miri/shims/x86/sse.rs
1use rustc_apfloat::ieee::Single;
2use rustc_middle::ty::Ty;
3use rustc_span::Symbol;
4use rustc_target::callconv::{Conv, FnAbi};
5
6use super::{
7 FloatBinOp, FloatUnaryOp, bin_op_simd_float_all, bin_op_simd_float_first, unary_op_ps,
8 unary_op_ss,
9};
10use crate::*;
11
12impl<'tcx> EvalContextExt<'tcx> for crate::MiriInterpCx<'tcx> {}
13pub(super) trait EvalContextExt<'tcx>: crate::MiriInterpCxExt<'tcx> {
14 fn emulate_x86_sse_intrinsic(
15 &mut self,
16 link_name: Symbol,
17 abi: &FnAbi<'tcx, Ty<'tcx>>,
18 args: &[OpTy<'tcx>],
19 dest: &MPlaceTy<'tcx>,
20 ) -> InterpResult<'tcx, EmulateItemResult> {
21 let this = self.eval_context_mut();
22 this.expect_target_feature_for_intrinsic(link_name, "sse")?;
23 // Prefix should have already been checked.
24 let unprefixed_name = link_name.as_str().strip_prefix("llvm.x86.sse.").unwrap();
25 // All these intrinsics operate on 128-bit (f32x4) SIMD vectors unless stated otherwise.
26 // Many intrinsic names are sufixed with "ps" (packed single) or "ss" (scalar single),
27 // where single means single precision floating point (f32). "ps" means thet the operation
28 // is performed on each element of the vector, while "ss" means that the operation is
29 // performed only on the first element, copying the remaining elements from the input
30 // vector (for binary operations, from the left-hand side).
31 match unprefixed_name {
32 // Used to implement _mm_{min,max}_ss functions.
33 // Performs the operations on the first component of `left` and
34 // `right` and copies the remaining components from `left`.
35 "min.ss" | "max.ss" => {
36 let [left, right] = this.check_shim(abi, Conv::C, link_name, args)?;
37
38 let which = match unprefixed_name {
39 "min.ss" => FloatBinOp::Min,
40 "max.ss" => FloatBinOp::Max,
41 _ => unreachable!(),
42 };
43
44 bin_op_simd_float_first::<Single>(this, which, left, right, dest)?;
45 }
46 // Used to implement _mm_min_ps and _mm_max_ps functions.
47 // Note that the semantics are a bit different from Rust simd_min
48 // and simd_max intrinsics regarding handling of NaN and -0.0: Rust
49 // matches the IEEE min/max operations, while x86 has different
50 // semantics.
51 "min.ps" | "max.ps" => {
52 let [left, right] = this.check_shim(abi, Conv::C, link_name, args)?;
53
54 let which = match unprefixed_name {
55 "min.ps" => FloatBinOp::Min,
56 "max.ps" => FloatBinOp::Max,
57 _ => unreachable!(),
58 };
59
60 bin_op_simd_float_all::<Single>(this, which, left, right, dest)?;
61 }
62 // Used to implement _mm_{rcp,rsqrt}_ss functions.
63 // Performs the operations on the first component of `op` and
64 // copies the remaining components from `op`.
65 "rcp.ss" | "rsqrt.ss" => {
66 let [op] = this.check_shim(abi, Conv::C, link_name, args)?;
67
68 let which = match unprefixed_name {
69 "rcp.ss" => FloatUnaryOp::Rcp,
70 "rsqrt.ss" => FloatUnaryOp::Rsqrt,
71 _ => unreachable!(),
72 };
73
74 unary_op_ss(this, which, op, dest)?;
75 }
76 // Used to implement _mm_{sqrt,rcp,rsqrt}_ps functions.
77 // Performs the operations on all components of `op`.
78 "rcp.ps" | "rsqrt.ps" => {
79 let [op] = this.check_shim(abi, Conv::C, link_name, args)?;
80
81 let which = match unprefixed_name {
82 "rcp.ps" => FloatUnaryOp::Rcp,
83 "rsqrt.ps" => FloatUnaryOp::Rsqrt,
84 _ => unreachable!(),
85 };
86
87 unary_op_ps(this, which, op, dest)?;
88 }
89 // Used to implement the _mm_cmp*_ss functions.
90 // Performs a comparison operation on the first component of `left`
91 // and `right`, returning 0 if false or `u32::MAX` if true. The remaining
92 // components are copied from `left`.
93 // _mm_cmp_ss is actually an AVX function where the operation is specified
94 // by a const parameter.
95 // _mm_cmp{eq,lt,le,gt,ge,neq,nlt,nle,ngt,nge,ord,unord}_ss are SSE functions
96 // with hard-coded operations.
97 "cmp.ss" => {
98 let [left, right, imm] = this.check_shim(abi, Conv::C, link_name, args)?;
99
100 let which =
101 FloatBinOp::cmp_from_imm(this, this.read_scalar(imm)?.to_i8()?, link_name)?;
102
103 bin_op_simd_float_first::<Single>(this, which, left, right, dest)?;
104 }
105 // Used to implement the _mm_cmp*_ps functions.
106 // Performs a comparison operation on each component of `left`
107 // and `right`. For each component, returns 0 if false or u32::MAX
108 // if true.
109 // _mm_cmp_ps is actually an AVX function where the operation is specified
110 // by a const parameter.
111 // _mm_cmp{eq,lt,le,gt,ge,neq,nlt,nle,ngt,nge,ord,unord}_ps are SSE functions
112 // with hard-coded operations.
113 "cmp.ps" => {
114 let [left, right, imm] = this.check_shim(abi, Conv::C, link_name, args)?;
115
116 let which =
117 FloatBinOp::cmp_from_imm(this, this.read_scalar(imm)?.to_i8()?, link_name)?;
118
119 bin_op_simd_float_all::<Single>(this, which, left, right, dest)?;
120 }
121 // Used to implement _mm_{,u}comi{eq,lt,le,gt,ge,neq}_ss functions.
122 // Compares the first component of `left` and `right` and returns
123 // a scalar value (0 or 1).
124 "comieq.ss" | "comilt.ss" | "comile.ss" | "comigt.ss" | "comige.ss" | "comineq.ss"
125 | "ucomieq.ss" | "ucomilt.ss" | "ucomile.ss" | "ucomigt.ss" | "ucomige.ss"
126 | "ucomineq.ss" => {
127 let [left, right] = this.check_shim(abi, Conv::C, link_name, args)?;
128
129 let (left, left_len) = this.project_to_simd(left)?;
130 let (right, right_len) = this.project_to_simd(right)?;
131
132 assert_eq!(left_len, right_len);
133
134 let left = this.read_scalar(&this.project_index(&left, 0)?)?.to_f32()?;
135 let right = this.read_scalar(&this.project_index(&right, 0)?)?.to_f32()?;
136 // The difference between the com* and ucom* variants is signaling
137 // of exceptions when either argument is a quiet NaN. We do not
138 // support accessing the SSE status register from miri (or from Rust,
139 // for that matter), so we treat both variants equally.
140 let res = match unprefixed_name {
141 "comieq.ss" | "ucomieq.ss" => left == right,
142 "comilt.ss" | "ucomilt.ss" => left < right,
143 "comile.ss" | "ucomile.ss" => left <= right,
144 "comigt.ss" | "ucomigt.ss" => left > right,
145 "comige.ss" | "ucomige.ss" => left >= right,
146 "comineq.ss" | "ucomineq.ss" => left != right,
147 _ => unreachable!(),
148 };
149 this.write_scalar(Scalar::from_i32(i32::from(res)), dest)?;
150 }
151 // Use to implement the _mm_cvtss_si32, _mm_cvttss_si32,
152 // _mm_cvtss_si64 and _mm_cvttss_si64 functions.
153 // Converts the first component of `op` from f32 to i32/i64.
154 "cvtss2si" | "cvttss2si" | "cvtss2si64" | "cvttss2si64" => {
155 let [op] = this.check_shim(abi, Conv::C, link_name, args)?;
156 let (op, _) = this.project_to_simd(op)?;
157
158 let op = this.read_immediate(&this.project_index(&op, 0)?)?;
159
160 let rnd = match unprefixed_name {
161 // "current SSE rounding mode", assume nearest
162 // https://www.felixcloutier.com/x86/cvtss2si
163 "cvtss2si" | "cvtss2si64" => rustc_apfloat::Round::NearestTiesToEven,
164 // always truncate
165 // https://www.felixcloutier.com/x86/cvttss2si
166 "cvttss2si" | "cvttss2si64" => rustc_apfloat::Round::TowardZero,
167 _ => unreachable!(),
168 };
169
170 let res = this.float_to_int_checked(&op, dest.layout, rnd)?.unwrap_or_else(|| {
171 // Fallback to minimum according to SSE semantics.
172 ImmTy::from_int(dest.layout.size.signed_int_min(), dest.layout)
173 });
174
175 this.write_immediate(*res, dest)?;
176 }
177 // Used to implement the _mm_cvtsi32_ss and _mm_cvtsi64_ss functions.
178 // Converts `right` from i32/i64 to f32. Returns a SIMD vector with
179 // the result in the first component and the remaining components
180 // are copied from `left`.
181 // https://www.felixcloutier.com/x86/cvtsi2ss
182 "cvtsi2ss" | "cvtsi642ss" => {
183 let [left, right] = this.check_shim(abi, Conv::C, link_name, args)?;
184
185 let (left, left_len) = this.project_to_simd(left)?;
186 let (dest, dest_len) = this.project_to_simd(dest)?;
187
188 assert_eq!(dest_len, left_len);
189
190 let right = this.read_immediate(right)?;
191 let dest0 = this.project_index(&dest, 0)?;
192 let res0 = this.int_to_int_or_float(&right, dest0.layout)?;
193 this.write_immediate(*res0, &dest0)?;
194
195 for i in 1..dest_len {
196 this.copy_op(&this.project_index(&left, i)?, &this.project_index(&dest, i)?)?;
197 }
198 }
199 _ => return interp_ok(EmulateItemResult::NotSupported),
200 }
201 interp_ok(EmulateItemResult::NeedsReturn)
202 }
203}