rustc_metadata/rmeta/
encoder.rs

1use std::borrow::Borrow;
2use std::collections::hash_map::Entry;
3use std::fs::File;
4use std::io::{Read, Seek, Write};
5use std::path::{Path, PathBuf};
6use std::sync::Arc;
7
8use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
9use rustc_data_structures::memmap::{Mmap, MmapMut};
10use rustc_data_structures::sync::{join, par_for_each_in};
11use rustc_data_structures::temp_dir::MaybeTempDir;
12use rustc_data_structures::thousands::usize_with_underscores;
13use rustc_feature::Features;
14use rustc_hir as hir;
15use rustc_hir::attrs::{AttributeKind, EncodeCrossCrate};
16use rustc_hir::def_id::{CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE, LocalDefId, LocalDefIdSet};
17use rustc_hir::definitions::DefPathData;
18use rustc_hir::find_attr;
19use rustc_hir_pretty::id_to_string;
20use rustc_middle::dep_graph::WorkProductId;
21use rustc_middle::middle::dependency_format::Linkage;
22use rustc_middle::mir::interpret;
23use rustc_middle::query::Providers;
24use rustc_middle::traits::specialization_graph;
25use rustc_middle::ty::AssocContainer;
26use rustc_middle::ty::codec::TyEncoder;
27use rustc_middle::ty::fast_reject::{self, TreatParams};
28use rustc_middle::{bug, span_bug};
29use rustc_serialize::{Decodable, Decoder, Encodable, Encoder, opaque};
30use rustc_session::config::{CrateType, OptLevel, TargetModifier};
31use rustc_span::hygiene::HygieneEncodeContext;
32use rustc_span::{
33    ByteSymbol, ExternalSource, FileName, SourceFile, SpanData, SpanEncoder, StableSourceFileId,
34    Symbol, SyntaxContext, sym,
35};
36use tracing::{debug, instrument, trace};
37
38use crate::errors::{FailCreateFileEncoder, FailWriteFile};
39use crate::rmeta::*;
40
41pub(super) struct EncodeContext<'a, 'tcx> {
42    opaque: opaque::FileEncoder,
43    tcx: TyCtxt<'tcx>,
44    feat: &'tcx rustc_feature::Features,
45    tables: TableBuilders,
46
47    lazy_state: LazyState,
48    span_shorthands: FxHashMap<Span, usize>,
49    type_shorthands: FxHashMap<Ty<'tcx>, usize>,
50    predicate_shorthands: FxHashMap<ty::PredicateKind<'tcx>, usize>,
51
52    interpret_allocs: FxIndexSet<interpret::AllocId>,
53
54    // This is used to speed up Span encoding.
55    // The `usize` is an index into the `MonotonicVec`
56    // that stores the `SourceFile`
57    source_file_cache: (Arc<SourceFile>, usize),
58    // The indices (into the `SourceMap`'s `MonotonicVec`)
59    // of all of the `SourceFiles` that we need to serialize.
60    // When we serialize a `Span`, we insert the index of its
61    // `SourceFile` into the `FxIndexSet`.
62    // The order inside the `FxIndexSet` is used as on-disk
63    // order of `SourceFiles`, and encoded inside `Span`s.
64    required_source_files: Option<FxIndexSet<usize>>,
65    is_proc_macro: bool,
66    hygiene_ctxt: &'a HygieneEncodeContext,
67    // Used for both `Symbol`s and `ByteSymbol`s.
68    symbol_index_table: FxHashMap<u32, usize>,
69}
70
71/// If the current crate is a proc-macro, returns early with `LazyArray::default()`.
72/// This is useful for skipping the encoding of things that aren't needed
73/// for proc-macro crates.
74macro_rules! empty_proc_macro {
75    ($self:ident) => {
76        if $self.is_proc_macro {
77            return LazyArray::default();
78        }
79    };
80}
81
82macro_rules! encoder_methods {
83    ($($name:ident($ty:ty);)*) => {
84        $(fn $name(&mut self, value: $ty) {
85            self.opaque.$name(value)
86        })*
87    }
88}
89
90impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> {
91    encoder_methods! {
92        emit_usize(usize);
93        emit_u128(u128);
94        emit_u64(u64);
95        emit_u32(u32);
96        emit_u16(u16);
97        emit_u8(u8);
98
99        emit_isize(isize);
100        emit_i128(i128);
101        emit_i64(i64);
102        emit_i32(i32);
103        emit_i16(i16);
104
105        emit_raw_bytes(&[u8]);
106    }
107}
108
109impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyValue<T> {
110    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
111        e.emit_lazy_distance(self.position);
112    }
113}
114
115impl<'a, 'tcx, T> Encodable<EncodeContext<'a, 'tcx>> for LazyArray<T> {
116    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
117        e.emit_usize(self.num_elems);
118        if self.num_elems > 0 {
119            e.emit_lazy_distance(self.position)
120        }
121    }
122}
123
124impl<'a, 'tcx, I, T> Encodable<EncodeContext<'a, 'tcx>> for LazyTable<I, T> {
125    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
126        e.emit_usize(self.width);
127        e.emit_usize(self.len);
128        e.emit_lazy_distance(self.position);
129    }
130}
131
132impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for ExpnIndex {
133    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
134        s.emit_u32(self.as_u32());
135    }
136}
137
138impl<'a, 'tcx> SpanEncoder for EncodeContext<'a, 'tcx> {
139    fn encode_crate_num(&mut self, crate_num: CrateNum) {
140        if crate_num != LOCAL_CRATE && self.is_proc_macro {
141            panic!("Attempted to encode non-local CrateNum {crate_num:?} for proc-macro crate");
142        }
143        self.emit_u32(crate_num.as_u32());
144    }
145
146    fn encode_def_index(&mut self, def_index: DefIndex) {
147        self.emit_u32(def_index.as_u32());
148    }
149
150    fn encode_def_id(&mut self, def_id: DefId) {
151        def_id.krate.encode(self);
152        def_id.index.encode(self);
153    }
154
155    fn encode_syntax_context(&mut self, syntax_context: SyntaxContext) {
156        rustc_span::hygiene::raw_encode_syntax_context(syntax_context, self.hygiene_ctxt, self);
157    }
158
159    fn encode_expn_id(&mut self, expn_id: ExpnId) {
160        if expn_id.krate == LOCAL_CRATE {
161            // We will only write details for local expansions. Non-local expansions will fetch
162            // data from the corresponding crate's metadata.
163            // FIXME(#43047) FIXME(#74731) We may eventually want to avoid relying on external
164            // metadata from proc-macro crates.
165            self.hygiene_ctxt.schedule_expn_data_for_encoding(expn_id);
166        }
167        expn_id.krate.encode(self);
168        expn_id.local_id.encode(self);
169    }
170
171    fn encode_span(&mut self, span: Span) {
172        match self.span_shorthands.entry(span) {
173            Entry::Occupied(o) => {
174                // If an offset is smaller than the absolute position, we encode with the offset.
175                // This saves space since smaller numbers encode in less bits.
176                let last_location = *o.get();
177                // This cannot underflow. Metadata is written with increasing position(), so any
178                // previously saved offset must be smaller than the current position.
179                let offset = self.opaque.position() - last_location;
180                if offset < last_location {
181                    let needed = bytes_needed(offset);
182                    SpanTag::indirect(true, needed as u8).encode(self);
183                    self.opaque.write_with(|dest| {
184                        *dest = offset.to_le_bytes();
185                        needed
186                    });
187                } else {
188                    let needed = bytes_needed(last_location);
189                    SpanTag::indirect(false, needed as u8).encode(self);
190                    self.opaque.write_with(|dest| {
191                        *dest = last_location.to_le_bytes();
192                        needed
193                    });
194                }
195            }
196            Entry::Vacant(v) => {
197                let position = self.opaque.position();
198                v.insert(position);
199                // Data is encoded with a SpanTag prefix (see below).
200                span.data().encode(self);
201            }
202        }
203    }
204
205    fn encode_symbol(&mut self, sym: Symbol) {
206        self.encode_symbol_or_byte_symbol(sym.as_u32(), |this| this.emit_str(sym.as_str()));
207    }
208
209    fn encode_byte_symbol(&mut self, byte_sym: ByteSymbol) {
210        self.encode_symbol_or_byte_symbol(byte_sym.as_u32(), |this| {
211            this.emit_byte_str(byte_sym.as_byte_str())
212        });
213    }
214}
215
216fn bytes_needed(n: usize) -> usize {
217    (usize::BITS - n.leading_zeros()).div_ceil(u8::BITS) as usize
218}
219
220impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for SpanData {
221    fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) {
222        // Don't serialize any `SyntaxContext`s from a proc-macro crate,
223        // since we don't load proc-macro dependencies during serialization.
224        // This means that any hygiene information from macros used *within*
225        // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro
226        // definition) will be lost.
227        //
228        // This can show up in two ways:
229        //
230        // 1. Any hygiene information associated with identifier of
231        // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost.
232        // Since proc-macros can only be invoked from a different crate,
233        // real code should never need to care about this.
234        //
235        // 2. Using `Span::def_site` or `Span::mixed_site` will not
236        // include any hygiene information associated with the definition
237        // site. This means that a proc-macro cannot emit a `$crate`
238        // identifier which resolves to one of its dependencies,
239        // which also should never come up in practice.
240        //
241        // Additionally, this affects `Span::parent`, and any other
242        // span inspection APIs that would otherwise allow traversing
243        // the `SyntaxContexts` associated with a span.
244        //
245        // None of these user-visible effects should result in any
246        // cross-crate inconsistencies (getting one behavior in the same
247        // crate, and a different behavior in another crate) due to the
248        // limited surface that proc-macros can expose.
249        //
250        // IMPORTANT: If this is ever changed, be sure to update
251        // `rustc_span::hygiene::raw_encode_expn_id` to handle
252        // encoding `ExpnData` for proc-macro crates.
253        let ctxt = if s.is_proc_macro { SyntaxContext::root() } else { self.ctxt };
254
255        if self.is_dummy() {
256            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
257            tag.encode(s);
258            if tag.context().is_none() {
259                ctxt.encode(s);
260            }
261            return;
262        }
263
264        // The Span infrastructure should make sure that this invariant holds:
265        debug_assert!(self.lo <= self.hi);
266
267        if !s.source_file_cache.0.contains(self.lo) {
268            let source_map = s.tcx.sess.source_map();
269            let source_file_index = source_map.lookup_source_file_idx(self.lo);
270            s.source_file_cache =
271                (Arc::clone(&source_map.files()[source_file_index]), source_file_index);
272        }
273        let (ref source_file, source_file_index) = s.source_file_cache;
274        debug_assert!(source_file.contains(self.lo));
275
276        if !source_file.contains(self.hi) {
277            // Unfortunately, macro expansion still sometimes generates Spans
278            // that malformed in this way.
279            let tag = SpanTag::new(SpanKind::Partial, ctxt, 0);
280            tag.encode(s);
281            if tag.context().is_none() {
282                ctxt.encode(s);
283            }
284            return;
285        }
286
287        // There are two possible cases here:
288        // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the
289        // crate we are writing metadata for. When the metadata for *this* crate gets
290        // deserialized, the deserializer will need to know which crate it originally came
291        // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should
292        // be deserialized after the rest of the span data, which tells the deserializer
293        // which crate contains the source map information.
294        // 2. This span comes from our own crate. No special handling is needed - we just
295        // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use
296        // our own source map information.
297        //
298        // If we're a proc-macro crate, we always treat this as a local `Span`.
299        // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata
300        // if we're a proc-macro crate.
301        // This allows us to avoid loading the dependencies of proc-macro crates: all of
302        // the information we need to decode `Span`s is stored in the proc-macro crate.
303        let (kind, metadata_index) = if source_file.is_imported() && !s.is_proc_macro {
304            // To simplify deserialization, we 'rebase' this span onto the crate it originally came
305            // from (the crate that 'owns' the file it references. These rebased 'lo' and 'hi'
306            // values are relative to the source map information for the 'foreign' crate whose
307            // CrateNum we write into the metadata. This allows `imported_source_files` to binary
308            // search through the 'foreign' crate's source map information, using the
309            // deserialized 'lo' and 'hi' values directly.
310            //
311            // All of this logic ensures that the final result of deserialization is a 'normal'
312            // Span that can be used without any additional trouble.
313            let metadata_index = {
314                // Introduce a new scope so that we drop the 'read()' temporary
315                match &*source_file.external_src.read() {
316                    ExternalSource::Foreign { metadata_index, .. } => *metadata_index,
317                    src => panic!("Unexpected external source {src:?}"),
318                }
319            };
320
321            (SpanKind::Foreign, metadata_index)
322        } else {
323            // Record the fact that we need to encode the data for this `SourceFile`
324            let source_files =
325                s.required_source_files.as_mut().expect("Already encoded SourceMap!");
326            let (metadata_index, _) = source_files.insert_full(source_file_index);
327            let metadata_index: u32 =
328                metadata_index.try_into().expect("cannot export more than U32_MAX files");
329
330            (SpanKind::Local, metadata_index)
331        };
332
333        // Encode the start position relative to the file start, so we profit more from the
334        // variable-length integer encoding.
335        let lo = self.lo - source_file.start_pos;
336
337        // Encode length which is usually less than span.hi and profits more
338        // from the variable-length integer encoding that we use.
339        let len = self.hi - self.lo;
340
341        let tag = SpanTag::new(kind, ctxt, len.0 as usize);
342        tag.encode(s);
343        if tag.context().is_none() {
344            ctxt.encode(s);
345        }
346        lo.encode(s);
347        if tag.length().is_none() {
348            len.encode(s);
349        }
350
351        // Encode the index of the `SourceFile` for the span, in order to make decoding faster.
352        metadata_index.encode(s);
353
354        if kind == SpanKind::Foreign {
355            // This needs to be two lines to avoid holding the `s.source_file_cache`
356            // while calling `cnum.encode(s)`
357            let cnum = s.source_file_cache.0.cnum;
358            cnum.encode(s);
359        }
360    }
361}
362
363impl<'a, 'tcx> Encodable<EncodeContext<'a, 'tcx>> for [u8] {
364    fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) {
365        Encoder::emit_usize(e, self.len());
366        e.emit_raw_bytes(self);
367    }
368}
369
370impl<'a, 'tcx> TyEncoder<'tcx> for EncodeContext<'a, 'tcx> {
371    const CLEAR_CROSS_CRATE: bool = true;
372
373    fn position(&self) -> usize {
374        self.opaque.position()
375    }
376
377    fn type_shorthands(&mut self) -> &mut FxHashMap<Ty<'tcx>, usize> {
378        &mut self.type_shorthands
379    }
380
381    fn predicate_shorthands(&mut self) -> &mut FxHashMap<ty::PredicateKind<'tcx>, usize> {
382        &mut self.predicate_shorthands
383    }
384
385    fn encode_alloc_id(&mut self, alloc_id: &rustc_middle::mir::interpret::AllocId) {
386        let (index, _) = self.interpret_allocs.insert_full(*alloc_id);
387
388        index.encode(self);
389    }
390}
391
392// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy($value))`, which would
393// normally need extra variables to avoid errors about multiple mutable borrows.
394macro_rules! record {
395    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
396        {
397            let value = $value;
398            let lazy = $self.lazy(value);
399            $self.$tables.$table.set_some($def_id.index, lazy);
400        }
401    }};
402}
403
404// Shorthand for `$self.$tables.$table.set_some($def_id.index, $self.lazy_array($value))`, which would
405// normally need extra variables to avoid errors about multiple mutable borrows.
406macro_rules! record_array {
407    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
408        {
409            let value = $value;
410            let lazy = $self.lazy_array(value);
411            $self.$tables.$table.set_some($def_id.index, lazy);
412        }
413    }};
414}
415
416macro_rules! record_defaulted_array {
417    ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{
418        {
419            let value = $value;
420            let lazy = $self.lazy_array(value);
421            $self.$tables.$table.set($def_id.index, lazy);
422        }
423    }};
424}
425
426impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
427    fn emit_lazy_distance(&mut self, position: NonZero<usize>) {
428        let pos = position.get();
429        let distance = match self.lazy_state {
430            LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"),
431            LazyState::NodeStart(start) => {
432                let start = start.get();
433                assert!(pos <= start);
434                start - pos
435            }
436            LazyState::Previous(last_pos) => {
437                assert!(
438                    last_pos <= position,
439                    "make sure that the calls to `lazy*` \
440                     are in the same order as the metadata fields",
441                );
442                position.get() - last_pos.get()
443            }
444        };
445        self.lazy_state = LazyState::Previous(NonZero::new(pos).unwrap());
446        self.emit_usize(distance);
447    }
448
449    fn lazy<T: ParameterizedOverTcx, B: Borrow<T::Value<'tcx>>>(&mut self, value: B) -> LazyValue<T>
450    where
451        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
452    {
453        let pos = NonZero::new(self.position()).unwrap();
454
455        assert_eq!(self.lazy_state, LazyState::NoNode);
456        self.lazy_state = LazyState::NodeStart(pos);
457        value.borrow().encode(self);
458        self.lazy_state = LazyState::NoNode;
459
460        assert!(pos.get() <= self.position());
461
462        LazyValue::from_position(pos)
463    }
464
465    fn lazy_array<T: ParameterizedOverTcx, I: IntoIterator<Item = B>, B: Borrow<T::Value<'tcx>>>(
466        &mut self,
467        values: I,
468    ) -> LazyArray<T>
469    where
470        T::Value<'tcx>: Encodable<EncodeContext<'a, 'tcx>>,
471    {
472        let pos = NonZero::new(self.position()).unwrap();
473
474        assert_eq!(self.lazy_state, LazyState::NoNode);
475        self.lazy_state = LazyState::NodeStart(pos);
476        let len = values.into_iter().map(|value| value.borrow().encode(self)).count();
477        self.lazy_state = LazyState::NoNode;
478
479        assert!(pos.get() <= self.position());
480
481        LazyArray::from_position_and_num_elems(pos, len)
482    }
483
484    fn encode_symbol_or_byte_symbol(
485        &mut self,
486        index: u32,
487        emit_str_or_byte_str: impl Fn(&mut Self),
488    ) {
489        // if symbol/byte symbol is predefined, emit tag and symbol index
490        if Symbol::is_predefined(index) {
491            self.opaque.emit_u8(SYMBOL_PREDEFINED);
492            self.opaque.emit_u32(index);
493        } else {
494            // otherwise write it as string or as offset to it
495            match self.symbol_index_table.entry(index) {
496                Entry::Vacant(o) => {
497                    self.opaque.emit_u8(SYMBOL_STR);
498                    let pos = self.opaque.position();
499                    o.insert(pos);
500                    emit_str_or_byte_str(self);
501                }
502                Entry::Occupied(o) => {
503                    let x = *o.get();
504                    self.emit_u8(SYMBOL_OFFSET);
505                    self.emit_usize(x);
506                }
507            }
508        }
509    }
510
511    fn encode_def_path_table(&mut self) {
512        let table = self.tcx.def_path_table();
513        if self.is_proc_macro {
514            for def_index in std::iter::once(CRATE_DEF_INDEX)
515                .chain(self.tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index))
516            {
517                let def_key = self.lazy(table.def_key(def_index));
518                let def_path_hash = table.def_path_hash(def_index);
519                self.tables.def_keys.set_some(def_index, def_key);
520                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
521            }
522        } else {
523            for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() {
524                let def_key = self.lazy(def_key);
525                self.tables.def_keys.set_some(def_index, def_key);
526                self.tables.def_path_hashes.set(def_index, def_path_hash.local_hash().as_u64());
527            }
528        }
529    }
530
531    fn encode_def_path_hash_map(&mut self) -> LazyValue<DefPathHashMapRef<'static>> {
532        self.lazy(DefPathHashMapRef::BorrowedFromTcx(self.tcx.def_path_hash_to_def_index_map()))
533    }
534
535    fn encode_source_map(&mut self) -> LazyTable<u32, Option<LazyValue<rustc_span::SourceFile>>> {
536        let source_map = self.tcx.sess.source_map();
537        let all_source_files = source_map.files();
538
539        // By replacing the `Option` with `None`, we ensure that we can't
540        // accidentally serialize any more `Span`s after the source map encoding
541        // is done.
542        let required_source_files = self.required_source_files.take().unwrap();
543
544        let working_directory = &self.tcx.sess.opts.working_dir;
545
546        let mut adapted = TableBuilder::default();
547
548        let local_crate_stable_id = self.tcx.stable_crate_id(LOCAL_CRATE);
549
550        // Only serialize `SourceFile`s that were used during the encoding of a `Span`.
551        //
552        // The order in which we encode source files is important here: the on-disk format for
553        // `Span` contains the index of the corresponding `SourceFile`.
554        for (on_disk_index, &source_file_index) in required_source_files.iter().enumerate() {
555            let source_file = &all_source_files[source_file_index];
556            // Don't serialize imported `SourceFile`s, unless we're in a proc-macro crate.
557            assert!(!source_file.is_imported() || self.is_proc_macro);
558
559            // At export time we expand all source file paths to absolute paths because
560            // downstream compilation sessions can have a different compiler working
561            // directory, so relative paths from this or any other upstream crate
562            // won't be valid anymore.
563            //
564            // At this point we also erase the actual on-disk path and only keep
565            // the remapped version -- as is necessary for reproducible builds.
566            let mut adapted_source_file = (**source_file).clone();
567
568            match source_file.name {
569                FileName::Real(ref original_file_name) => {
570                    let adapted_file_name = source_map
571                        .path_mapping()
572                        .to_embeddable_absolute_path(original_file_name.clone(), working_directory);
573
574                    adapted_source_file.name = FileName::Real(adapted_file_name);
575                }
576                _ => {
577                    // expanded code, not from a file
578                }
579            };
580
581            // We're serializing this `SourceFile` into our crate metadata,
582            // so mark it as coming from this crate.
583            // This also ensures that we don't try to deserialize the
584            // `CrateNum` for a proc-macro dependency - since proc macro
585            // dependencies aren't loaded when we deserialize a proc-macro,
586            // trying to remap the `CrateNum` would fail.
587            if self.is_proc_macro {
588                adapted_source_file.cnum = LOCAL_CRATE;
589            }
590
591            // Update the `StableSourceFileId` to make sure it incorporates the
592            // id of the current crate. This way it will be unique within the
593            // crate graph during downstream compilation sessions.
594            adapted_source_file.stable_id = StableSourceFileId::from_filename_for_export(
595                &adapted_source_file.name,
596                local_crate_stable_id,
597            );
598
599            let on_disk_index: u32 =
600                on_disk_index.try_into().expect("cannot export more than U32_MAX files");
601            adapted.set_some(on_disk_index, self.lazy(adapted_source_file));
602        }
603
604        adapted.encode(&mut self.opaque)
605    }
606
607    fn encode_crate_root(&mut self) -> LazyValue<CrateRoot> {
608        let tcx = self.tcx;
609        let mut stats: Vec<(&'static str, usize)> = Vec::with_capacity(32);
610
611        macro_rules! stat {
612            ($label:literal, $f:expr) => {{
613                let orig_pos = self.position();
614                let res = $f();
615                stats.push(($label, self.position() - orig_pos));
616                res
617            }};
618        }
619
620        // We have already encoded some things. Get their combined size from the current position.
621        stats.push(("preamble", self.position()));
622
623        let (crate_deps, dylib_dependency_formats) =
624            stat!("dep", || (self.encode_crate_deps(), self.encode_dylib_dependency_formats()));
625
626        let lib_features = stat!("lib-features", || self.encode_lib_features());
627
628        let stability_implications =
629            stat!("stability-implications", || self.encode_stability_implications());
630
631        let (lang_items, lang_items_missing) = stat!("lang-items", || {
632            (self.encode_lang_items(), self.encode_lang_items_missing())
633        });
634
635        let stripped_cfg_items = stat!("stripped-cfg-items", || self.encode_stripped_cfg_items());
636
637        let diagnostic_items = stat!("diagnostic-items", || self.encode_diagnostic_items());
638
639        let native_libraries = stat!("native-libs", || self.encode_native_libraries());
640
641        let foreign_modules = stat!("foreign-modules", || self.encode_foreign_modules());
642
643        _ = stat!("def-path-table", || self.encode_def_path_table());
644
645        // Encode the def IDs of traits, for rustdoc and diagnostics.
646        let traits = stat!("traits", || self.encode_traits());
647
648        // Encode the def IDs of impls, for coherence checking.
649        let impls = stat!("impls", || self.encode_impls());
650
651        let incoherent_impls = stat!("incoherent-impls", || self.encode_incoherent_impls());
652
653        _ = stat!("mir", || self.encode_mir());
654
655        _ = stat!("def-ids", || self.encode_def_ids());
656
657        let interpret_alloc_index = stat!("interpret-alloc-index", || {
658            let mut interpret_alloc_index = Vec::new();
659            let mut n = 0;
660            trace!("beginning to encode alloc ids");
661            loop {
662                let new_n = self.interpret_allocs.len();
663                // if we have found new ids, serialize those, too
664                if n == new_n {
665                    // otherwise, abort
666                    break;
667                }
668                trace!("encoding {} further alloc ids", new_n - n);
669                for idx in n..new_n {
670                    let id = self.interpret_allocs[idx];
671                    let pos = self.position() as u64;
672                    interpret_alloc_index.push(pos);
673                    interpret::specialized_encode_alloc_id(self, tcx, id);
674                }
675                n = new_n;
676            }
677            self.lazy_array(interpret_alloc_index)
678        });
679
680        // Encode the proc macro data. This affects `tables`, so we need to do this before we
681        // encode the tables. This overwrites def_keys, so it must happen after
682        // encode_def_path_table.
683        let proc_macro_data = stat!("proc-macro-data", || self.encode_proc_macros());
684
685        let tables = stat!("tables", || self.tables.encode(&mut self.opaque));
686
687        let debugger_visualizers =
688            stat!("debugger-visualizers", || self.encode_debugger_visualizers());
689
690        let exportable_items = stat!("exportable-items", || self.encode_exportable_items());
691
692        let stable_order_of_exportable_impls =
693            stat!("exportable-items", || self.encode_stable_order_of_exportable_impls());
694
695        // Encode exported symbols info. This is prefetched in `encode_metadata`.
696        let (exported_non_generic_symbols, exported_generic_symbols) =
697            stat!("exported-symbols", || {
698                (
699                    self.encode_exported_symbols(tcx.exported_non_generic_symbols(LOCAL_CRATE)),
700                    self.encode_exported_symbols(tcx.exported_generic_symbols(LOCAL_CRATE)),
701                )
702            });
703
704        // Encode the hygiene data.
705        // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The
706        // process of encoding other items (e.g. `optimized_mir`) may cause us to load data from
707        // the incremental cache. If this causes us to deserialize a `Span`, then we may load
708        // additional `SyntaxContext`s into the global `HygieneData`. Therefore, we need to encode
709        // the hygiene data last to ensure that we encode any `SyntaxContext`s that might be used.
710        let (syntax_contexts, expn_data, expn_hashes) = stat!("hygiene", || self.encode_hygiene());
711
712        let def_path_hash_map = stat!("def-path-hash-map", || self.encode_def_path_hash_map());
713
714        // Encode source_map. This needs to be done last, because encoding `Span`s tells us which
715        // `SourceFiles` we actually need to encode.
716        let source_map = stat!("source-map", || self.encode_source_map());
717        let target_modifiers = stat!("target-modifiers", || self.encode_target_modifiers());
718
719        let root = stat!("final", || {
720            let attrs = tcx.hir_krate_attrs();
721            self.lazy(CrateRoot {
722                header: CrateHeader {
723                    name: tcx.crate_name(LOCAL_CRATE),
724                    triple: tcx.sess.opts.target_triple.clone(),
725                    hash: tcx.crate_hash(LOCAL_CRATE),
726                    is_proc_macro_crate: proc_macro_data.is_some(),
727                    is_stub: false,
728                },
729                extra_filename: tcx.sess.opts.cg.extra_filename.clone(),
730                stable_crate_id: tcx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(),
731                required_panic_strategy: tcx.required_panic_strategy(LOCAL_CRATE),
732                panic_in_drop_strategy: tcx.sess.opts.unstable_opts.panic_in_drop,
733                edition: tcx.sess.edition(),
734                has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE),
735                has_alloc_error_handler: tcx.has_alloc_error_handler(LOCAL_CRATE),
736                has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE),
737                has_default_lib_allocator: ast::attr::contains_name(
738                    attrs,
739                    sym::default_lib_allocator,
740                ),
741                proc_macro_data,
742                debugger_visualizers,
743                compiler_builtins: ast::attr::contains_name(attrs, sym::compiler_builtins),
744                needs_allocator: ast::attr::contains_name(attrs, sym::needs_allocator),
745                needs_panic_runtime: ast::attr::contains_name(attrs, sym::needs_panic_runtime),
746                no_builtins: ast::attr::contains_name(attrs, sym::no_builtins),
747                panic_runtime: ast::attr::contains_name(attrs, sym::panic_runtime),
748                profiler_runtime: ast::attr::contains_name(attrs, sym::profiler_runtime),
749                symbol_mangling_version: tcx.sess.opts.get_symbol_mangling_version(),
750
751                crate_deps,
752                dylib_dependency_formats,
753                lib_features,
754                stability_implications,
755                lang_items,
756                diagnostic_items,
757                lang_items_missing,
758                stripped_cfg_items,
759                native_libraries,
760                foreign_modules,
761                source_map,
762                target_modifiers,
763                traits,
764                impls,
765                incoherent_impls,
766                exportable_items,
767                stable_order_of_exportable_impls,
768                exported_non_generic_symbols,
769                exported_generic_symbols,
770                interpret_alloc_index,
771                tables,
772                syntax_contexts,
773                expn_data,
774                expn_hashes,
775                def_path_hash_map,
776                specialization_enabled_in: tcx.specialization_enabled_in(LOCAL_CRATE),
777            })
778        });
779
780        let total_bytes = self.position();
781
782        let computed_total_bytes: usize = stats.iter().map(|(_, size)| size).sum();
783        assert_eq!(total_bytes, computed_total_bytes);
784
785        if tcx.sess.opts.unstable_opts.meta_stats {
786            use std::fmt::Write;
787
788            self.opaque.flush();
789
790            // Rewind and re-read all the metadata to count the zero bytes we wrote.
791            let pos_before_rewind = self.opaque.file().stream_position().unwrap();
792            let mut zero_bytes = 0;
793            self.opaque.file().rewind().unwrap();
794            let file = std::io::BufReader::new(self.opaque.file());
795            for e in file.bytes() {
796                if e.unwrap() == 0 {
797                    zero_bytes += 1;
798                }
799            }
800            assert_eq!(self.opaque.file().stream_position().unwrap(), pos_before_rewind);
801
802            stats.sort_by_key(|&(_, usize)| usize);
803            stats.reverse(); // bigger items first
804
805            let prefix = "meta-stats";
806            let perc = |bytes| (bytes * 100) as f64 / total_bytes as f64;
807
808            let section_w = 23;
809            let size_w = 10;
810            let banner_w = 64;
811
812            // We write all the text into a string and print it with a single
813            // `eprint!`. This is an attempt to minimize interleaved text if multiple
814            // rustc processes are printing macro-stats at the same time (e.g. with
815            // `RUSTFLAGS='-Zmeta-stats' cargo build`). It still doesn't guarantee
816            // non-interleaving, though.
817            let mut s = String::new();
818            _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w));
819            _ = writeln!(s, "{prefix} METADATA STATS: {}", tcx.crate_name(LOCAL_CRATE));
820            _ = writeln!(s, "{prefix} {:<section_w$}{:>size_w$}", "Section", "Size");
821            _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w));
822            for (label, size) in stats {
823                _ = writeln!(
824                    s,
825                    "{prefix} {:<section_w$}{:>size_w$} ({:4.1}%)",
826                    label,
827                    usize_with_underscores(size),
828                    perc(size)
829                );
830            }
831            _ = writeln!(s, "{prefix} {}", "-".repeat(banner_w));
832            _ = writeln!(
833                s,
834                "{prefix} {:<section_w$}{:>size_w$} (of which {:.1}% are zero bytes)",
835                "Total",
836                usize_with_underscores(total_bytes),
837                perc(zero_bytes)
838            );
839            _ = writeln!(s, "{prefix} {}", "=".repeat(banner_w));
840            eprint!("{s}");
841        }
842
843        root
844    }
845}
846
847struct AnalyzeAttrState<'a> {
848    is_exported: bool,
849    is_doc_hidden: bool,
850    features: &'a Features,
851}
852
853/// Returns whether an attribute needs to be recorded in metadata, that is, if it's usable and
854/// useful in downstream crates. Local-only attributes are an obvious example, but some
855/// rustdoc-specific attributes can equally be of use while documenting the current crate only.
856///
857/// Removing these superfluous attributes speeds up compilation by making the metadata smaller.
858///
859/// Note: the `is_exported` parameter is used to cache whether the given `DefId` has a public
860/// visibility: this is a piece of data that can be computed once per defid, and not once per
861/// attribute. Some attributes would only be usable downstream if they are public.
862#[inline]
863fn analyze_attr(attr: &hir::Attribute, state: &mut AnalyzeAttrState<'_>) -> bool {
864    let mut should_encode = false;
865    if let hir::Attribute::Parsed(p) = attr
866        && p.encode_cross_crate() == EncodeCrossCrate::No
867    {
868        // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates.
869    } else if let Some(name) = attr.name()
870        && !rustc_feature::encode_cross_crate(name)
871    {
872        // Attributes not marked encode-cross-crate don't need to be encoded for downstream crates.
873    } else if attr.doc_str().is_some() {
874        // We keep all doc comments reachable to rustdoc because they might be "imported" into
875        // downstream crates if they use `#[doc(inline)]` to copy an item's documentation into
876        // their own.
877        if state.is_exported {
878            should_encode = true;
879        }
880    } else if attr.has_name(sym::doc) {
881        // If this is a `doc` attribute that doesn't have anything except maybe `inline` (as in
882        // `#[doc(inline)]`), then we can remove it. It won't be inlinable in downstream crates.
883        if let Some(item_list) = attr.meta_item_list() {
884            for item in item_list {
885                if !item.has_name(sym::inline) {
886                    should_encode = true;
887                    if item.has_name(sym::hidden) {
888                        state.is_doc_hidden = true;
889                        break;
890                    }
891                }
892            }
893        }
894    } else if let &[sym::diagnostic, seg] = &*attr.path() {
895        should_encode = rustc_feature::is_stable_diagnostic_attribute(seg, state.features);
896    } else {
897        should_encode = true;
898    }
899    should_encode
900}
901
902fn should_encode_span(def_kind: DefKind) -> bool {
903    match def_kind {
904        DefKind::Mod
905        | DefKind::Struct
906        | DefKind::Union
907        | DefKind::Enum
908        | DefKind::Variant
909        | DefKind::Trait
910        | DefKind::TyAlias
911        | DefKind::ForeignTy
912        | DefKind::TraitAlias
913        | DefKind::AssocTy
914        | DefKind::TyParam
915        | DefKind::ConstParam
916        | DefKind::LifetimeParam
917        | DefKind::Fn
918        | DefKind::Const
919        | DefKind::Static { .. }
920        | DefKind::Ctor(..)
921        | DefKind::AssocFn
922        | DefKind::AssocConst
923        | DefKind::Macro(_)
924        | DefKind::ExternCrate
925        | DefKind::Use
926        | DefKind::AnonConst
927        | DefKind::InlineConst
928        | DefKind::OpaqueTy
929        | DefKind::Field
930        | DefKind::Impl { .. }
931        | DefKind::Closure
932        | DefKind::SyntheticCoroutineBody => true,
933        DefKind::ForeignMod | DefKind::GlobalAsm => false,
934    }
935}
936
937fn should_encode_attrs(def_kind: DefKind) -> bool {
938    match def_kind {
939        DefKind::Mod
940        | DefKind::Struct
941        | DefKind::Union
942        | DefKind::Enum
943        | DefKind::Variant
944        | DefKind::Trait
945        | DefKind::TyAlias
946        | DefKind::ForeignTy
947        | DefKind::TraitAlias
948        | DefKind::AssocTy
949        | DefKind::Fn
950        | DefKind::Const
951        | DefKind::Static { nested: false, .. }
952        | DefKind::AssocFn
953        | DefKind::AssocConst
954        | DefKind::Macro(_)
955        | DefKind::Field
956        | DefKind::Impl { .. } => true,
957        // Tools may want to be able to detect their tool lints on
958        // closures from upstream crates, too. This is used by
959        // https://github.com/model-checking/kani and is not a performance
960        // or maintenance issue for us.
961        DefKind::Closure => true,
962        DefKind::SyntheticCoroutineBody => false,
963        DefKind::TyParam
964        | DefKind::ConstParam
965        | DefKind::Ctor(..)
966        | DefKind::ExternCrate
967        | DefKind::Use
968        | DefKind::ForeignMod
969        | DefKind::AnonConst
970        | DefKind::InlineConst
971        | DefKind::OpaqueTy
972        | DefKind::LifetimeParam
973        | DefKind::Static { nested: true, .. }
974        | DefKind::GlobalAsm => false,
975    }
976}
977
978fn should_encode_expn_that_defined(def_kind: DefKind) -> bool {
979    match def_kind {
980        DefKind::Mod
981        | DefKind::Struct
982        | DefKind::Union
983        | DefKind::Enum
984        | DefKind::Variant
985        | DefKind::Trait
986        | DefKind::Impl { .. } => true,
987        DefKind::TyAlias
988        | DefKind::ForeignTy
989        | DefKind::TraitAlias
990        | DefKind::AssocTy
991        | DefKind::TyParam
992        | DefKind::Fn
993        | DefKind::Const
994        | DefKind::ConstParam
995        | DefKind::Static { .. }
996        | DefKind::Ctor(..)
997        | DefKind::AssocFn
998        | DefKind::AssocConst
999        | DefKind::Macro(_)
1000        | DefKind::ExternCrate
1001        | DefKind::Use
1002        | DefKind::ForeignMod
1003        | DefKind::AnonConst
1004        | DefKind::InlineConst
1005        | DefKind::OpaqueTy
1006        | DefKind::Field
1007        | DefKind::LifetimeParam
1008        | DefKind::GlobalAsm
1009        | DefKind::Closure
1010        | DefKind::SyntheticCoroutineBody => false,
1011    }
1012}
1013
1014fn should_encode_visibility(def_kind: DefKind) -> bool {
1015    match def_kind {
1016        DefKind::Mod
1017        | DefKind::Struct
1018        | DefKind::Union
1019        | DefKind::Enum
1020        | DefKind::Variant
1021        | DefKind::Trait
1022        | DefKind::TyAlias
1023        | DefKind::ForeignTy
1024        | DefKind::TraitAlias
1025        | DefKind::AssocTy
1026        | DefKind::Fn
1027        | DefKind::Const
1028        | DefKind::Static { nested: false, .. }
1029        | DefKind::Ctor(..)
1030        | DefKind::AssocFn
1031        | DefKind::AssocConst
1032        | DefKind::Macro(..)
1033        | DefKind::Field => true,
1034        DefKind::Use
1035        | DefKind::ForeignMod
1036        | DefKind::TyParam
1037        | DefKind::ConstParam
1038        | DefKind::LifetimeParam
1039        | DefKind::AnonConst
1040        | DefKind::InlineConst
1041        | DefKind::Static { nested: true, .. }
1042        | DefKind::OpaqueTy
1043        | DefKind::GlobalAsm
1044        | DefKind::Impl { .. }
1045        | DefKind::Closure
1046        | DefKind::ExternCrate
1047        | DefKind::SyntheticCoroutineBody => false,
1048    }
1049}
1050
1051fn should_encode_stability(def_kind: DefKind) -> bool {
1052    match def_kind {
1053        DefKind::Mod
1054        | DefKind::Ctor(..)
1055        | DefKind::Variant
1056        | DefKind::Field
1057        | DefKind::Struct
1058        | DefKind::AssocTy
1059        | DefKind::AssocFn
1060        | DefKind::AssocConst
1061        | DefKind::TyParam
1062        | DefKind::ConstParam
1063        | DefKind::Static { .. }
1064        | DefKind::Const
1065        | DefKind::Fn
1066        | DefKind::ForeignMod
1067        | DefKind::TyAlias
1068        | DefKind::OpaqueTy
1069        | DefKind::Enum
1070        | DefKind::Union
1071        | DefKind::Impl { .. }
1072        | DefKind::Trait
1073        | DefKind::TraitAlias
1074        | DefKind::Macro(..)
1075        | DefKind::ForeignTy => true,
1076        DefKind::Use
1077        | DefKind::LifetimeParam
1078        | DefKind::AnonConst
1079        | DefKind::InlineConst
1080        | DefKind::GlobalAsm
1081        | DefKind::Closure
1082        | DefKind::ExternCrate
1083        | DefKind::SyntheticCoroutineBody => false,
1084    }
1085}
1086
1087/// Whether we should encode MIR. Return a pair, resp. for CTFE and for LLVM.
1088///
1089/// Computing, optimizing and encoding the MIR is a relatively expensive operation.
1090/// We want to avoid this work when not required. Therefore:
1091/// - we only compute `mir_for_ctfe` on items with const-eval semantics;
1092/// - we skip `optimized_mir` for check runs.
1093/// - we only encode `optimized_mir` that could be generated in other crates, that is, a code that
1094///   is either generic or has inline hint, and is reachable from the other crates (contained
1095///   in reachable set).
1096///
1097/// Note: Reachable set describes definitions that might be generated or referenced from other
1098/// crates and it can be used to limit optimized MIR that needs to be encoded. On the other hand,
1099/// the reachable set doesn't have much to say about which definitions might be evaluated at compile
1100/// time in other crates, so it cannot be used to omit CTFE MIR. For example, `f` below is
1101/// unreachable and yet it can be evaluated in other crates:
1102///
1103/// ```
1104/// const fn f() -> usize { 0 }
1105/// pub struct S { pub a: [usize; f()] }
1106/// ```
1107fn should_encode_mir(
1108    tcx: TyCtxt<'_>,
1109    reachable_set: &LocalDefIdSet,
1110    def_id: LocalDefId,
1111) -> (bool, bool) {
1112    match tcx.def_kind(def_id) {
1113        // Constructors
1114        DefKind::Ctor(_, _) => {
1115            let mir_opt_base = tcx.sess.opts.output_types.should_codegen()
1116                || tcx.sess.opts.unstable_opts.always_encode_mir;
1117            (true, mir_opt_base)
1118        }
1119        // Constants
1120        DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst | DefKind::Const => {
1121            (true, false)
1122        }
1123        // Coroutines require optimized MIR to compute layout.
1124        DefKind::Closure if tcx.is_coroutine(def_id.to_def_id()) => (false, true),
1125        DefKind::SyntheticCoroutineBody => (false, true),
1126        // Full-fledged functions + closures
1127        DefKind::AssocFn | DefKind::Fn | DefKind::Closure => {
1128            let generics = tcx.generics_of(def_id);
1129            let opt = tcx.sess.opts.unstable_opts.always_encode_mir
1130                || (tcx.sess.opts.output_types.should_codegen()
1131                    && reachable_set.contains(&def_id)
1132                    && (generics.requires_monomorphization(tcx)
1133                        || tcx.cross_crate_inlinable(def_id)));
1134            // The function has a `const` modifier or is in a `const trait`.
1135            let is_const_fn = tcx.is_const_fn(def_id.to_def_id())
1136                || tcx.is_const_default_method(def_id.to_def_id());
1137            (is_const_fn, opt)
1138        }
1139        // The others don't have MIR.
1140        _ => (false, false),
1141    }
1142}
1143
1144fn should_encode_variances<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId, def_kind: DefKind) -> bool {
1145    match def_kind {
1146        DefKind::Struct
1147        | DefKind::Union
1148        | DefKind::Enum
1149        | DefKind::OpaqueTy
1150        | DefKind::Fn
1151        | DefKind::Ctor(..)
1152        | DefKind::AssocFn => true,
1153        DefKind::AssocTy => {
1154            // Only encode variances for RPITITs (for traits)
1155            matches!(tcx.opt_rpitit_info(def_id), Some(ty::ImplTraitInTraitData::Trait { .. }))
1156        }
1157        DefKind::Mod
1158        | DefKind::Variant
1159        | DefKind::Field
1160        | DefKind::AssocConst
1161        | DefKind::TyParam
1162        | DefKind::ConstParam
1163        | DefKind::Static { .. }
1164        | DefKind::Const
1165        | DefKind::ForeignMod
1166        | DefKind::Impl { .. }
1167        | DefKind::Trait
1168        | DefKind::TraitAlias
1169        | DefKind::Macro(..)
1170        | DefKind::ForeignTy
1171        | DefKind::Use
1172        | DefKind::LifetimeParam
1173        | DefKind::AnonConst
1174        | DefKind::InlineConst
1175        | DefKind::GlobalAsm
1176        | DefKind::Closure
1177        | DefKind::ExternCrate
1178        | DefKind::SyntheticCoroutineBody => false,
1179        DefKind::TyAlias => tcx.type_alias_is_lazy(def_id),
1180    }
1181}
1182
1183fn should_encode_generics(def_kind: DefKind) -> bool {
1184    match def_kind {
1185        DefKind::Struct
1186        | DefKind::Union
1187        | DefKind::Enum
1188        | DefKind::Variant
1189        | DefKind::Trait
1190        | DefKind::TyAlias
1191        | DefKind::ForeignTy
1192        | DefKind::TraitAlias
1193        | DefKind::AssocTy
1194        | DefKind::Fn
1195        | DefKind::Const
1196        | DefKind::Static { .. }
1197        | DefKind::Ctor(..)
1198        | DefKind::AssocFn
1199        | DefKind::AssocConst
1200        | DefKind::AnonConst
1201        | DefKind::InlineConst
1202        | DefKind::OpaqueTy
1203        | DefKind::Impl { .. }
1204        | DefKind::Field
1205        | DefKind::TyParam
1206        | DefKind::Closure
1207        | DefKind::SyntheticCoroutineBody => true,
1208        DefKind::Mod
1209        | DefKind::ForeignMod
1210        | DefKind::ConstParam
1211        | DefKind::Macro(..)
1212        | DefKind::Use
1213        | DefKind::LifetimeParam
1214        | DefKind::GlobalAsm
1215        | DefKind::ExternCrate => false,
1216    }
1217}
1218
1219fn should_encode_type(tcx: TyCtxt<'_>, def_id: LocalDefId, def_kind: DefKind) -> bool {
1220    match def_kind {
1221        DefKind::Struct
1222        | DefKind::Union
1223        | DefKind::Enum
1224        | DefKind::Variant
1225        | DefKind::Ctor(..)
1226        | DefKind::Field
1227        | DefKind::Fn
1228        | DefKind::Const
1229        | DefKind::Static { nested: false, .. }
1230        | DefKind::TyAlias
1231        | DefKind::ForeignTy
1232        | DefKind::Impl { .. }
1233        | DefKind::AssocFn
1234        | DefKind::AssocConst
1235        | DefKind::Closure
1236        | DefKind::ConstParam
1237        | DefKind::AnonConst
1238        | DefKind::InlineConst
1239        | DefKind::SyntheticCoroutineBody => true,
1240
1241        DefKind::OpaqueTy => {
1242            let origin = tcx.local_opaque_ty_origin(def_id);
1243            if let hir::OpaqueTyOrigin::FnReturn { parent, .. }
1244            | hir::OpaqueTyOrigin::AsyncFn { parent, .. } = origin
1245                && let hir::Node::TraitItem(trait_item) = tcx.hir_node_by_def_id(parent)
1246                && let (_, hir::TraitFn::Required(..)) = trait_item.expect_fn()
1247            {
1248                false
1249            } else {
1250                true
1251            }
1252        }
1253
1254        DefKind::AssocTy => {
1255            let assoc_item = tcx.associated_item(def_id);
1256            match assoc_item.container {
1257                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1258                ty::AssocContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1259            }
1260        }
1261        DefKind::TyParam => {
1262            let hir::Node::GenericParam(param) = tcx.hir_node_by_def_id(def_id) else { bug!() };
1263            let hir::GenericParamKind::Type { default, .. } = param.kind else { bug!() };
1264            default.is_some()
1265        }
1266
1267        DefKind::Trait
1268        | DefKind::TraitAlias
1269        | DefKind::Mod
1270        | DefKind::ForeignMod
1271        | DefKind::Macro(..)
1272        | DefKind::Static { nested: true, .. }
1273        | DefKind::Use
1274        | DefKind::LifetimeParam
1275        | DefKind::GlobalAsm
1276        | DefKind::ExternCrate => false,
1277    }
1278}
1279
1280fn should_encode_fn_sig(def_kind: DefKind) -> bool {
1281    match def_kind {
1282        DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) => true,
1283
1284        DefKind::Struct
1285        | DefKind::Union
1286        | DefKind::Enum
1287        | DefKind::Variant
1288        | DefKind::Field
1289        | DefKind::Const
1290        | DefKind::Static { .. }
1291        | DefKind::Ctor(..)
1292        | DefKind::TyAlias
1293        | DefKind::OpaqueTy
1294        | DefKind::ForeignTy
1295        | DefKind::Impl { .. }
1296        | DefKind::AssocConst
1297        | DefKind::Closure
1298        | DefKind::ConstParam
1299        | DefKind::AnonConst
1300        | DefKind::InlineConst
1301        | DefKind::AssocTy
1302        | DefKind::TyParam
1303        | DefKind::Trait
1304        | DefKind::TraitAlias
1305        | DefKind::Mod
1306        | DefKind::ForeignMod
1307        | DefKind::Macro(..)
1308        | DefKind::Use
1309        | DefKind::LifetimeParam
1310        | DefKind::GlobalAsm
1311        | DefKind::ExternCrate
1312        | DefKind::SyntheticCoroutineBody => false,
1313    }
1314}
1315
1316fn should_encode_constness(def_kind: DefKind) -> bool {
1317    match def_kind {
1318        DefKind::Fn | DefKind::AssocFn | DefKind::Closure | DefKind::Ctor(_, CtorKind::Fn) => true,
1319
1320        DefKind::Struct
1321        | DefKind::Union
1322        | DefKind::Enum
1323        | DefKind::Field
1324        | DefKind::Const
1325        | DefKind::AssocConst
1326        | DefKind::AnonConst
1327        | DefKind::Static { .. }
1328        | DefKind::TyAlias
1329        | DefKind::OpaqueTy
1330        | DefKind::Impl { .. }
1331        | DefKind::ForeignTy
1332        | DefKind::ConstParam
1333        | DefKind::InlineConst
1334        | DefKind::AssocTy
1335        | DefKind::TyParam
1336        | DefKind::Trait
1337        | DefKind::TraitAlias
1338        | DefKind::Mod
1339        | DefKind::ForeignMod
1340        | DefKind::Macro(..)
1341        | DefKind::Use
1342        | DefKind::LifetimeParam
1343        | DefKind::GlobalAsm
1344        | DefKind::ExternCrate
1345        | DefKind::Ctor(_, CtorKind::Const)
1346        | DefKind::Variant
1347        | DefKind::SyntheticCoroutineBody => false,
1348    }
1349}
1350
1351fn should_encode_const(def_kind: DefKind) -> bool {
1352    match def_kind {
1353        DefKind::Const | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst => true,
1354
1355        DefKind::Struct
1356        | DefKind::Union
1357        | DefKind::Enum
1358        | DefKind::Variant
1359        | DefKind::Ctor(..)
1360        | DefKind::Field
1361        | DefKind::Fn
1362        | DefKind::Static { .. }
1363        | DefKind::TyAlias
1364        | DefKind::OpaqueTy
1365        | DefKind::ForeignTy
1366        | DefKind::Impl { .. }
1367        | DefKind::AssocFn
1368        | DefKind::Closure
1369        | DefKind::ConstParam
1370        | DefKind::AssocTy
1371        | DefKind::TyParam
1372        | DefKind::Trait
1373        | DefKind::TraitAlias
1374        | DefKind::Mod
1375        | DefKind::ForeignMod
1376        | DefKind::Macro(..)
1377        | DefKind::Use
1378        | DefKind::LifetimeParam
1379        | DefKind::GlobalAsm
1380        | DefKind::ExternCrate
1381        | DefKind::SyntheticCoroutineBody => false,
1382    }
1383}
1384
1385impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
1386    fn encode_attrs(&mut self, def_id: LocalDefId) {
1387        let tcx = self.tcx;
1388        let mut state = AnalyzeAttrState {
1389            is_exported: tcx.effective_visibilities(()).is_exported(def_id),
1390            is_doc_hidden: false,
1391            features: &tcx.features(),
1392        };
1393        let attr_iter = tcx
1394            .hir_attrs(tcx.local_def_id_to_hir_id(def_id))
1395            .iter()
1396            .filter(|attr| analyze_attr(*attr, &mut state));
1397
1398        record_array!(self.tables.attributes[def_id.to_def_id()] <- attr_iter);
1399
1400        let mut attr_flags = AttrFlags::empty();
1401        if state.is_doc_hidden {
1402            attr_flags |= AttrFlags::IS_DOC_HIDDEN;
1403        }
1404        self.tables.attr_flags.set(def_id.local_def_index, attr_flags);
1405    }
1406
1407    fn encode_def_ids(&mut self) {
1408        self.encode_info_for_mod(CRATE_DEF_ID);
1409
1410        // Proc-macro crates only export proc-macro items, which are looked
1411        // up using `proc_macro_data`
1412        if self.is_proc_macro {
1413            return;
1414        }
1415
1416        let tcx = self.tcx;
1417
1418        for local_id in tcx.iter_local_def_id() {
1419            let def_id = local_id.to_def_id();
1420            let def_kind = tcx.def_kind(local_id);
1421            self.tables.def_kind.set_some(def_id.index, def_kind);
1422
1423            // The `DefCollector` will sometimes create unnecessary `DefId`s
1424            // for trivial const arguments which are directly lowered to
1425            // `ConstArgKind::Path`. We never actually access this `DefId`
1426            // anywhere so we don't need to encode it for other crates.
1427            if def_kind == DefKind::AnonConst
1428                && match tcx.hir_node_by_def_id(local_id) {
1429                    hir::Node::ConstArg(hir::ConstArg { kind, .. }) => match kind {
1430                        // Skip encoding defs for these as they should not have had a `DefId` created
1431                        hir::ConstArgKind::Path(..) | hir::ConstArgKind::Infer(..) => true,
1432                        hir::ConstArgKind::Anon(..) => false,
1433                    },
1434                    _ => false,
1435                }
1436            {
1437                continue;
1438            }
1439
1440            if def_kind == DefKind::Field
1441                && let hir::Node::Field(field) = tcx.hir_node_by_def_id(local_id)
1442                && let Some(anon) = field.default
1443            {
1444                record!(self.tables.default_fields[def_id] <- anon.def_id.to_def_id());
1445            }
1446
1447            if should_encode_span(def_kind) {
1448                let def_span = tcx.def_span(local_id);
1449                record!(self.tables.def_span[def_id] <- def_span);
1450            }
1451            if should_encode_attrs(def_kind) {
1452                self.encode_attrs(local_id);
1453            }
1454            if should_encode_expn_that_defined(def_kind) {
1455                record!(self.tables.expn_that_defined[def_id] <- self.tcx.expn_that_defined(def_id));
1456            }
1457            if should_encode_span(def_kind)
1458                && let Some(ident_span) = tcx.def_ident_span(def_id)
1459            {
1460                record!(self.tables.def_ident_span[def_id] <- ident_span);
1461            }
1462            if def_kind.has_codegen_attrs() {
1463                record!(self.tables.codegen_fn_attrs[def_id] <- self.tcx.codegen_fn_attrs(def_id));
1464            }
1465            if should_encode_visibility(def_kind) {
1466                let vis =
1467                    self.tcx.local_visibility(local_id).map_id(|def_id| def_id.local_def_index);
1468                record!(self.tables.visibility[def_id] <- vis);
1469            }
1470            if should_encode_stability(def_kind) {
1471                self.encode_stability(def_id);
1472                self.encode_const_stability(def_id);
1473                self.encode_default_body_stability(def_id);
1474                self.encode_deprecation(def_id);
1475            }
1476            if should_encode_variances(tcx, def_id, def_kind) {
1477                let v = self.tcx.variances_of(def_id);
1478                record_array!(self.tables.variances_of[def_id] <- v);
1479            }
1480            if should_encode_fn_sig(def_kind) {
1481                record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id));
1482            }
1483            if should_encode_generics(def_kind) {
1484                let g = tcx.generics_of(def_id);
1485                record!(self.tables.generics_of[def_id] <- g);
1486                record!(self.tables.explicit_predicates_of[def_id] <- self.tcx.explicit_predicates_of(def_id));
1487                let inferred_outlives = self.tcx.inferred_outlives_of(def_id);
1488                record_defaulted_array!(self.tables.inferred_outlives_of[def_id] <- inferred_outlives);
1489
1490                for param in &g.own_params {
1491                    if let ty::GenericParamDefKind::Const { has_default: true, .. } = param.kind {
1492                        let default = self.tcx.const_param_default(param.def_id);
1493                        record!(self.tables.const_param_default[param.def_id] <- default);
1494                    }
1495                }
1496            }
1497            if tcx.is_conditionally_const(def_id) {
1498                record!(self.tables.const_conditions[def_id] <- self.tcx.const_conditions(def_id));
1499            }
1500            if should_encode_type(tcx, local_id, def_kind) {
1501                record!(self.tables.type_of[def_id] <- self.tcx.type_of(def_id));
1502            }
1503            if should_encode_constness(def_kind) {
1504                self.tables.constness.set_some(def_id.index, self.tcx.constness(def_id));
1505            }
1506            if let DefKind::Fn | DefKind::AssocFn = def_kind {
1507                self.tables.asyncness.set_some(def_id.index, tcx.asyncness(def_id));
1508                record_array!(self.tables.fn_arg_idents[def_id] <- tcx.fn_arg_idents(def_id));
1509            }
1510            if let Some(name) = tcx.intrinsic(def_id) {
1511                record!(self.tables.intrinsic[def_id] <- name);
1512            }
1513            if let DefKind::TyParam = def_kind {
1514                let default = self.tcx.object_lifetime_default(def_id);
1515                record!(self.tables.object_lifetime_default[def_id] <- default);
1516            }
1517            if let DefKind::Trait = def_kind {
1518                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1519                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1520                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1521                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1522                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1523                let module_children = self.tcx.module_children_local(local_id);
1524                record_array!(self.tables.module_children_non_reexports[def_id] <-
1525                    module_children.iter().map(|child| child.res.def_id().index));
1526                if self.tcx.is_const_trait(def_id) {
1527                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1528                        <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1529                }
1530            }
1531            if let DefKind::TraitAlias = def_kind {
1532                record!(self.tables.trait_def[def_id] <- self.tcx.trait_def(def_id));
1533                record_defaulted_array!(self.tables.explicit_super_predicates_of[def_id] <-
1534                    self.tcx.explicit_super_predicates_of(def_id).skip_binder());
1535                record_defaulted_array!(self.tables.explicit_implied_predicates_of[def_id] <-
1536                    self.tcx.explicit_implied_predicates_of(def_id).skip_binder());
1537            }
1538            if let DefKind::Trait | DefKind::Impl { .. } = def_kind {
1539                let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id);
1540                record_array!(self.tables.associated_item_or_field_def_ids[def_id] <-
1541                    associated_item_def_ids.iter().map(|&def_id| {
1542                        assert!(def_id.is_local());
1543                        def_id.index
1544                    })
1545                );
1546                for &def_id in associated_item_def_ids {
1547                    self.encode_info_for_assoc_item(def_id);
1548                }
1549            }
1550            if let DefKind::Closure | DefKind::SyntheticCoroutineBody = def_kind
1551                && let Some(coroutine_kind) = self.tcx.coroutine_kind(def_id)
1552            {
1553                self.tables.coroutine_kind.set(def_id.index, Some(coroutine_kind))
1554            }
1555            if def_kind == DefKind::Closure
1556                && tcx.type_of(def_id).skip_binder().is_coroutine_closure()
1557            {
1558                let coroutine_for_closure = self.tcx.coroutine_for_closure(def_id);
1559                self.tables
1560                    .coroutine_for_closure
1561                    .set_some(def_id.index, coroutine_for_closure.into());
1562
1563                // If this async closure has a by-move body, record it too.
1564                if tcx.needs_coroutine_by_move_body_def_id(coroutine_for_closure) {
1565                    self.tables.coroutine_by_move_body_def_id.set_some(
1566                        coroutine_for_closure.index,
1567                        self.tcx.coroutine_by_move_body_def_id(coroutine_for_closure).into(),
1568                    );
1569                }
1570            }
1571            if let DefKind::Static { .. } = def_kind {
1572                if !self.tcx.is_foreign_item(def_id) {
1573                    let data = self.tcx.eval_static_initializer(def_id).unwrap();
1574                    record!(self.tables.eval_static_initializer[def_id] <- data);
1575                }
1576            }
1577            if let DefKind::Enum | DefKind::Struct | DefKind::Union = def_kind {
1578                self.encode_info_for_adt(local_id);
1579            }
1580            if let DefKind::Mod = def_kind {
1581                self.encode_info_for_mod(local_id);
1582            }
1583            if let DefKind::Macro(_) = def_kind {
1584                self.encode_info_for_macro(local_id);
1585            }
1586            if let DefKind::TyAlias = def_kind {
1587                self.tables
1588                    .type_alias_is_lazy
1589                    .set(def_id.index, self.tcx.type_alias_is_lazy(def_id));
1590            }
1591            if let DefKind::OpaqueTy = def_kind {
1592                self.encode_explicit_item_bounds(def_id);
1593                self.encode_explicit_item_self_bounds(def_id);
1594                record!(self.tables.opaque_ty_origin[def_id] <- self.tcx.opaque_ty_origin(def_id));
1595                self.encode_precise_capturing_args(def_id);
1596                if tcx.is_conditionally_const(def_id) {
1597                    record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1598                        <- tcx.explicit_implied_const_bounds(def_id).skip_binder());
1599                }
1600            }
1601            if let DefKind::AnonConst = def_kind {
1602                record!(self.tables.anon_const_kind[def_id] <- self.tcx.anon_const_kind(def_id));
1603            }
1604            if tcx.impl_method_has_trait_impl_trait_tys(def_id)
1605                && let Ok(table) = self.tcx.collect_return_position_impl_trait_in_trait_tys(def_id)
1606            {
1607                record!(self.tables.trait_impl_trait_tys[def_id] <- table);
1608            }
1609            if let DefKind::Impl { .. } | DefKind::Trait = def_kind {
1610                let table = tcx.associated_types_for_impl_traits_in_trait_or_impl(def_id);
1611                record!(self.tables.associated_types_for_impl_traits_in_trait_or_impl[def_id] <- table);
1612            }
1613        }
1614
1615        for (def_id, impls) in &tcx.crate_inherent_impls(()).0.inherent_impls {
1616            record_defaulted_array!(self.tables.inherent_impls[def_id.to_def_id()] <- impls.iter().map(|def_id| {
1617                assert!(def_id.is_local());
1618                def_id.index
1619            }));
1620        }
1621
1622        for (def_id, res_map) in &tcx.resolutions(()).doc_link_resolutions {
1623            record!(self.tables.doc_link_resolutions[def_id.to_def_id()] <- res_map);
1624        }
1625
1626        for (def_id, traits) in &tcx.resolutions(()).doc_link_traits_in_scope {
1627            record_array!(self.tables.doc_link_traits_in_scope[def_id.to_def_id()] <- traits);
1628        }
1629    }
1630
1631    #[instrument(level = "trace", skip(self))]
1632    fn encode_info_for_adt(&mut self, local_def_id: LocalDefId) {
1633        let def_id = local_def_id.to_def_id();
1634        let tcx = self.tcx;
1635        let adt_def = tcx.adt_def(def_id);
1636        record!(self.tables.repr_options[def_id] <- adt_def.repr());
1637
1638        let params_in_repr = self.tcx.params_in_repr(def_id);
1639        record!(self.tables.params_in_repr[def_id] <- params_in_repr);
1640
1641        if adt_def.is_enum() {
1642            let module_children = tcx.module_children_local(local_def_id);
1643            record_array!(self.tables.module_children_non_reexports[def_id] <-
1644                module_children.iter().map(|child| child.res.def_id().index));
1645        } else {
1646            // For non-enum, there is only one variant, and its def_id is the adt's.
1647            debug_assert_eq!(adt_def.variants().len(), 1);
1648            debug_assert_eq!(adt_def.non_enum_variant().def_id, def_id);
1649            // Therefore, the loop over variants will encode its fields as the adt's children.
1650        }
1651
1652        for (idx, variant) in adt_def.variants().iter_enumerated() {
1653            let data = VariantData {
1654                discr: variant.discr,
1655                idx,
1656                ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)),
1657                is_non_exhaustive: variant.is_field_list_non_exhaustive(),
1658            };
1659            record!(self.tables.variant_data[variant.def_id] <- data);
1660
1661            record_array!(self.tables.associated_item_or_field_def_ids[variant.def_id] <- variant.fields.iter().map(|f| {
1662                assert!(f.did.is_local());
1663                f.did.index
1664            }));
1665
1666            for field in &variant.fields {
1667                self.tables.safety.set_some(field.did.index, field.safety);
1668            }
1669
1670            if let Some((CtorKind::Fn, ctor_def_id)) = variant.ctor {
1671                let fn_sig = tcx.fn_sig(ctor_def_id);
1672                // FIXME only encode signature for ctor_def_id
1673                record!(self.tables.fn_sig[variant.def_id] <- fn_sig);
1674            }
1675        }
1676
1677        if let Some(destructor) = tcx.adt_destructor(local_def_id) {
1678            record!(self.tables.adt_destructor[def_id] <- destructor);
1679        }
1680
1681        if let Some(destructor) = tcx.adt_async_destructor(local_def_id) {
1682            record!(self.tables.adt_async_destructor[def_id] <- destructor);
1683        }
1684    }
1685
1686    #[instrument(level = "debug", skip(self))]
1687    fn encode_info_for_mod(&mut self, local_def_id: LocalDefId) {
1688        let tcx = self.tcx;
1689        let def_id = local_def_id.to_def_id();
1690
1691        // If we are encoding a proc-macro crates, `encode_info_for_mod` will
1692        // only ever get called for the crate root. We still want to encode
1693        // the crate root for consistency with other crates (some of the resolver
1694        // code uses it). However, we skip encoding anything relating to child
1695        // items - we encode information about proc-macros later on.
1696        if self.is_proc_macro {
1697            // Encode this here because we don't do it in encode_def_ids.
1698            record!(self.tables.expn_that_defined[def_id] <- tcx.expn_that_defined(local_def_id));
1699        } else {
1700            let module_children = tcx.module_children_local(local_def_id);
1701
1702            record_array!(self.tables.module_children_non_reexports[def_id] <-
1703                module_children.iter().filter(|child| child.reexport_chain.is_empty())
1704                    .map(|child| child.res.def_id().index));
1705
1706            record_defaulted_array!(self.tables.module_children_reexports[def_id] <-
1707                module_children.iter().filter(|child| !child.reexport_chain.is_empty()));
1708        }
1709    }
1710
1711    fn encode_explicit_item_bounds(&mut self, def_id: DefId) {
1712        debug!("EncodeContext::encode_explicit_item_bounds({:?})", def_id);
1713        let bounds = self.tcx.explicit_item_bounds(def_id).skip_binder();
1714        record_defaulted_array!(self.tables.explicit_item_bounds[def_id] <- bounds);
1715    }
1716
1717    fn encode_explicit_item_self_bounds(&mut self, def_id: DefId) {
1718        debug!("EncodeContext::encode_explicit_item_self_bounds({:?})", def_id);
1719        let bounds = self.tcx.explicit_item_self_bounds(def_id).skip_binder();
1720        record_defaulted_array!(self.tables.explicit_item_self_bounds[def_id] <- bounds);
1721    }
1722
1723    #[instrument(level = "debug", skip(self))]
1724    fn encode_info_for_assoc_item(&mut self, def_id: DefId) {
1725        let tcx = self.tcx;
1726        let item = tcx.associated_item(def_id);
1727
1728        if matches!(item.container, AssocContainer::Trait | AssocContainer::TraitImpl(_)) {
1729            self.tables.defaultness.set_some(def_id.index, item.defaultness(tcx));
1730        }
1731
1732        record!(self.tables.assoc_container[def_id] <- item.container);
1733
1734        if let AssocContainer::Trait = item.container
1735            && item.is_type()
1736        {
1737            self.encode_explicit_item_bounds(def_id);
1738            self.encode_explicit_item_self_bounds(def_id);
1739            if tcx.is_conditionally_const(def_id) {
1740                record_defaulted_array!(self.tables.explicit_implied_const_bounds[def_id]
1741                    <- self.tcx.explicit_implied_const_bounds(def_id).skip_binder());
1742            }
1743        }
1744        if let ty::AssocKind::Type { data: ty::AssocTypeData::Rpitit(rpitit_info) } = item.kind {
1745            record!(self.tables.opt_rpitit_info[def_id] <- rpitit_info);
1746            if matches!(rpitit_info, ty::ImplTraitInTraitData::Trait { .. }) {
1747                record_array!(
1748                    self.tables.assumed_wf_types_for_rpitit[def_id]
1749                        <- self.tcx.assumed_wf_types_for_rpitit(def_id)
1750                );
1751                self.encode_precise_capturing_args(def_id);
1752            }
1753        }
1754    }
1755
1756    fn encode_precise_capturing_args(&mut self, def_id: DefId) {
1757        let Some(precise_capturing_args) = self.tcx.rendered_precise_capturing_args(def_id) else {
1758            return;
1759        };
1760
1761        record_array!(self.tables.rendered_precise_capturing_args[def_id] <- precise_capturing_args);
1762    }
1763
1764    fn encode_mir(&mut self) {
1765        if self.is_proc_macro {
1766            return;
1767        }
1768
1769        let tcx = self.tcx;
1770        let reachable_set = tcx.reachable_set(());
1771
1772        let keys_and_jobs = tcx.mir_keys(()).iter().filter_map(|&def_id| {
1773            let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
1774            if encode_const || encode_opt { Some((def_id, encode_const, encode_opt)) } else { None }
1775        });
1776        for (def_id, encode_const, encode_opt) in keys_and_jobs {
1777            debug_assert!(encode_const || encode_opt);
1778
1779            debug!("EntryBuilder::encode_mir({:?})", def_id);
1780            if encode_opt {
1781                record!(self.tables.optimized_mir[def_id.to_def_id()] <- tcx.optimized_mir(def_id));
1782                self.tables
1783                    .cross_crate_inlinable
1784                    .set(def_id.to_def_id().index, self.tcx.cross_crate_inlinable(def_id));
1785                record!(self.tables.closure_saved_names_of_captured_variables[def_id.to_def_id()]
1786                    <- tcx.closure_saved_names_of_captured_variables(def_id));
1787
1788                if self.tcx.is_coroutine(def_id.to_def_id())
1789                    && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1790                {
1791                    record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1792                }
1793            }
1794            if encode_const {
1795                record!(self.tables.mir_for_ctfe[def_id.to_def_id()] <- tcx.mir_for_ctfe(def_id));
1796
1797                // FIXME(generic_const_exprs): this feels wrong to have in `encode_mir`
1798                let abstract_const = tcx.thir_abstract_const(def_id);
1799                if let Ok(Some(abstract_const)) = abstract_const {
1800                    record!(self.tables.thir_abstract_const[def_id.to_def_id()] <- abstract_const);
1801                }
1802
1803                if should_encode_const(tcx.def_kind(def_id)) {
1804                    let qualifs = tcx.mir_const_qualif(def_id);
1805                    record!(self.tables.mir_const_qualif[def_id.to_def_id()] <- qualifs);
1806                    let body = tcx.hir_maybe_body_owned_by(def_id);
1807                    if let Some(body) = body {
1808                        let const_data = rendered_const(self.tcx, &body, def_id);
1809                        record!(self.tables.rendered_const[def_id.to_def_id()] <- const_data);
1810                    }
1811                }
1812            }
1813            record!(self.tables.promoted_mir[def_id.to_def_id()] <- tcx.promoted_mir(def_id));
1814
1815            if self.tcx.is_coroutine(def_id.to_def_id())
1816                && let Some(witnesses) = tcx.mir_coroutine_witnesses(def_id)
1817            {
1818                record!(self.tables.mir_coroutine_witnesses[def_id.to_def_id()] <- witnesses);
1819            }
1820        }
1821
1822        // Encode all the deduced parameter attributes for everything that has MIR, even for items
1823        // that can't be inlined. But don't if we aren't optimizing in non-incremental mode, to
1824        // save the query traffic.
1825        if tcx.sess.opts.output_types.should_codegen()
1826            && tcx.sess.opts.optimize != OptLevel::No
1827            && tcx.sess.opts.incremental.is_none()
1828        {
1829            for &local_def_id in tcx.mir_keys(()) {
1830                if let DefKind::AssocFn | DefKind::Fn = tcx.def_kind(local_def_id) {
1831                    record_array!(self.tables.deduced_param_attrs[local_def_id.to_def_id()] <-
1832                        self.tcx.deduced_param_attrs(local_def_id.to_def_id()));
1833                }
1834            }
1835        }
1836    }
1837
1838    #[instrument(level = "debug", skip(self))]
1839    fn encode_stability(&mut self, def_id: DefId) {
1840        // The query lookup can take a measurable amount of time in crates with many items. Check if
1841        // the stability attributes are even enabled before using their queries.
1842        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1843            if let Some(stab) = self.tcx.lookup_stability(def_id) {
1844                record!(self.tables.lookup_stability[def_id] <- stab)
1845            }
1846        }
1847    }
1848
1849    #[instrument(level = "debug", skip(self))]
1850    fn encode_const_stability(&mut self, def_id: DefId) {
1851        // The query lookup can take a measurable amount of time in crates with many items. Check if
1852        // the stability attributes are even enabled before using their queries.
1853        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1854            if let Some(stab) = self.tcx.lookup_const_stability(def_id) {
1855                record!(self.tables.lookup_const_stability[def_id] <- stab)
1856            }
1857        }
1858    }
1859
1860    #[instrument(level = "debug", skip(self))]
1861    fn encode_default_body_stability(&mut self, def_id: DefId) {
1862        // The query lookup can take a measurable amount of time in crates with many items. Check if
1863        // the stability attributes are even enabled before using their queries.
1864        if self.feat.staged_api() || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked {
1865            if let Some(stab) = self.tcx.lookup_default_body_stability(def_id) {
1866                record!(self.tables.lookup_default_body_stability[def_id] <- stab)
1867            }
1868        }
1869    }
1870
1871    #[instrument(level = "debug", skip(self))]
1872    fn encode_deprecation(&mut self, def_id: DefId) {
1873        if let Some(depr) = self.tcx.lookup_deprecation(def_id) {
1874            record!(self.tables.lookup_deprecation_entry[def_id] <- depr);
1875        }
1876    }
1877
1878    #[instrument(level = "debug", skip(self))]
1879    fn encode_info_for_macro(&mut self, def_id: LocalDefId) {
1880        let tcx = self.tcx;
1881
1882        let (_, macro_def, _) = tcx.hir_expect_item(def_id).expect_macro();
1883        self.tables.is_macro_rules.set(def_id.local_def_index, macro_def.macro_rules);
1884        record!(self.tables.macro_definition[def_id.to_def_id()] <- &*macro_def.body);
1885    }
1886
1887    fn encode_native_libraries(&mut self) -> LazyArray<NativeLib> {
1888        empty_proc_macro!(self);
1889        let used_libraries = self.tcx.native_libraries(LOCAL_CRATE);
1890        self.lazy_array(used_libraries.iter())
1891    }
1892
1893    fn encode_foreign_modules(&mut self) -> LazyArray<ForeignModule> {
1894        empty_proc_macro!(self);
1895        let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE);
1896        self.lazy_array(foreign_modules.iter().map(|(_, m)| m).cloned())
1897    }
1898
1899    fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable, ExpnHashTable) {
1900        let mut syntax_contexts: TableBuilder<_, _> = Default::default();
1901        let mut expn_data_table: TableBuilder<_, _> = Default::default();
1902        let mut expn_hash_table: TableBuilder<_, _> = Default::default();
1903
1904        self.hygiene_ctxt.encode(
1905            &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table, &mut expn_hash_table),
1906            |(this, syntax_contexts, _, _), index, ctxt_data| {
1907                syntax_contexts.set_some(index, this.lazy(ctxt_data));
1908            },
1909            |(this, _, expn_data_table, expn_hash_table), index, expn_data, hash| {
1910                if let Some(index) = index.as_local() {
1911                    expn_data_table.set_some(index.as_raw(), this.lazy(expn_data));
1912                    expn_hash_table.set_some(index.as_raw(), this.lazy(hash));
1913                }
1914            },
1915        );
1916
1917        (
1918            syntax_contexts.encode(&mut self.opaque),
1919            expn_data_table.encode(&mut self.opaque),
1920            expn_hash_table.encode(&mut self.opaque),
1921        )
1922    }
1923
1924    fn encode_proc_macros(&mut self) -> Option<ProcMacroData> {
1925        let is_proc_macro = self.tcx.crate_types().contains(&CrateType::ProcMacro);
1926        if is_proc_macro {
1927            let tcx = self.tcx;
1928            let proc_macro_decls_static = tcx.proc_macro_decls_static(()).unwrap().local_def_index;
1929            let stability = tcx.lookup_stability(CRATE_DEF_ID);
1930            let macros =
1931                self.lazy_array(tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index));
1932            for (i, span) in self.tcx.sess.psess.proc_macro_quoted_spans() {
1933                let span = self.lazy(span);
1934                self.tables.proc_macro_quoted_spans.set_some(i, span);
1935            }
1936
1937            self.tables.def_kind.set_some(LOCAL_CRATE.as_def_id().index, DefKind::Mod);
1938            record!(self.tables.def_span[LOCAL_CRATE.as_def_id()] <- tcx.def_span(LOCAL_CRATE.as_def_id()));
1939            self.encode_attrs(LOCAL_CRATE.as_def_id().expect_local());
1940            let vis = tcx.local_visibility(CRATE_DEF_ID).map_id(|def_id| def_id.local_def_index);
1941            record!(self.tables.visibility[LOCAL_CRATE.as_def_id()] <- vis);
1942            if let Some(stability) = stability {
1943                record!(self.tables.lookup_stability[LOCAL_CRATE.as_def_id()] <- stability);
1944            }
1945            self.encode_deprecation(LOCAL_CRATE.as_def_id());
1946            if let Some(res_map) = tcx.resolutions(()).doc_link_resolutions.get(&CRATE_DEF_ID) {
1947                record!(self.tables.doc_link_resolutions[LOCAL_CRATE.as_def_id()] <- res_map);
1948            }
1949            if let Some(traits) = tcx.resolutions(()).doc_link_traits_in_scope.get(&CRATE_DEF_ID) {
1950                record_array!(self.tables.doc_link_traits_in_scope[LOCAL_CRATE.as_def_id()] <- traits);
1951            }
1952
1953            // Normally, this information is encoded when we walk the items
1954            // defined in this crate. However, we skip doing that for proc-macro crates,
1955            // so we manually encode just the information that we need
1956            for &proc_macro in &tcx.resolutions(()).proc_macros {
1957                let id = proc_macro;
1958                let proc_macro = tcx.local_def_id_to_hir_id(proc_macro);
1959                let mut name = tcx.hir_name(proc_macro);
1960                let span = tcx.hir_span(proc_macro);
1961                // Proc-macros may have attributes like `#[allow_internal_unstable]`,
1962                // so downstream crates need access to them.
1963                let attrs = tcx.hir_attrs(proc_macro);
1964                let macro_kind = if find_attr!(attrs, AttributeKind::ProcMacro(..)) {
1965                    MacroKind::Bang
1966                } else if find_attr!(attrs, AttributeKind::ProcMacroAttribute(..)) {
1967                    MacroKind::Attr
1968                } else if let Some(trait_name) = find_attr!(attrs, AttributeKind::ProcMacroDerive { trait_name, ..} => trait_name)
1969                {
1970                    name = *trait_name;
1971                    MacroKind::Derive
1972                } else {
1973                    bug!("Unknown proc-macro type for item {:?}", id);
1974                };
1975
1976                let mut def_key = self.tcx.hir_def_key(id);
1977                def_key.disambiguated_data.data = DefPathData::MacroNs(name);
1978
1979                let def_id = id.to_def_id();
1980                self.tables.def_kind.set_some(def_id.index, DefKind::Macro(macro_kind.into()));
1981                self.tables.proc_macro.set_some(def_id.index, macro_kind);
1982                self.encode_attrs(id);
1983                record!(self.tables.def_keys[def_id] <- def_key);
1984                record!(self.tables.def_ident_span[def_id] <- span);
1985                record!(self.tables.def_span[def_id] <- span);
1986                record!(self.tables.visibility[def_id] <- ty::Visibility::Public);
1987                if let Some(stability) = stability {
1988                    record!(self.tables.lookup_stability[def_id] <- stability);
1989                }
1990            }
1991
1992            Some(ProcMacroData { proc_macro_decls_static, stability, macros })
1993        } else {
1994            None
1995        }
1996    }
1997
1998    fn encode_debugger_visualizers(&mut self) -> LazyArray<DebuggerVisualizerFile> {
1999        empty_proc_macro!(self);
2000        self.lazy_array(
2001            self.tcx
2002                .debugger_visualizers(LOCAL_CRATE)
2003                .iter()
2004                // Erase the path since it may contain privacy sensitive data
2005                // that we don't want to end up in crate metadata.
2006                // The path is only needed for the local crate because of
2007                // `--emit dep-info`.
2008                .map(DebuggerVisualizerFile::path_erased),
2009        )
2010    }
2011
2012    fn encode_crate_deps(&mut self) -> LazyArray<CrateDep> {
2013        empty_proc_macro!(self);
2014
2015        let deps = self
2016            .tcx
2017            .crates(())
2018            .iter()
2019            .map(|&cnum| {
2020                let dep = CrateDep {
2021                    name: self.tcx.crate_name(cnum),
2022                    hash: self.tcx.crate_hash(cnum),
2023                    host_hash: self.tcx.crate_host_hash(cnum),
2024                    kind: self.tcx.dep_kind(cnum),
2025                    extra_filename: self.tcx.extra_filename(cnum).clone(),
2026                    is_private: self.tcx.is_private_dep(cnum),
2027                };
2028                (cnum, dep)
2029            })
2030            .collect::<Vec<_>>();
2031
2032        {
2033            // Sanity-check the crate numbers
2034            let mut expected_cnum = 1;
2035            for &(n, _) in &deps {
2036                assert_eq!(n, CrateNum::new(expected_cnum));
2037                expected_cnum += 1;
2038            }
2039        }
2040
2041        // We're just going to write a list of crate 'name-hash-version's, with
2042        // the assumption that they are numbered 1 to n.
2043        // FIXME (#2166): This is not nearly enough to support correct versioning
2044        // but is enough to get transitive crate dependencies working.
2045        self.lazy_array(deps.iter().map(|(_, dep)| dep))
2046    }
2047
2048    fn encode_target_modifiers(&mut self) -> LazyArray<TargetModifier> {
2049        empty_proc_macro!(self);
2050        let tcx = self.tcx;
2051        self.lazy_array(tcx.sess.opts.gather_target_modifiers())
2052    }
2053
2054    fn encode_lib_features(&mut self) -> LazyArray<(Symbol, FeatureStability)> {
2055        empty_proc_macro!(self);
2056        let tcx = self.tcx;
2057        let lib_features = tcx.lib_features(LOCAL_CRATE);
2058        self.lazy_array(lib_features.to_sorted_vec())
2059    }
2060
2061    fn encode_stability_implications(&mut self) -> LazyArray<(Symbol, Symbol)> {
2062        empty_proc_macro!(self);
2063        let tcx = self.tcx;
2064        let implications = tcx.stability_implications(LOCAL_CRATE);
2065        let sorted = implications.to_sorted_stable_ord();
2066        self.lazy_array(sorted.into_iter().map(|(k, v)| (*k, *v)))
2067    }
2068
2069    fn encode_diagnostic_items(&mut self) -> LazyArray<(Symbol, DefIndex)> {
2070        empty_proc_macro!(self);
2071        let tcx = self.tcx;
2072        let diagnostic_items = &tcx.diagnostic_items(LOCAL_CRATE).name_to_id;
2073        self.lazy_array(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index)))
2074    }
2075
2076    fn encode_lang_items(&mut self) -> LazyArray<(DefIndex, LangItem)> {
2077        empty_proc_macro!(self);
2078        let lang_items = self.tcx.lang_items().iter();
2079        self.lazy_array(lang_items.filter_map(|(lang_item, def_id)| {
2080            def_id.as_local().map(|id| (id.local_def_index, lang_item))
2081        }))
2082    }
2083
2084    fn encode_lang_items_missing(&mut self) -> LazyArray<LangItem> {
2085        empty_proc_macro!(self);
2086        let tcx = self.tcx;
2087        self.lazy_array(&tcx.lang_items().missing)
2088    }
2089
2090    fn encode_stripped_cfg_items(&mut self) -> LazyArray<StrippedCfgItem<DefIndex>> {
2091        self.lazy_array(
2092            self.tcx
2093                .stripped_cfg_items(LOCAL_CRATE)
2094                .into_iter()
2095                .map(|item| item.clone().map_mod_id(|def_id| def_id.index)),
2096        )
2097    }
2098
2099    fn encode_traits(&mut self) -> LazyArray<DefIndex> {
2100        empty_proc_macro!(self);
2101        self.lazy_array(self.tcx.traits(LOCAL_CRATE).iter().map(|def_id| def_id.index))
2102    }
2103
2104    /// Encodes an index, mapping each trait to its (local) implementations.
2105    #[instrument(level = "debug", skip(self))]
2106    fn encode_impls(&mut self) -> LazyArray<TraitImpls> {
2107        empty_proc_macro!(self);
2108        let tcx = self.tcx;
2109        let mut trait_impls: FxIndexMap<DefId, Vec<(DefIndex, Option<SimplifiedType>)>> =
2110            FxIndexMap::default();
2111
2112        for id in tcx.hir_free_items() {
2113            let DefKind::Impl { of_trait } = tcx.def_kind(id.owner_id) else {
2114                continue;
2115            };
2116            let def_id = id.owner_id.to_def_id();
2117
2118            if of_trait && let Some(header) = tcx.impl_trait_header(def_id) {
2119                record!(self.tables.impl_trait_header[def_id] <- header);
2120
2121                self.tables.defaultness.set_some(def_id.index, tcx.defaultness(def_id));
2122
2123                let trait_ref = header.trait_ref.instantiate_identity();
2124                let simplified_self_ty = fast_reject::simplify_type(
2125                    self.tcx,
2126                    trait_ref.self_ty(),
2127                    TreatParams::InstantiateWithInfer,
2128                );
2129                trait_impls
2130                    .entry(trait_ref.def_id)
2131                    .or_default()
2132                    .push((id.owner_id.def_id.local_def_index, simplified_self_ty));
2133
2134                let trait_def = tcx.trait_def(trait_ref.def_id);
2135                if let Ok(mut an) = trait_def.ancestors(tcx, def_id)
2136                    && let Some(specialization_graph::Node::Impl(parent)) = an.nth(1)
2137                {
2138                    self.tables.impl_parent.set_some(def_id.index, parent.into());
2139                }
2140
2141                // if this is an impl of `CoerceUnsized`, create its
2142                // "unsized info", else just store None
2143                if tcx.is_lang_item(trait_ref.def_id, LangItem::CoerceUnsized) {
2144                    let coerce_unsized_info = tcx.coerce_unsized_info(def_id).unwrap();
2145                    record!(self.tables.coerce_unsized_info[def_id] <- coerce_unsized_info);
2146                }
2147            }
2148        }
2149
2150        let trait_impls: Vec<_> = trait_impls
2151            .into_iter()
2152            .map(|(trait_def_id, impls)| TraitImpls {
2153                trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index),
2154                impls: self.lazy_array(&impls),
2155            })
2156            .collect();
2157
2158        self.lazy_array(&trait_impls)
2159    }
2160
2161    #[instrument(level = "debug", skip(self))]
2162    fn encode_incoherent_impls(&mut self) -> LazyArray<IncoherentImpls> {
2163        empty_proc_macro!(self);
2164        let tcx = self.tcx;
2165
2166        let all_impls: Vec<_> = tcx
2167            .crate_inherent_impls(())
2168            .0
2169            .incoherent_impls
2170            .iter()
2171            .map(|(&simp, impls)| IncoherentImpls {
2172                self_ty: simp,
2173                impls: self.lazy_array(impls.iter().map(|def_id| def_id.local_def_index)),
2174            })
2175            .collect();
2176
2177        self.lazy_array(&all_impls)
2178    }
2179
2180    fn encode_exportable_items(&mut self) -> LazyArray<DefIndex> {
2181        empty_proc_macro!(self);
2182        self.lazy_array(self.tcx.exportable_items(LOCAL_CRATE).iter().map(|def_id| def_id.index))
2183    }
2184
2185    fn encode_stable_order_of_exportable_impls(&mut self) -> LazyArray<(DefIndex, usize)> {
2186        empty_proc_macro!(self);
2187        let stable_order_of_exportable_impls =
2188            self.tcx.stable_order_of_exportable_impls(LOCAL_CRATE);
2189        self.lazy_array(
2190            stable_order_of_exportable_impls.iter().map(|(def_id, idx)| (def_id.index, *idx)),
2191        )
2192    }
2193
2194    // Encodes all symbols exported from this crate into the metadata.
2195    //
2196    // This pass is seeded off the reachability list calculated in the
2197    // middle::reachable module but filters out items that either don't have a
2198    // symbol associated with them (they weren't translated) or if they're an FFI
2199    // definition (as that's not defined in this crate).
2200    fn encode_exported_symbols(
2201        &mut self,
2202        exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportInfo)],
2203    ) -> LazyArray<(ExportedSymbol<'static>, SymbolExportInfo)> {
2204        empty_proc_macro!(self);
2205
2206        self.lazy_array(exported_symbols.iter().cloned())
2207    }
2208
2209    fn encode_dylib_dependency_formats(&mut self) -> LazyArray<Option<LinkagePreference>> {
2210        empty_proc_macro!(self);
2211        let formats = self.tcx.dependency_formats(());
2212        if let Some(arr) = formats.get(&CrateType::Dylib) {
2213            return self.lazy_array(arr.iter().skip(1 /* skip LOCAL_CRATE */).map(
2214                |slot| match *slot {
2215                    Linkage::NotLinked | Linkage::IncludedFromDylib => None,
2216
2217                    Linkage::Dynamic => Some(LinkagePreference::RequireDynamic),
2218                    Linkage::Static => Some(LinkagePreference::RequireStatic),
2219                },
2220            ));
2221        }
2222        LazyArray::default()
2223    }
2224}
2225
2226/// Used to prefetch queries which will be needed later by metadata encoding.
2227/// Only a subset of the queries are actually prefetched to keep this code smaller.
2228fn prefetch_mir(tcx: TyCtxt<'_>) {
2229    if !tcx.sess.opts.output_types.should_codegen() {
2230        // We won't emit MIR, so don't prefetch it.
2231        return;
2232    }
2233
2234    let reachable_set = tcx.reachable_set(());
2235    par_for_each_in(tcx.mir_keys(()), |&&def_id| {
2236        let (encode_const, encode_opt) = should_encode_mir(tcx, reachable_set, def_id);
2237
2238        if encode_const {
2239            tcx.ensure_done().mir_for_ctfe(def_id);
2240        }
2241        if encode_opt {
2242            tcx.ensure_done().optimized_mir(def_id);
2243        }
2244        if encode_opt || encode_const {
2245            tcx.ensure_done().promoted_mir(def_id);
2246        }
2247    })
2248}
2249
2250// NOTE(eddyb) The following comment was preserved for posterity, even
2251// though it's no longer relevant as EBML (which uses nested & tagged
2252// "documents") was replaced with a scheme that can't go out of bounds.
2253//
2254// And here we run into yet another obscure archive bug: in which metadata
2255// loaded from archives may have trailing garbage bytes. Awhile back one of
2256// our tests was failing sporadically on the macOS 64-bit builders (both nopt
2257// and opt) by having ebml generate an out-of-bounds panic when looking at
2258// metadata.
2259//
2260// Upon investigation it turned out that the metadata file inside of an rlib
2261// (and ar archive) was being corrupted. Some compilations would generate a
2262// metadata file which would end in a few extra bytes, while other
2263// compilations would not have these extra bytes appended to the end. These
2264// extra bytes were interpreted by ebml as an extra tag, so they ended up
2265// being interpreted causing the out-of-bounds.
2266//
2267// The root cause of why these extra bytes were appearing was never
2268// discovered, and in the meantime the solution we're employing is to insert
2269// the length of the metadata to the start of the metadata. Later on this
2270// will allow us to slice the metadata to the precise length that we just
2271// generated regardless of trailing bytes that end up in it.
2272
2273pub struct EncodedMetadata {
2274    // The declaration order matters because `full_metadata` should be dropped
2275    // before `_temp_dir`.
2276    full_metadata: Option<Mmap>,
2277    // This is an optional stub metadata containing only the crate header.
2278    // The header should be very small, so we load it directly into memory.
2279    stub_metadata: Option<Vec<u8>>,
2280    // The path containing the metadata, to record as work product.
2281    path: Option<Box<Path>>,
2282    // We need to carry MaybeTempDir to avoid deleting the temporary
2283    // directory while accessing the Mmap.
2284    _temp_dir: Option<MaybeTempDir>,
2285}
2286
2287impl EncodedMetadata {
2288    #[inline]
2289    pub fn from_path(
2290        path: PathBuf,
2291        stub_path: Option<PathBuf>,
2292        temp_dir: Option<MaybeTempDir>,
2293    ) -> std::io::Result<Self> {
2294        let file = std::fs::File::open(&path)?;
2295        let file_metadata = file.metadata()?;
2296        if file_metadata.len() == 0 {
2297            return Ok(Self {
2298                full_metadata: None,
2299                stub_metadata: None,
2300                path: None,
2301                _temp_dir: None,
2302            });
2303        }
2304        let full_mmap = unsafe { Some(Mmap::map(file)?) };
2305
2306        let stub =
2307            if let Some(stub_path) = stub_path { Some(std::fs::read(stub_path)?) } else { None };
2308
2309        Ok(Self {
2310            full_metadata: full_mmap,
2311            stub_metadata: stub,
2312            path: Some(path.into()),
2313            _temp_dir: temp_dir,
2314        })
2315    }
2316
2317    #[inline]
2318    pub fn full(&self) -> &[u8] {
2319        &self.full_metadata.as_deref().unwrap_or_default()
2320    }
2321
2322    #[inline]
2323    pub fn stub_or_full(&self) -> &[u8] {
2324        self.stub_metadata.as_deref().unwrap_or(self.full())
2325    }
2326
2327    #[inline]
2328    pub fn path(&self) -> Option<&Path> {
2329        self.path.as_deref()
2330    }
2331}
2332
2333impl<S: Encoder> Encodable<S> for EncodedMetadata {
2334    fn encode(&self, s: &mut S) {
2335        self.stub_metadata.encode(s);
2336
2337        let slice = self.full();
2338        slice.encode(s)
2339    }
2340}
2341
2342impl<D: Decoder> Decodable<D> for EncodedMetadata {
2343    fn decode(d: &mut D) -> Self {
2344        let stub = <Option<Vec<u8>>>::decode(d);
2345
2346        let len = d.read_usize();
2347        let full_metadata = if len > 0 {
2348            let mut mmap = MmapMut::map_anon(len).unwrap();
2349            mmap.copy_from_slice(d.read_raw_bytes(len));
2350            Some(mmap.make_read_only().unwrap())
2351        } else {
2352            None
2353        };
2354
2355        Self { full_metadata, stub_metadata: stub, path: None, _temp_dir: None }
2356    }
2357}
2358
2359#[instrument(level = "trace", skip(tcx))]
2360pub fn encode_metadata(tcx: TyCtxt<'_>, path: &Path, ref_path: Option<&Path>) {
2361    // Since encoding metadata is not in a query, and nothing is cached,
2362    // there's no need to do dep-graph tracking for any of it.
2363    tcx.dep_graph.assert_ignored();
2364
2365    // Generate the metadata stub manually, as that is a small file compared to full metadata.
2366    if let Some(ref_path) = ref_path {
2367        let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata_stub");
2368
2369        with_encode_metadata_header(tcx, ref_path, |ecx| {
2370            let header: LazyValue<CrateHeader> = ecx.lazy(CrateHeader {
2371                name: tcx.crate_name(LOCAL_CRATE),
2372                triple: tcx.sess.opts.target_triple.clone(),
2373                hash: tcx.crate_hash(LOCAL_CRATE),
2374                is_proc_macro_crate: false,
2375                is_stub: true,
2376            });
2377            header.position.get()
2378        })
2379    }
2380
2381    let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata");
2382
2383    let dep_node = tcx.metadata_dep_node();
2384
2385    // If the metadata dep-node is green, try to reuse the saved work product.
2386    if tcx.dep_graph.is_fully_enabled()
2387        && let work_product_id = WorkProductId::from_cgu_name("metadata")
2388        && let Some(work_product) = tcx.dep_graph.previous_work_product(&work_product_id)
2389        && tcx.try_mark_green(&dep_node)
2390    {
2391        let saved_path = &work_product.saved_files["rmeta"];
2392        let incr_comp_session_dir = tcx.sess.incr_comp_session_dir_opt().unwrap();
2393        let source_file = rustc_incremental::in_incr_comp_dir(&incr_comp_session_dir, saved_path);
2394        debug!("copying preexisting metadata from {source_file:?} to {path:?}");
2395        match rustc_fs_util::link_or_copy(&source_file, path) {
2396            Ok(_) => {}
2397            Err(err) => tcx.dcx().emit_fatal(FailCreateFileEncoder { err }),
2398        };
2399        return;
2400    };
2401
2402    if tcx.sess.threads() != 1 {
2403        // Prefetch some queries used by metadata encoding.
2404        // This is not necessary for correctness, but is only done for performance reasons.
2405        // It can be removed if it turns out to cause trouble or be detrimental to performance.
2406        join(
2407            || prefetch_mir(tcx),
2408            || {
2409                let _ = tcx.exported_non_generic_symbols(LOCAL_CRATE);
2410                let _ = tcx.exported_generic_symbols(LOCAL_CRATE);
2411            },
2412        );
2413    }
2414
2415    // Perform metadata encoding inside a task, so the dep-graph can check if any encoded
2416    // information changes, and maybe reuse the work product.
2417    tcx.dep_graph.with_task(
2418        dep_node,
2419        tcx,
2420        path,
2421        |tcx, path| {
2422            with_encode_metadata_header(tcx, path, |ecx| {
2423                // Encode all the entries and extra information in the crate,
2424                // culminating in the `CrateRoot` which points to all of it.
2425                let root = ecx.encode_crate_root();
2426
2427                // Flush buffer to ensure backing file has the correct size.
2428                ecx.opaque.flush();
2429                // Record metadata size for self-profiling
2430                tcx.prof.artifact_size(
2431                    "crate_metadata",
2432                    "crate_metadata",
2433                    ecx.opaque.file().metadata().unwrap().len(),
2434                );
2435
2436                root.position.get()
2437            })
2438        },
2439        None,
2440    );
2441}
2442
2443fn with_encode_metadata_header(
2444    tcx: TyCtxt<'_>,
2445    path: &Path,
2446    f: impl FnOnce(&mut EncodeContext<'_, '_>) -> usize,
2447) {
2448    let mut encoder = opaque::FileEncoder::new(path)
2449        .unwrap_or_else(|err| tcx.dcx().emit_fatal(FailCreateFileEncoder { err }));
2450    encoder.emit_raw_bytes(METADATA_HEADER);
2451
2452    // Will be filled with the root position after encoding everything.
2453    encoder.emit_raw_bytes(&0u64.to_le_bytes());
2454
2455    let source_map_files = tcx.sess.source_map().files();
2456    let source_file_cache = (Arc::clone(&source_map_files[0]), 0);
2457    let required_source_files = Some(FxIndexSet::default());
2458    drop(source_map_files);
2459
2460    let hygiene_ctxt = HygieneEncodeContext::default();
2461
2462    let mut ecx = EncodeContext {
2463        opaque: encoder,
2464        tcx,
2465        feat: tcx.features(),
2466        tables: Default::default(),
2467        lazy_state: LazyState::NoNode,
2468        span_shorthands: Default::default(),
2469        type_shorthands: Default::default(),
2470        predicate_shorthands: Default::default(),
2471        source_file_cache,
2472        interpret_allocs: Default::default(),
2473        required_source_files,
2474        is_proc_macro: tcx.crate_types().contains(&CrateType::ProcMacro),
2475        hygiene_ctxt: &hygiene_ctxt,
2476        symbol_index_table: Default::default(),
2477    };
2478
2479    // Encode the rustc version string in a predictable location.
2480    rustc_version(tcx.sess.cfg_version).encode(&mut ecx);
2481
2482    let root_position = f(&mut ecx);
2483
2484    // Make sure we report any errors from writing to the file.
2485    // If we forget this, compilation can succeed with an incomplete rmeta file,
2486    // causing an ICE when the rmeta file is read by another compilation.
2487    if let Err((path, err)) = ecx.opaque.finish() {
2488        tcx.dcx().emit_fatal(FailWriteFile { path: &path, err });
2489    }
2490
2491    let file = ecx.opaque.file();
2492    if let Err(err) = encode_root_position(file, root_position) {
2493        tcx.dcx().emit_fatal(FailWriteFile { path: ecx.opaque.path(), err });
2494    }
2495}
2496
2497fn encode_root_position(mut file: &File, pos: usize) -> Result<(), std::io::Error> {
2498    // We will return to this position after writing the root position.
2499    let pos_before_seek = file.stream_position().unwrap();
2500
2501    // Encode the root position.
2502    let header = METADATA_HEADER.len();
2503    file.seek(std::io::SeekFrom::Start(header as u64))?;
2504    file.write_all(&pos.to_le_bytes())?;
2505
2506    // Return to the position where we are before writing the root position.
2507    file.seek(std::io::SeekFrom::Start(pos_before_seek))?;
2508    Ok(())
2509}
2510
2511pub(crate) fn provide(providers: &mut Providers) {
2512    *providers = Providers {
2513        doc_link_resolutions: |tcx, def_id| {
2514            tcx.resolutions(())
2515                .doc_link_resolutions
2516                .get(&def_id)
2517                .unwrap_or_else(|| span_bug!(tcx.def_span(def_id), "no resolutions for a doc link"))
2518        },
2519        doc_link_traits_in_scope: |tcx, def_id| {
2520            tcx.resolutions(()).doc_link_traits_in_scope.get(&def_id).unwrap_or_else(|| {
2521                span_bug!(tcx.def_span(def_id), "no traits in scope for a doc link")
2522            })
2523        },
2524
2525        ..*providers
2526    }
2527}
2528
2529/// Build a textual representation of an unevaluated constant expression.
2530///
2531/// If the const expression is too complex, an underscore `_` is returned.
2532/// For const arguments, it's `{ _ }` to be precise.
2533/// This means that the output is not necessarily valid Rust code.
2534///
2535/// Currently, only
2536///
2537/// * literals (optionally with a leading `-`)
2538/// * unit `()`
2539/// * blocks (`{ … }`) around simple expressions and
2540/// * paths without arguments
2541///
2542/// are considered simple enough. Simple blocks are included since they are
2543/// necessary to disambiguate unit from the unit type.
2544/// This list might get extended in the future.
2545///
2546/// Without this censoring, in a lot of cases the output would get too large
2547/// and verbose. Consider `match` expressions, blocks and deeply nested ADTs.
2548/// Further, private and `doc(hidden)` fields of structs would get leaked
2549/// since HIR datatypes like the `body` parameter do not contain enough
2550/// semantic information for this function to be able to hide them –
2551/// at least not without significant performance overhead.
2552///
2553/// Whenever possible, prefer to evaluate the constant first and try to
2554/// use a different method for pretty-printing. Ideally this function
2555/// should only ever be used as a fallback.
2556pub fn rendered_const<'tcx>(tcx: TyCtxt<'tcx>, body: &hir::Body<'_>, def_id: LocalDefId) -> String {
2557    let value = body.value;
2558
2559    #[derive(PartialEq, Eq)]
2560    enum Classification {
2561        Literal,
2562        Simple,
2563        Complex,
2564    }
2565
2566    use Classification::*;
2567
2568    fn classify(expr: &hir::Expr<'_>) -> Classification {
2569        match &expr.kind {
2570            hir::ExprKind::Unary(hir::UnOp::Neg, expr) => {
2571                if matches!(expr.kind, hir::ExprKind::Lit(_)) { Literal } else { Complex }
2572            }
2573            hir::ExprKind::Lit(_) => Literal,
2574            hir::ExprKind::Tup([]) => Simple,
2575            hir::ExprKind::Block(hir::Block { stmts: [], expr: Some(expr), .. }, _) => {
2576                if classify(expr) == Complex { Complex } else { Simple }
2577            }
2578            // Paths with a self-type or arguments are too “complex” following our measure since
2579            // they may leak private fields of structs (with feature `adt_const_params`).
2580            // Consider: `<Self as Trait<{ Struct { private: () } }>>::CONSTANT`.
2581            // Paths without arguments are definitely harmless though.
2582            hir::ExprKind::Path(hir::QPath::Resolved(_, hir::Path { segments, .. })) => {
2583                if segments.iter().all(|segment| segment.args.is_none()) { Simple } else { Complex }
2584            }
2585            // FIXME: Claiming that those kinds of QPaths are simple is probably not true if the Ty
2586            //        contains const arguments. Is there a *concise* way to check for this?
2587            hir::ExprKind::Path(hir::QPath::TypeRelative(..)) => Simple,
2588            // FIXME: Can they contain const arguments and thus leak private struct fields?
2589            hir::ExprKind::Path(hir::QPath::LangItem(..)) => Simple,
2590            _ => Complex,
2591        }
2592    }
2593
2594    match classify(value) {
2595        // For non-macro literals, we avoid invoking the pretty-printer and use the source snippet
2596        // instead to preserve certain stylistic choices the user likely made for the sake of
2597        // legibility, like:
2598        //
2599        // * hexadecimal notation
2600        // * underscores
2601        // * character escapes
2602        //
2603        // FIXME: This passes through `-/*spacer*/0` verbatim.
2604        Literal
2605            if !value.span.from_expansion()
2606                && let Ok(snippet) = tcx.sess.source_map().span_to_snippet(value.span) =>
2607        {
2608            snippet
2609        }
2610
2611        // Otherwise we prefer pretty-printing to get rid of extraneous whitespace, comments and
2612        // other formatting artifacts.
2613        Literal | Simple => id_to_string(&tcx, body.id().hir_id),
2614
2615        // FIXME: Omit the curly braces if the enclosing expression is an array literal
2616        //        with a repeated element (an `ExprKind::Repeat`) as in such case it
2617        //        would not actually need any disambiguation.
2618        Complex => {
2619            if tcx.def_kind(def_id) == DefKind::AnonConst {
2620                "{ _ }".to_owned()
2621            } else {
2622                "_".to_owned()
2623            }
2624        }
2625    }
2626}