rustc_codegen_ssa/codegen_attrs.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
use rustc_ast::{MetaItemInner, MetaItemKind, ast, attr};
use rustc_attr::{InlineAttr, InstructionSetAttr, OptimizeAttr, list_contains_name};
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::codes::*;
use rustc_errors::{DiagMessage, SubdiagMessage, struct_span_code_err};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::{DefId, LOCAL_CRATE, LocalDefId};
use rustc_hir::weak_lang_items::WEAK_LANG_ITEMS;
use rustc_hir::{LangItem, lang_items};
use rustc_middle::middle::codegen_fn_attrs::{
CodegenFnAttrFlags, CodegenFnAttrs, PatchableFunctionEntry,
};
use rustc_middle::mir::mono::Linkage;
use rustc_middle::query::Providers;
use rustc_middle::ty::{self as ty, TyCtxt};
use rustc_session::parse::feature_err;
use rustc_session::{Session, lint};
use rustc_span::symbol::Ident;
use rustc_span::{Span, sym};
use rustc_target::spec::{SanitizerSet, abi};
use crate::errors::{self, MissingFeatures, TargetFeatureDisableOrEnable};
use crate::target_features::{check_target_feature_trait_unsafe, from_target_feature};
fn linkage_by_name(tcx: TyCtxt<'_>, def_id: LocalDefId, name: &str) -> Linkage {
use rustc_middle::mir::mono::Linkage::*;
// Use the names from src/llvm/docs/LangRef.rst here. Most types are only
// applicable to variable declarations and may not really make sense for
// Rust code in the first place but allow them anyway and trust that the
// user knows what they're doing. Who knows, unanticipated use cases may pop
// up in the future.
//
// ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
// and don't have to be, LLVM treats them as no-ops.
match name {
"appending" => Appending,
"available_externally" => AvailableExternally,
"common" => Common,
"extern_weak" => ExternalWeak,
"external" => External,
"internal" => Internal,
"linkonce" => LinkOnceAny,
"linkonce_odr" => LinkOnceODR,
"private" => Private,
"weak" => WeakAny,
"weak_odr" => WeakODR,
_ => tcx.dcx().span_fatal(tcx.def_span(def_id), "invalid linkage specified"),
}
}
fn codegen_fn_attrs(tcx: TyCtxt<'_>, did: LocalDefId) -> CodegenFnAttrs {
if cfg!(debug_assertions) {
let def_kind = tcx.def_kind(did);
assert!(
def_kind.has_codegen_attrs(),
"unexpected `def_kind` in `codegen_fn_attrs`: {def_kind:?}",
);
}
let attrs = tcx.hir().attrs(tcx.local_def_id_to_hir_id(did));
let mut codegen_fn_attrs = CodegenFnAttrs::new();
if tcx.should_inherit_track_caller(did) {
codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER;
}
// When `no_builtins` is applied at the crate level, we should add the
// `no-builtins` attribute to each function to ensure it takes effect in LTO.
let crate_attrs = tcx.hir().attrs(rustc_hir::CRATE_HIR_ID);
let no_builtins = attr::contains_name(crate_attrs, sym::no_builtins);
if no_builtins {
codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_BUILTINS;
}
let supported_target_features = tcx.supported_target_features(LOCAL_CRATE);
let mut inline_span = None;
let mut link_ordinal_span = None;
let mut no_sanitize_span = None;
for attr in attrs.iter() {
// In some cases, attribute are only valid on functions, but it's the `check_attr`
// pass that check that they aren't used anywhere else, rather this module.
// In these cases, we bail from performing further checks that are only meaningful for
// functions (such as calling `fn_sig`, which ICEs if given a non-function). We also
// report a delayed bug, just in case `check_attr` isn't doing its job.
let fn_sig = || {
use DefKind::*;
let def_kind = tcx.def_kind(did);
if let Fn | AssocFn | Variant | Ctor(..) = def_kind {
Some(tcx.fn_sig(did))
} else {
tcx.dcx()
.span_delayed_bug(attr.span, "this attribute can only be applied to functions");
None
}
};
let Some(Ident { name, .. }) = attr.ident() else {
continue;
};
match name {
sym::cold => codegen_fn_attrs.flags |= CodegenFnAttrFlags::COLD,
sym::rustc_allocator => codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR,
sym::ffi_pure => codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_PURE,
sym::ffi_const => codegen_fn_attrs.flags |= CodegenFnAttrFlags::FFI_CONST,
sym::rustc_nounwind => codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND,
sym::rustc_reallocator => codegen_fn_attrs.flags |= CodegenFnAttrFlags::REALLOCATOR,
sym::rustc_deallocator => codegen_fn_attrs.flags |= CodegenFnAttrFlags::DEALLOCATOR,
sym::rustc_allocator_zeroed => {
codegen_fn_attrs.flags |= CodegenFnAttrFlags::ALLOCATOR_ZEROED
}
sym::naked => codegen_fn_attrs.flags |= CodegenFnAttrFlags::NAKED,
sym::no_mangle => {
if tcx.opt_item_name(did.to_def_id()).is_some() {
codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE
} else {
tcx.dcx()
.struct_span_err(
attr.span,
format!(
"`#[no_mangle]` cannot be used on {} {} as it has no name",
tcx.def_descr_article(did.to_def_id()),
tcx.def_descr(did.to_def_id()),
),
)
.emit();
}
}
sym::rustc_std_internal_symbol => {
codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL
}
sym::used => {
let inner = attr.meta_item_list();
match inner.as_deref() {
Some([item]) if item.has_name(sym::linker) => {
if !tcx.features().used_with_arg {
feature_err(
&tcx.sess,
sym::used_with_arg,
attr.span,
"`#[used(linker)]` is currently unstable",
)
.emit();
}
codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED_LINKER;
}
Some([item]) if item.has_name(sym::compiler) => {
if !tcx.features().used_with_arg {
feature_err(
&tcx.sess,
sym::used_with_arg,
attr.span,
"`#[used(compiler)]` is currently unstable",
)
.emit();
}
codegen_fn_attrs.flags |= CodegenFnAttrFlags::USED;
}
Some(_) => {
tcx.dcx().emit_err(errors::ExpectedUsedSymbol { span: attr.span });
}
None => {
// Unfortunately, unconditionally using `llvm.used` causes
// issues in handling `.init_array` with the gold linker,
// but using `llvm.compiler.used` caused a nontrivial amount
// of unintentional ecosystem breakage -- particularly on
// Mach-O targets.
//
// As a result, we emit `llvm.compiler.used` only on ELF
// targets. This is somewhat ad-hoc, but actually follows
// our pre-LLVM 13 behavior (prior to the ecosystem
// breakage), and seems to match `clang`'s behavior as well
// (both before and after LLVM 13), possibly because they
// have similar compatibility concerns to us. See
// https://github.com/rust-lang/rust/issues/47384#issuecomment-1019080146
// and following comments for some discussion of this, as
// well as the comments in `rustc_codegen_llvm` where these
// flags are handled.
//
// Anyway, to be clear: this is still up in the air
// somewhat, and is subject to change in the future (which
// is a good thing, because this would ideally be a bit
// more firmed up).
let is_like_elf = !(tcx.sess.target.is_like_osx
|| tcx.sess.target.is_like_windows
|| tcx.sess.target.is_like_wasm);
codegen_fn_attrs.flags |= if is_like_elf {
CodegenFnAttrFlags::USED
} else {
CodegenFnAttrFlags::USED_LINKER
};
}
}
}
sym::thread_local => codegen_fn_attrs.flags |= CodegenFnAttrFlags::THREAD_LOCAL,
sym::track_caller => {
let is_closure = tcx.is_closure_like(did.to_def_id());
if !is_closure
&& let Some(fn_sig) = fn_sig()
&& fn_sig.skip_binder().abi() != abi::Abi::Rust
{
struct_span_code_err!(
tcx.dcx(),
attr.span,
E0737,
"`#[track_caller]` requires Rust ABI"
)
.emit();
}
if is_closure
&& !tcx.features().closure_track_caller
&& !attr.span.allows_unstable(sym::closure_track_caller)
{
feature_err(
&tcx.sess,
sym::closure_track_caller,
attr.span,
"`#[track_caller]` on closures is currently unstable",
)
.emit();
}
codegen_fn_attrs.flags |= CodegenFnAttrFlags::TRACK_CALLER
}
sym::export_name => {
if let Some(s) = attr.value_str() {
if s.as_str().contains('\0') {
// `#[export_name = ...]` will be converted to a null-terminated string,
// so it may not contain any null characters.
struct_span_code_err!(
tcx.dcx(),
attr.span,
E0648,
"`export_name` may not contain null characters"
)
.emit();
}
codegen_fn_attrs.export_name = Some(s);
}
}
sym::target_feature => {
if !tcx.is_closure_like(did.to_def_id())
&& let Some(fn_sig) = fn_sig()
&& fn_sig.skip_binder().safety() == hir::Safety::Safe
{
if tcx.sess.target.is_like_wasm || tcx.sess.opts.actually_rustdoc {
// The `#[target_feature]` attribute is allowed on
// WebAssembly targets on all functions, including safe
// ones. Other targets require that `#[target_feature]` is
// only applied to unsafe functions (pending the
// `target_feature_11` feature) because on most targets
// execution of instructions that are not supported is
// considered undefined behavior. For WebAssembly which is a
// 100% safe target at execution time it's not possible to
// execute undefined instructions, and even if a future
// feature was added in some form for this it would be a
// deterministic trap. There is no undefined behavior when
// executing WebAssembly so `#[target_feature]` is allowed
// on safe functions (but again, only for WebAssembly)
//
// Note that this is also allowed if `actually_rustdoc` so
// if a target is documenting some wasm-specific code then
// it's not spuriously denied.
//
// This exception needs to be kept in sync with allowing
// `#[target_feature]` on `main` and `start`.
} else if !tcx.features().target_feature_11 {
feature_err(
&tcx.sess,
sym::target_feature_11,
attr.span,
"`#[target_feature(..)]` can only be applied to `unsafe` functions",
)
.with_span_label(tcx.def_span(did), "not an `unsafe` function")
.emit();
} else {
check_target_feature_trait_unsafe(tcx, did, attr.span);
}
}
from_target_feature(
tcx,
attr,
supported_target_features,
&mut codegen_fn_attrs.target_features,
);
}
sym::linkage => {
if let Some(val) = attr.value_str() {
let linkage = Some(linkage_by_name(tcx, did, val.as_str()));
if tcx.is_foreign_item(did) {
codegen_fn_attrs.import_linkage = linkage;
if tcx.is_mutable_static(did.into()) {
let mut diag = tcx.dcx().struct_span_err(
attr.span,
"extern mutable statics are not allowed with `#[linkage]`",
);
diag.note(
"marking the extern static mutable would allow changing which \
symbol the static references rather than make the target of the \
symbol mutable",
);
diag.emit();
}
} else {
codegen_fn_attrs.linkage = linkage;
}
}
}
sym::link_section => {
if let Some(val) = attr.value_str() {
if val.as_str().bytes().any(|b| b == 0) {
let msg = format!("illegal null byte in link_section value: `{val}`");
tcx.dcx().span_err(attr.span, msg);
} else {
codegen_fn_attrs.link_section = Some(val);
}
}
}
sym::link_name => codegen_fn_attrs.link_name = attr.value_str(),
sym::link_ordinal => {
link_ordinal_span = Some(attr.span);
if let ordinal @ Some(_) = check_link_ordinal(tcx, attr) {
codegen_fn_attrs.link_ordinal = ordinal;
}
}
sym::no_sanitize => {
no_sanitize_span = Some(attr.span);
if let Some(list) = attr.meta_item_list() {
for item in list.iter() {
match item.name_or_empty() {
sym::address => {
codegen_fn_attrs.no_sanitize |=
SanitizerSet::ADDRESS | SanitizerSet::KERNELADDRESS
}
sym::cfi => codegen_fn_attrs.no_sanitize |= SanitizerSet::CFI,
sym::kcfi => codegen_fn_attrs.no_sanitize |= SanitizerSet::KCFI,
sym::memory => codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMORY,
sym::memtag => codegen_fn_attrs.no_sanitize |= SanitizerSet::MEMTAG,
sym::shadow_call_stack => {
codegen_fn_attrs.no_sanitize |= SanitizerSet::SHADOWCALLSTACK
}
sym::thread => codegen_fn_attrs.no_sanitize |= SanitizerSet::THREAD,
sym::hwaddress => {
codegen_fn_attrs.no_sanitize |= SanitizerSet::HWADDRESS
}
_ => {
tcx.dcx().emit_err(errors::InvalidNoSanitize { span: item.span() });
}
}
}
}
}
sym::instruction_set => {
codegen_fn_attrs.instruction_set =
attr.meta_item_list().and_then(|l| match &l[..] {
[MetaItemInner::MetaItem(set)] => {
let segments =
set.path.segments.iter().map(|x| x.ident.name).collect::<Vec<_>>();
match segments.as_slice() {
[sym::arm, sym::a32] | [sym::arm, sym::t32] => {
if !tcx.sess.target.has_thumb_interworking {
struct_span_code_err!(
tcx.dcx(),
attr.span,
E0779,
"target does not support `#[instruction_set]`"
)
.emit();
None
} else if segments[1] == sym::a32 {
Some(InstructionSetAttr::ArmA32)
} else if segments[1] == sym::t32 {
Some(InstructionSetAttr::ArmT32)
} else {
unreachable!()
}
}
_ => {
struct_span_code_err!(
tcx.dcx(),
attr.span,
E0779,
"invalid instruction set specified",
)
.emit();
None
}
}
}
[] => {
struct_span_code_err!(
tcx.dcx(),
attr.span,
E0778,
"`#[instruction_set]` requires an argument"
)
.emit();
None
}
_ => {
struct_span_code_err!(
tcx.dcx(),
attr.span,
E0779,
"cannot specify more than one instruction set"
)
.emit();
None
}
})
}
sym::repr => {
codegen_fn_attrs.alignment = if let Some(items) = attr.meta_item_list()
&& let [item] = items.as_slice()
&& let Some((sym::align, literal)) = item.singleton_lit_list()
{
rustc_attr::parse_alignment(&literal.kind)
.map_err(|msg| {
struct_span_code_err!(
tcx.dcx(),
literal.span,
E0589,
"invalid `repr(align)` attribute: {}",
msg
)
.emit();
})
.ok()
} else {
None
};
}
sym::patchable_function_entry => {
codegen_fn_attrs.patchable_function_entry = attr.meta_item_list().and_then(|l| {
let mut prefix = None;
let mut entry = None;
for item in l {
let Some(meta_item) = item.meta_item() else {
tcx.dcx().span_err(item.span(), "expected name value pair");
continue;
};
let Some(name_value_lit) = meta_item.name_value_literal() else {
tcx.dcx().span_err(item.span(), "expected name value pair");
continue;
};
fn emit_error_with_label(
tcx: TyCtxt<'_>,
span: Span,
error: impl Into<DiagMessage>,
label: impl Into<SubdiagMessage>,
) {
let mut err: rustc_errors::Diag<'_, _> =
tcx.dcx().struct_span_err(span, error);
err.span_label(span, label);
err.emit();
}
let attrib_to_write = match meta_item.name_or_empty() {
sym::prefix_nops => &mut prefix,
sym::entry_nops => &mut entry,
_ => {
emit_error_with_label(
tcx,
item.span(),
"unexpected parameter name",
format!("expected {} or {}", sym::prefix_nops, sym::entry_nops),
);
continue;
}
};
let rustc_ast::LitKind::Int(val, _) = name_value_lit.kind else {
emit_error_with_label(
tcx,
name_value_lit.span,
"invalid literal value",
"value must be an integer between `0` and `255`",
);
continue;
};
let Ok(val) = val.get().try_into() else {
emit_error_with_label(
tcx,
name_value_lit.span,
"integer value out of range",
"value must be between `0` and `255`",
);
continue;
};
*attrib_to_write = Some(val);
}
if let (None, None) = (prefix, entry) {
tcx.dcx().span_err(attr.span, "must specify at least one parameter");
}
Some(PatchableFunctionEntry::from_prefix_and_entry(
prefix.unwrap_or(0),
entry.unwrap_or(0),
))
})
}
_ => {}
}
}
codegen_fn_attrs.inline = attrs.iter().fold(InlineAttr::None, |ia, attr| {
if !attr.has_name(sym::inline) {
return ia;
}
match attr.meta_kind() {
Some(MetaItemKind::Word) => InlineAttr::Hint,
Some(MetaItemKind::List(ref items)) => {
inline_span = Some(attr.span);
if items.len() != 1 {
struct_span_code_err!(tcx.dcx(), attr.span, E0534, "expected one argument")
.emit();
InlineAttr::None
} else if list_contains_name(items, sym::always) {
InlineAttr::Always
} else if list_contains_name(items, sym::never) {
InlineAttr::Never
} else {
struct_span_code_err!(tcx.dcx(), items[0].span(), E0535, "invalid argument")
.with_help("valid inline arguments are `always` and `never`")
.emit();
InlineAttr::None
}
}
Some(MetaItemKind::NameValue(_)) => ia,
None => ia,
}
});
codegen_fn_attrs.optimize = attrs.iter().fold(OptimizeAttr::None, |ia, attr| {
if !attr.has_name(sym::optimize) {
return ia;
}
let err = |sp, s| struct_span_code_err!(tcx.dcx(), sp, E0722, "{}", s).emit();
match attr.meta_kind() {
Some(MetaItemKind::Word) => {
err(attr.span, "expected one argument");
ia
}
Some(MetaItemKind::List(ref items)) => {
inline_span = Some(attr.span);
if items.len() != 1 {
err(attr.span, "expected one argument");
OptimizeAttr::None
} else if list_contains_name(items, sym::size) {
OptimizeAttr::Size
} else if list_contains_name(items, sym::speed) {
OptimizeAttr::Speed
} else {
err(items[0].span(), "invalid argument");
OptimizeAttr::None
}
}
Some(MetaItemKind::NameValue(_)) => ia,
None => ia,
}
});
// #73631: closures inherit `#[target_feature]` annotations
//
// If this closure is marked `#[inline(always)]`, simply skip adding `#[target_feature]`.
//
// At this point, `unsafe` has already been checked and `#[target_feature]` only affects codegen.
// Emitting both `#[inline(always)]` and `#[target_feature]` can potentially result in an
// ICE, because LLVM errors when the function fails to be inlined due to a target feature
// mismatch.
//
// Using `#[inline(always)]` implies that this closure will most likely be inlined into
// its parent function, which effectively inherits the features anyway. Boxing this closure
// would result in this closure being compiled without the inherited target features, but this
// is probably a poor usage of `#[inline(always)]` and easily avoided by not using the attribute.
if tcx.features().target_feature_11
&& tcx.is_closure_like(did.to_def_id())
&& codegen_fn_attrs.inline != InlineAttr::Always
{
let owner_id = tcx.parent(did.to_def_id());
if tcx.def_kind(owner_id).has_codegen_attrs() {
codegen_fn_attrs
.target_features
.extend(tcx.codegen_fn_attrs(owner_id).target_features.iter().copied());
}
}
// If a function uses #[target_feature] it can't be inlined into general
// purpose functions as they wouldn't have the right target features
// enabled. For that reason we also forbid #[inline(always)] as it can't be
// respected.
if !codegen_fn_attrs.target_features.is_empty() && codegen_fn_attrs.inline == InlineAttr::Always
{
if let Some(span) = inline_span {
tcx.dcx().span_err(
span,
"cannot use `#[inline(always)]` with \
`#[target_feature]`",
);
}
}
if !codegen_fn_attrs.no_sanitize.is_empty() && codegen_fn_attrs.inline == InlineAttr::Always {
if let (Some(no_sanitize_span), Some(inline_span)) = (no_sanitize_span, inline_span) {
let hir_id = tcx.local_def_id_to_hir_id(did);
tcx.node_span_lint(
lint::builtin::INLINE_NO_SANITIZE,
hir_id,
no_sanitize_span,
|lint| {
lint.primary_message("`no_sanitize` will have no effect after inlining");
lint.span_note(inline_span, "inlining requested here");
},
)
}
}
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) {
codegen_fn_attrs.inline = InlineAttr::Never;
}
// Weak lang items have the same semantics as "std internal" symbols in the
// sense that they're preserved through all our LTO passes and only
// strippable by the linker.
//
// Additionally weak lang items have predetermined symbol names.
if WEAK_LANG_ITEMS.iter().any(|&l| tcx.lang_items().get(l) == Some(did.to_def_id())) {
codegen_fn_attrs.flags |= CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL;
}
if let Some((name, _)) = lang_items::extract(attrs)
&& let Some(lang_item) = LangItem::from_name(name)
&& let Some(link_name) = lang_item.link_name()
{
codegen_fn_attrs.export_name = Some(link_name);
codegen_fn_attrs.link_name = Some(link_name);
}
check_link_name_xor_ordinal(tcx, &codegen_fn_attrs, link_ordinal_span);
// Internal symbols to the standard library all have no_mangle semantics in
// that they have defined symbol names present in the function name. This
// also applies to weak symbols where they all have known symbol names.
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) {
codegen_fn_attrs.flags |= CodegenFnAttrFlags::NO_MANGLE;
}
// Any linkage to LLVM intrinsics for now forcibly marks them all as never
// unwinds since LLVM sometimes can't handle codegen which `invoke`s
// intrinsic functions.
if let Some(name) = &codegen_fn_attrs.link_name {
if name.as_str().starts_with("llvm.") {
codegen_fn_attrs.flags |= CodegenFnAttrFlags::NEVER_UNWIND;
}
}
if let Some(features) = check_tied_features(
tcx.sess,
&codegen_fn_attrs
.target_features
.iter()
.map(|features| (features.name.as_str(), true))
.collect(),
) {
let span = tcx
.get_attrs(did, sym::target_feature)
.next()
.map_or_else(|| tcx.def_span(did), |a| a.span);
tcx.dcx()
.create_err(TargetFeatureDisableOrEnable {
features,
span: Some(span),
missing_features: Some(MissingFeatures),
})
.emit();
}
codegen_fn_attrs
}
/// Given a map from target_features to whether they are enabled or disabled, ensure only valid
/// combinations are allowed.
pub fn check_tied_features(
sess: &Session,
features: &FxHashMap<&str, bool>,
) -> Option<&'static [&'static str]> {
if !features.is_empty() {
for tied in sess.target.tied_target_features() {
// Tied features must be set to the same value, or not set at all
let mut tied_iter = tied.iter();
let enabled = features.get(tied_iter.next().unwrap());
if tied_iter.any(|f| enabled != features.get(f)) {
return Some(tied);
}
}
}
None
}
/// Checks if the provided DefId is a method in a trait impl for a trait which has track_caller
/// applied to the method prototype.
fn should_inherit_track_caller(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
if let Some(impl_item) = tcx.opt_associated_item(def_id)
&& let ty::AssocItemContainer::ImplContainer = impl_item.container
&& let Some(trait_item) = impl_item.trait_item_def_id
{
return tcx.codegen_fn_attrs(trait_item).flags.intersects(CodegenFnAttrFlags::TRACK_CALLER);
}
false
}
fn check_link_ordinal(tcx: TyCtxt<'_>, attr: &ast::Attribute) -> Option<u16> {
use rustc_ast::{LitIntType, LitKind, MetaItemLit};
let meta_item_list = attr.meta_item_list();
let meta_item_list = meta_item_list.as_deref();
let sole_meta_list = match meta_item_list {
Some([item]) => item.lit(),
Some(_) => {
tcx.dcx().emit_err(errors::InvalidLinkOrdinalNargs { span: attr.span });
return None;
}
_ => None,
};
if let Some(MetaItemLit { kind: LitKind::Int(ordinal, LitIntType::Unsuffixed), .. }) =
sole_meta_list
{
// According to the table at
// https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-header, the
// ordinal must fit into 16 bits. Similarly, the Ordinal field in COFFShortExport (defined
// in llvm/include/llvm/Object/COFFImportFile.h), which we use to communicate import
// information to LLVM for `#[link(kind = "raw-dylib"_])`, is also defined to be uint16_t.
//
// FIXME: should we allow an ordinal of 0? The MSVC toolchain has inconsistent support for
// this: both LINK.EXE and LIB.EXE signal errors and abort when given a .DEF file that
// specifies a zero ordinal. However, llvm-dlltool is perfectly happy to generate an import
// library for such a .DEF file, and MSVC's LINK.EXE is also perfectly happy to consume an
// import library produced by LLVM with an ordinal of 0, and it generates an .EXE. (I
// don't know yet if the resulting EXE runs, as I haven't yet built the necessary DLL --
// see earlier comment about LINK.EXE failing.)
if *ordinal <= u16::MAX as u128 {
Some(ordinal.get() as u16)
} else {
let msg = format!("ordinal value in `link_ordinal` is too large: `{ordinal}`");
tcx.dcx()
.struct_span_err(attr.span, msg)
.with_note("the value may not exceed `u16::MAX`")
.emit();
None
}
} else {
tcx.dcx().emit_err(errors::InvalidLinkOrdinalFormat { span: attr.span });
None
}
}
fn check_link_name_xor_ordinal(
tcx: TyCtxt<'_>,
codegen_fn_attrs: &CodegenFnAttrs,
inline_span: Option<Span>,
) {
if codegen_fn_attrs.link_name.is_none() || codegen_fn_attrs.link_ordinal.is_none() {
return;
}
let msg = "cannot use `#[link_name]` with `#[link_ordinal]`";
if let Some(span) = inline_span {
tcx.dcx().span_err(span, msg);
} else {
tcx.dcx().err(msg);
}
}
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers { codegen_fn_attrs, should_inherit_track_caller, ..*providers };
}