rustc_metadata/rmeta/
encoder.rs

1use std::borrow::Borrow;
2use std::collections::hash_map::Entry;
3use std::fs::File;
4use std::io::{Read, Seek, Write};
5use std::path::{Path, PathBuf};
6use std::sync::Arc;
7
8use rustc_ast::attr::AttributeExt;
9use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
10use rustc_data_structures::memmap::{Mmap, MmapMut};
11use rustc_data_structures::sync::{join, par_for_each_in};
12use rustc_data_structures::temp_dir::MaybeTempDir;
13use rustc_data_structures::thousands::format_with_underscores;
14use rustc_feature::Features;
15use rustc_hir as hir;
16use rustc_hir::def_id::{CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE, LocalDefId, LocalDefIdSet};
17use rustc_hir::definitions::DefPathData;
18use rustc_hir_pretty::id_to_string;
19use rustc_middle::middle::dependency_format::Linkage;
20use rustc_middle::middle::exported_symbols::metadata_symbol_name;
21use rustc_middle::mir::interpret;
22use rustc_middle::query::Providers;
23use rustc_middle::traits::specialization_graph;
24use rustc_middle::ty::codec::TyEncoder;
25use rustc_middle::ty::fast_reject::{self, TreatParams};
26use rustc_middle::ty::{AssocItemContainer, SymbolName};
27use rustc_middle::{bug, span_bug};
28use rustc_serialize::{Decodable, Decoder, Encodable, Encoder, opaque};
29use rustc_session::config::{CrateType, OptLevel, TargetModifier};
30use rustc_span::hygiene::HygieneEncodeContext;
31use rustc_span::{
32    ExternalSource, FileName, SourceFile, SpanData, SpanEncoder, StableSourceFileId, SyntaxContext,
33    sym,
34};
35use tracing::{debug, instrument, trace};
36
37use crate::errors::{FailCreateFileEncoder, FailWriteFile};
38use crate::rmeta::*;
39
40pub(super) struct EncodeContext<'a, 'tcx> {
41    opaque: opaque::FileEncoder,
42    tcx: TyCtxt<'tcx>,
43    feat: &'tcx rustc_feature::Features,
44    tables: TableBuilders,
45
46    lazy_state: LazyState,
47    span_shorthands: FxHashMap<Span, usize>,
48    type_shorthands: FxHashMap<Ty<'tcx>, usize>,
49    predicate_shorthands: FxHashMap<ty::PredicateKind<'tcx>, usize>,
50
51    interpret_allocs: FxIndexSet<interpret::AllocId>,
52
53    // This is used to speed up Span encoding.
54    // The `usize` is an index into the `MonotonicVec`
55    // that stores the `SourceFile`
56    source_file_cache: (Arc<SourceFile>, usize),
57    // The indices (into the `SourceMap`'s `MonotonicVec`)
58    // of all of the `SourceFiles` that we need to serialize.
59    // When we serialize a `Span`, we insert the index of its
60    // `SourceFile` into the `FxIndexSet`.
61    // The order inside the `FxIndexSet` is used as on-disk
62    // order of `SourceFiles`, and encoded inside `Span`s.
63    required_source_files: Option<FxIndexSet<usize>>,
64    is_proc_macro: bool,
65    hygiene_ctxt: &'a HygieneEncodeContext,
66    symbol_table: FxHashMap<Symbol, usize>,
67}
68
69/// If the current crate is a proc-macro, returns early with `LazyArray::default()`.
70/// This is useful for skipping the encoding of things that aren't needed
71/// for proc-macro crates.
72macro_rules! empty_proc_macro {
73    ($self:ident) => {
74        if $self.is_proc_macro {
75            return LazyArray::default();
76        }
77    };
78}
79
80macro_rules! encoder_methods {
81    ($($name:ident($ty:ty);)*) => {
82        $(fn $name(&mut self, value: $ty) {
83            self.opaque.$name(value)
84        })*
85    }
86}
87
88impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> {
89    encoder_methods! {
90        emit_usize(usize);
91        emit_u128(u128);
92        emit_u64(u64);
93        emit_u32(u32);
94        emit_u16(u16);
95        emit_u8(u8);
96
97        emit_isize(isize);
98        emit_i128(i128);
99        emit_i64(i64);
100        emit_i32(i32);
101        emit_i16(i16);
102
103        emit_raw_bytes(&[u8]);
104    }
105}
106
107impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyValue<T> {
108    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
109        e.emit_lazy_distance(self.position);
110    }
111}
112
113impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyArray<T> {
114    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
115        e.emit_usize(self.num_elems);
116        if self.num_elems > 0 {
117            e.emit_lazy_distance(self.position)
118        }
119    }
120}
121
122impl<'a, 'tcx, I, T> Encodable<EncodeContext<'a, 'tcx>> for LazyTable<I, T> {
123    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
124        e.emit_usize(self.width);
125        e.emit_usize(self.len);
126        e.emit_lazy_distance(self.position);
127    }
128}
129
130impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for ExpnIndex {
131    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
132        s.emit_u32(self.as_u32());
133    }
134}
135
136impl<'a, 'tcx> SpanEncoder for EncodeContext<'a, 'tcx> {
137    fn encode_crate_num(&mut self, crate_num: CrateNum) {
138        if crate_num != LOCAL_CRATE && self.is_proc_macro {
139            panic!("Attempted to encode non-local CrateNum {crate_num:?} for proc-macro crate");
140        }
141        self.emit_u32(crate_num.as_u32());
142    }
143
144    fn encode_def_index(&mut self, def_index: DefIndex) {
145        self.emit_u32(def_index.as_u32());
146    }
147
148    fn encode_def_id(&mut self, def_id: DefId) {
149        def_id.krate.encode(self);
150        def_id.index.encode(self);
151    }
152
153    fn encode_syntax_context(&mut self, syntax_context: SyntaxContext) {
154        rustc_span::hygiene::raw_encode_syntax_context(syntax_context, self.hygiene_ctxt, self);
155    }
156
157    fn encode_expn_id(&mut self, expn_id: ExpnId) {
158        if expn_id.krate == LOCAL_CRATE {
159            // We will only write details for local expansions. Non-local expansions will fetch
160            // data from the corresponding crate's metadata.
161            // FIXME(#43047) FIXME(#74731) We may eventually want to avoid relying on external
162            // metadata from proc-macro crates.
163            self.hygiene_ctxt.schedule_expn_data_for_encoding(expn_id);
164        }
165        expn_id.krate.encode(self);
166        expn_id.local_id.encode(self);
167    }
168
169    fn encode_span(&mut self, span: Span) {
170        match self.span_shorthands.entry(span) {
171            Entry::Occupied(o) => {
172                // If an offset is smaller than the absolute position, we encode with the offset.
173                // This saves space since smaller numbers encode in less bits.
174                let last_location = *o.get();
175                // This cannot underflow. Metadata is written with increasing position(), so any
176                // previously saved offset must be smaller than the current position.
177                let offset = self.opaque.position() - last_location;
178                if offset < last_location {
179                    let needed = bytes_needed(offset);
180                    SpanTag::indirect(true, needed as u8).encode(self);
181                    self.opaque.write_with(|dest| {
182                        *dest = offset.to_le_bytes();
183                        needed
184                    });
185                } else {
186                    let needed = bytes_needed(last_location);
187                    SpanTag::indirect(false, needed as u8).encode(self);
188                    self.opaque.write_with(|dest| {
189                        *dest = last_location.to_le_bytes();
190                        needed
191                    });
192                }
193            }
194            Entry::Vacant(v) => {
195                let position = self.opaque.position();
196                v.insert(position);
197                // Data is encoded with a SpanTag prefix (see below).
198                span.data().encode(self);
199            }
200        }
201    }
202
203    fn encode_symbol(&mut self, symbol: Symbol) {
204        // if symbol preinterned, emit tag and symbol index
205        if symbol.is_preinterned() {
206            self.opaque.emit_u8(SYMBOL_PREINTERNED);
207            self.opaque.emit_u32(symbol.as_u32());
208        } else {
209            // otherwise write it as string or as offset to it
210            match self.symbol_table.entry(symbol) {
211                Entry::Vacant(o) => {
212                    self.opaque.emit_u8(SYMBOL_STR);
213                    let pos = self.opaque.position();
214                    o.insert(pos);
215                    self.emit_str(symbol.as_str());
216                }
217                Entry::Occupied(o) => {
218                    let x = *o.get();
219                    self.emit_u8(SYMBOL_OFFSET);
220                    self.emit_usize(x);
221                }
222            }
223        }
224    }
225}
226
227fn bytes_needed(n: usize) -> usize {
228    (usize::BITS - n.leading_zeros()).div_ceil(u8::BITS) as usize
229}
230
231impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for SpanData {
232    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
233        // Don't serialize any `SyntaxContext`s from a proc-macro crate,
234        // since we don't load proc-macro dependencies during serialization.
235        // This means that any hygiene information from macros used *within*
236        // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro
237        // definition) will be lost.
238        //
239        // This can show up in two ways:
240        //
241        // 1. Any hygiene information associated with identifier of
242        // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost.
243        // Since proc-macros can only be invoked from a different crate,
244        // real code should never need to care about this.
245        //
246        // 2. Using `Span::def_site` or `Span::mixed_site` will not
247        // include any hygiene information associated with the definition
248        // site. This means that a proc-macro cannot emit a `$crate`
249        // identifier which resolves to one of its dependencies,
250        // which also should never come up in practice.
251        //
252        // Additionally, this affects `Span::parent`, and any other
253        // span inspection APIs that would otherwise allow traversing
254        // the `SyntaxContexts` associated with a span.
255        //
256        // None of these user-visible effects should result in any
257        // cross-crate inconsistencies (getting one behavior in the same
258        // crate, and a different behavior in another crate) due to the
259        // limited surface that proc-macros can expose.
260        //
261        // IMPORTANT: If this is ever changed, be sure to update
262        // `rustc_span::hygiene::raw_encode_expn_id` to handle
263        // encoding `ExpnData` for proc-macro crates.
264        let ctxt = if s.is_proc_macro { SyntaxContext::root() } else { self.ctxt };
265
266        if self.is_dummy() {
267            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
268            tag.encode(s);
269            if tag.context().is_none() {
270                ctxt.encode(s);
271            }
272            return;
273        }
274
275        // The Span infrastructure should make sure that this invariant holds:
276        debug_assert!(self.lo <= self.hi);
277
278        if !s.source_file_cache.0.contains(self.lo) {
279            let source_map = s.tcx.sess.source_map();
280            let source_file_index = source_map.lookup_source_file_idx(self.lo);
281            s.source_file_cache =
282                (Arc::clone(&source_map.files()[source_file_index]), source_file_index);
283        }
284        let (ref source_file, source_file_index) = s.source_file_cache;
285        debug_assert!(source_file.contains(self.lo));
286
287        if !source_file.contains(self.hi) {
288            // Unfortunately, macro expansion still sometimes generates Spans
289            // that malformed in this way.
290            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
291            tag.encode(s);
292            if tag.context().is_none() {
293                ctxt.encode(s);
294            }
295            return;
296        }
297
298        // There are two possible cases here:
299        // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the
300        // crate we are writing metadata for. When the metadata for *this* crate gets
301        // deserialized, the deserializer will need to know which crate it originally came
302        // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should
303        // be deserialized after the rest of the span data, which tells the deserializer
304        // which crate contains the source map information.
305        // 2. This span comes from our own crate. No special handling is needed - we just
306        // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use
307        // our own source map information.
308        //
309        // If we're a proc-macro crate, we always treat this as a local `Span`.
310        // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata
311        // if we're a proc-macro crate.
312        // This allows us to avoid loading the dependencies of proc-macro crates: all of
313        // the information we need to decode `Span`s is stored in the proc-macro crate.
314        let (kind, metadata_index) = if source_file.is_imported() && !s.is_proc_macro {
315            // To simplify deserialization, we 'rebase' this span onto the crate it originally came
316            // from (the crate that 'owns' the file it references. These rebased 'lo' and 'hi'
317            // values are relative to the source map information for the 'foreign' crate whose
318            // CrateNum we write into the metadata. This allows `imported_source_files` to binary
319            // search through the 'foreign' crate's source map information, using the
320            // deserialized 'lo' and 'hi' values directly.
321            //
322            // All of this logic ensures that the final result of deserialization is a 'normal'
323            // Span that can be used without any additional trouble.
324            let metadata_index = {
325                // Introduce a new scope so that we drop the 'read()' temporary
326                match &*source_file.external_src.read() {
327                    ExternalSource::Foreign { metadata_index, .. } => *metadata_index,
328                    src => panic!("Unexpected external source {src:?}"),
329                }
330            };
331
332            (SpanKind::Foreign, metadata_index)
333        } else {
334            // Record the fact that we need to encode the data for this `SourceFile`
335            let source_files =
336                s.required_source_files.as_mut().expect("Already encoded SourceMap!");
337            let (metadata_index, _) = source_files.insert_full(source_file_index);
338            let metadata_index: u32 =
339                metadata_index.try_into().expect("cannot export more than U32_MAX files");
340
341            (SpanKind::Local, metadata_index)
342        };
343
344        // Encode the start position relative to the file start, so we profit more from the
345        // variable-length integer encoding.
346        let lo = self.lo - source_file.start_pos;
347
348        // Encode length which is usually less than span.hi and profits more
349        // from the variable-length integer encoding that we use.
350        let len = self.hi - self.lo;
351
352        let tag = SpanTag::new(kind, ctxt, len.0 as usize);
353        tag.encode(s);
354        if tag.context().is_none() {
355            ctxt.encode(s);
356        }
357        lo.encode(s);
358        if tag.length().is_none() {
359            len.encode(s);
360        }
361
362        // Encode the index of the `SourceFile` for the span, in order to make decoding faster.
363        metadata_index.encode(s);
364
365        if kind == SpanKind::Foreign {
366            // This needs to be two lines to avoid holding the `s.source_file_cache`
367            // while calling `cnum.encode(s)`
368            let cnum = s.source_file_cache.0.cnum;
369            cnum.encode(s);
370        }
371    }
372}
373
374impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for [u8] {
375    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
376        Encoder::emit_usize(e, self.len());
377        e.emit_raw_bytes(self);
378    }
379}
380
381impl<'a, 'tcx> TyEncoder for EncodeContext<'a, 'tcx> {
382    const CLEAR_CROSS_CRATE: bool = true;
383
384    type I = TyCtxt<'tcx>;
385
386    fn position(&self) -> usize {
387        self.opaque.position()
388    }
389
390    fn type_shorthands(&mut self) -> &mut FxHashMap<Ty<'tcx>, usize> {
391        &mut self.type_shorthands
392    }
393
394    fn predicate_shorthands(&mut self) -> &mut FxHashMap<ty::PredicateKind<'tcx>, usize> {
395        &mut self.predicate_shorthands
396    }
397
398    fn encode_alloc_id(&mut self, alloc_id: &rustc_middle::mir::interpret::AllocId) {
399        let (index, _) = self.interpret_allocs.insert_full(*alloc_id);
400
401        index.encode(self);
402    }
403}
404
405// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy($value))`, which would
406// normally need extra variables to avoid errors about multiple mutable borrows.
407macro_rules! record {
408    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
409        {
410            let value = $value;
411            let lazy = $self.lazy(value);
412            $self.$tables.$table.set_some($def_id.index, lazy);
413        }
414    }};
415}
416
417// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy_array($value))`, which would
418// normally need extra variables to avoid errors about multiple mutable borrows.
419macro_rules! record_array {
420    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
421        {
422            let value = $value;
423            let lazy = $self.lazy_array(value);
424            $self.$tables.$table.set_some($def_id.index, lazy);
425        }
426    }};
427}
428
429macro_rules! record_defaulted_array {
430    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
431        {
432            let value = $value;
433            let lazy = $self.lazy_array(value);
434            $self.$tables.$table.set($def_id.index, lazy);
435        }
436    }};
437}
438
439impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
440    fn emit_lazy_distance(&mut self, position: NonZero<usize>) {
441        let pos = position.get();
442        let distance = match self.lazy_state {
443            LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"),
444            LazyState::NodeStart(start) => {
445                let start = start.get();
446                assert!(pos <= start);
447                start - pos
448            }
449            LazyState::Previous(last_pos) => {
450                assert!(
451                    last_pos <= position,
452                    "make sure that the calls to `lazy*` \
453                     are in the same order as the metadata fields",
454                );
455                position.get() - last_pos.get()
456            }
457        };
458        self.lazy_state = LazyState::Previous(NonZero::new(pos).unwrap());
459        self.emit_usize(distance);
460    }
461
462    fn lazy<T: ParameterizedOverTcx, B: Borrow<T::Value<'tcx>>>(&mut self, value: B) -> LazyValue<T>
463    where
464        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
465    {
466        let pos = NonZero::new(self.position()).unwrap();
467
468        assert_eq!(self.lazy_state, LazyState::NoNode);
469        self.lazy_state = LazyState::NodeStart(pos);
470        value.borrow().encode(self);
471        self.lazy_state = LazyState::NoNode;
472
473        assert!(pos.get() <= self.position());
474
475        LazyValue::from_position(pos)
476    }
477
478    fn lazy_array<T: ParameterizedOverTcx, I: IntoIterator<Item = B>, B: Borrow<T::Value<'tcx>>>(
479        &mut self,
480        values: I,
481    ) -> LazyArray<T>
482    where
483        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
484    {
485        let pos = NonZero::new(self.position()).unwrap();
486
487        assert_eq!(self.lazy_state, LazyState::NoNode);
488        self.lazy_state = LazyState::NodeStart(pos);
489        let len = values.into_iter().map(|value| value.borrow().encode(self)).count();
490        self.lazy_state = LazyState::NoNode;
491
492        assert!(pos.get() <= self.position());
493
494        LazyArray::from_position_and_num_elems(pos, len)
495    }
496
497    fn encode_def_path_table(&mut self) {
498        let table = self.tcx.def_path_table();
499        if self.is_proc_macro {
500            for def_index in std::iter::once(CRATE_DEF_INDEX)
501                .chain(self.tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index))
502            {
503                let def_key = self.lazy(table.def_key(def_index));
504                let def_path_hash = table.def_path_hash(def_index);
505                self.tables.def_keys.set_some(def_index, def_key);
506                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
507            }
508        } else {
509            for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() {
510                let def_key = self.lazy(def_key);
511                self.tables.def_keys.set_some(def_index, def_key);
512                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
513            }
514        }
515    }
516
517    fn encode_def_path_hash_map(&mut self) -> LazyValue<DefPathHashMapRef<'static>> {
518        self.lazy(DefPathHashMapRef::BorrowedFromTcx(self.tcx.def_path_hash_to_def_index_map()))
519    }
520
521    fn encode_source_map(&mut self) -> LazyTable<u32, Option<LazyValue<rustc_span::SourceFile>>> {
522        let source_map = self.tcx.sess.source_map();
523        let all_source_files = source_map.files();
524
525        // By replacing the `Option` with `None`, we ensure that we can't
526        // accidentally serialize any more `Span`s after the source map encoding
527        // is done.
528        let required_source_files = self.required_source_files.take().unwrap();
529
530        let working_directory = &self.tcx.sess.opts.working_dir;
531
532        let mut adapted = TableBuilder::default();
533
534        let local_crate_stable_id = self.tcx.stable_crate_id(LOCAL_CRATE);
535
536        // Only serialize `SourceFile`s that were used during the encoding of a `Span`.
537        //
538        // The order in which we encode source files is important here: the on-disk format for
539        // `Span` contains the index of the corresponding `SourceFile`.
540        for (on_disk_index, &source_file_index) in required_source_files.iter().enumerate() {
541            let source_file = &all_source_files[source_file_index];
542            // Don't serialize imported `SourceFile`s, unless we're in a proc-macro crate.
543            assert!(!source_file.is_imported() || self.is_proc_macro);
544
545            // At export time we expand all source file paths to absolute paths because
546            // downstream compilation sessions can have a different compiler working
547            // directory, so relative paths from this or any other upstream crate
548            // won't be valid anymore.
549            //
550            // At this point we also erase the actual on-disk path and only keep
551            // the remapped version -- as is necessary for reproducible builds.
552            let mut adapted_source_file = (**source_file).clone();
553
554            match source_file.name {
555                FileName::Real(ref original_file_name) => {
556                    // FIXME: This should probably to conditionally remapped under
557                    // a RemapPathScopeComponents but which one?
558                    let adapted_file_name = source_map
559                        .path_mapping()
560                        .to_embeddable_absolute_path(original_file_name.clone(), working_directory);
561
562                    adapted_source_file.name = FileName::Real(adapted_file_name);
563                }
564                _ => {
565                    // expanded code, not from a file
566                }
567            };
568
569            // We're serializing this `SourceFile` into our crate metadata,
570            // so mark it as coming from this crate.
571            // This also ensures that we don't try to deserialize the
572            // `CrateNum` for a proc-macro dependency - since proc macro
573            // dependencies aren't loaded when we deserialize a proc-macro,
574            // trying to remap the `CrateNum` would fail.
575            if self.is_proc_macro {
576                adapted_source_file.cnum = LOCAL_CRATE;
577            }
578
579            // Update the `StableSourceFileId` to make sure it incorporates the
580            // id of the current crate. This way it will be unique within the
581            // crate graph during downstream compilation sessions.
582            adapted_source_file.stable_id = StableSourceFileId::from_filename_for_export(
583                &adapted_source_file.name,
584                local_crate_stable_id,
585            );
586
587            let on_disk_index: u32 =
588                on_disk_index.try_into().expect("cannot export more than U32_MAX files");
589            adapted.set_some(on_disk_index, self.lazy(adapted_source_file));
590        }
591
592        adapted.encode(&mut self.opaque)
593    }
594
595    fn encode_crate_root(&mut self) -> LazyValue<CrateRoot> {
596        let tcx = self.tcx;
597        let mut stats: Vec<(&'static str, usize)> = Vec::with_capacity(32);
598
599        macro_rules! stat {
600            ($label:literal, $f:expr) => {{
601                let orig_pos = self.position();
602                let res = $f();
603                stats.push(($label, self.position() - orig_pos));
604                res
605            }};
606        }
607
608        // We have already encoded some things. Get their combined size from the current position.
609        stats.push(("preamble", self.position()));
610
611        let (crate_deps, dylib_dependency_formats) =
612            stat!("dep", || (self.encode_crate_deps(), self.encode_dylib_dependency_formats()));
613
614        let lib_features = stat!("lib-features", || self.encode_lib_features());
615
616        let stability_implications =
617            stat!("stability-implications", || self.encode_stability_implications());
618
619        let (lang_items, lang_items_missing) = stat!("lang-items", || {
620            (self.encode_lang_items(), self.encode_lang_items_missing())
621        });
622
623        let stripped_cfg_items = stat!("stripped-cfg-items", || self.encode_stripped_cfg_items());
624
625        let diagnostic_items = stat!("diagnostic-items", || self.encode_diagnostic_items());
626
627        let native_libraries = stat!("native-libs", || self.encode_native_libraries());
628
629        let foreign_modules = stat!("foreign-modules", || self.encode_foreign_modules());
630
631        _ = stat!("def-path-table", || self.encode_def_path_table());
632
633        // Encode the def IDs of traits, for rustdoc and diagnostics.
634        let traits = stat!("traits", || self.encode_traits());
635
636        // Encode the def IDs of impls, for coherence checking.
637        let impls = stat!("impls", || self.encode_impls());
638
639        let incoherent_impls = stat!("incoherent-impls", || self.encode_incoherent_impls());
640
641        _ = stat!("mir", || self.encode_mir());
642
643        _ = stat!("def-ids", || self.encode_def_ids());
644
645        let interpret_alloc_index = stat!("interpret-alloc-index", || {
646            let mut interpret_alloc_index = Vec::new();
647            let mut n = 0;
648            trace!("beginning to encode alloc ids");
649            loop {
650                let new_n = self.interpret_allocs.len();
651                // if we have found new ids, serialize those, too
652                if n == new_n {
653                    // otherwise, abort
654                    break;
655                }
656                trace!("encoding {} further alloc ids", new_n - n);
657                for idx in n..new_n {
658                    let id = self.interpret_allocs[idx];
659                    let pos = self.position() as u64;
660                    interpret_alloc_index.push(pos);
661                    interpret::specialized_encode_alloc_id(self, tcx, id);
662                }
663                n = new_n;
664            }
665            self.lazy_array(interpret_alloc_index)
666        });
667
668        // Encode the proc macro data. This affects `tables`, so we need to do this before we
669        // encode the tables. This overwrites def_keys, so it must happen after
670        // encode_def_path_table.
671        let proc_macro_data = stat!("proc-macro-data", || self.encode_proc_macros());
672
673        let tables = stat!("tables", || self.tables.encode(&mut self.opaque));
674
675        let debugger_visualizers =
676            stat!("debugger-visualizers", || self.encode_debugger_visualizers());
677
678        // Encode exported symbols info. This is prefetched in `encode_metadata`.
679        let exported_symbols = stat!("exported-symbols", || {
680            self.encode_exported_symbols(tcx.exported_symbols(LOCAL_CRATE))
681        });
682
683        // Encode the hygiene data.
684        // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The
685        // process of encoding other items (e.g. `optimized_mir`) may cause us to load data from
686        // the incremental cache. If this causes us to deserialize a `Span`, then we may load
687        // additional `SyntaxContext`s into the global `HygieneData`. Therefore, we need to encode
688        // the hygiene data last to ensure that we encode any `SyntaxContext`s that might be used.
689        let (syntax_contexts, expn_data, expn_hashes) = stat!("hygiene", || self.encode_hygiene());
690
691        let def_path_hash_map = stat!("def-path-hash-map", || self.encode_def_path_hash_map());
692
693        // Encode source_map. This needs to be done last, because encoding `Span`s tells us which
694        // `SourceFiles` we actually need to encode.
695        let source_map = stat!("source-map", || self.encode_source_map());
696        let target_modifiers = stat!("target-modifiers", || self.encode_target_modifiers());
697
698        let root = stat!("final", || {
699            let attrs = tcx.hir().krate_attrs();
700            self.lazy(CrateRoot {
701                header: CrateHeader {
702                    name: tcx.crate_name(LOCAL_CRATE),
703                    triple: tcx.sess.opts.target_triple.clone(),
704                    hash: tcx.crate_hash(LOCAL_CRATE),
705                    is_proc_macro_crate: proc_macro_data.is_some(),
706                },
707                extra_filename: tcx.sess.opts.cg.extra_filename.clone(),
708                stable_crate_id: tcx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(),
709                required_panic_strategy: tcx.required_panic_strategy(LOCAL_CRATE),
710                panic_in_drop_strategy: tcx.sess.opts.unstable_opts.panic_in_drop,
711                edition: tcx.sess.edition(),
712                has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE),
713                has_alloc_error_handler: tcx.has_alloc_error_handler(LOCAL_CRATE),
714                has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE),
715                has_default_lib_allocator: ast::attr::contains_name(
716                    attrs,
717                    sym::default_lib_allocator,
718                ),
719                proc_macro_data,
720                debugger_visualizers,
721                compiler_builtins: ast::attr::contains_name(attrs, sym::compiler_builtins),
722                needs_allocator: ast::attr::contains_name(attrs, sym::needs_allocator),
723                needs_panic_runtime: ast::attr::contains_name(attrs, sym::needs_panic_runtime),
724                no_builtins: ast::attr::contains_name(attrs, sym::no_builtins),
725                panic_runtime: ast::attr::contains_name(attrs, sym::panic_runtime),
726                profiler_runtime: ast::attr::contains_name(attrs, sym::profiler_runtime),
727                symbol_mangling_version: tcx.sess.opts.get_symbol_mangling_version(),
728
729                crate_deps,
730                dylib_dependency_formats,
731                lib_features,
732                stability_implications,
733                lang_items,
734                diagnostic_items,
735                lang_items_missing,
736                stripped_cfg_items,
737                native_libraries,
738                foreign_modules,
739                source_map,
740                target_modifiers,
741                traits,
742                impls,
743                incoherent_impls,
744                exported_symbols,
745                interpret_alloc_index,
746                tables,
747                syntax_contexts,
748                expn_data,
749                expn_hashes,
750                def_path_hash_map,
751                specialization_enabled_in: tcx.specialization_enabled_in(LOCAL_CRATE),
752            })
753        });
754
755        let total_bytes = self.position();
756
757        let computed_total_bytes: usize = stats.iter().map(|(_, size)| size).sum();
758        assert_eq!(total_bytes, computed_total_bytes);
759
760        if tcx.sess.opts.unstable_opts.meta_stats {
761            self.opaque.flush();
762
763            // Rewind and re-read all the metadata to count the zero bytes we wrote.
764            let pos_before_rewind = self.opaque.file().stream_position().unwrap();
765            let mut zero_bytes = 0;
766            self.opaque.file().rewind().unwrap();
767            let file = std::io::BufReader::new(self.opaque.file());
768            for e in file.bytes() {
769                if e.unwrap() == 0 {
770                    zero_bytes += 1;
771                }
772            }
773            assert_eq!(self.opaque.file().stream_position().unwrap(), pos_before_rewind);
774
775            stats.sort_by_key(|&(_, usize)| usize);
776
777            let prefix = "meta-stats";
778            let perc = |bytes| (bytes * 100) as f64 / total_bytes as f64;
779
780            eprintln!("{prefix} METADATA STATS");
781            eprintln!("{} {:<23}{:>10}", prefix, "Section", "Size");
782            eprintln!("{prefix} ----------------------------------------------------------------");
783            for (label, size) in stats {
784                eprintln!(
785                    "{} {:<23}{:>10} ({:4.1}%)",
786                    prefix,
787                    label,
788                    format_with_underscores(size),
789                    perc(size)
790                );
791            }
792            eprintln!("{prefix} ----------------------------------------------------------------");
793            eprintln!(
794                "{} {:<23}{:>10} (of which {:.1}% are zero bytes)",
795                prefix,
796                "Total",
797                format_with_underscores(total_bytes),
798                perc(zero_bytes)
799            );
800            eprintln!("{prefix}");
801        }
802
803        root
804    }
805}
806
807struct AnalyzeAttrState<'a> {
808    is_exported: bool,
809    is_doc_hidden: bool,
810    features: &'a Features,
811}
812
813/// Returns whether an attribute needs to be recorded in metadata, that is, if it's usable and
814/// useful in downstream crates. Local-only attributes are an obvious example, but some
815/// rustdoc-specific attributes can equally be of use while documenting the current crate only.
816///
817/// Removing these superfluous attributes speeds up compilation by making the metadata smaller.
818///
819/// Note: the `is_exported` parameter is used to cache whether the given `DefId` has a public
820/// visibility: this is a piece of data that can be computed once per defid, and not once per
821/// attribute. Some attributes would only be usable downstream if they are public.
822#[inline]
823fn analyze_attr(attr: &impl AttributeExt, state: &mut AnalyzeAttrState<'_>) -> bool {
824    let mut should_encode = false;
825    if !rustc_feature::encode_cross_crate(attr.name_or_empty()) {
826        // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates.
827    } else if attr.doc_str().is_some() {
828        // We keep all doc comments reachable to rustdoc because they might be "imported" into
829        // downstream crates if they use `#[doc(inline)]` to copy an item's documentation into
830        // their own.
831        if state.is_exported {
832            should_encode = true;
833        }
834    } else if attr.has_name(sym::doc) {
835        // If this is a `doc` attribute that doesn't have anything except maybe `inline` (as in
836        // `#[doc(inline)]`), then we can remove it. It won't be inlinable in downstream crates.
837        if let Some(item_list) = attr.meta_item_list() {
838            for item in item_list {
839                if !item.has_name(sym::inline) {
840                    should_encode = true;
841                    if item.has_name(sym::hidden) {
842                        state.is_doc_hidden = true;
843                        break;
844                    }
845                }
846            }
847        }
848    } else if attr.path().starts_with(&[sym::diagnostic]) && attr.path().len() == 2 {
849        should_encode =
850            rustc_feature::is_stable_diagnostic_attribute(attr.path()[1], state.features);
851    } else {
852        should_encode = true;
853    }
854    should_encode
855}
856
857fn should_encode_span(def_kind: DefKind) -> bool {
858    match def_kind {
859        DefKind::Mod
860        | DefKind::Struct
861        | DefKind::Union
862        | DefKind::Enum
863        | DefKind::Variant
864        | DefKind::Trait
865        | DefKind::TyAlias
866        | DefKind::ForeignTy
867        | DefKind::TraitAlias
868        | DefKind::AssocTy
869        | DefKind::TyParam
870        | DefKind::ConstParam
871        | DefKind::LifetimeParam
872        | DefKind::Fn
873        | DefKind::Const
874        | DefKind::Static { .. }
875        | DefKind::Ctor(..)
876        | DefKind::AssocFn
877        | DefKind::AssocConst
878        | DefKind::Macro(_)
879        | DefKind::ExternCrate
880        | DefKind::Use
881        | DefKind::AnonConst
882        | DefKind::InlineConst
883        | DefKind::OpaqueTy
884        | DefKind::Field
885        | DefKind::Impl { .. }
886        | DefKind::Closure
887        | DefKind::SyntheticCoroutineBody => true,
888        DefKind::ForeignMod | DefKind::GlobalAsm => false,
889    }
890}
891
892fn should_encode_attrs(def_kind: DefKind) -> bool {
893    match def_kind {
894        DefKind::Mod
895        | DefKind::Struct
896        | DefKind::Union
897        | DefKind::Enum
898        | DefKind::Variant
899        | DefKind::Trait
900        | DefKind::TyAlias
901        | DefKind::ForeignTy
902        | DefKind::TraitAlias
903        | DefKind::AssocTy
904        | DefKind::Fn
905        | DefKind::Const
906        | DefKind::Static { nested: false, .. }
907        | DefKind::AssocFn
908        | DefKind::AssocConst
909        | DefKind::Macro(_)
910        | DefKind::Field
911        | DefKind::Impl { .. } => true,
912        // Tools may want to be able to detect their tool lints on
913        // closures from upstream crates, too. This is used by
914        // https://github.com/model-checking/kani and is not a performance
915        // or maintenance issue for us.
916        DefKind::Closure => true,
917        DefKind::SyntheticCoroutineBody => false,
918        DefKind::TyParam
919        | DefKind::ConstParam
920        | DefKind::Ctor(..)
921        | DefKind::ExternCrate
922        | DefKind::Use
923        | DefKind::ForeignMod
924        | DefKind::AnonConst
925        | DefKind::InlineConst
926        | DefKind::OpaqueTy
927        | DefKind::LifetimeParam
928        | DefKind::Static { nested: true, .. }
929        | DefKind::GlobalAsm => false,
930    }
931}
932
933fn should_encode_expn_that_defined(def_kind: DefKind) -> bool {
934    match def_kind {
935        DefKind::Mod
936        | DefKind::Struct
937        | DefKind::Union
938        | DefKind::Enum
939        | DefKind::Variant
940        | DefKind::Trait
941        | DefKind::Impl { .. } => true,
942        DefKind::TyAlias
943        | DefKind::ForeignTy
944        | DefKind::TraitAlias
945        | DefKind::AssocTy
946        | DefKind::TyParam
947        | DefKind::Fn
948        | DefKind::Const
949        | DefKind::ConstParam
950        | DefKind::Static { .. }
951        | DefKind::Ctor(..)
952        | DefKind::AssocFn
953        | DefKind::AssocConst
954        | DefKind::Macro(_)
955        | DefKind::ExternCrate
956        | DefKind::Use
957        | DefKind::ForeignMod
958        | DefKind::AnonConst
959        | DefKind::InlineConst
960        | DefKind::OpaqueTy
961        | DefKind::Field
962        | DefKind::LifetimeParam
963        | DefKind::GlobalAsm
964        | DefKind::Closure
965        | DefKind::SyntheticCoroutineBody => false,
966    }
967}
968
969fn should_encode_visibility(def_kind: DefKind) -> bool {
970    match def_kind {
971        DefKind::Mod
972        | DefKind::Struct
973        | DefKind::Union
974        | DefKind::Enum
975        | DefKind::Variant
976        | DefKind::Trait
977        | DefKind::TyAlias
978        | DefKind::ForeignTy
979        | DefKind::TraitAlias
980        | DefKind::AssocTy
981        | DefKind::Fn
982        | DefKind::Const
983        | DefKind::Static { nested: false, .. }
984        | DefKind::Ctor(..)
985        | DefKind::AssocFn
986        | DefKind::AssocConst
987        | DefKind::Macro(..)
988        | DefKind::Field => true,
989        DefKind::Use
990        | DefKind::ForeignMod
991        | DefKind::TyParam
992        | DefKind::ConstParam
993        | DefKind::LifetimeParam
994        | DefKind::AnonConst
995        | DefKind::InlineConst
996        | DefKind::Static { nested: true, .. }
997        | DefKind::OpaqueTy
998        | DefKind::GlobalAsm
999        | DefKind::Impl { .. }
1000        | DefKind::Closure
1001        | DefKind::ExternCrate
1002        | DefKind::SyntheticCoroutineBody => false,
1003    }
1004}
1005
1006fn should_encode_stability(def_kind: DefKind) -> bool {
1007    match def_kind {
1008        DefKind::Mod
1009        | DefKind::Ctor(..)
1010        | DefKind::Variant
1011        | DefKind::Field
1012        | DefKind::Struct
1013        | DefKind::AssocTy
1014        | DefKind::AssocFn
1015        | DefKind::AssocConst
1016        | DefKind::TyParam
1017        | DefKind::ConstParam
1018        | DefKind::Static { .. }
1019        | DefKind::Const
1020        | DefKind::Fn
1021        | DefKind::ForeignMod
1022        | DefKind::TyAlias
1023        | DefKind::OpaqueTy
1024        | DefKind::Enum
1025        | DefKind::Union
1026        | DefKind::Impl { .. }
1027        | DefKind::Trait
1028        | DefKind::TraitAlias
1029        | DefKind::Macro(..)
1030        | DefKind::ForeignTy => true,
1031        DefKind::Use
1032        | DefKind::LifetimeParam
1033        | DefKind::AnonConst
1034        | DefKind::InlineConst
1035        | DefKind::GlobalAsm
1036        | DefKind::Closure
1037        | DefKind::ExternCrate
1038        | DefKind::SyntheticCoroutineBody => false,
1039    }
1040}
1041
1042/// Whether we should encode MIR. Return a pair, resp. for CTFE and for LLVM.
1043///
1044/// Computing, optimizing and encoding the MIR is a relatively expensive operation.
1045/// We want to avoid this work when not required. Therefore:
1046/// - we only compute `mir_for_ctfe` on items with const-eval semantics;
1047/// - we skip `optimized_mir` for check runs.
1048/// - we only encode `optimized_mir` that could be generated in other crates, that is, a code that
1049///   is either generic or has inline hint, and is reachable from the other crates (contained
1050///   in reachable set).
1051///
1052/// Note: Reachable set describes definitions that might be generated or referenced from other
1053/// crates and it can be used to limit optimized MIR that needs to be encoded. On the other hand,
1054/// the reachable set doesn't have much to say about which definitions might be evaluated at compile
1055/// time in other crates, so it cannot be used to omit CTFE MIR. For example, `f` below is
1056/// unreachable and yet it can be evaluated in other crates:
1057///
1058/// ```
1059/// const fn f() -> usize { 0 }
1060/// pub struct S { pub a: [usize; f()] }
1061/// ```
1062fn should_encode_mir(
1063    tcx: TyCtxt<'_>,
1064    reachable_set: &LocalDefIdSet,
1065    def_id: LocalDefId,
1066) -> (bool, bool) {
1067    match tcx.def_kind(def_id) {
1068        // Constructors
1069        DefKind::Ctor(_, _) => {
1070            let mir_opt_base = tcx.sess.opts.output_types.should_codegen()
1071                || tcx.sess.opts.unstable_opts.always_encode_mir;
1072            (true, mir_opt_base)
1073        }
1074        // Constants
1075        DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst | DefKind::Const => {
1076            (true, false)
1077        }
1078        // Coroutines require optimized MIR to compute layout.
1079        DefKind::Closure if tcx.is_coroutine(def_id.to_def_id()) => (false, true),
1080        DefKind::SyntheticCoroutineBody => (false, true),
1081        // Full-fledged functions + closures
1082        DefKind::AssocFn | DefKind::Fn | DefKind::Closure => {
1083            let generics = tcx.generics_of(def_id);
1084            let opt = tcx.sess.opts.unstable_opts.always_encode_mir
1085                || (tcx.sess.opts.output_types.should_codegen()
1086                    && reachable_set.contains(&def_id)
1087                    && (generics.requires_monomorphization(tcx)
1088                        || tcx.cross_crate_inlinable(def_id)));
1089            // The function has a `const` modifier or is in a `#[const_trait]`.
1090            let is_const_fn = tcx.is_const_fn(def_id.to_def_id())
1091                || tcx.is_const_default_method(def_id.to_def_id());
1092            (is_const_fn, opt)
1093        }
1094        // The others don't have MIR.
1095        _ => (false, false),
1096    }
1097}
1098
1099fn should_encode_variances<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, def_kind: DefKind) -> bool {
1100    match def_kind {
1101        DefKind::Struct
1102        | DefKind::Union
1103        | DefKind::Enum
1104        | DefKind::Variant
1105        | DefKind::OpaqueTy
1106        | DefKind::Fn
1107        | DefKind::Ctor(..)
1108        | DefKind::AssocFn => true,
1109        DefKind::AssocTy => {
1110            // Only encode variances for RPITITs (for traits)
1111            matches!(tcx.opt_rpitit_info(def_id), Some(ty::ImplTraitInTraitData::Trait { .. }))
1112        }
1113        DefKind::Mod
1114        | DefKind::Field
1115        | DefKind::AssocConst
1116        | DefKind::TyParam
1117        | DefKind::ConstParam
1118        | DefKind::Static { .. }
1119        | DefKind::Const
1120        | DefKind::ForeignMod
1121        | DefKind::Impl { .. }
1122        | DefKind::Trait
1123        | DefKind::TraitAlias
1124        | DefKind::Macro(..)
1125        | DefKind::ForeignTy
1126        | DefKind::Use
1127        | DefKind::LifetimeParam
1128        | DefKind::AnonConst
1129        | DefKind::InlineConst
1130        | DefKind::GlobalAsm
1131        | DefKind::Closure
1132        | DefKind::ExternCrate
1133        | DefKind::SyntheticCoroutineBody => false,
1134        DefKind::TyAlias => tcx.type_alias_is_lazy(def_id),
1135    }
1136}
1137
1138fn should_encode_generics(def_kind: DefKind) -> bool {
1139    match def_kind {
1140        DefKind::Struct
1141        | DefKind::Union
1142        | DefKind::Enum
1143        | DefKind::Variant
1144        | DefKind::Trait
1145        | DefKind::TyAlias
1146        | DefKind::ForeignTy
1147        | DefKind::TraitAlias
1148        | DefKind::AssocTy
1149        | DefKind::Fn
1150        | DefKind::Const
1151        | DefKind::Static { .. }
1152        | DefKind::Ctor(..)
1153        | DefKind::AssocFn
1154        | DefKind::AssocConst
1155        | DefKind::AnonConst
1156        | DefKind::InlineConst
1157        | DefKind::OpaqueTy
1158        | DefKind::Impl { .. }
1159        | DefKind::Field
1160        | DefKind::TyParam
1161        | DefKind::Closure
1162        | DefKind::SyntheticCoroutineBody => true,
1163        DefKind::Mod
1164        | DefKind::ForeignMod
1165        | DefKind::ConstParam
1166        | DefKind::Macro(..)
1167        | DefKind::Use
1168        | DefKind::LifetimeParam
1169        | DefKind::GlobalAsm
1170        | DefKind::ExternCrate => false,
1171    }
1172}
1173
1174fn should_encode_type(tcx: TyCtxt<'_>, def_id: LocalDefId, def_kind: DefKind) -> bool {
1175    match def_kind {
1176        DefKind::Struct
1177        | DefKind::Union
1178        | DefKind::Enum
1179        | DefKind::Variant
1180        | DefKind::Ctor(..)
1181        | DefKind::Field
1182        | DefKind::Fn
1183        | DefKind::Const
1184        | DefKind::Static { nested: false, .. }
1185        | DefKind::TyAlias
1186        | DefKind::ForeignTy
1187        | DefKind::Impl { .. }
1188        | DefKind::AssocFn
1189        | DefKind::AssocConst
1190        | DefKind::Closure
1191        | DefKind::ConstParam
1192        | DefKind::AnonConst
1193        | DefKind::InlineConst
1194        | DefKind::SyntheticCoroutineBody => true,
1195
1196        DefKind::OpaqueTy => {
1197            let origin = tcx.local_opaque_ty_origin(def_id);
1198            if let hir::OpaqueTyOrigin::FnReturn { parent, .. }
1199            | hir::OpaqueTyOrigin::AsyncFn { parent, .. } = origin
1200                && let hir::Node::TraitItem(trait_item) = tcx.hir_node_by_def_id(parent)
1201                && let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn()
1202            {
1203                false
1204            } else {
1205                true
1206            }
1207        }
1208
1209        DefKind::AssocTy => {
1210            let assoc_item = tcx.associated_item(def_id);
1211            match assoc_item.container {
1212                ty::AssocItemContainer::Impl => true,
1213                ty::AssocItemContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1214            }
1215        }
1216        DefKind::TyParam => {
1217            let hir::Node::GenericParam(param) = tcx.hir_node_by_def_id(def_id) else { bug!() };
1218            let hir::GenericParamKind::Type { default, .. } = param.kind else { bug!() };
1219            default.is_some()
1220        }
1221
1222        DefKind::Trait
1223        | DefKind::TraitAlias
1224        | DefKind::Mod
1225        | DefKind::ForeignMod
1226        | DefKind::Macro(..)
1227        | DefKind::Static { nested: true, .. }
1228        | DefKind::Use
1229        | DefKind::LifetimeParam
1230        | DefKind::GlobalAsm
1231        | DefKind::ExternCrate => false,
1232    }
1233}
1234
1235fn should_encode_fn_sig(def_kind: DefKind) -> bool {
1236    match def_kind {
1237        DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) => true,
1238
1239        DefKind::Struct
1240        | DefKind::Union
1241        | DefKind::Enum
1242        | DefKind::Variant
1243        | DefKind::Field
1244        | DefKind::Const
1245        | DefKind::Static { .. }
1246        | DefKind::Ctor(..)
1247        | DefKind::TyAlias
1248        | DefKind::OpaqueTy
1249        | DefKind::ForeignTy
1250        | DefKind::Impl { .. }
1251        | DefKind::AssocConst
1252        | DefKind::Closure
1253        | DefKind::ConstParam
1254        | DefKind::AnonConst
1255        | DefKind::InlineConst
1256        | DefKind::AssocTy
1257        | DefKind::TyParam
1258        | DefKind::Trait
1259        | DefKind::TraitAlias
1260        | DefKind::Mod
1261        | DefKind::ForeignMod
1262        | DefKind::Macro(..)
1263        | DefKind::Use
1264        | DefKind::LifetimeParam
1265        | DefKind::GlobalAsm
1266        | DefKind::ExternCrate
1267        | DefKind::SyntheticCoroutineBody => false,
1268    }
1269}
1270
1271fn should_encode_constness(def_kind: DefKind) -> bool {
1272    match def_kind {
1273        DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::Ctor(_, CtorKind::Fn) => true,
1274
1275        DefKind::Struct
1276        | DefKind::Union
1277        | DefKind::Enum
1278        | DefKind::Field
1279        | DefKind::Const
1280        | DefKind::AssocConst
1281        | DefKind::AnonConst
1282        | DefKind::Static { .. }
1283        | DefKind::TyAlias
1284        | DefKind::OpaqueTy
1285        | DefKind::Impl { .. }
1286        | DefKind::ForeignTy
1287        | DefKind::ConstParam
1288        | DefKind::InlineConst
1289        | DefKind::AssocTy
1290        | DefKind::TyParam
1291        | DefKind::Trait
1292        | DefKind::TraitAlias
1293        | DefKind::Mod
1294        | DefKind::ForeignMod
1295        | DefKind::Macro(..)
1296        | DefKind::Use
1297        | DefKind::LifetimeParam
1298        | DefKind::GlobalAsm
1299        | DefKind::ExternCrate
1300        | DefKind::Ctor(_, CtorKind::Const)
1301        | DefKind::Variant
1302        | DefKind::SyntheticCoroutineBody => false,
1303    }
1304}
1305
1306fn should_encode_const(def_kind: DefKind) -> bool {
1307    match def_kind {
1308        DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst => true,
1309
1310        DefKind::Struct
1311        | DefKind::Union
1312        | DefKind::Enum
1313        | DefKind::Variant
1314        | DefKind::Ctor(..)
1315        | DefKind::Field
1316        | DefKind::Fn
1317        | DefKind::Static { .. }
1318        | DefKind::TyAlias
1319        | DefKind::OpaqueTy
1320        | DefKind::ForeignTy
1321        | DefKind::Impl { .. }
1322        | DefKind::AssocFn
1323        | DefKind::Closure
1324        | DefKind::ConstParam
1325        | DefKind::AssocTy
1326        | DefKind::TyParam
1327        | DefKind::Trait
1328        | DefKind::TraitAlias
1329        | DefKind::Mod
1330        | DefKind::ForeignMod
1331        | DefKind::Macro(..)
1332        | DefKind::Use
1333        | DefKind::LifetimeParam
1334        | DefKind::GlobalAsm
1335        | DefKind::ExternCrate
1336        | DefKind::SyntheticCoroutineBody => false,
1337    }
1338}
1339
1340fn should_encode_fn_impl_trait_in_trait<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> bool {
1341    if let Some(assoc_item) = tcx.opt_associated_item(def_id)
1342        && assoc_item.container == ty::AssocItemContainer::Trait
1343        && assoc_item.kind == ty::AssocKind::Fn
1344    {
1345        true
1346    } else {
1347        false
1348    }
1349}
1350
1351impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
1352    fn encode_attrs(&mut self, def_id: LocalDefId) {
1353        let tcx = self.tcx;
1354        let mut state = AnalyzeAttrState {
1355            is_exported: tcx.effective_visibilities(()).is_exported(def_id),
1356            is_doc_hidden: false,
1357            features: &tcx.features(),
1358        };
1359        let attr_iter = tcx
1360            .hir()
1361            .attrs(tcx.local_def_id_to_hir_id(def_id))
1362            .iter()
1363            .filter(|attr| analyze_attr(*attr, &mut state));
1364
1365        record_array!(self.tables.attributes[def_id.to_def_id()] <- attr_iter);
1366
1367        let mut attr_flags = AttrFlags::empty();
1368        if state.is_doc_hidden {
1369            attr_flags |= AttrFlags::IS_DOC_HIDDEN;
1370        }
1371        self.tables.attr_flags.set(def_id.local_def_index, attr_flags);
1372    }
1373
1374    fn encode_def_ids(&mut self) {
1375        self.encode_info_for_mod(CRATE_DEF_ID);
1376
1377        // Proc-macro crates only export proc-macro items, which are looked
1378        // up using `proc_macro_data`
1379        if self.is_proc_macro {
1380            return;
1381        }
1382
1383        let tcx = self.tcx;
1384
1385        for local_id in tcx.iter_local_def_id() {
1386            let def_id = local_id.to_def_id();
1387            let def_kind = tcx.def_kind(local_id);
1388            self.tables.def_kind.set_some(def_id.index, def_kind);
1389
1390            // The `DefCollector` will sometimes create unnecessary `DefId`s
1391            // for trivial const arguments which are directly lowered to
1392            // `ConstArgKind::Path`. We never actually access this `DefId`
1393            // anywhere so we don't need to encode it for other crates.
1394            if def_kind == DefKind::AnonConst
1395                && match tcx.hir_node_by_def_id(local_id) {
1396                    hir::Node::ConstArg(hir::ConstArg { kind, .. }) => match kind {
1397                        // Skip encoding defs for these as they should not have had a `DefId` created
1398                        hir::ConstArgKind::Path(..) | hir::ConstArgKind::Infer(..) => true,
1399                        hir::ConstArgKind::Anon(..) => false,
1400                    },
1401                    _ => false,
1402                }
1403            {
1404                continue;
1405            }
1406
1407            if def_kind == DefKind::Field
1408                && let hir::Node::Field(field) = tcx.hir_node_by_def_id(local_id)
1409                && let Some(anon) = field.default
1410            {
1411                record!(self.tables.default_fields[def_id] <- anon.def_id.to_def_id());
1412            }
1413
1414            if should_encode_span(def_kind) {
1415                let def_span = tcx.def_span(local_id);
1416                record!(self.tables.def_span[def_id] <- def_span);
1417            }
1418            if should_encode_attrs(def_kind) {
1419                self.encode_attrs(local_id);
1420            }
1421            if should_encode_expn_that_defined(def_kind) {
1422                record!(self.tables.expn_that_defined[def_id] <- self.tcx.expn_that_defined(def_id));
1423            }
1424            if should_encode_span(def_kind)
1425                && let Some(ident_span) = tcx.def_ident_span(def_id)
1426            {
1427                record!(self.tables.def_ident_span[def_id] <- ident_span);
1428            }
1429            if def_kind.has_codegen_attrs() {
1430                record!(self.tables.codegen_fn_attrs[def_id] <- self.tcx.codegen_fn_attrs(def_id));
1431            }
1432            if should_encode_visibility(def_kind) {
1433                let vis =
1434                    self.tcx.local_visibility(local_id).map_id(|def_id| def_id.local_def_index);
1435                record!(self.tables.visibility[def_id] <- vis);
1436            }
1437            if should_encode_stability(def_kind) {
1438                self.encode_stability(def_id);
1439                self.encode_const_stability(def_id);
1440                self.encode_default_body_stability(def_id);
1441                self.encode_deprecation(def_id);
1442            }
1443            if should_encode_variances(tcx, def_id, def_kind) {
1444                let v = self.tcx.variances_of(def_id);
1445                record_array!(self.tables.variances_of[def_id] <- v);
1446            }
1447            if should_encode_fn_sig(def_kind) {
1448                record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1449            }
1450            if should_encode_generics(def_kind) {
1451                let g = tcx.generics_of(def_id);
1452                record!(self.tables.generics_of[def_id] <- g);
1453                record!(self.tables.explicit_predicates_of[def_id] <- self.tcx.explicit_predicates_of(def_id));
1454                let inferred_outlives = self.tcx.inferred_outlives_of(def_id);
1455                record_defaulted_array!(self.tables.inferred_outlives_of[def_id] <- inferred_outlives);
1456
1457                for param in &g.own_params {
1458                    if let ty::GenericParamDefKind::Const { has_default: true, .. } = param.kind {
1459                        let default = self.tcx.const_param_default(param.def_id);
1460                        record!(self.tables.const_param_default[param.def_id] <- default);
1461                    }
1462                }
1463            }
1464            if tcx.is_conditionally_const(def_id) {
1465                record!(self.tables.const_conditions[def_id] <- self.tcx.const_conditions(def_id));
1466            }
1467            if should_encode_type(tcx, local_id, def_kind) {
1468                record!(self.tables.type_of[def_id] <- self.tcx.type_of(def_id));
1469            }
1470            if should_encode_constness(def_kind) {
1471                self.tables.constness.set_some(def_id.index, self.tcx.constness(def_id));
1472            }
1473            if let DefKind::Fn | DefKind::AssocFn = def_kind {
1474                self.tables.asyncness.set_some(def_id.index, tcx.asyncness(def_id));
1475                record_array!(self.tables.fn_arg_names[def_id] <- tcx.fn_arg_names(def_id));
1476            }
1477            if let Some(name) = tcx.intrinsic(def_id) {
1478                record!(self.tables.intrinsic[def_id] <- name);
1479            }
1480            if let DefKind::TyParam = def_kind {
1481                let default = self.tcx.object_lifetime_default(def_id);
1482                record!(self.tables.object_lifetime_default[def_id] <- default);
1483            }
1484            if let DefKind::Trait = def_kind {
1485                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1486                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1487                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1488                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1489                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1490                let module_children = self.tcx.module_children_local(local_id);
1491                record_array!(self.tables.module_children_non_reexports[def_id] <-
1492                    module_children.iter().map(|child| child.res.def_id().index));
1493                if self.tcx.is_const_trait(def_id) {
1494                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1495                        <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1496                }
1497            }
1498            if let DefKind::TraitAlias = def_kind {
1499                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1500                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1501                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1502                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1503                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1504            }
1505            if let DefKind::Trait | DefKind::Impl { .. } = def_kind {
1506                let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id);
1507                record_array!(self.tables.associated_item_or_field_def_ids[def_id] <-
1508                    associated_item_def_ids.iter().map(|&def_id| {
1509                        assert!(def_id.is_local());
1510                        def_id.index
1511                    })
1512                );
1513                for &def_id in associated_item_def_ids {
1514                    self.encode_info_for_assoc_item(def_id);
1515                }
1516            }
1517            if let DefKind::Closure | DefKind::SyntheticCoroutineBody = def_kind
1518                && let Some(coroutine_kind) = self.tcx.coroutine_kind(def_id)
1519            {
1520                self.tables.coroutine_kind.set(def_id.index, Some(coroutine_kind))
1521            }
1522            if def_kind == DefKind::Closure
1523                && tcx.type_of(def_id).skip_binder().is_coroutine_closure()
1524            {
1525                let coroutine_for_closure = self.tcx.coroutine_for_closure(def_id);
1526                self.tables
1527                    .coroutine_for_closure
1528                    .set_some(def_id.index, coroutine_for_closure.into());
1529
1530                // If this async closure has a by-move body, record it too.
1531                if tcx.needs_coroutine_by_move_body_def_id(coroutine_for_closure) {
1532                    self.tables.coroutine_by_move_body_def_id.set_some(
1533                        coroutine_for_closure.index,
1534                        self.tcx.coroutine_by_move_body_def_id(coroutine_for_closure).into(),
1535                    );
1536                }
1537            }
1538            if let DefKind::Static { .. } = def_kind {
1539                if !self.tcx.is_foreign_item(def_id) {
1540                    let data = self.tcx.eval_static_initializer(def_id).unwrap();
1541                    record!(self.tables.eval_static_initializer[def_id] <- data);
1542                }
1543            }
1544            if let DefKind::Enum | DefKind::Struct | DefKind::Union = def_kind {
1545                self.encode_info_for_adt(local_id);
1546            }
1547            if let DefKind::Mod = def_kind {
1548                self.encode_info_for_mod(local_id);
1549            }
1550            if let DefKind::Macro(_) = def_kind {
1551                self.encode_info_for_macro(local_id);
1552            }
1553            if let DefKind::TyAlias = def_kind {
1554                self.tables
1555                    .type_alias_is_lazy
1556                    .set(def_id.index, self.tcx.type_alias_is_lazy(def_id));
1557            }
1558            if let DefKind::OpaqueTy = def_kind {
1559                self.encode_explicit_item_bounds(def_id);
1560                self.encode_explicit_item_self_bounds(def_id);
1561                record!(self.tables.opaque_ty_origin[def_id] <- self.tcx.opaque_ty_origin(def_id));
1562                self.encode_precise_capturing_args(def_id);
1563                if tcx.is_conditionally_const(def_id) {
1564                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1565                        <- tcx.explicit_implied_const_bounds(def_id).skip_binder());
1566                }
1567            }
1568            if tcx.impl_method_has_trait_impl_trait_tys(def_id)
1569                && let Ok(table) = self.tcx.collect_return_position_impl_trait_in_trait_tys(def_id)
1570            {
1571                record!(self.tables.trait_impl_trait_tys[def_id] <- table);
1572            }
1573            if should_encode_fn_impl_trait_in_trait(tcx, def_id) {
1574                let table = tcx.associated_types_for_impl_traits_in_associated_fn(def_id);
1575                record_defaulted_array!(self.tables.associated_types_for_impl_traits_in_associated_fn[def_id] <- table);
1576            }
1577        }
1578
1579        for (def_id, impls) in &tcx.crate_inherent_impls(()).0.inherent_impls {
1580            record_defaulted_array!(self.tables.inherent_impls[def_id.to_def_id()] <- impls.iter().map(|def_id| {
1581                assert!(def_id.is_local());
1582                def_id.index
1583            }));
1584        }
1585
1586        for (def_id, res_map) in &tcx.resolutions(()).doc_link_resolutions {
1587            record!(self.tables.doc_link_resolutions[def_id.to_def_id()] <- res_map);
1588        }
1589
1590        for (def_id, traits) in &tcx.resolutions(()).doc_link_traits_in_scope {
1591            record_array!(self.tables.doc_link_traits_in_scope[def_id.to_def_id()] <- traits);
1592        }
1593    }
1594
1595    #[instrument(level = "trace", skip(self))]
1596    fn encode_info_for_adt(&mut self, local_def_id: LocalDefId) {
1597        let def_id = local_def_id.to_def_id();
1598        let tcx = self.tcx;
1599        let adt_def = tcx.adt_def(def_id);
1600        record!(self.tables.repr_options[def_id] <- adt_def.repr());
1601
1602        let params_in_repr = self.tcx.params_in_repr(def_id);
1603        record!(self.tables.params_in_repr[def_id] <- params_in_repr);
1604
1605        if adt_def.is_enum() {
1606            let module_children = tcx.module_children_local(local_def_id);
1607            record_array!(self.tables.module_children_non_reexports[def_id] <-
1608                module_children.iter().map(|child| child.res.def_id().index));
1609        } else {
1610            // For non-enum, there is only one variant, and its def_id is the adt's.
1611            debug_assert_eq!(adt_def.variants().len(), 1);
1612            debug_assert_eq!(adt_def.non_enum_variant().def_id, def_id);
1613            // Therefore, the loop over variants will encode its fields as the adt's children.
1614        }
1615
1616        for (idx, variant) in adt_def.variants().iter_enumerated() {
1617            let data = VariantData {
1618                discr: variant.discr,
1619                idx,
1620                ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)),
1621                is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1622            };
1623            record!(self.tables.variant_data[variant.def_id] <- data);
1624
1625            record_array!(self.tables.associated_item_or_field_def_ids[variant.def_id] <- variant.fields.iter().map(|f| {
1626                assert!(f.did.is_local());
1627                f.did.index
1628            }));
1629
1630            for field in &variant.fields {
1631                self.tables.safety.set_some(field.did.index, field.safety);
1632            }
1633
1634            if let Some((CtorKind::Fn, ctor_def_id)) = variant.ctor {
1635                let fn_sig = tcx.fn_sig(ctor_def_id);
1636                // FIXME only encode signature for ctor_def_id
1637                record!(self.tables.fn_sig[variant.def_id] <- fn_sig);
1638            }
1639        }
1640    }
1641
1642    #[instrument(level = "debug", skip(self))]
1643    fn encode_info_for_mod(&mut self, local_def_id: LocalDefId) {
1644        let tcx = self.tcx;
1645        let def_id = local_def_id.to_def_id();
1646
1647        // If we are encoding a proc-macro crates, `encode_info_for_mod` will
1648        // only ever get called for the crate root. We still want to encode
1649        // the crate root for consistency with other crates (some of the resolver
1650        // code uses it). However, we skip encoding anything relating to child
1651        // items - we encode information about proc-macros later on.
1652        if self.is_proc_macro {
1653            // Encode this here because we don't do it in encode_def_ids.
1654            record!(self.tables.expn_that_defined[def_id] <- tcx.expn_that_defined(local_def_id));
1655        } else {
1656            let module_children = tcx.module_children_local(local_def_id);
1657
1658            record_array!(self.tables.module_children_non_reexports[def_id] <-
1659                module_children.iter().filter(|child| child.reexport_chain.is_empty())
1660                    .map(|child| child.res.def_id().index));
1661
1662            record_defaulted_array!(self.tables.module_children_reexports[def_id] <-
1663                module_children.iter().filter(|child| !child.reexport_chain.is_empty()));
1664        }
1665    }
1666
1667    fn encode_explicit_item_bounds(&mut self, def_id: DefId) {
1668        debug!("EncodeContext::encode_explicit_item_bounds({:?})", def_id);
1669        let bounds = self.tcx.explicit_item_bounds(def_id).skip_binder();
1670        record_defaulted_array!(self.tables.explicit_item_bounds[def_id] <- bounds);
1671    }
1672
1673    fn encode_explicit_item_self_bounds(&mut self, def_id: DefId) {
1674        debug!("EncodeContext::encode_explicit_item_self_bounds({:?})", def_id);
1675        let bounds = self.tcx.explicit_item_self_bounds(def_id).skip_binder();
1676        record_defaulted_array!(self.tables.explicit_item_self_bounds[def_id] <- bounds);
1677    }
1678
1679    #[instrument(level = "debug", skip(self))]
1680    fn encode_info_for_assoc_item(&mut self, def_id: DefId) {
1681        let tcx = self.tcx;
1682        let item = tcx.associated_item(def_id);
1683
1684        self.tables.defaultness.set_some(def_id.index, item.defaultness(tcx));
1685        self.tables.assoc_container.set_some(def_id.index, item.container);
1686
1687        match item.container {
1688            AssocItemContainer::Trait => {
1689                if let ty::AssocKind::Type = item.kind {
1690                    self.encode_explicit_item_bounds(def_id);
1691                    self.encode_explicit_item_self_bounds(def_id);
1692                    if tcx.is_conditionally_const(def_id) {
1693                        record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1694                            <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1695                    }
1696                }
1697            }
1698            AssocItemContainer::Impl => {
1699                if let Some(trait_item_def_id) = item.trait_item_def_id {
1700                    self.tables.trait_item_def_id.set_some(def_id.index, trait_item_def_id.into());
1701                }
1702            }
1703        }
1704        if let Some(rpitit_info) = item.opt_rpitit_info {
1705            record!(self.tables.opt_rpitit_info[def_id] <- rpitit_info);
1706            if matches!(rpitit_info, ty::ImplTraitInTraitData::Trait { .. }) {
1707                record_array!(
1708                    self.tables.assumed_wf_types_for_rpitit[def_id]
1709                        <- self.tcx.assumed_wf_types_for_rpitit(def_id)
1710                );
1711                self.encode_precise_capturing_args(def_id);
1712            }
1713        }
1714    }
1715
1716    fn encode_precise_capturing_args(&mut self, def_id: DefId) {
1717        let Some(precise_capturing_args) = self.tcx.rendered_precise_capturing_args(def_id) else {
1718            return;
1719        };
1720
1721        record_array!(self.tables.rendered_precise_capturing_args[def_id] <- precise_capturing_args);
1722    }
1723
1724    fn encode_mir(&mut self) {
1725        if self.is_proc_macro {
1726            return;
1727        }
1728
1729        let tcx = self.tcx;
1730        let reachable_set = tcx.reachable_set(());
1731
1732        let keys_and_jobs = tcx.mir_keys(()).iter().filter_map(|&def_id| {
1733            let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
1734            if encode_const || encode_opt { Some((def_id, encode_const, encode_opt)) } else { None }
1735        });
1736        for (def_id, encode_const, encode_opt) in keys_and_jobs {
1737            debug_assert!(encode_const || encode_opt);
1738
1739            debug!("EntryBuilder::encode_mir({:?})", def_id);
1740            if encode_opt {
1741                record!(self.tables.optimized_mir[def_id.to_def_id()] <- tcx.optimized_mir(def_id));
1742                self.tables
1743                    .cross_crate_inlinable
1744                    .set(def_id.to_def_id().index, self.tcx.cross_crate_inlinable(def_id));
1745                record!(self.tables.closure_saved_names_of_captured_variables[def_id.to_def_id()]
1746                    <- tcx.closure_saved_names_of_captured_variables(def_id));
1747
1748                if self.tcx.is_coroutine(def_id.to_def_id())
1749                    && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1750                {
1751                    record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1752                }
1753            }
1754            if encode_const {
1755                record!(self.tables.mir_for_ctfe[def_id.to_def_id()] <- tcx.mir_for_ctfe(def_id));
1756
1757                // FIXME(generic_const_exprs): this feels wrong to have in `encode_mir`
1758                let abstract_const = tcx.thir_abstract_const(def_id);
1759                if let Ok(Some(abstract_const)) = abstract_const {
1760                    record!(self.tables.thir_abstract_const[def_id.to_def_id()] <- abstract_const);
1761                }
1762
1763                if should_encode_const(tcx.def_kind(def_id)) {
1764                    let qualifs = tcx.mir_const_qualif(def_id);
1765                    record!(self.tables.mir_const_qualif[def_id.to_def_id()] <- qualifs);
1766                    let body = tcx.hir().maybe_body_owned_by(def_id);
1767                    if let Some(body) = body {
1768                        let const_data = rendered_const(self.tcx, &body, def_id);
1769                        record!(self.tables.rendered_const[def_id.to_def_id()] <- const_data);
1770                    }
1771                }
1772            }
1773            record!(self.tables.promoted_mir[def_id.to_def_id()] <- tcx.promoted_mir(def_id));
1774
1775            if self.tcx.is_coroutine(def_id.to_def_id())
1776                && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1777            {
1778                record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1779            }
1780        }
1781
1782        // Encode all the deduced parameter attributes for everything that has MIR, even for items
1783        // that can't be inlined. But don't if we aren't optimizing in non-incremental mode, to
1784        // save the query traffic.
1785        if tcx.sess.opts.output_types.should_codegen()
1786            && tcx.sess.opts.optimize != OptLevel::No
1787            && tcx.sess.opts.incremental.is_none()
1788        {
1789            for &local_def_id in tcx.mir_keys(()) {
1790                if let DefKind::AssocFn | DefKind::Fn = tcx.def_kind(local_def_id) {
1791                    record_array!(self.tables.deduced_param_attrs[local_def_id.to_def_id()] <-
1792                        self.tcx.deduced_param_attrs(local_def_id.to_def_id()));
1793                }
1794            }
1795        }
1796    }
1797
1798    #[instrument(level = "debug", skip(self))]
1799    fn encode_stability(&mut self, def_id: DefId) {
1800        // The query lookup can take a measurable amount of time in crates with many items. Check if
1801        // the stability attributes are even enabled before using their queries.
1802        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1803            if let Some(stab) = self.tcx.lookup_stability(def_id) {
1804                record!(self.tables.lookup_stability[def_id] <- stab)
1805            }
1806        }
1807    }
1808
1809    #[instrument(level = "debug", skip(self))]
1810    fn encode_const_stability(&mut self, def_id: DefId) {
1811        // The query lookup can take a measurable amount of time in crates with many items. Check if
1812        // the stability attributes are even enabled before using their queries.
1813        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1814            if let Some(stab) = self.tcx.lookup_const_stability(def_id) {
1815                record!(self.tables.lookup_const_stability[def_id] <- stab)
1816            }
1817        }
1818    }
1819
1820    #[instrument(level = "debug", skip(self))]
1821    fn encode_default_body_stability(&mut self, def_id: DefId) {
1822        // The query lookup can take a measurable amount of time in crates with many items. Check if
1823        // the stability attributes are even enabled before using their queries.
1824        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1825            if let Some(stab) = self.tcx.lookup_default_body_stability(def_id) {
1826                record!(self.tables.lookup_default_body_stability[def_id] <- stab)
1827            }
1828        }
1829    }
1830
1831    #[instrument(level = "debug", skip(self))]
1832    fn encode_deprecation(&mut self, def_id: DefId) {
1833        if let Some(depr) = self.tcx.lookup_deprecation(def_id) {
1834            record!(self.tables.lookup_deprecation_entry[def_id] <- depr);
1835        }
1836    }
1837
1838    #[instrument(level = "debug", skip(self))]
1839    fn encode_info_for_macro(&mut self, def_id: LocalDefId) {
1840        let tcx = self.tcx;
1841
1842        let hir::ItemKind::Macro(macro_def, _) = tcx.hir().expect_item(def_id).kind else { bug!() };
1843        self.tables.is_macro_rules.set(def_id.local_def_index, macro_def.macro_rules);
1844        record!(self.tables.macro_definition[def_id.to_def_id()] <- &*macro_def.body);
1845    }
1846
1847    fn encode_native_libraries(&mut self) -> LazyArray<NativeLib> {
1848        empty_proc_macro!(self);
1849        let used_libraries = self.tcx.native_libraries(LOCAL_CRATE);
1850        self.lazy_array(used_libraries.iter())
1851    }
1852
1853    fn encode_foreign_modules(&mut self) -> LazyArray<ForeignModule> {
1854        empty_proc_macro!(self);
1855        let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE);
1856        self.lazy_array(foreign_modules.iter().map(|(_, m)| m).cloned())
1857    }
1858
1859    fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable, ExpnHashTable) {
1860        let mut syntax_contexts: TableBuilder<_, _> = Default::default();
1861        let mut expn_data_table: TableBuilder<_, _> = Default::default();
1862        let mut expn_hash_table: TableBuilder<_, _> = Default::default();
1863
1864        self.hygiene_ctxt.encode(
1865            &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table, &mut expn_hash_table),
1866            |(this, syntax_contexts, _, _), index, ctxt_data| {
1867                syntax_contexts.set_some(index, this.lazy(ctxt_data));
1868            },
1869            |(this, _, expn_data_table, expn_hash_table), index, expn_data, hash| {
1870                if let Some(index) = index.as_local() {
1871                    expn_data_table.set_some(index.as_raw(), this.lazy(expn_data));
1872                    expn_hash_table.set_some(index.as_raw(), this.lazy(hash));
1873                }
1874            },
1875        );
1876
1877        (
1878            syntax_contexts.encode(&mut self.opaque),
1879            expn_data_table.encode(&mut self.opaque),
1880            expn_hash_table.encode(&mut self.opaque),
1881        )
1882    }
1883
1884    fn encode_proc_macros(&mut self) -> Option<ProcMacroData> {
1885        let is_proc_macro = self.tcx.crate_types().contains(&CrateType::ProcMacro);
1886        if is_proc_macro {
1887            let tcx = self.tcx;
1888            let hir = tcx.hir();
1889
1890            let proc_macro_decls_static = tcx.proc_macro_decls_static(()).unwrap().local_def_index;
1891            let stability = tcx.lookup_stability(CRATE_DEF_ID);
1892            let macros =
1893                self.lazy_array(tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index));
1894            for (i, span) in self.tcx.sess.psess.proc_macro_quoted_spans() {
1895                let span = self.lazy(span);
1896                self.tables.proc_macro_quoted_spans.set_some(i, span);
1897            }
1898
1899            self.tables.def_kind.set_some(LOCAL_CRATE.as_def_id().index, DefKind::Mod);
1900            record!(self.tables.def_span[LOCAL_CRATE.as_def_id()] <- tcx.def_span(LOCAL_CRATE.as_def_id()));
1901            self.encode_attrs(LOCAL_CRATE.as_def_id().expect_local());
1902            let vis = tcx.local_visibility(CRATE_DEF_ID).map_id(|def_id| def_id.local_def_index);
1903            record!(self.tables.visibility[LOCAL_CRATE.as_def_id()] <- vis);
1904            if let Some(stability) = stability {
1905                record!(self.tables.lookup_stability[LOCAL_CRATE.as_def_id()] <- stability);
1906            }
1907            self.encode_deprecation(LOCAL_CRATE.as_def_id());
1908            if let Some(res_map) = tcx.resolutions(()).doc_link_resolutions.get(&CRATE_DEF_ID) {
1909                record!(self.tables.doc_link_resolutions[LOCAL_CRATE.as_def_id()] <- res_map);
1910            }
1911            if let Some(traits) = tcx.resolutions(()).doc_link_traits_in_scope.get(&CRATE_DEF_ID) {
1912                record_array!(self.tables.doc_link_traits_in_scope[LOCAL_CRATE.as_def_id()] <- traits);
1913            }
1914
1915            // Normally, this information is encoded when we walk the items
1916            // defined in this crate. However, we skip doing that for proc-macro crates,
1917            // so we manually encode just the information that we need
1918            for &proc_macro in &tcx.resolutions(()).proc_macros {
1919                let id = proc_macro;
1920                let proc_macro = tcx.local_def_id_to_hir_id(proc_macro);
1921                let mut name = hir.name(proc_macro);
1922                let span = hir.span(proc_macro);
1923                // Proc-macros may have attributes like `#[allow_internal_unstable]`,
1924                // so downstream crates need access to them.
1925                let attrs = hir.attrs(proc_macro);
1926                let macro_kind = if ast::attr::contains_name(attrs, sym::proc_macro) {
1927                    MacroKind::Bang
1928                } else if ast::attr::contains_name(attrs, sym::proc_macro_attribute) {
1929                    MacroKind::Attr
1930                } else if let Some(attr) = ast::attr::find_by_name(attrs, sym::proc_macro_derive) {
1931                    // This unwrap chain should have been checked by the proc-macro harness.
1932                    name = attr.meta_item_list().unwrap()[0]
1933                        .meta_item()
1934                        .unwrap()
1935                        .ident()
1936                        .unwrap()
1937                        .name;
1938                    MacroKind::Derive
1939                } else {
1940                    bug!("Unknown proc-macro type for item {:?}", id);
1941                };
1942
1943                let mut def_key = self.tcx.hir().def_key(id);
1944                def_key.disambiguated_data.data = DefPathData::MacroNs(name);
1945
1946                let def_id = id.to_def_id();
1947                self.tables.def_kind.set_some(def_id.index, DefKind::Macro(macro_kind));
1948                self.tables.proc_macro.set_some(def_id.index, macro_kind);
1949                self.encode_attrs(id);
1950                record!(self.tables.def_keys[def_id] <- def_key);
1951                record!(self.tables.def_ident_span[def_id] <- span);
1952                record!(self.tables.def_span[def_id] <- span);
1953                record!(self.tables.visibility[def_id] <- ty::Visibility::Public);
1954                if let Some(stability) = stability {
1955                    record!(self.tables.lookup_stability[def_id] <- stability);
1956                }
1957            }
1958
1959            Some(ProcMacroData { proc_macro_decls_static, stability, macros })
1960        } else {
1961            None
1962        }
1963    }
1964
1965    fn encode_debugger_visualizers(&mut self) -> LazyArray<DebuggerVisualizerFile> {
1966        empty_proc_macro!(self);
1967        self.lazy_array(
1968            self.tcx
1969                .debugger_visualizers(LOCAL_CRATE)
1970                .iter()
1971                // Erase the path since it may contain privacy sensitive data
1972                // that we don't want to end up in crate metadata.
1973                // The path is only needed for the local crate because of
1974                // `--emit dep-info`.
1975                .map(DebuggerVisualizerFile::path_erased),
1976        )
1977    }
1978
1979    fn encode_crate_deps(&mut self) -> LazyArray<CrateDep> {
1980        empty_proc_macro!(self);
1981
1982        let deps = self
1983            .tcx
1984            .crates(())
1985            .iter()
1986            .map(|&cnum| {
1987                let dep = CrateDep {
1988                    name: self.tcx.crate_name(cnum),
1989                    hash: self.tcx.crate_hash(cnum),
1990                    host_hash: self.tcx.crate_host_hash(cnum),
1991                    kind: self.tcx.dep_kind(cnum),
1992                    extra_filename: self.tcx.extra_filename(cnum).clone(),
1993                    is_private: self.tcx.is_private_dep(cnum),
1994                };
1995                (cnum, dep)
1996            })
1997            .collect::<Vec<_>>();
1998
1999        {
2000            // Sanity-check the crate numbers
2001            let mut expected_cnum = 1;
2002            for &(n, _) in &deps {
2003                assert_eq!(n, CrateNum::new(expected_cnum));
2004                expected_cnum += 1;
2005            }
2006        }
2007
2008        // We're just going to write a list of crate 'name-hash-version's, with
2009        // the assumption that they are numbered 1 to n.
2010        // FIXME (#2166): This is not nearly enough to support correct versioning
2011        // but is enough to get transitive crate dependencies working.
2012        self.lazy_array(deps.iter().map(|(_, dep)| dep))
2013    }
2014
2015    fn encode_target_modifiers(&mut self) -> LazyArray<TargetModifier> {
2016        empty_proc_macro!(self);
2017        let tcx = self.tcx;
2018        self.lazy_array(tcx.sess.opts.gather_target_modifiers())
2019    }
2020
2021    fn encode_lib_features(&mut self) -> LazyArray<(Symbol, FeatureStability)> {
2022        empty_proc_macro!(self);
2023        let tcx = self.tcx;
2024        let lib_features = tcx.lib_features(LOCAL_CRATE);
2025        self.lazy_array(lib_features.to_sorted_vec())
2026    }
2027
2028    fn encode_stability_implications(&mut self) -> LazyArray<(Symbol, Symbol)> {
2029        empty_proc_macro!(self);
2030        let tcx = self.tcx;
2031        let implications = tcx.stability_implications(LOCAL_CRATE);
2032        let sorted = implications.to_sorted_stable_ord();
2033        self.lazy_array(sorted.into_iter().map(|(k, v)| (*k, *v)))
2034    }
2035
2036    fn encode_diagnostic_items(&mut self) -> LazyArray<(Symbol, DefIndex)> {
2037        empty_proc_macro!(self);
2038        let tcx = self.tcx;
2039        let diagnostic_items = &tcx.diagnostic_items(LOCAL_CRATE).name_to_id;
2040        self.lazy_array(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index)))
2041    }
2042
2043    fn encode_lang_items(&mut self) -> LazyArray<(DefIndex, LangItem)> {
2044        empty_proc_macro!(self);
2045        let lang_items = self.tcx.lang_items().iter();
2046        self.lazy_array(lang_items.filter_map(|(lang_item, def_id)| {
2047            def_id.as_local().map(|id| (id.local_def_index, lang_item))
2048        }))
2049    }
2050
2051    fn encode_lang_items_missing(&mut self) -> LazyArray<LangItem> {
2052        empty_proc_macro!(self);
2053        let tcx = self.tcx;
2054        self.lazy_array(&tcx.lang_items().missing)
2055    }
2056
2057    fn encode_stripped_cfg_items(&mut self) -> LazyArray<StrippedCfgItem<DefIndex>> {
2058        self.lazy_array(
2059            self.tcx
2060                .stripped_cfg_items(LOCAL_CRATE)
2061                .into_iter()
2062                .map(|item| item.clone().map_mod_id(|def_id| def_id.index)),
2063        )
2064    }
2065
2066    fn encode_traits(&mut self) -> LazyArray<DefIndex> {
2067        empty_proc_macro!(self);
2068        self.lazy_array(self.tcx.traits(LOCAL_CRATE).iter().map(|def_id| def_id.index))
2069    }
2070
2071    /// Encodes an index, mapping each trait to its (local) implementations.
2072    #[instrument(level = "debug", skip(self))]
2073    fn encode_impls(&mut self) -> LazyArray<TraitImpls> {
2074        empty_proc_macro!(self);
2075        let tcx = self.tcx;
2076        let mut trait_impls: FxIndexMap<DefId, Vec<(DefIndex, Option<SimplifiedType>)>> =
2077            FxIndexMap::default();
2078
2079        for id in tcx.hir().items() {
2080            let DefKind::Impl { of_trait } = tcx.def_kind(id.owner_id) else {
2081                continue;
2082            };
2083            let def_id = id.owner_id.to_def_id();
2084
2085            self.tables.defaultness.set_some(def_id.index, tcx.defaultness(def_id));
2086
2087            if of_trait && let Some(header) = tcx.impl_trait_header(def_id) {
2088                record!(self.tables.impl_trait_header[def_id] <- header);
2089
2090                let trait_ref = header.trait_ref.instantiate_identity();
2091                let simplified_self_ty = fast_reject::simplify_type(
2092                    self.tcx,
2093                    trait_ref.self_ty(),
2094                    TreatParams::InstantiateWithInfer,
2095                );
2096                trait_impls
2097                    .entry(trait_ref.def_id)
2098                    .or_default()
2099                    .push((id.owner_id.def_id.local_def_index, simplified_self_ty));
2100
2101                let trait_def = tcx.trait_def(trait_ref.def_id);
2102                if let Ok(mut an) = trait_def.ancestors(tcx, def_id) {
2103                    if let Some(specialization_graph::Node::Impl(parent)) = an.nth(1) {
2104                        self.tables.impl_parent.set_some(def_id.index, parent.into());
2105                    }
2106                }
2107
2108                // if this is an impl of `CoerceUnsized`, create its
2109                // "unsized info", else just store None
2110                if tcx.is_lang_item(trait_ref.def_id, LangItem::CoerceUnsized) {
2111                    let coerce_unsized_info = tcx.coerce_unsized_info(def_id).unwrap();
2112                    record!(self.tables.coerce_unsized_info[def_id] <- coerce_unsized_info);
2113                }
2114            }
2115        }
2116
2117        let trait_impls: Vec<_> = trait_impls
2118            .into_iter()
2119            .map(|(trait_def_id, impls)| TraitImpls {
2120                trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index),
2121                impls: self.lazy_array(&impls),
2122            })
2123            .collect();
2124
2125        self.lazy_array(&trait_impls)
2126    }
2127
2128    #[instrument(level = "debug", skip(self))]
2129    fn encode_incoherent_impls(&mut self) -> LazyArray<IncoherentImpls> {
2130        empty_proc_macro!(self);
2131        let tcx = self.tcx;
2132
2133        let all_impls: Vec<_> = tcx
2134            .crate_inherent_impls(())
2135            .0
2136            .incoherent_impls
2137            .iter()
2138            .map(|(&simp, impls)| IncoherentImpls {
2139                self_ty: simp,
2140                impls: self.lazy_array(impls.iter().map(|def_id| def_id.local_def_index)),
2141            })
2142            .collect();
2143
2144        self.lazy_array(&all_impls)
2145    }
2146
2147    // Encodes all symbols exported from this crate into the metadata.
2148    //
2149    // This pass is seeded off the reachability list calculated in the
2150    // middle::reachable module but filters out items that either don't have a
2151    // symbol associated with them (they weren't translated) or if they're an FFI
2152    // definition (as that's not defined in this crate).
2153    fn encode_exported_symbols(
2154        &mut self,
2155        exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportInfo)],
2156    ) -> LazyArray<(ExportedSymbol<'static>, SymbolExportInfo)> {
2157        empty_proc_macro!(self);
2158        // The metadata symbol name is special. It should not show up in
2159        // downstream crates.
2160        let metadata_symbol_name = SymbolName::new(self.tcx, &metadata_symbol_name(self.tcx));
2161
2162        self.lazy_array(
2163            exported_symbols
2164                .iter()
2165                .filter(|&(exported_symbol, _)| match *exported_symbol {
2166                    ExportedSymbol::NoDefId(symbol_name) => symbol_name != metadata_symbol_name,
2167                    _ => true,
2168                })
2169                .cloned(),
2170        )
2171    }
2172
2173    fn encode_dylib_dependency_formats(&mut self) -> LazyArray<Option<LinkagePreference>> {
2174        empty_proc_macro!(self);
2175        let formats = self.tcx.dependency_formats(());
2176        if let Some(arr) = formats.get(&CrateType::Dylib) {
2177            return self.lazy_array(arr.iter().skip(1 /* skip LOCAL_CRATE */).map(
2178                |slot| match *slot {
2179                    Linkage::NotLinked | Linkage::IncludedFromDylib => None,
2180
2181                    Linkage::Dynamic => Some(LinkagePreference::RequireDynamic),
2182                    Linkage::Static => Some(LinkagePreference::RequireStatic),
2183                },
2184            ));
2185        }
2186        LazyArray::default()
2187    }
2188}
2189
2190/// Used to prefetch queries which will be needed later by metadata encoding.
2191/// Only a subset of the queries are actually prefetched to keep this code smaller.
2192fn prefetch_mir(tcx: TyCtxt<'_>) {
2193    if !tcx.sess.opts.output_types.should_codegen() {
2194        // We won't emit MIR, so don't prefetch it.
2195        return;
2196    }
2197
2198    let reachable_set = tcx.reachable_set(());
2199    par_for_each_in(tcx.mir_keys(()), |&def_id| {
2200        let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
2201
2202        if encode_const {
2203            tcx.ensure_done().mir_for_ctfe(def_id);
2204        }
2205        if encode_opt {
2206            tcx.ensure_done().optimized_mir(def_id);
2207        }
2208        if encode_opt || encode_const {
2209            tcx.ensure_done().promoted_mir(def_id);
2210        }
2211    })
2212}
2213
2214// NOTE(eddyb) The following comment was preserved for posterity, even
2215// though it's no longer relevant as EBML (which uses nested & tagged
2216// "documents") was replaced with a scheme that can't go out of bounds.
2217//
2218// And here we run into yet another obscure archive bug: in which metadata
2219// loaded from archives may have trailing garbage bytes. Awhile back one of
2220// our tests was failing sporadically on the macOS 64-bit builders (both nopt
2221// and opt) by having ebml generate an out-of-bounds panic when looking at
2222// metadata.
2223//
2224// Upon investigation it turned out that the metadata file inside of an rlib
2225// (and ar archive) was being corrupted. Some compilations would generate a
2226// metadata file which would end in a few extra bytes, while other
2227// compilations would not have these extra bytes appended to the end. These
2228// extra bytes were interpreted by ebml as an extra tag, so they ended up
2229// being interpreted causing the out-of-bounds.
2230//
2231// The root cause of why these extra bytes were appearing was never
2232// discovered, and in the meantime the solution we're employing is to insert
2233// the length of the metadata to the start of the metadata. Later on this
2234// will allow us to slice the metadata to the precise length that we just
2235// generated regardless of trailing bytes that end up in it.
2236
2237pub struct EncodedMetadata {
2238    // The declaration order matters because `mmap` should be dropped before `_temp_dir`.
2239    mmap: Option<Mmap>,
2240    // We need to carry MaybeTempDir to avoid deleting the temporary
2241    // directory while accessing the Mmap.
2242    _temp_dir: Option<MaybeTempDir>,
2243}
2244
2245impl EncodedMetadata {
2246    #[inline]
2247    pub fn from_path(path: PathBuf, temp_dir: Option<MaybeTempDir>) -> std::io::Result<Self> {
2248        let file = std::fs::File::open(&path)?;
2249        let file_metadata = file.metadata()?;
2250        if file_metadata.len() == 0 {
2251            return Ok(Self { mmap: None, _temp_dir: None });
2252        }
2253        let mmap = unsafe { Some(Mmap::map(file)?) };
2254        Ok(Self { mmap, _temp_dir: temp_dir })
2255    }
2256
2257    #[inline]
2258    pub fn raw_data(&self) -> &[u8] {
2259        self.mmap.as_deref().unwrap_or_default()
2260    }
2261}
2262
2263impl<S: Encoder> Encodable<S> for EncodedMetadata {
2264    fn encode(&self, s: &mut S) {
2265        let slice = self.raw_data();
2266        slice.encode(s)
2267    }
2268}
2269
2270impl<D: Decoder> Decodable<D> for EncodedMetadata {
2271    fn decode(d: &mut D) -> Self {
2272        let len = d.read_usize();
2273        let mmap = if len > 0 {
2274            let mut mmap = MmapMut::map_anon(len).unwrap();
2275            mmap.copy_from_slice(d.read_raw_bytes(len));
2276            Some(mmap.make_read_only().unwrap())
2277        } else {
2278            None
2279        };
2280
2281        Self { mmap, _temp_dir: None }
2282    }
2283}
2284
2285pub fn encode_metadata(tcx: TyCtxt<'_>, path: &Path) {
2286    let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata");
2287
2288    // Since encoding metadata is not in a query, and nothing is cached,
2289    // there's no need to do dep-graph tracking for any of it.
2290    tcx.dep_graph.assert_ignored();
2291
2292    if tcx.sess.threads() != 1 {
2293        // Prefetch some queries used by metadata encoding.
2294        // This is not necessary for correctness, but is only done for performance reasons.
2295        // It can be removed if it turns out to cause trouble or be detrimental to performance.
2296        join(|| prefetch_mir(tcx), || tcx.exported_symbols(LOCAL_CRATE));
2297    }
2298
2299    let mut encoder = opaque::FileEncoder::new(path)
2300        .unwrap_or_else(|err| tcx.dcx().emit_fatal(FailCreateFileEncoder { err }));
2301    encoder.emit_raw_bytes(METADATA_HEADER);
2302
2303    // Will be filled with the root position after encoding everything.
2304    encoder.emit_raw_bytes(&0u64.to_le_bytes());
2305
2306    let source_map_files = tcx.sess.source_map().files();
2307    let source_file_cache = (Arc::clone(&source_map_files[0]), 0);
2308    let required_source_files = Some(FxIndexSet::default());
2309    drop(source_map_files);
2310
2311    let hygiene_ctxt = HygieneEncodeContext::default();
2312
2313    let mut ecx = EncodeContext {
2314        opaque: encoder,
2315        tcx,
2316        feat: tcx.features(),
2317        tables: Default::default(),
2318        lazy_state: LazyState::NoNode,
2319        span_shorthands: Default::default(),
2320        type_shorthands: Default::default(),
2321        predicate_shorthands: Default::default(),
2322        source_file_cache,
2323        interpret_allocs: Default::default(),
2324        required_source_files,
2325        is_proc_macro: tcx.crate_types().contains(&CrateType::ProcMacro),
2326        hygiene_ctxt: &hygiene_ctxt,
2327        symbol_table: Default::default(),
2328    };
2329
2330    // Encode the rustc version string in a predictable location.
2331    rustc_version(tcx.sess.cfg_version).encode(&mut ecx);
2332
2333    // Encode all the entries and extra information in the crate,
2334    // culminating in the `CrateRoot` which points to all of it.
2335    let root = ecx.encode_crate_root();
2336
2337    // Make sure we report any errors from writing to the file.
2338    // If we forget this, compilation can succeed with an incomplete rmeta file,
2339    // causing an ICE when the rmeta file is read by another compilation.
2340    if let Err((path, err)) = ecx.opaque.finish() {
2341        tcx.dcx().emit_fatal(FailWriteFile { path: &path, err });
2342    }
2343
2344    let file = ecx.opaque.file();
2345    if let Err(err) = encode_root_position(file, root.position.get()) {
2346        tcx.dcx().emit_fatal(FailWriteFile { path: ecx.opaque.path(), err });
2347    }
2348
2349    // Record metadata size for self-profiling
2350    tcx.prof.artifact_size("crate_metadata", "crate_metadata", file.metadata().unwrap().len());
2351}
2352
2353fn encode_root_position(mut file: &File, pos: usize) -> Result<(), std::io::Error> {
2354    // We will return to this position after writing the root position.
2355    let pos_before_seek = file.stream_position().unwrap();
2356
2357    // Encode the root position.
2358    let header = METADATA_HEADER.len();
2359    file.seek(std::io::SeekFrom::Start(header as u64))?;
2360    file.write_all(&pos.to_le_bytes())?;
2361
2362    // Return to the position where we are before writing the root position.
2363    file.seek(std::io::SeekFrom::Start(pos_before_seek))?;
2364    Ok(())
2365}
2366
2367pub(crate) fn provide(providers: &mut Providers) {
2368    *providers = Providers {
2369        doc_link_resolutions: |tcx, def_id| {
2370            tcx.resolutions(())
2371                .doc_link_resolutions
2372                .get(&def_id)
2373                .unwrap_or_else(|| span_bug!(tcx.def_span(def_id), "no resolutions for a doc link"))
2374        },
2375        doc_link_traits_in_scope: |tcx, def_id| {
2376            tcx.resolutions(()).doc_link_traits_in_scope.get(&def_id).unwrap_or_else(|| {
2377                span_bug!(tcx.def_span(def_id), "no traits in scope for a doc link")
2378            })
2379        },
2380
2381        ..*providers
2382    }
2383}
2384
2385/// Build a textual representation of an unevaluated constant expression.
2386///
2387/// If the const expression is too complex, an underscore `_` is returned.
2388/// For const arguments, it's `{ _ }` to be precise.
2389/// This means that the output is not necessarily valid Rust code.
2390///
2391/// Currently, only
2392///
2393/// * literals (optionally with a leading `-`)
2394/// * unit `()`
2395/// * blocks (`{ … }`) around simple expressions and
2396/// * paths without arguments
2397///
2398/// are considered simple enough. Simple blocks are included since they are
2399/// necessary to disambiguate unit from the unit type.
2400/// This list might get extended in the future.
2401///
2402/// Without this censoring, in a lot of cases the output would get too large
2403/// and verbose. Consider `match` expressions, blocks and deeply nested ADTs.
2404/// Further, private and `doc(hidden)` fields of structs would get leaked
2405/// since HIR datatypes like the `body` parameter do not contain enough
2406/// semantic information for this function to be able to hide them –
2407/// at least not without significant performance overhead.
2408///
2409/// Whenever possible, prefer to evaluate the constant first and try to
2410/// use a different method for pretty-printing. Ideally this function
2411/// should only ever be used as a fallback.
2412pub fn rendered_const<'tcx>(tcx: TyCtxt<'tcx>, body: &hir::Body<'_>, def_id: LocalDefId) -> String {
2413    let hir = tcx.hir();
2414    let value = body.value;
2415
2416    #[derive(PartialEq, Eq)]
2417    enum Classification {
2418        Literal,
2419        Simple,
2420        Complex,
2421    }
2422
2423    use Classification::*;
2424
2425    fn classify(expr: &hir::Expr<'_>) -> Classification {
2426        match &expr.kind {
2427            hir::ExprKind::Unary(hir::UnOp::Neg, expr) => {
2428                if matches!(expr.kind, hir::ExprKind::Lit(_)) { Literal } else { Complex }
2429            }
2430            hir::ExprKind::Lit(_) => Literal,
2431            hir::ExprKind::Tup([]) => Simple,
2432            hir::ExprKind::Block(hir::Block { stmts: [], expr: Some(expr), .. }, _) => {
2433                if classify(expr) == Complex { Complex } else { Simple }
2434            }
2435            // Paths with a self-type or arguments are too “complex” following our measure since
2436            // they may leak private fields of structs (with feature `adt_const_params`).
2437            // Consider: `<Self as Trait<{ Struct { private: () } }>>::CONSTANT`.
2438            // Paths without arguments are definitely harmless though.
2439            hir::ExprKind::Path(hir::QPath::Resolved(_, hir::Path { segments, .. })) => {
2440                if segments.iter().all(|segment| segment.args.is_none()) { Simple } else { Complex }
2441            }
2442            // FIXME: Claiming that those kinds of QPaths are simple is probably not true if the Ty
2443            //        contains const arguments. Is there a *concise* way to check for this?
2444            hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => Simple,
2445            // FIXME: Can they contain const arguments and thus leak private struct fields?
2446            hir::ExprKind::Path(hir::QPath::LangItem(..)) => Simple,
2447            _ => Complex,
2448        }
2449    }
2450
2451    match classify(value) {
2452        // For non-macro literals, we avoid invoking the pretty-printer and use the source snippet
2453        // instead to preserve certain stylistic choices the user likely made for the sake of
2454        // legibility, like:
2455        //
2456        // * hexadecimal notation
2457        // * underscores
2458        // * character escapes
2459        //
2460        // FIXME: This passes through `-/*spacer*/0` verbatim.
2461        Literal
2462            if !value.span.from_expansion()
2463                && let Ok(snippet) = tcx.sess.source_map().span_to_snippet(value.span) =>
2464        {
2465            snippet
2466        }
2467
2468        // Otherwise we prefer pretty-printing to get rid of extraneous whitespace, comments and
2469        // other formatting artifacts.
2470        Literal | Simple => id_to_string(&hir, body.id().hir_id),
2471
2472        // FIXME: Omit the curly braces if the enclosing expression is an array literal
2473        //        with a repeated element (an `ExprKind::Repeat`) as in such case it
2474        //        would not actually need any disambiguation.
2475        Complex => {
2476            if tcx.def_kind(def_id) == DefKind::AnonConst {
2477                "{ _ }".to_owned()
2478            } else {
2479                "_".to_owned()
2480            }
2481        }
2482    }
2483}