently, this happens when a #[track_caller] mismatch occurs between the implementation of a method and the method. This includes the case of ::call-like methods in closure-likes’ vtables.

Trait Implementations§

source§

impl Clone for ReifyReason

source§

fn clone(&self) -> ReifyReason

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for ReifyReason

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl<__D: TyDecoder> Decodable<__D> for ReifyReason

source§

fn decode(__decoder: &mut __D) -> Self

source§

impl<__E: TyEncoder> Encodable<__E> for ReifyReason

source§

fn encode(&self, __encoder: &mut __E)

source§

impl Hash for ReifyReason

source§

fn hash<__H: Hasher>(&self, state: &mut __H)

Feeds this value into the given Hasher. Read more
1.3.0 · source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
source§

impl<'__ctx> HashStable<StableHashingContext<'__ctx>> for ReifyReason

source§

fn hash_stable( &self, __hcx: &mut StableHashingContext<'__ctx>, __hasher: &mut StableHasher )

source§

impl<'tcx> Lift<'tcx> for ReifyReason

§

type Lifted = ReifyReason

source§

fn lift_to_tcx(self, _: TyCtxt<'tcx>) -> Option<Self>

source§

impl PartialEq for ReifyReason

source§

fn eq(&self, other: &ReifyReason) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for ReifyReason

source§

fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>( self, _: &mut F ) -> Result<Self, F::Error>

The entry point for folding. To fold a value t with a folder f call: t.try_fold_with(f). Read more
source§

fn fold_with<F: TypeFolder<TyCtxt<'tcx>>>(self, _: &mut F) -> Self

A convenient alternative to try_fold_with for use with infallible folders. Do not override this method, to ensure coherence with try_fold_with.
source§

impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for ReifyReason

source§

fn visit_with<F: TypeVisitor<TyCtxt<'tcx>>>(&self, _: &mut F) -> F::Result

The entry point for visiting. To visit a value t with a visitor v call: t.visit_with(v). Read more
source§

impl Copy for ReifyReason

source§

impl Eq for ReifyReason

source§

impl StructuralPartialEq for ReifyReason

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Aligned for T

source§

const ALIGN: Alignment = _

Alignment of Self.
source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> AnyEq for T
where T: Any + PartialEq,

source§

fn equals(&self, other: &(dyn Any + 'static)) -> bool

source§

fn as_any(&self) -> &(dyn Any + 'static)

source§

impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for T
where T: Copy,

source§

fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut T

source§

fn allocate_from_iter<'a>( arena: &'a Arena<'tcx>, iter: impl IntoIterator<Item = T> ) -> &'a mut [T]

source§

impl<'tcx, T> ArenaAllocatable<'tcx, IsCopy> for T
where T: Copy,

source§

fn allocate_on<'a>(self, arena: &'a Arena<'tcx>) -> &'a mut T

source§

fn allocate_from_iter<'a>( arena: &'a Arena<'tcx>, iter: impl IntoIterator<Item = T> ) -> &'a mut [T]

source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T, R> CollectAndApply<T, R> for T

source§

fn collect_and_apply<I, F>(iter: I, f: F) -> R
where I: Iterator<Item = T>, F: FnOnce(&[T]) -> R,

Equivalent to f(&iter.collect::<Vec<_>>()).

§

type Output = R

source§

impl<Tcx, T> DepNodeParams<Tcx> for T
where Tcx: DepContext, T: for<'a> HashStable<StableHashingContext<'a>> + Debug,

source§

default fn fingerprint_style() -> FingerprintStyle

source§

default fn to_fingerprint(&self, tcx: Tcx) -> Fingerprint

This method turns the parameters of a DepNodeConstructor into an opaque Fingerprint to be used in DepNode. Not all DepNodeParams support being turned into a Fingerprint (they don’t need to if the corresponding DepNode is anonymous).
source§

default fn to_debug_str(&self, _: Tcx) -> String

source§

default fn recover(_: Tcx, _: &DepNode) -> Option<T>

This method tries to recover the query key from the given DepNode, something which is needed when forcing DepNodes during red-green evaluation. The query system will only call this method if fingerprint_style() is not FingerprintStyle::Opaque. It is always valid to return None here, in which case incremental compilation will treat the query as having changed instead of forcing it.
source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
source§

impl<T> Filterable for T

source§

fn filterable( self, filter_name: &'static str ) -> RequestFilterDataProvider<T, fn(_: DataRequest<'_>) -> bool>

Creates a filterable data provider with the given name for debugging. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<P> IntoQueryParam<P> for P

source§

impl<'tcx, T> IsSuggestable<'tcx> for T
where T: TypeVisitable<TyCtxt<'tcx>> + TypeFoldable<TyCtxt<'tcx>>,

source§

fn is_suggestable(self, tcx: TyCtxt<'tcx>, infer_suggestable: bool) -> bool

Whether this makes sense to suggest in a diagnostic. Read more
source§

fn make_suggestable( self, tcx: TyCtxt<'tcx>, infer_suggestable: bool, placeholder: Option<Ty<'tcx>> ) -> Option<T>

source§

impl<T> MaybeResult<T> for T

§

type Error = !

source§

fn from(_: Result<T, <T as MaybeResult<T>>::Error>) -> T

source§

fn to_result(self) -> Result<T, <T as MaybeResult<T>>::Error>

source§

impl<T> Pointable for T

source§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<'tcx, T> ToPredicate<'tcx, T> for T

source§

fn to_predicate(self, _tcx: TyCtxt<'tcx>) -> T

source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<I, T> TypeVisitableExt<I> for T
where I: Interner, T: TypeVisitable<I>,

source§

fn has_type_flags(&self, flags: TypeFlags) -> bool

source§

fn has_vars_bound_at_or_above(&self, binder: DebruijnIndex) -> bool

Returns true if self has any late-bound regions that are either bound by binder or bound by some binder outside of binder. If binder is ty::INNERMOST, this indicates whether there are any late-bound regions that appear free.
source§

fn error_reported(&self) -> Result<(), <I as Interner>::ErrorGuaranteed>

source§

fn has_vars_bound_above(&self, binder: DebruijnIndex) -> bool

Returns true if this type has any regions that escape binder (and hence are not bound by it).
source§

fn has_escaping_bound_vars(&self) -> bool

Return true if this type has regions that are not a part of the type. For example, for<'a> fn(&'a i32) return false, while fn(&'a i32) would return true. The latter can occur when traversing through the former. Read more
source§

fn has_aliases(&self) -> bool

source§

fn has_inherent_projections(&self) -> bool

source§

fn has_opaque_types(&self) -> bool

source§

fn has_coroutines(&self) -> bool

source§

fn references_error(&self) -> bool

source§

fn has_non_region_param(&self) -> bool

source§

fn has_infer_regions(&self) -> bool

source§

fn has_infer_types(&self) -> bool

source§

fn has_non_region_infer(&self) -> bool

source§

fn has_infer(&self) -> bool

source§

fn has_placeholders(&self) -> bool

source§

fn has_non_region_placeholders(&self) -> bool

source§

fn has_param(&self) -> bool

source§

fn has_free_regions(&self) -> bool

“Free” regions in this context means that it has any region that is not (a) erased or (b) late-bound.
source§

fn has_erased_regions(&self) -> bool

source§

fn has_erasable_regions(&self) -> bool

True if there are any un-erased free regions.
source§

fn is_global(&self) -> bool

Indicates whether this value references only ‘global’ generic parameters that are the same regardless of what fn we are in. This is used for caching.
source§

fn has_bound_regions(&self) -> bool

True if there are any late-bound regions
source§

fn has_non_region_bound_vars(&self) -> bool

True if there are any late-bound non-region variables
source§

fn has_bound_vars(&self) -> bool

True if there are any bound variables
source§

fn still_further_specializable(&self) -> bool

Indicates whether this value still has parameters/placeholders/inference variables which could be replaced later, in a way that would change the results of impl specialization.
source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<Tcx, T> Value<Tcx> for T
where Tcx: DepContext,

source§

default fn from_cycle_error( tcx: Tcx, cycle_error: &CycleError, _guar: ErrorGuaranteed ) -> T

source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

impl<'a, T> Captures<'a> for T
where T: ?Sized,

source§

impl<T> ErasedDestructor for T
where T: 'static,

source§

impl<T> MaybeSendSync for T
where T: Send + Sync,

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 1 byte

Size for each variant:

  • FnPtr: 0 bytes
  • Vtable: 0 bytes