rustc_codegen_llvm/builder/autodiff.rs
1use std::ptr;
2
3use rustc_ast::expand::autodiff_attrs::{AutoDiffAttrs, AutoDiffItem, DiffActivity, DiffMode};
4use rustc_codegen_ssa::ModuleCodegen;
5use rustc_codegen_ssa::back::write::ModuleConfig;
6use rustc_errors::FatalError;
7use tracing::{debug, trace};
8
9use crate::back::write::llvm_err;
10use crate::builder::SBuilder;
11use crate::context::SimpleCx;
12use crate::declare::declare_simple_fn;
13use crate::errors::LlvmError;
14use crate::llvm::AttributePlace::Function;
15use crate::llvm::{Metadata, True};
16use crate::value::Value;
17use crate::{CodegenContext, LlvmCodegenBackend, ModuleLlvm, attributes, llvm};
18
19fn get_params(fnc: &Value) -> Vec<&Value> {
20 unsafe {
21 let param_num = llvm::LLVMCountParams(fnc) as usize;
22 let mut fnc_args: Vec<&Value> = vec![];
23 fnc_args.reserve(param_num);
24 llvm::LLVMGetParams(fnc, fnc_args.as_mut_ptr());
25 fnc_args.set_len(param_num);
26 fnc_args
27 }
28}
29
30/// When differentiating `fn_to_diff`, take a `outer_fn` and generate another
31/// function with expected naming and calling conventions[^1] which will be
32/// discovered by the enzyme LLVM pass and its body populated with the differentiated
33/// `fn_to_diff`. `outer_fn` is then modified to have a call to the generated
34/// function and handle the differences between the Rust calling convention and
35/// Enzyme.
36/// [^1]: <https://enzyme.mit.edu/getting_started/CallingConvention/>
37// FIXME(ZuseZ4): `outer_fn` should include upstream safety checks to
38// cover some assumptions of enzyme/autodiff, which could lead to UB otherwise.
39fn generate_enzyme_call<'ll>(
40 cx: &SimpleCx<'ll>,
41 fn_to_diff: &'ll Value,
42 outer_fn: &'ll Value,
43 attrs: AutoDiffAttrs,
44) {
45 let inputs = attrs.input_activity;
46 let output = attrs.ret_activity;
47
48 // We have to pick the name depending on whether we want forward or reverse mode autodiff.
49 // FIXME(ZuseZ4): The new pass based approach should not need the {Forward/Reverse}First method anymore, since
50 // it will handle higher-order derivatives correctly automatically (in theory). Currently
51 // higher-order derivatives fail, so we should debug that before adjusting this code.
52 let mut ad_name: String = match attrs.mode {
53 DiffMode::Forward => "__enzyme_fwddiff",
54 DiffMode::Reverse => "__enzyme_autodiff",
55 _ => panic!("logic bug in autodiff, unrecognized mode"),
56 }
57 .to_string();
58
59 // add outer_fn name to ad_name to make it unique, in case users apply autodiff to multiple
60 // functions. Unwrap will only panic, if LLVM gave us an invalid string.
61 let name = llvm::get_value_name(outer_fn);
62 let outer_fn_name = std::str::from_utf8(name).unwrap();
63 ad_name.push_str(outer_fn_name);
64
65 // Let us assume the user wrote the following function square:
66 //
67 // ```llvm
68 // define double @square(double %x) {
69 // entry:
70 // %0 = fmul double %x, %x
71 // ret double %0
72 // }
73 // ```
74 //
75 // The user now applies autodiff to the function square, in which case fn_to_diff will be `square`.
76 // Our macro generates the following placeholder code (slightly simplified):
77 //
78 // ```llvm
79 // define double @dsquare(double %x) {
80 // ; placeholder code
81 // return 0.0;
82 // }
83 // ```
84 //
85 // so our `outer_fn` will be `dsquare`. The unsafe code section below now removes the placeholder
86 // code and inserts an autodiff call. We also add a declaration for the __enzyme_autodiff call.
87 // Again, the arguments to all functions are slightly simplified.
88 // ```llvm
89 // declare double @__enzyme_autodiff_square(...)
90 //
91 // define double @dsquare(double %x) {
92 // entry:
93 // %0 = tail call double (...) @__enzyme_autodiff_square(double (double)* nonnull @square, double %x)
94 // ret double %0
95 // }
96 // ```
97 unsafe {
98 // On LLVM-IR, we can luckily declare __enzyme_ functions without specifying the input
99 // arguments. We do however need to declare them with their correct return type.
100 // We already figured the correct return type out in our frontend, when generating the outer_fn,
101 // so we can now just go ahead and use that. FIXME(ZuseZ4): This doesn't handle sret yet.
102 let fn_ty = llvm::LLVMGlobalGetValueType(outer_fn);
103 let ret_ty = llvm::LLVMGetReturnType(fn_ty);
104
105 // LLVM can figure out the input types on it's own, so we take a shortcut here.
106 let enzyme_ty = llvm::LLVMFunctionType(ret_ty, ptr::null(), 0, True);
107
108 //FIXME(ZuseZ4): the CC/Addr/Vis values are best effort guesses, we should look at tests and
109 // think a bit more about what should go here.
110 let cc = llvm::LLVMGetFunctionCallConv(outer_fn);
111 let ad_fn = declare_simple_fn(
112 cx,
113 &ad_name,
114 llvm::CallConv::try_from(cc).expect("invalid callconv"),
115 llvm::UnnamedAddr::No,
116 llvm::Visibility::Default,
117 enzyme_ty,
118 );
119
120 // Otherwise LLVM might inline our temporary code before the enzyme pass has a chance to
121 // do it's work.
122 let attr = llvm::AttributeKind::NoInline.create_attr(cx.llcx);
123 attributes::apply_to_llfn(ad_fn, Function, &[attr]);
124
125 // first, remove all calls from fnc
126 let entry = llvm::LLVMGetFirstBasicBlock(outer_fn);
127 let br = llvm::LLVMRustGetTerminator(entry);
128 llvm::LLVMRustEraseInstFromParent(br);
129
130 let last_inst = llvm::LLVMRustGetLastInstruction(entry).unwrap();
131 let mut builder = SBuilder::build(cx, entry);
132
133 let num_args = llvm::LLVMCountParams(&fn_to_diff);
134 let mut args = Vec::with_capacity(num_args as usize + 1);
135 args.push(fn_to_diff);
136
137 let enzyme_const = cx.create_metadata("enzyme_const".to_string()).unwrap();
138 let enzyme_out = cx.create_metadata("enzyme_out".to_string()).unwrap();
139 let enzyme_dup = cx.create_metadata("enzyme_dup".to_string()).unwrap();
140 let enzyme_dupnoneed = cx.create_metadata("enzyme_dupnoneed".to_string()).unwrap();
141 let enzyme_primal_ret = cx.create_metadata("enzyme_primal_return".to_string()).unwrap();
142
143 match output {
144 DiffActivity::Dual => {
145 args.push(cx.get_metadata_value(enzyme_primal_ret));
146 }
147 DiffActivity::Active => {
148 args.push(cx.get_metadata_value(enzyme_primal_ret));
149 }
150 _ => {}
151 }
152
153 debug!("matching autodiff arguments");
154 // We now handle the issue that Rust level arguments not always match the llvm-ir level
155 // arguments. A slice, `&[f32]`, for example, is represented as a pointer and a length on
156 // llvm-ir level. The number of activities matches the number of Rust level arguments, so we
157 // need to match those.
158 // FIXME(ZuseZ4): This logic is a bit more complicated than it should be, can we simplify it
159 // using iterators and peek()?
160 let mut outer_pos: usize = 0;
161 let mut activity_pos = 0;
162 let outer_args: Vec<&llvm::Value> = get_params(outer_fn);
163 while activity_pos < inputs.len() {
164 let diff_activity = inputs[activity_pos as usize];
165 // Duplicated arguments received a shadow argument, into which enzyme will write the
166 // gradient.
167 let (activity, duplicated): (&Metadata, bool) = match diff_activity {
168 DiffActivity::None => panic!("not a valid input activity"),
169 DiffActivity::Const => (enzyme_const, false),
170 DiffActivity::Active => (enzyme_out, false),
171 DiffActivity::ActiveOnly => (enzyme_out, false),
172 DiffActivity::Dual => (enzyme_dup, true),
173 DiffActivity::DualOnly => (enzyme_dupnoneed, true),
174 DiffActivity::Duplicated => (enzyme_dup, true),
175 DiffActivity::DuplicatedOnly => (enzyme_dupnoneed, true),
176 DiffActivity::FakeActivitySize => (enzyme_const, false),
177 };
178 let outer_arg = outer_args[outer_pos];
179 args.push(cx.get_metadata_value(activity));
180 args.push(outer_arg);
181 if duplicated {
182 // We know that duplicated args by construction have a following argument,
183 // so this can not be out of bounds.
184 let next_outer_arg = outer_args[outer_pos + 1];
185 let next_outer_ty = cx.val_ty(next_outer_arg);
186 // FIXME(ZuseZ4): We should add support for Vec here too, but it's less urgent since
187 // vectors behind references (&Vec<T>) are already supported. Users can not pass a
188 // Vec by value for reverse mode, so this would only help forward mode autodiff.
189 let slice = {
190 if activity_pos + 1 >= inputs.len() {
191 // If there is no arg following our ptr, it also can't be a slice,
192 // since that would lead to a ptr, int pair.
193 false
194 } else {
195 let next_activity = inputs[activity_pos + 1];
196 // We analyze the MIR types and add this dummy activity if we visit a slice.
197 next_activity == DiffActivity::FakeActivitySize
198 }
199 };
200 if slice {
201 // A duplicated slice will have the following two outer_fn arguments:
202 // (..., ptr1, int1, ptr2, int2, ...). We add the following llvm-ir to our __enzyme call:
203 // (..., metadata! enzyme_dup, ptr, ptr, int1, ...).
204 // FIXME(ZuseZ4): We will upstream a safety check later which asserts that
205 // int2 >= int1, which means the shadow vector is large enough to store the gradient.
206 assert!(llvm::LLVMRustGetTypeKind(next_outer_ty) == llvm::TypeKind::Integer);
207 let next_outer_arg2 = outer_args[outer_pos + 2];
208 let next_outer_ty2 = cx.val_ty(next_outer_arg2);
209 assert!(llvm::LLVMRustGetTypeKind(next_outer_ty2) == llvm::TypeKind::Pointer);
210 let next_outer_arg3 = outer_args[outer_pos + 3];
211 let next_outer_ty3 = cx.val_ty(next_outer_arg3);
212 assert!(llvm::LLVMRustGetTypeKind(next_outer_ty3) == llvm::TypeKind::Integer);
213 args.push(next_outer_arg2);
214 args.push(cx.get_metadata_value(enzyme_const));
215 args.push(next_outer_arg);
216 outer_pos += 4;
217 activity_pos += 2;
218 } else {
219 // A duplicated pointer will have the following two outer_fn arguments:
220 // (..., ptr, ptr, ...). We add the following llvm-ir to our __enzyme call:
221 // (..., metadata! enzyme_dup, ptr, ptr, ...).
222 if matches!(
223 diff_activity,
224 DiffActivity::Duplicated | DiffActivity::DuplicatedOnly
225 ) {
226 assert!(
227 llvm::LLVMRustGetTypeKind(next_outer_ty) == llvm::TypeKind::Pointer
228 );
229 }
230 // In the case of Dual we don't have assumptions, e.g. f32 would be valid.
231 args.push(next_outer_arg);
232 outer_pos += 2;
233 activity_pos += 1;
234 }
235 } else {
236 // We do not differentiate with resprect to this argument.
237 // We already added the metadata and argument above, so just increase the counters.
238 outer_pos += 1;
239 activity_pos += 1;
240 }
241 }
242
243 let call = builder.call(enzyme_ty, ad_fn, &args, None);
244
245 // This part is a bit iffy. LLVM requires that a call to an inlineable function has some
246 // metadata attachted to it, but we just created this code oota. Given that the
247 // differentiated function already has partly confusing metadata, and given that this
248 // affects nothing but the auttodiff IR, we take a shortcut and just steal metadata from the
249 // dummy code which we inserted at a higher level.
250 // FIXME(ZuseZ4): Work with Enzyme core devs to clarify what debug metadata issues we have,
251 // and how to best improve it for enzyme core and rust-enzyme.
252 let md_ty = cx.get_md_kind_id("dbg");
253 if llvm::LLVMRustHasMetadata(last_inst, md_ty) {
254 let md = llvm::LLVMRustDIGetInstMetadata(last_inst)
255 .expect("failed to get instruction metadata");
256 let md_todiff = cx.get_metadata_value(md);
257 llvm::LLVMSetMetadata(call, md_ty, md_todiff);
258 } else {
259 // We don't panic, since depending on whether we are in debug or release mode, we might
260 // have no debug info to copy, which would then be ok.
261 trace!("no dbg info");
262 }
263
264 // Now that we copied the metadata, get rid of dummy code.
265 llvm::LLVMRustEraseInstUntilInclusive(entry, last_inst);
266
267 if cx.val_ty(call) == cx.type_void() {
268 builder.ret_void();
269 } else {
270 builder.ret(call);
271 }
272
273 // Let's crash in case that we messed something up above and generated invalid IR.
274 llvm::LLVMRustVerifyFunction(
275 outer_fn,
276 llvm::LLVMRustVerifierFailureAction::LLVMAbortProcessAction,
277 );
278 }
279}
280
281pub(crate) fn differentiate<'ll>(
282 module: &'ll ModuleCodegen<ModuleLlvm>,
283 cgcx: &CodegenContext<LlvmCodegenBackend>,
284 diff_items: Vec<AutoDiffItem>,
285 _config: &ModuleConfig,
286) -> Result<(), FatalError> {
287 for item in &diff_items {
288 trace!("{}", item);
289 }
290
291 let diag_handler = cgcx.create_dcx();
292 let cx = SimpleCx { llmod: module.module_llvm.llmod(), llcx: module.module_llvm.llcx };
293
294 // Before dumping the module, we want all the TypeTrees to become part of the module.
295 for item in diff_items.iter() {
296 let name = item.source.clone();
297 let fn_def: Option<&llvm::Value> = cx.get_function(&name);
298 let Some(fn_def) = fn_def else {
299 return Err(llvm_err(
300 diag_handler.handle(),
301 LlvmError::PrepareAutoDiff {
302 src: item.source.clone(),
303 target: item.target.clone(),
304 error: "could not find source function".to_owned(),
305 },
306 ));
307 };
308 debug!(?item.target);
309 let fn_target: Option<&llvm::Value> = cx.get_function(&item.target);
310 let Some(fn_target) = fn_target else {
311 return Err(llvm_err(
312 diag_handler.handle(),
313 LlvmError::PrepareAutoDiff {
314 src: item.source.clone(),
315 target: item.target.clone(),
316 error: "could not find target function".to_owned(),
317 },
318 ));
319 };
320
321 generate_enzyme_call(&cx, fn_def, fn_target, item.attrs.clone());
322 }
323
324 // FIXME(ZuseZ4): support SanitizeHWAddress and prevent illegal/unsupported opts
325
326 trace!("done with differentiate()");
327
328 Ok(())
329}