rustc_codegen_llvm/builder/
autodiff.rs

1use std::ptr;
2
3use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, DiffActivity, DiffMode};
4use rustc_codegen_ssa::common::TypeKind;
5use rustc_codegen_ssa::traits::{BaseTypeCodegenMethods, BuilderMethods};
6use rustc_middle::ty::{PseudoCanonicalInput, Ty, TyCtxt, TypingEnv};
7use rustc_middle::{bug, ty};
8use tracing::debug;
9
10use crate::builder::{Builder, PlaceRef, UNNAMED};
11use crate::context::SimpleCx;
12use crate::declare::declare_simple_fn;
13use crate::llvm;
14use crate::llvm::{Metadata, TRUE, Type};
15use crate::value::Value;
16
17pub(crate) fn adjust_activity_to_abi<'tcx>(
18    tcx: TyCtxt<'tcx>,
19    fn_ty: Ty<'tcx>,
20    da: &mut Vec<DiffActivity>,
21) {
22    if !matches!(fn_ty.kind(), ty::FnDef(..)) {
23        bug!("expected fn def for autodiff, got {:?}", fn_ty);
24    }
25
26    // We don't actually pass the types back into the type system.
27    // All we do is decide how to handle the arguments.
28    let sig = fn_ty.fn_sig(tcx).skip_binder();
29
30    let mut new_activities = vec![];
31    let mut new_positions = vec![];
32    for (i, ty) in sig.inputs().iter().enumerate() {
33        if let Some(inner_ty) = ty.builtin_deref(true) {
34            if inner_ty.is_slice() {
35                // Now we need to figure out the size of each slice element in memory to allow
36                // safety checks and usability improvements in the backend.
37                let sty = match inner_ty.builtin_index() {
38                    Some(sty) => sty,
39                    None => {
40                        panic!("slice element type unknown");
41                    }
42                };
43                let pci = PseudoCanonicalInput {
44                    typing_env: TypingEnv::fully_monomorphized(),
45                    value: sty,
46                };
47
48                let layout = tcx.layout_of(pci);
49                let elem_size = match layout {
50                    Ok(layout) => layout.size,
51                    Err(_) => {
52                        bug!("autodiff failed to compute slice element size");
53                    }
54                };
55                let elem_size: u32 = elem_size.bytes() as u32;
56
57                // We know that the length will be passed as extra arg.
58                if !da.is_empty() {
59                    // We are looking at a slice. The length of that slice will become an
60                    // extra integer on llvm level. Integers are always const.
61                    // However, if the slice get's duplicated, we want to know to later check the
62                    // size. So we mark the new size argument as FakeActivitySize.
63                    // There is one FakeActivitySize per slice, so for convenience we store the
64                    // slice element size in bytes in it. We will use the size in the backend.
65                    let activity = match da[i] {
66                        DiffActivity::DualOnly
67                        | DiffActivity::Dual
68                        | DiffActivity::Dualv
69                        | DiffActivity::DuplicatedOnly
70                        | DiffActivity::Duplicated => {
71                            DiffActivity::FakeActivitySize(Some(elem_size))
72                        }
73                        DiffActivity::Const => DiffActivity::Const,
74                        _ => bug!("unexpected activity for ptr/ref"),
75                    };
76                    new_activities.push(activity);
77                    new_positions.push(i + 1);
78                }
79
80                continue;
81            }
82        }
83    }
84    // now add the extra activities coming from slices
85    // Reverse order to not invalidate the indices
86    for _ in 0..new_activities.len() {
87        let pos = new_positions.pop().unwrap();
88        let activity = new_activities.pop().unwrap();
89        da.insert(pos, activity);
90    }
91}
92
93// When we call the `__enzyme_autodiff` or `__enzyme_fwddiff` function, we need to pass all the
94// original inputs, as well as metadata and the additional shadow arguments.
95// This function matches the arguments from the outer function to the inner enzyme call.
96//
97// This function also considers that Rust level arguments not always match the llvm-ir level
98// arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
99// llvm-ir level. The number of activities matches the number of Rust level arguments, so we
100// need to match those.
101// FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
102// using iterators and peek()?
103fn match_args_from_caller_to_enzyme<'ll, 'tcx>(
104    cx: &SimpleCx<'ll>,
105    builder: &mut Builder<'_, 'll, 'tcx>,
106    width: u32,
107    args: &mut Vec<&'ll llvm::Value>,
108    inputs: &[DiffActivity],
109    outer_args: &[&'ll llvm::Value],
110) {
111    debug!("matching autodiff arguments");
112    // We now handle the issue that Rust level arguments not always match the llvm-ir level
113    // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
114    // llvm-ir level. The number of activities matches the number of Rust level arguments, so we
115    // need to match those.
116    // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
117    // using iterators and peek()?
118    let mut outer_pos: usize = 0;
119    let mut activity_pos = 0;
120
121    let enzyme_const = cx.create_metadata(b"enzyme_const");
122    let enzyme_out = cx.create_metadata(b"enzyme_out");
123    let enzyme_dup = cx.create_metadata(b"enzyme_dup");
124    let enzyme_dupv = cx.create_metadata(b"enzyme_dupv");
125    let enzyme_dupnoneed = cx.create_metadata(b"enzyme_dupnoneed");
126    let enzyme_dupnoneedv = cx.create_metadata(b"enzyme_dupnoneedv");
127
128    while activity_pos < inputs.len() {
129        let diff_activity = inputs[activity_pos as usize];
130        // Duplicated arguments received a shadow argument, into which enzyme will write the
131        // gradient.
132        let (activity, duplicated): (&Metadata, bool) = match diff_activity {
133            DiffActivity::None => panic!("not a valid input activity"),
134            DiffActivity::Const => (enzyme_const, false),
135            DiffActivity::Active => (enzyme_out, false),
136            DiffActivity::ActiveOnly => (enzyme_out, false),
137            DiffActivity::Dual => (enzyme_dup, true),
138            DiffActivity::Dualv => (enzyme_dupv, true),
139            DiffActivity::DualOnly => (enzyme_dupnoneed, true),
140            DiffActivity::DualvOnly => (enzyme_dupnoneedv, true),
141            DiffActivity::Duplicated => (enzyme_dup, true),
142            DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true),
143            DiffActivity::FakeActivitySize(_) => (enzyme_const, false),
144        };
145        let outer_arg = outer_args[outer_pos];
146        args.push(cx.get_metadata_value(activity));
147        if matches!(diff_activity, DiffActivity::Dualv) {
148            let next_outer_arg = outer_args[outer_pos + 1];
149            let elem_bytes_size: u64 = match inputs[activity_pos + 1] {
150                DiffActivity::FakeActivitySize(Some(s)) => s.into(),
151                _ => bug!("incorrect Dualv handling recognized."),
152            };
153            // stride: sizeof(T) * n_elems.
154            // n_elems is the next integer.
155            // Now we multiply `4 * next_outer_arg` to get the stride.
156            let mul = unsafe {
157                llvm::LLVMBuildMul(
158                    builder.llbuilder,
159                    cx.get_const_int(cx.type_i64(), elem_bytes_size),
160                    next_outer_arg,
161                    UNNAMED,
162                )
163            };
164            args.push(mul);
165        }
166        args.push(outer_arg);
167        if duplicated {
168            // We know that duplicated args by construction have a following argument,
169            // so this can not be out of bounds.
170            let next_outer_arg = outer_args[outer_pos + 1];
171            let next_outer_ty = cx.val_ty(next_outer_arg);
172            // FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since
173            // vectors behind references (&Vec<T>) are already supported. Users can not pass a
174            // Vec by value for reverse mode, so this would only help forward mode autodiff.
175            let slice = {
176                if activity_pos + 1 >= inputs.len() {
177                    // If there is no arg following our ptr, it also can't be a slice,
178                    // since that would lead to a ptr, int pair.
179                    false
180                } else {
181                    let next_activity = inputs[activity_pos + 1];
182                    // We analyze the MIR types and add this dummy activity if we visit a slice.
183                    matches!(next_activity, DiffActivity::FakeActivitySize(_))
184                }
185            };
186            if slice {
187                // A duplicated slice will have the following two outer_fn arguments:
188                // (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call:
189                // (..., metadata! enzyme_dup, ptr, ptr, int1, ...).
190                // FIXME(ZuseZ4): We will upstream a safety check later which asserts that
191                // int2 >= int1, which means the shadow vector is large enough to store the gradient.
192                assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Integer);
193
194                let iterations =
195                    if matches!(diff_activity, DiffActivity::Dualv) { 1 } else { width as usize };
196
197                for i in 0..iterations {
198                    let next_outer_arg2 = outer_args[outer_pos + 2 * (i + 1)];
199                    let next_outer_ty2 = cx.val_ty(next_outer_arg2);
200                    assert_eq!(cx.type_kind(next_outer_ty2), TypeKind::Pointer);
201                    let next_outer_arg3 = outer_args[outer_pos + 2 * (i + 1) + 1];
202                    let next_outer_ty3 = cx.val_ty(next_outer_arg3);
203                    assert_eq!(cx.type_kind(next_outer_ty3), TypeKind::Integer);
204                    args.push(next_outer_arg2);
205                }
206                args.push(cx.get_metadata_value(enzyme_const));
207                args.push(next_outer_arg);
208                outer_pos += 2 + 2 * iterations;
209                activity_pos += 2;
210            } else {
211                // A duplicated pointer will have the following two outer_fn arguments:
212                // (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call:
213                // (..., metadata! enzyme_dup, ptr, ptr, ...).
214                if matches!(diff_activity, DiffActivity::Duplicated | DiffActivity::DuplicatedOnly)
215                {
216                    assert_eq!(cx.type_kind(next_outer_ty), TypeKind::Pointer);
217                }
218                // In the case of Dual we don't have assumptions, e.g. f32 would be valid.
219                args.push(next_outer_arg);
220                outer_pos += 2;
221                activity_pos += 1;
222
223                // Now, if width > 1, we need to account for that
224                for _ in 1..width {
225                    let next_outer_arg = outer_args[outer_pos];
226                    args.push(next_outer_arg);
227                    outer_pos += 1;
228                }
229            }
230        } else {
231            // We do not differentiate with resprect to this argument.
232            // We already added the metadata and argument above, so just increase the counters.
233            outer_pos += 1;
234            activity_pos += 1;
235        }
236    }
237}
238
239/// When differentiating `fn_to_diff`, take a `outer_fn` and generate another
240/// function with expected naming and calling conventions[^1] which will be
241/// discovered by the enzyme LLVM pass and its body populated with the differentiated
242/// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated
243/// function and handle the differences between the Rust calling convention and
244/// Enzyme.
245/// [^1]: <https://enzyme.mit.edu/getting_started/CallingConvention/>
246// FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to
247// cover some assumptions of enzyme/autodiff, which could lead to UB otherwise.
248pub(crate) fn generate_enzyme_call<'ll, 'tcx>(
249    builder: &mut Builder<'_, 'll, 'tcx>,
250    cx: &SimpleCx<'ll>,
251    fn_to_diff: &'ll Value,
252    outer_name: &str,
253    ret_ty: &'ll Type,
254    fn_args: &[&'ll Value],
255    attrs: AutoDiffAttrs,
256    dest: PlaceRef<'tcx, &'ll Value>,
257) {
258    // We have to pick the name depending on whether we want forward or reverse mode autodiff.
259    let mut ad_name: String = match attrs.mode {
260        DiffMode::Forward => "__enzyme_fwddiff",
261        DiffMode::Reverse => "__enzyme_autodiff",
262        _ => panic!("logic bug in autodiff, unrecognized mode"),
263    }
264    .to_string();
265
266    // add outer_name to ad_name to make it unique, in case users apply autodiff to multiple
267    // functions. Unwrap will only panic, if LLVM gave us an invalid string.
268    ad_name.push_str(outer_name);
269
270    // Let us assume the user wrote the following function square:
271    //
272    // ```llvm
273    // define double @square(double %x) {
274    // entry:
275    //  %0 = fmul double %x, %x
276    //  ret double %0
277    // }
278    //
279    // define double @dsquare(double %x) {
280    //  return 0.0;
281    // }
282    // ```
283    //
284    // so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder
285    // code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call.
286    // Again, the arguments to all functions are slightly simplified.
287    // ```llvm
288    // declare double @__enzyme_autodiff_square(...)
289    //
290    // define double @dsquare(double %x) {
291    // entry:
292    //   %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x)
293    //   ret double %0
294    // }
295    // ```
296    let enzyme_ty = unsafe { llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, TRUE) };
297
298    // FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and
299    // think a bit more about what should go here.
300    let cc = unsafe { llvm::LLVMGetFunctionCallConv(fn_to_diff) };
301    let ad_fn = declare_simple_fn(
302        cx,
303        &ad_name,
304        llvm::CallConv::try_from(cc).expect("invalid callconv"),
305        llvm::UnnamedAddr::No,
306        llvm::Visibility::Default,
307        enzyme_ty,
308    );
309
310    let num_args = llvm::LLVMCountParams(&fn_to_diff);
311    let mut args = Vec::with_capacity(num_args as usize + 1);
312    args.push(fn_to_diff);
313
314    let enzyme_primal_ret = cx.create_metadata(b"enzyme_primal_return");
315    if matches!(attrs.ret_activity, DiffActivity::Dual | DiffActivity::Active) {
316        args.push(cx.get_metadata_value(enzyme_primal_ret));
317    }
318    if attrs.width > 1 {
319        let enzyme_width = cx.create_metadata(b"enzyme_width");
320        args.push(cx.get_metadata_value(enzyme_width));
321        args.push(cx.get_const_int(cx.type_i64(), attrs.width as u64));
322    }
323
324    match_args_from_caller_to_enzyme(
325        &cx,
326        builder,
327        attrs.width,
328        &mut args,
329        &attrs.input_activity,
330        fn_args,
331    );
332
333    let call = builder.call(enzyme_ty, None, None, ad_fn, &args, None, None);
334
335    builder.store_to_place(call, dest.val);
336}