rustc_const_eval/interpret/validity.rs
1//! Check the validity invariant of a given value, and tell the user
2//! where in the value it got violated.
3//! In const context, this goes even further and tries to approximate const safety.
4//! That's useful because it means other passes (e.g. promotion) can rely on `const`s
5//! to be const-safe.
6
7use std::borrow::Cow;
8use std::fmt::Write;
9use std::hash::Hash;
10use std::num::NonZero;
11
12use either::{Left, Right};
13use hir::def::DefKind;
14use rustc_abi::{
15 BackendRepr, FieldIdx, FieldsShape, Scalar as ScalarAbi, Size, VariantIdx, Variants,
16 WrappingRange,
17};
18use rustc_ast::Mutability;
19use rustc_data_structures::fx::FxHashSet;
20use rustc_hir as hir;
21use rustc_middle::bug;
22use rustc_middle::mir::interpret::ValidationErrorKind::{self, *};
23use rustc_middle::mir::interpret::{
24 ExpectedKind, InterpErrorKind, InvalidMetaKind, Misalignment, PointerKind, Provenance,
25 UnsupportedOpInfo, ValidationErrorInfo, alloc_range, interp_ok,
26};
27use rustc_middle::ty::layout::{LayoutCx, LayoutOf, TyAndLayout};
28use rustc_middle::ty::{self, Ty};
29use rustc_span::{Symbol, sym};
30use tracing::trace;
31
32use super::machine::AllocMap;
33use super::{
34 AllocId, CheckInAllocMsg, GlobalAlloc, ImmTy, Immediate, InterpCx, InterpResult, MPlaceTy,
35 Machine, MemPlaceMeta, PlaceTy, Pointer, Projectable, Scalar, ValueVisitor, err_ub,
36 format_interp_error,
37};
38
39// for the validation errors
40#[rustfmt::skip]
41use super::InterpErrorKind::UndefinedBehavior as Ub;
42use super::InterpErrorKind::Unsupported as Unsup;
43use super::UndefinedBehaviorInfo::*;
44use super::UnsupportedOpInfo::*;
45
46macro_rules! err_validation_failure {
47 ($where:expr, $kind: expr) => {{
48 let where_ = &$where;
49 let path = if !where_.is_empty() {
50 let mut path = String::new();
51 write_path(&mut path, where_);
52 Some(path)
53 } else {
54 None
55 };
56
57 err_ub!(ValidationError(ValidationErrorInfo { path, kind: $kind }))
58 }};
59}
60
61macro_rules! throw_validation_failure {
62 ($where:expr, $kind: expr) => {
63 do yeet err_validation_failure!($where, $kind)
64 };
65}
66
67/// If $e throws an error matching the pattern, throw a validation failure.
68/// Other errors are passed back to the caller, unchanged -- and if they reach the root of
69/// the visitor, we make sure only validation errors and `InvalidProgram` errors are left.
70/// This lets you use the patterns as a kind of validation list, asserting which errors
71/// can possibly happen:
72///
73/// ```ignore(illustrative)
74/// let v = try_validation!(some_fn(), some_path, {
75/// Foo | Bar | Baz => { "some failure" },
76/// });
77/// ```
78///
79/// The patterns must be of type `UndefinedBehaviorInfo`.
80/// An additional expected parameter can also be added to the failure message:
81///
82/// ```ignore(illustrative)
83/// let v = try_validation!(some_fn(), some_path, {
84/// Foo | Bar | Baz => { "some failure" } expected { "something that wasn't a failure" },
85/// });
86/// ```
87///
88/// An additional nicety is that both parameters actually take format args, so you can just write
89/// the format string in directly:
90///
91/// ```ignore(illustrative)
92/// let v = try_validation!(some_fn(), some_path, {
93/// Foo | Bar | Baz => { "{:?}", some_failure } expected { "{}", expected_value },
94/// });
95/// ```
96///
97macro_rules! try_validation {
98 ($e:expr, $where:expr,
99 $( $( $p:pat_param )|+ => $kind: expr ),+ $(,)?
100 ) => {{
101 $e.map_err_kind(|e| {
102 // We catch the error and turn it into a validation failure. We are okay with
103 // allocation here as this can only slow down builds that fail anyway.
104 match e {
105 $(
106 $($p)|+ => {
107 err_validation_failure!(
108 $where,
109 $kind
110 )
111 }
112 ),+,
113 e => e,
114 }
115 })?
116 }};
117}
118
119/// We want to show a nice path to the invalid field for diagnostics,
120/// but avoid string operations in the happy case where no error happens.
121/// So we track a `Vec<PathElem>` where `PathElem` contains all the data we
122/// need to later print something for the user.
123#[derive(Copy, Clone, Debug)]
124pub enum PathElem {
125 Field(Symbol),
126 Variant(Symbol),
127 CoroutineState(VariantIdx),
128 CapturedVar(Symbol),
129 ArrayElem(usize),
130 TupleElem(usize),
131 Deref,
132 EnumTag,
133 CoroutineTag,
134 DynDowncast,
135 Vtable,
136}
137
138/// Extra things to check for during validation of CTFE results.
139#[derive(Copy, Clone)]
140pub enum CtfeValidationMode {
141 /// Validation of a `static`
142 Static { mutbl: Mutability },
143 /// Validation of a promoted.
144 Promoted,
145 /// Validation of a `const`.
146 /// `allow_immutable_unsafe_cell` says whether we allow `UnsafeCell` in immutable memory (which is the
147 /// case for the top-level allocation of a `const`, where this is fine because the allocation will be
148 /// copied at each use site).
149 Const { allow_immutable_unsafe_cell: bool },
150}
151
152impl CtfeValidationMode {
153 fn allow_immutable_unsafe_cell(self) -> bool {
154 match self {
155 CtfeValidationMode::Static { .. } => false,
156 CtfeValidationMode::Promoted { .. } => false,
157 CtfeValidationMode::Const { allow_immutable_unsafe_cell, .. } => {
158 allow_immutable_unsafe_cell
159 }
160 }
161 }
162}
163
164/// State for tracking recursive validation of references
165pub struct RefTracking<T, PATH = ()> {
166 seen: FxHashSet<T>,
167 todo: Vec<(T, PATH)>,
168}
169
170impl<T: Clone + Eq + Hash + std::fmt::Debug, PATH: Default> RefTracking<T, PATH> {
171 pub fn empty() -> Self {
172 RefTracking { seen: FxHashSet::default(), todo: vec![] }
173 }
174 pub fn new(val: T) -> Self {
175 let mut ref_tracking_for_consts =
176 RefTracking { seen: FxHashSet::default(), todo: vec![(val.clone(), PATH::default())] };
177 ref_tracking_for_consts.seen.insert(val);
178 ref_tracking_for_consts
179 }
180 pub fn next(&mut self) -> Option<(T, PATH)> {
181 self.todo.pop()
182 }
183
184 fn track(&mut self, val: T, path: impl FnOnce() -> PATH) {
185 if self.seen.insert(val.clone()) {
186 trace!("Recursing below ptr {:#?}", val);
187 let path = path();
188 // Remember to come back to this later.
189 self.todo.push((val, path));
190 }
191 }
192}
193
194// FIXME make this translatable as well?
195/// Format a path
196fn write_path(out: &mut String, path: &[PathElem]) {
197 use self::PathElem::*;
198
199 for elem in path.iter() {
200 match elem {
201 Field(name) => write!(out, ".{name}"),
202 EnumTag => write!(out, ".<enum-tag>"),
203 Variant(name) => write!(out, ".<enum-variant({name})>"),
204 CoroutineTag => write!(out, ".<coroutine-tag>"),
205 CoroutineState(idx) => write!(out, ".<coroutine-state({})>", idx.index()),
206 CapturedVar(name) => write!(out, ".<captured-var({name})>"),
207 TupleElem(idx) => write!(out, ".{idx}"),
208 ArrayElem(idx) => write!(out, "[{idx}]"),
209 // `.<deref>` does not match Rust syntax, but it is more readable for long paths -- and
210 // some of the other items here also are not Rust syntax. Actually we can't
211 // even use the usual syntax because we are just showing the projections,
212 // not the root.
213 Deref => write!(out, ".<deref>"),
214 DynDowncast => write!(out, ".<dyn-downcast>"),
215 Vtable => write!(out, ".<vtable>"),
216 }
217 .unwrap()
218 }
219}
220
221/// Represents a set of `Size` values as a sorted list of ranges.
222// These are (offset, length) pairs, and they are sorted and mutually disjoint,
223// and never adjacent (i.e. there's always a gap between two of them).
224#[derive(Debug, Clone)]
225pub struct RangeSet(Vec<(Size, Size)>);
226
227impl RangeSet {
228 fn add_range(&mut self, offset: Size, size: Size) {
229 if size.bytes() == 0 {
230 // No need to track empty ranges.
231 return;
232 }
233 let v = &mut self.0;
234 // We scan for a partition point where the left partition is all the elements that end
235 // strictly before we start. Those are elements that are too "low" to merge with us.
236 let idx =
237 v.partition_point(|&(other_offset, other_size)| other_offset + other_size < offset);
238 // Now we want to either merge with the first element of the second partition, or insert ourselves before that.
239 if let Some(&(other_offset, other_size)) = v.get(idx)
240 && offset + size >= other_offset
241 {
242 // Their end is >= our start (otherwise it would not be in the 2nd partition) and
243 // our end is >= their start. This means we can merge the ranges.
244 let new_start = other_offset.min(offset);
245 let mut new_end = (other_offset + other_size).max(offset + size);
246 // We grew to the right, so merge with overlapping/adjacent elements.
247 // (We also may have grown to the left, but that can never make us adjacent with
248 // anything there since we selected the first such candidate via `partition_point`.)
249 let mut scan_right = 1;
250 while let Some(&(next_offset, next_size)) = v.get(idx + scan_right)
251 && new_end >= next_offset
252 {
253 // Increase our size to absorb the next element.
254 new_end = new_end.max(next_offset + next_size);
255 // Look at the next element.
256 scan_right += 1;
257 }
258 // Update the element we grew.
259 v[idx] = (new_start, new_end - new_start);
260 // Remove the elements we absorbed (if any).
261 if scan_right > 1 {
262 drop(v.drain((idx + 1)..(idx + scan_right)));
263 }
264 } else {
265 // Insert new element.
266 v.insert(idx, (offset, size));
267 }
268 }
269}
270
271struct ValidityVisitor<'rt, 'tcx, M: Machine<'tcx>> {
272 /// The `path` may be pushed to, but the part that is present when a function
273 /// starts must not be changed! `visit_fields` and `visit_array` rely on
274 /// this stack discipline.
275 path: Vec<PathElem>,
276 ref_tracking: Option<&'rt mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
277 /// `None` indicates this is not validating for CTFE (but for runtime).
278 ctfe_mode: Option<CtfeValidationMode>,
279 ecx: &'rt mut InterpCx<'tcx, M>,
280 /// Whether provenance should be reset outside of pointers (emulating the effect of a typed
281 /// copy).
282 reset_provenance_and_padding: bool,
283 /// This tracks which byte ranges in this value contain data; the remaining bytes are padding.
284 /// The ideal representation here would be pointer-length pairs, but to keep things more compact
285 /// we only store a (range) set of offsets -- the base pointer is the same throughout the entire
286 /// visit, after all.
287 /// If this is `Some`, then `reset_provenance_and_padding` must be true (but not vice versa:
288 /// we might not track data vs padding bytes if the operand isn't stored in memory anyway).
289 data_bytes: Option<RangeSet>,
290}
291
292impl<'rt, 'tcx, M: Machine<'tcx>> ValidityVisitor<'rt, 'tcx, M> {
293 fn aggregate_field_path_elem(&mut self, layout: TyAndLayout<'tcx>, field: usize) -> PathElem {
294 // First, check if we are projecting to a variant.
295 match layout.variants {
296 Variants::Multiple { tag_field, .. } => {
297 if tag_field == field {
298 return match layout.ty.kind() {
299 ty::Adt(def, ..) if def.is_enum() => PathElem::EnumTag,
300 ty::Coroutine(..) => PathElem::CoroutineTag,
301 _ => bug!("non-variant type {:?}", layout.ty),
302 };
303 }
304 }
305 Variants::Single { .. } | Variants::Empty => {}
306 }
307
308 // Now we know we are projecting to a field, so figure out which one.
309 match layout.ty.kind() {
310 // coroutines, closures, and coroutine-closures all have upvars that may be named.
311 ty::Closure(def_id, _) | ty::Coroutine(def_id, _) | ty::CoroutineClosure(def_id, _) => {
312 let mut name = None;
313 // FIXME this should be more descriptive i.e. CapturePlace instead of CapturedVar
314 // https://github.com/rust-lang/project-rfc-2229/issues/46
315 if let Some(local_def_id) = def_id.as_local() {
316 let captures = self.ecx.tcx.closure_captures(local_def_id);
317 if let Some(captured_place) = captures.get(field) {
318 // Sometimes the index is beyond the number of upvars (seen
319 // for a coroutine).
320 let var_hir_id = captured_place.get_root_variable();
321 let node = self.ecx.tcx.hir_node(var_hir_id);
322 if let hir::Node::Pat(pat) = node {
323 if let hir::PatKind::Binding(_, _, ident, _) = pat.kind {
324 name = Some(ident.name);
325 }
326 }
327 }
328 }
329
330 PathElem::CapturedVar(name.unwrap_or_else(|| {
331 // Fall back to showing the field index.
332 sym::integer(field)
333 }))
334 }
335
336 // tuples
337 ty::Tuple(_) => PathElem::TupleElem(field),
338
339 // enums
340 ty::Adt(def, ..) if def.is_enum() => {
341 // we might be projecting *to* a variant, or to a field *in* a variant.
342 match layout.variants {
343 Variants::Single { index } => {
344 // Inside a variant
345 PathElem::Field(def.variant(index).fields[FieldIdx::from_usize(field)].name)
346 }
347 Variants::Empty => panic!("there is no field in Variants::Empty types"),
348 Variants::Multiple { .. } => bug!("we handled variants above"),
349 }
350 }
351
352 // other ADTs
353 ty::Adt(def, _) => {
354 PathElem::Field(def.non_enum_variant().fields[FieldIdx::from_usize(field)].name)
355 }
356
357 // arrays/slices
358 ty::Array(..) | ty::Slice(..) => PathElem::ArrayElem(field),
359
360 // dyn* vtables
361 ty::Dynamic(_, _, ty::DynKind::DynStar) if field == 1 => PathElem::Vtable,
362
363 // dyn traits
364 ty::Dynamic(..) => {
365 assert_eq!(field, 0);
366 PathElem::DynDowncast
367 }
368
369 // nothing else has an aggregate layout
370 _ => bug!("aggregate_field_path_elem: got non-aggregate type {:?}", layout.ty),
371 }
372 }
373
374 fn with_elem<R>(
375 &mut self,
376 elem: PathElem,
377 f: impl FnOnce(&mut Self) -> InterpResult<'tcx, R>,
378 ) -> InterpResult<'tcx, R> {
379 // Remember the old state
380 let path_len = self.path.len();
381 // Record new element
382 self.path.push(elem);
383 // Perform operation
384 let r = f(self)?;
385 // Undo changes
386 self.path.truncate(path_len);
387 // Done
388 interp_ok(r)
389 }
390
391 fn read_immediate(
392 &self,
393 val: &PlaceTy<'tcx, M::Provenance>,
394 expected: ExpectedKind,
395 ) -> InterpResult<'tcx, ImmTy<'tcx, M::Provenance>> {
396 interp_ok(try_validation!(
397 self.ecx.read_immediate(val),
398 self.path,
399 Ub(InvalidUninitBytes(None)) =>
400 Uninit { expected },
401 // The `Unsup` cases can only occur during CTFE
402 Unsup(ReadPointerAsInt(_)) =>
403 PointerAsInt { expected },
404 Unsup(ReadPartialPointer(_)) =>
405 PartialPointer,
406 ))
407 }
408
409 fn read_scalar(
410 &self,
411 val: &PlaceTy<'tcx, M::Provenance>,
412 expected: ExpectedKind,
413 ) -> InterpResult<'tcx, Scalar<M::Provenance>> {
414 interp_ok(self.read_immediate(val, expected)?.to_scalar())
415 }
416
417 fn deref_pointer(
418 &mut self,
419 val: &PlaceTy<'tcx, M::Provenance>,
420 expected: ExpectedKind,
421 ) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
422 // Not using `ecx.deref_pointer` since we want to use our `read_immediate` wrapper.
423 let imm = self.read_immediate(val, expected)?;
424 // Reset provenance: ensure slice tail metadata does not preserve provenance,
425 // and ensure all pointers do not preserve partial provenance.
426 if self.reset_provenance_and_padding {
427 if matches!(imm.layout.backend_repr, BackendRepr::Scalar(..)) {
428 // A thin pointer. If it has provenance, we don't have to do anything.
429 // If it does not, ensure we clear the provenance in memory.
430 if matches!(imm.to_scalar(), Scalar::Int(..)) {
431 self.ecx.clear_provenance(val)?;
432 }
433 } else {
434 // A wide pointer. This means we have to worry both about the pointer itself and the
435 // metadata. We do the lazy thing and just write back the value we got. Just
436 // clearing provenance in a targeted manner would be more efficient, but unless this
437 // is a perf hotspot it's just not worth the effort.
438 self.ecx.write_immediate_no_validate(*imm, val)?;
439 }
440 // The entire thing is data, not padding.
441 self.add_data_range_place(val);
442 }
443 // Now turn it into a place.
444 self.ecx.ref_to_mplace(&imm)
445 }
446
447 fn check_wide_ptr_meta(
448 &mut self,
449 meta: MemPlaceMeta<M::Provenance>,
450 pointee: TyAndLayout<'tcx>,
451 ) -> InterpResult<'tcx> {
452 let tail = self.ecx.tcx.struct_tail_for_codegen(pointee.ty, self.ecx.typing_env);
453 match tail.kind() {
454 ty::Dynamic(data, _, ty::Dyn) => {
455 let vtable = meta.unwrap_meta().to_pointer(self.ecx)?;
456 // Make sure it is a genuine vtable pointer for the right trait.
457 try_validation!(
458 self.ecx.get_ptr_vtable_ty(vtable, Some(data)),
459 self.path,
460 Ub(DanglingIntPointer{ .. } | InvalidVTablePointer(..)) =>
461 InvalidVTablePtr { value: format!("{vtable}") },
462 Ub(InvalidVTableTrait { vtable_dyn_type, expected_dyn_type }) => {
463 InvalidMetaWrongTrait { vtable_dyn_type, expected_dyn_type }
464 },
465 );
466 }
467 ty::Slice(..) | ty::Str => {
468 let _len = meta.unwrap_meta().to_target_usize(self.ecx)?;
469 // We do not check that `len * elem_size <= isize::MAX`:
470 // that is only required for references, and there it falls out of the
471 // "dereferenceable" check performed by Stacked Borrows.
472 }
473 ty::Foreign(..) => {
474 // Unsized, but not wide.
475 }
476 _ => bug!("Unexpected unsized type tail: {:?}", tail),
477 }
478
479 interp_ok(())
480 }
481
482 /// Check a reference or `Box`.
483 fn check_safe_pointer(
484 &mut self,
485 value: &PlaceTy<'tcx, M::Provenance>,
486 ptr_kind: PointerKind,
487 ) -> InterpResult<'tcx> {
488 let place = self.deref_pointer(value, ptr_kind.into())?;
489 // Handle wide pointers.
490 // Check metadata early, for better diagnostics
491 if place.layout.is_unsized() {
492 self.check_wide_ptr_meta(place.meta(), place.layout)?;
493 }
494 // Make sure this is dereferenceable and all.
495 let size_and_align = try_validation!(
496 self.ecx.size_and_align_of_mplace(&place),
497 self.path,
498 Ub(InvalidMeta(msg)) => match msg {
499 InvalidMetaKind::SliceTooBig => InvalidMetaSliceTooLarge { ptr_kind },
500 InvalidMetaKind::TooBig => InvalidMetaTooLarge { ptr_kind },
501 }
502 );
503 let (size, align) = size_and_align
504 // for the purpose of validity, consider foreign types to have
505 // alignment and size determined by the layout (size will be 0,
506 // alignment should take attributes into account).
507 .unwrap_or_else(|| (place.layout.size, place.layout.align.abi));
508 // Direct call to `check_ptr_access_align` checks alignment even on CTFE machines.
509 try_validation!(
510 self.ecx.check_ptr_access(
511 place.ptr(),
512 size,
513 CheckInAllocMsg::InboundsTest, // will anyway be replaced by validity message
514 ),
515 self.path,
516 Ub(DanglingIntPointer { addr: 0, .. }) => NullPtr { ptr_kind },
517 Ub(DanglingIntPointer { addr: i, .. }) => DanglingPtrNoProvenance {
518 ptr_kind,
519 // FIXME this says "null pointer" when null but we need translate
520 pointer: format!("{}", Pointer::<Option<AllocId>>::from_addr_invalid(i))
521 },
522 Ub(PointerOutOfBounds { .. }) => DanglingPtrOutOfBounds {
523 ptr_kind
524 },
525 Ub(PointerUseAfterFree(..)) => DanglingPtrUseAfterFree {
526 ptr_kind,
527 },
528 );
529 try_validation!(
530 self.ecx.check_ptr_align(
531 place.ptr(),
532 align,
533 ),
534 self.path,
535 Ub(AlignmentCheckFailed(Misalignment { required, has }, _msg)) => UnalignedPtr {
536 ptr_kind,
537 required_bytes: required.bytes(),
538 found_bytes: has.bytes()
539 },
540 );
541 // Make sure this is non-null. We checked dereferenceability above, but if `size` is zero
542 // that does not imply non-null.
543 if self.ecx.scalar_may_be_null(Scalar::from_maybe_pointer(place.ptr(), self.ecx))? {
544 throw_validation_failure!(self.path, NullPtr { ptr_kind })
545 }
546 // Do not allow references to uninhabited types.
547 if place.layout.is_uninhabited() {
548 let ty = place.layout.ty;
549 throw_validation_failure!(self.path, PtrToUninhabited { ptr_kind, ty })
550 }
551 // Recursive checking
552 if let Some(ref_tracking) = self.ref_tracking.as_deref_mut() {
553 // Proceed recursively even for ZST, no reason to skip them!
554 // `!` is a ZST and we want to validate it.
555 if let Some(ctfe_mode) = self.ctfe_mode {
556 let mut skip_recursive_check = false;
557 // CTFE imposes restrictions on what references can point to.
558 if let Ok((alloc_id, _offset, _prov)) =
559 self.ecx.ptr_try_get_alloc_id(place.ptr(), 0)
560 {
561 // Everything should be already interned.
562 let Some(global_alloc) = self.ecx.tcx.try_get_global_alloc(alloc_id) else {
563 assert!(self.ecx.memory.alloc_map.get(alloc_id).is_none());
564 // We can't have *any* references to non-existing allocations in const-eval
565 // as the rest of rustc isn't happy with them... so we throw an error, even
566 // though for zero-sized references this isn't really UB.
567 // A potential future alternative would be to resurrect this as a zero-sized allocation
568 // (which codegen will then compile to an aligned dummy pointer anyway).
569 throw_validation_failure!(self.path, DanglingPtrUseAfterFree { ptr_kind });
570 };
571 let (size, _align) =
572 global_alloc.size_and_align(*self.ecx.tcx, self.ecx.typing_env);
573
574 if let GlobalAlloc::Static(did) = global_alloc {
575 let DefKind::Static { nested, .. } = self.ecx.tcx.def_kind(did) else {
576 bug!()
577 };
578 // Special handling for pointers to statics (irrespective of their type).
579 assert!(!self.ecx.tcx.is_thread_local_static(did));
580 assert!(self.ecx.tcx.is_static(did));
581 // Mode-specific checks
582 match ctfe_mode {
583 CtfeValidationMode::Static { .. }
584 | CtfeValidationMode::Promoted { .. } => {
585 // We skip recursively checking other statics. These statics must be sound by
586 // themselves, and the only way to get broken statics here is by using
587 // unsafe code.
588 // The reasons we don't check other statics is twofold. For one, in all
589 // sound cases, the static was already validated on its own, and second, we
590 // trigger cycle errors if we try to compute the value of the other static
591 // and that static refers back to us (potentially through a promoted).
592 // This could miss some UB, but that's fine.
593 // We still walk nested allocations, as they are fundamentally part of this validation run.
594 // This means we will also recurse into nested statics of *other*
595 // statics, even though we do not recurse into other statics directly.
596 // That's somewhat inconsistent but harmless.
597 skip_recursive_check = !nested;
598 }
599 CtfeValidationMode::Const { .. } => {
600 // We can't recursively validate `extern static`, so we better reject them.
601 if self.ecx.tcx.is_foreign_item(did) {
602 throw_validation_failure!(self.path, ConstRefToExtern);
603 }
604 }
605 }
606 }
607
608 // If this allocation has size zero, there is no actual mutability here.
609 if size != Size::ZERO {
610 // Determine whether this pointer expects to be pointing to something mutable.
611 let ptr_expected_mutbl = match ptr_kind {
612 PointerKind::Box => Mutability::Mut,
613 PointerKind::Ref(mutbl) => {
614 // We do not take into account interior mutability here since we cannot know if
615 // there really is an `UnsafeCell` inside `Option<UnsafeCell>` -- so we check
616 // that in the recursive descent behind this reference (controlled by
617 // `allow_immutable_unsafe_cell`).
618 mutbl
619 }
620 };
621 // Determine what it actually points to.
622 let alloc_actual_mutbl =
623 global_alloc.mutability(*self.ecx.tcx, self.ecx.typing_env);
624 // Mutable pointer to immutable memory is no good.
625 if ptr_expected_mutbl == Mutability::Mut
626 && alloc_actual_mutbl == Mutability::Not
627 {
628 // This can actually occur with transmutes.
629 throw_validation_failure!(self.path, MutableRefToImmutable);
630 }
631 // In a const, everything must be completely immutable.
632 if matches!(self.ctfe_mode, Some(CtfeValidationMode::Const { .. })) {
633 if ptr_expected_mutbl == Mutability::Mut
634 || alloc_actual_mutbl == Mutability::Mut
635 {
636 throw_validation_failure!(self.path, ConstRefToMutable);
637 }
638 }
639 }
640 }
641 // Potentially skip recursive check.
642 if skip_recursive_check {
643 return interp_ok(());
644 }
645 } else {
646 // This is not CTFE, so it's Miri with recursive checking.
647 // FIXME: we do *not* check behind boxes, since creating a new box first creates it uninitialized
648 // and then puts the value in there, so briefly we have a box with uninit contents.
649 // FIXME: should we also skip `UnsafeCell` behind shared references? Currently that is not
650 // needed since validation reads bypass Stacked Borrows and data race checks.
651 if matches!(ptr_kind, PointerKind::Box) {
652 return interp_ok(());
653 }
654 }
655 let path = &self.path;
656 ref_tracking.track(place, || {
657 // We need to clone the path anyway, make sure it gets created
658 // with enough space for the additional `Deref`.
659 let mut new_path = Vec::with_capacity(path.len() + 1);
660 new_path.extend(path);
661 new_path.push(PathElem::Deref);
662 new_path
663 });
664 }
665 interp_ok(())
666 }
667
668 /// Check if this is a value of primitive type, and if yes check the validity of the value
669 /// at that type. Return `true` if the type is indeed primitive.
670 ///
671 /// Note that not all of these have `FieldsShape::Primitive`, e.g. wide references.
672 fn try_visit_primitive(
673 &mut self,
674 value: &PlaceTy<'tcx, M::Provenance>,
675 ) -> InterpResult<'tcx, bool> {
676 // Go over all the primitive types
677 let ty = value.layout.ty;
678 match ty.kind() {
679 ty::Bool => {
680 let scalar = self.read_scalar(value, ExpectedKind::Bool)?;
681 try_validation!(
682 scalar.to_bool(),
683 self.path,
684 Ub(InvalidBool(..)) => ValidationErrorKind::InvalidBool {
685 value: format!("{scalar:x}"),
686 }
687 );
688 if self.reset_provenance_and_padding {
689 self.ecx.clear_provenance(value)?;
690 self.add_data_range_place(value);
691 }
692 interp_ok(true)
693 }
694 ty::Char => {
695 let scalar = self.read_scalar(value, ExpectedKind::Char)?;
696 try_validation!(
697 scalar.to_char(),
698 self.path,
699 Ub(InvalidChar(..)) => ValidationErrorKind::InvalidChar {
700 value: format!("{scalar:x}"),
701 }
702 );
703 if self.reset_provenance_and_padding {
704 self.ecx.clear_provenance(value)?;
705 self.add_data_range_place(value);
706 }
707 interp_ok(true)
708 }
709 ty::Float(_) | ty::Int(_) | ty::Uint(_) => {
710 // NOTE: Keep this in sync with the array optimization for int/float
711 // types below!
712 self.read_scalar(
713 value,
714 if matches!(ty.kind(), ty::Float(..)) {
715 ExpectedKind::Float
716 } else {
717 ExpectedKind::Int
718 },
719 )?;
720 if self.reset_provenance_and_padding {
721 self.ecx.clear_provenance(value)?;
722 self.add_data_range_place(value);
723 }
724 interp_ok(true)
725 }
726 ty::RawPtr(..) => {
727 let place = self.deref_pointer(value, ExpectedKind::RawPtr)?;
728 if place.layout.is_unsized() {
729 self.check_wide_ptr_meta(place.meta(), place.layout)?;
730 }
731 interp_ok(true)
732 }
733 ty::Ref(_, _ty, mutbl) => {
734 self.check_safe_pointer(value, PointerKind::Ref(*mutbl))?;
735 interp_ok(true)
736 }
737 ty::FnPtr(..) => {
738 let scalar = self.read_scalar(value, ExpectedKind::FnPtr)?;
739
740 // If we check references recursively, also check that this points to a function.
741 if let Some(_) = self.ref_tracking {
742 let ptr = scalar.to_pointer(self.ecx)?;
743 let _fn = try_validation!(
744 self.ecx.get_ptr_fn(ptr),
745 self.path,
746 Ub(DanglingIntPointer{ .. } | InvalidFunctionPointer(..)) =>
747 InvalidFnPtr { value: format!("{ptr}") },
748 );
749 // FIXME: Check if the signature matches
750 } else {
751 // Otherwise (for standalone Miri), we have to still check it to be non-null.
752 if self.ecx.scalar_may_be_null(scalar)? {
753 throw_validation_failure!(self.path, NullFnPtr);
754 }
755 }
756 if self.reset_provenance_and_padding {
757 // Make sure we do not preserve partial provenance. This matches the thin
758 // pointer handling in `deref_pointer`.
759 if matches!(scalar, Scalar::Int(..)) {
760 self.ecx.clear_provenance(value)?;
761 }
762 self.add_data_range_place(value);
763 }
764 interp_ok(true)
765 }
766 ty::Never => throw_validation_failure!(self.path, NeverVal),
767 ty::Foreign(..) | ty::FnDef(..) => {
768 // Nothing to check.
769 interp_ok(true)
770 }
771 ty::UnsafeBinder(_) => todo!("FIXME(unsafe_binder)"),
772 // The above should be all the primitive types. The rest is compound, we
773 // check them by visiting their fields/variants.
774 ty::Adt(..)
775 | ty::Tuple(..)
776 | ty::Array(..)
777 | ty::Slice(..)
778 | ty::Str
779 | ty::Dynamic(..)
780 | ty::Closure(..)
781 | ty::Pat(..)
782 | ty::CoroutineClosure(..)
783 | ty::Coroutine(..) => interp_ok(false),
784 // Some types only occur during typechecking, they have no layout.
785 // We should not see them here and we could not check them anyway.
786 ty::Error(_)
787 | ty::Infer(..)
788 | ty::Placeholder(..)
789 | ty::Bound(..)
790 | ty::Param(..)
791 | ty::Alias(..)
792 | ty::CoroutineWitness(..) => bug!("Encountered invalid type {:?}", ty),
793 }
794 }
795
796 fn visit_scalar(
797 &mut self,
798 scalar: Scalar<M::Provenance>,
799 scalar_layout: ScalarAbi,
800 ) -> InterpResult<'tcx> {
801 let size = scalar_layout.size(self.ecx);
802 let valid_range = scalar_layout.valid_range(self.ecx);
803 let WrappingRange { start, end } = valid_range;
804 let max_value = size.unsigned_int_max();
805 assert!(end <= max_value);
806 let bits = match scalar.try_to_scalar_int() {
807 Ok(int) => int.to_bits(size),
808 Err(_) => {
809 // So this is a pointer then, and casting to an int failed.
810 // Can only happen during CTFE.
811 // We support 2 kinds of ranges here: full range, and excluding zero.
812 if start == 1 && end == max_value {
813 // Only null is the niche. So make sure the ptr is NOT null.
814 if self.ecx.scalar_may_be_null(scalar)? {
815 throw_validation_failure!(
816 self.path,
817 NullablePtrOutOfRange { range: valid_range, max_value }
818 )
819 } else {
820 return interp_ok(());
821 }
822 } else if scalar_layout.is_always_valid(self.ecx) {
823 // Easy. (This is reachable if `enforce_number_validity` is set.)
824 return interp_ok(());
825 } else {
826 // Conservatively, we reject, because the pointer *could* have a bad
827 // value.
828 throw_validation_failure!(
829 self.path,
830 PtrOutOfRange { range: valid_range, max_value }
831 )
832 }
833 }
834 };
835 // Now compare.
836 if valid_range.contains(bits) {
837 interp_ok(())
838 } else {
839 throw_validation_failure!(
840 self.path,
841 OutOfRange { value: format!("{bits}"), range: valid_range, max_value }
842 )
843 }
844 }
845
846 fn in_mutable_memory(&self, val: &PlaceTy<'tcx, M::Provenance>) -> bool {
847 debug_assert!(self.ctfe_mode.is_some());
848 if let Some(mplace) = val.as_mplace_or_local().left() {
849 if let Some(alloc_id) = mplace.ptr().provenance.and_then(|p| p.get_alloc_id()) {
850 let tcx = *self.ecx.tcx;
851 // Everything must be already interned.
852 let mutbl = tcx.global_alloc(alloc_id).mutability(tcx, self.ecx.typing_env);
853 if let Some((_, alloc)) = self.ecx.memory.alloc_map.get(alloc_id) {
854 assert_eq!(alloc.mutability, mutbl);
855 }
856 mutbl.is_mut()
857 } else {
858 // No memory at all.
859 false
860 }
861 } else {
862 // A local variable -- definitely mutable.
863 true
864 }
865 }
866
867 /// Add the given pointer-length pair to the "data" range of this visit.
868 fn add_data_range(&mut self, ptr: Pointer<Option<M::Provenance>>, size: Size) {
869 if let Some(data_bytes) = self.data_bytes.as_mut() {
870 // We only have to store the offset, the rest is the same for all pointers here.
871 let (_prov, offset) = ptr.into_parts();
872 // Add this.
873 data_bytes.add_range(offset, size);
874 };
875 }
876
877 /// Add the entire given place to the "data" range of this visit.
878 fn add_data_range_place(&mut self, place: &PlaceTy<'tcx, M::Provenance>) {
879 // Only sized places can be added this way.
880 debug_assert!(place.layout.is_sized());
881 if let Some(data_bytes) = self.data_bytes.as_mut() {
882 let offset = Self::data_range_offset(self.ecx, place);
883 data_bytes.add_range(offset, place.layout.size);
884 }
885 }
886
887 /// Convert a place into the offset it starts at, for the purpose of data_range tracking.
888 /// Must only be called if `data_bytes` is `Some(_)`.
889 fn data_range_offset(ecx: &InterpCx<'tcx, M>, place: &PlaceTy<'tcx, M::Provenance>) -> Size {
890 // The presence of `data_bytes` implies that our place is in memory.
891 let ptr = ecx
892 .place_to_op(place)
893 .expect("place must be in memory")
894 .as_mplace_or_imm()
895 .expect_left("place must be in memory")
896 .ptr();
897 let (_prov, offset) = ptr.into_parts();
898 offset
899 }
900
901 fn reset_padding(&mut self, place: &PlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
902 let Some(data_bytes) = self.data_bytes.as_mut() else { return interp_ok(()) };
903 // Our value must be in memory, otherwise we would not have set up `data_bytes`.
904 let mplace = self.ecx.force_allocation(place)?;
905 // Determine starting offset and size.
906 let (_prov, start_offset) = mplace.ptr().into_parts();
907 let (size, _align) = self
908 .ecx
909 .size_and_align_of_mplace(&mplace)?
910 .unwrap_or((mplace.layout.size, mplace.layout.align.abi));
911 // If there is no padding at all, we can skip the rest: check for
912 // a single data range covering the entire value.
913 if data_bytes.0 == &[(start_offset, size)] {
914 return interp_ok(());
915 }
916 // Get a handle for the allocation. Do this only once, to avoid looking up the same
917 // allocation over and over again. (Though to be fair, iterating the value already does
918 // exactly that.)
919 let Some(mut alloc) = self.ecx.get_ptr_alloc_mut(mplace.ptr(), size)? else {
920 // A ZST, no padding to clear.
921 return interp_ok(());
922 };
923 // Add a "finalizer" data range at the end, so that the iteration below finds all gaps
924 // between ranges.
925 data_bytes.0.push((start_offset + size, Size::ZERO));
926 // Iterate, and reset gaps.
927 let mut padding_cleared_until = start_offset;
928 for &(offset, size) in data_bytes.0.iter() {
929 assert!(
930 offset >= padding_cleared_until,
931 "reset_padding on {}: previous field ended at offset {}, next field starts at {} (and has a size of {} bytes)",
932 mplace.layout.ty,
933 (padding_cleared_until - start_offset).bytes(),
934 (offset - start_offset).bytes(),
935 size.bytes(),
936 );
937 if offset > padding_cleared_until {
938 // We found padding. Adjust the range to be relative to `alloc`, and make it uninit.
939 let padding_start = padding_cleared_until - start_offset;
940 let padding_size = offset - padding_cleared_until;
941 let range = alloc_range(padding_start, padding_size);
942 trace!("reset_padding on {}: resetting padding range {range:?}", mplace.layout.ty);
943 alloc.write_uninit(range)?;
944 }
945 padding_cleared_until = offset + size;
946 }
947 assert!(padding_cleared_until == start_offset + size);
948 interp_ok(())
949 }
950
951 /// Computes the data range of this union type:
952 /// which bytes are inside a field (i.e., not padding.)
953 fn union_data_range<'e>(
954 ecx: &'e mut InterpCx<'tcx, M>,
955 layout: TyAndLayout<'tcx>,
956 ) -> Cow<'e, RangeSet> {
957 assert!(layout.ty.is_union());
958 assert!(layout.is_sized(), "there are no unsized unions");
959 let layout_cx = LayoutCx::new(*ecx.tcx, ecx.typing_env);
960 return M::cached_union_data_range(ecx, layout.ty, || {
961 let mut out = RangeSet(Vec::new());
962 union_data_range_uncached(&layout_cx, layout, Size::ZERO, &mut out);
963 out
964 });
965
966 /// Helper for recursive traversal: add data ranges of the given type to `out`.
967 fn union_data_range_uncached<'tcx>(
968 cx: &LayoutCx<'tcx>,
969 layout: TyAndLayout<'tcx>,
970 base_offset: Size,
971 out: &mut RangeSet,
972 ) {
973 // If this is a ZST, we don't contain any data. In particular, this helps us to quickly
974 // skip over huge arrays of ZST.
975 if layout.is_zst() {
976 return;
977 }
978 // Just recursively add all the fields of everything to the output.
979 match &layout.fields {
980 FieldsShape::Primitive => {
981 out.add_range(base_offset, layout.size);
982 }
983 &FieldsShape::Union(fields) => {
984 // Currently, all fields start at offset 0 (relative to `base_offset`).
985 for field in 0..fields.get() {
986 let field = layout.field(cx, field);
987 union_data_range_uncached(cx, field, base_offset, out);
988 }
989 }
990 &FieldsShape::Array { stride, count } => {
991 let elem = layout.field(cx, 0);
992
993 // Fast-path for large arrays of simple types that do not contain any padding.
994 if elem.backend_repr.is_scalar() {
995 out.add_range(base_offset, elem.size * count);
996 } else {
997 for idx in 0..count {
998 // This repeats the same computation for every array element... but the alternative
999 // is to allocate temporary storage for a dedicated `out` set for the array element,
1000 // and replicating that N times. Is that better?
1001 union_data_range_uncached(cx, elem, base_offset + idx * stride, out);
1002 }
1003 }
1004 }
1005 FieldsShape::Arbitrary { offsets, .. } => {
1006 for (field, &offset) in offsets.iter_enumerated() {
1007 let field = layout.field(cx, field.as_usize());
1008 union_data_range_uncached(cx, field, base_offset + offset, out);
1009 }
1010 }
1011 }
1012 // Don't forget potential other variants.
1013 match &layout.variants {
1014 Variants::Single { .. } | Variants::Empty => {
1015 // Fully handled above.
1016 }
1017 Variants::Multiple { variants, .. } => {
1018 for variant in variants.indices() {
1019 let variant = layout.for_variant(cx, variant);
1020 union_data_range_uncached(cx, variant, base_offset, out);
1021 }
1022 }
1023 }
1024 }
1025 }
1026}
1027
1028impl<'rt, 'tcx, M: Machine<'tcx>> ValueVisitor<'tcx, M> for ValidityVisitor<'rt, 'tcx, M> {
1029 type V = PlaceTy<'tcx, M::Provenance>;
1030
1031 #[inline(always)]
1032 fn ecx(&self) -> &InterpCx<'tcx, M> {
1033 self.ecx
1034 }
1035
1036 fn read_discriminant(
1037 &mut self,
1038 val: &PlaceTy<'tcx, M::Provenance>,
1039 ) -> InterpResult<'tcx, VariantIdx> {
1040 self.with_elem(PathElem::EnumTag, move |this| {
1041 interp_ok(try_validation!(
1042 this.ecx.read_discriminant(val),
1043 this.path,
1044 Ub(InvalidTag(val)) => InvalidEnumTag {
1045 value: format!("{val:x}"),
1046 },
1047 Ub(UninhabitedEnumVariantRead(_)) => UninhabitedEnumVariant,
1048 // Uninit / bad provenance are not possible since the field was already previously
1049 // checked at its integer type.
1050 ))
1051 })
1052 }
1053
1054 #[inline]
1055 fn visit_field(
1056 &mut self,
1057 old_val: &PlaceTy<'tcx, M::Provenance>,
1058 field: usize,
1059 new_val: &PlaceTy<'tcx, M::Provenance>,
1060 ) -> InterpResult<'tcx> {
1061 let elem = self.aggregate_field_path_elem(old_val.layout, field);
1062 self.with_elem(elem, move |this| this.visit_value(new_val))
1063 }
1064
1065 #[inline]
1066 fn visit_variant(
1067 &mut self,
1068 old_val: &PlaceTy<'tcx, M::Provenance>,
1069 variant_id: VariantIdx,
1070 new_val: &PlaceTy<'tcx, M::Provenance>,
1071 ) -> InterpResult<'tcx> {
1072 let name = match old_val.layout.ty.kind() {
1073 ty::Adt(adt, _) => PathElem::Variant(adt.variant(variant_id).name),
1074 // Coroutines also have variants
1075 ty::Coroutine(..) => PathElem::CoroutineState(variant_id),
1076 _ => bug!("Unexpected type with variant: {:?}", old_val.layout.ty),
1077 };
1078 self.with_elem(name, move |this| this.visit_value(new_val))
1079 }
1080
1081 #[inline(always)]
1082 fn visit_union(
1083 &mut self,
1084 val: &PlaceTy<'tcx, M::Provenance>,
1085 _fields: NonZero<usize>,
1086 ) -> InterpResult<'tcx> {
1087 // Special check for CTFE validation, preventing `UnsafeCell` inside unions in immutable memory.
1088 if self.ctfe_mode.is_some_and(|c| !c.allow_immutable_unsafe_cell()) {
1089 if !val.layout.is_zst() && !val.layout.ty.is_freeze(*self.ecx.tcx, self.ecx.typing_env)
1090 {
1091 if !self.in_mutable_memory(val) {
1092 throw_validation_failure!(self.path, UnsafeCellInImmutable);
1093 }
1094 }
1095 }
1096 if self.reset_provenance_and_padding
1097 && let Some(data_bytes) = self.data_bytes.as_mut()
1098 {
1099 let base_offset = Self::data_range_offset(self.ecx, val);
1100 // Determine and add data range for this union.
1101 let union_data_range = Self::union_data_range(self.ecx, val.layout);
1102 for &(offset, size) in union_data_range.0.iter() {
1103 data_bytes.add_range(base_offset + offset, size);
1104 }
1105 }
1106 interp_ok(())
1107 }
1108
1109 #[inline]
1110 fn visit_box(
1111 &mut self,
1112 _box_ty: Ty<'tcx>,
1113 val: &PlaceTy<'tcx, M::Provenance>,
1114 ) -> InterpResult<'tcx> {
1115 self.check_safe_pointer(val, PointerKind::Box)?;
1116 interp_ok(())
1117 }
1118
1119 #[inline]
1120 fn visit_value(&mut self, val: &PlaceTy<'tcx, M::Provenance>) -> InterpResult<'tcx> {
1121 trace!("visit_value: {:?}, {:?}", *val, val.layout);
1122
1123 // Check primitive types -- the leaves of our recursive descent.
1124 // This is called even for enum discriminants (which are "fields" of their enum),
1125 // so for integer-typed discriminants the provenance reset will happen here.
1126 // We assume that the Scalar validity range does not restrict these values
1127 // any further than `try_visit_primitive` does!
1128 if self.try_visit_primitive(val)? {
1129 return interp_ok(());
1130 }
1131
1132 // Special check preventing `UnsafeCell` in the inner part of constants
1133 if self.ctfe_mode.is_some_and(|c| !c.allow_immutable_unsafe_cell()) {
1134 if !val.layout.is_zst()
1135 && let Some(def) = val.layout.ty.ty_adt_def()
1136 && def.is_unsafe_cell()
1137 {
1138 if !self.in_mutable_memory(val) {
1139 throw_validation_failure!(self.path, UnsafeCellInImmutable);
1140 }
1141 }
1142 }
1143
1144 // Recursively walk the value at its type. Apply optimizations for some large types.
1145 match val.layout.ty.kind() {
1146 ty::Str => {
1147 let mplace = val.assert_mem_place(); // strings are unsized and hence never immediate
1148 let len = mplace.len(self.ecx)?;
1149 try_validation!(
1150 self.ecx.read_bytes_ptr_strip_provenance(mplace.ptr(), Size::from_bytes(len)),
1151 self.path,
1152 Ub(InvalidUninitBytes(..)) => Uninit { expected: ExpectedKind::Str },
1153 Unsup(ReadPointerAsInt(_)) => PointerAsInt { expected: ExpectedKind::Str }
1154 );
1155 }
1156 ty::Array(tys, ..) | ty::Slice(tys)
1157 // This optimization applies for types that can hold arbitrary non-provenance bytes (such as
1158 // integer and floating point types).
1159 // FIXME(wesleywiser) This logic could be extended further to arbitrary structs or
1160 // tuples made up of integer/floating point types or inhabited ZSTs with no padding.
1161 if matches!(tys.kind(), ty::Int(..) | ty::Uint(..) | ty::Float(..))
1162 =>
1163 {
1164 let expected = if tys.is_integral() { ExpectedKind::Int } else { ExpectedKind::Float };
1165 // Optimized handling for arrays of integer/float type.
1166
1167 // This is the length of the array/slice.
1168 let len = val.len(self.ecx)?;
1169 // This is the element type size.
1170 let layout = self.ecx.layout_of(*tys)?;
1171 // This is the size in bytes of the whole array. (This checks for overflow.)
1172 let size = layout.size * len;
1173 // If the size is 0, there is nothing to check.
1174 // (`size` can only be 0 if `len` is 0, and empty arrays are always valid.)
1175 if size == Size::ZERO {
1176 return interp_ok(());
1177 }
1178 // Now that we definitely have a non-ZST array, we know it lives in memory -- except it may
1179 // be an uninitialized local variable, those are also "immediate".
1180 let mplace = match val.to_op(self.ecx)?.as_mplace_or_imm() {
1181 Left(mplace) => mplace,
1182 Right(imm) => match *imm {
1183 Immediate::Uninit =>
1184 throw_validation_failure!(self.path, Uninit { expected }),
1185 Immediate::Scalar(..) | Immediate::ScalarPair(..) =>
1186 bug!("arrays/slices can never have Scalar/ScalarPair layout"),
1187 }
1188 };
1189
1190 // Optimization: we just check the entire range at once.
1191 // NOTE: Keep this in sync with the handling of integer and float
1192 // types above, in `visit_primitive`.
1193 // No need for an alignment check here, this is not an actual memory access.
1194 let alloc = self.ecx.get_ptr_alloc(mplace.ptr(), size)?.expect("we already excluded size 0");
1195
1196 alloc.get_bytes_strip_provenance().map_err_kind(|kind| {
1197 // Some error happened, try to provide a more detailed description.
1198 // For some errors we might be able to provide extra information.
1199 // (This custom logic does not fit the `try_validation!` macro.)
1200 match kind {
1201 Ub(InvalidUninitBytes(Some((_alloc_id, access)))) | Unsup(ReadPointerAsInt(Some((_alloc_id, access)))) => {
1202 // Some byte was uninitialized, determine which
1203 // element that byte belongs to so we can
1204 // provide an index.
1205 let i = usize::try_from(
1206 access.bad.start.bytes() / layout.size.bytes(),
1207 )
1208 .unwrap();
1209 self.path.push(PathElem::ArrayElem(i));
1210
1211 if matches!(kind, Ub(InvalidUninitBytes(_))) {
1212 err_validation_failure!(self.path, Uninit { expected })
1213 } else {
1214 err_validation_failure!(self.path, PointerAsInt { expected })
1215 }
1216 }
1217
1218 // Propagate upwards (that will also check for unexpected errors).
1219 err => err,
1220 }
1221 })?;
1222
1223 // Don't forget that these are all non-pointer types, and thus do not preserve
1224 // provenance.
1225 if self.reset_provenance_and_padding {
1226 // We can't share this with above as above, we might be looking at read-only memory.
1227 let mut alloc = self.ecx.get_ptr_alloc_mut(mplace.ptr(), size)?.expect("we already excluded size 0");
1228 alloc.clear_provenance()?;
1229 // Also, mark this as containing data, not padding.
1230 self.add_data_range(mplace.ptr(), size);
1231 }
1232 }
1233 // Fast path for arrays and slices of ZSTs. We only need to check a single ZST element
1234 // of an array and not all of them, because there's only a single value of a specific
1235 // ZST type, so either validation fails for all elements or none.
1236 ty::Array(tys, ..) | ty::Slice(tys) if self.ecx.layout_of(*tys)?.is_zst() => {
1237 // Validate just the first element (if any).
1238 if val.len(self.ecx)? > 0 {
1239 self.visit_field(val, 0, &self.ecx.project_index(val, 0)?)?;
1240 }
1241 }
1242 ty::Pat(base, pat) => {
1243 // First check that the base type is valid
1244 self.visit_value(&val.transmute(self.ecx.layout_of(*base)?, self.ecx)?)?;
1245 // When you extend this match, make sure to also add tests to
1246 // tests/ui/type/pattern_types/validity.rs((
1247 match **pat {
1248 // Range patterns are precisely reflected into `valid_range` and thus
1249 // handled fully by `visit_scalar` (called below).
1250 ty::PatternKind::Range { .. } => {},
1251 }
1252 }
1253 _ => {
1254 // default handler
1255 try_validation!(
1256 self.walk_value(val),
1257 self.path,
1258 // It's not great to catch errors here, since we can't give a very good path,
1259 // but it's better than ICEing.
1260 Ub(InvalidVTableTrait { vtable_dyn_type, expected_dyn_type }) => {
1261 InvalidMetaWrongTrait { vtable_dyn_type, expected_dyn_type }
1262 },
1263 );
1264 }
1265 }
1266
1267 // *After* all of this, check the ABI. We need to check the ABI to handle
1268 // types like `NonNull` where the `Scalar` info is more restrictive than what
1269 // the fields say (`rustc_layout_scalar_valid_range_start`).
1270 // But in most cases, this will just propagate what the fields say,
1271 // and then we want the error to point at the field -- so, first recurse,
1272 // then check ABI.
1273 //
1274 // FIXME: We could avoid some redundant checks here. For newtypes wrapping
1275 // scalars, we do the same check on every "level" (e.g., first we check
1276 // MyNewtype and then the scalar in there).
1277 match val.layout.backend_repr {
1278 BackendRepr::Uninhabited => {
1279 let ty = val.layout.ty;
1280 throw_validation_failure!(self.path, UninhabitedVal { ty });
1281 }
1282 BackendRepr::Scalar(scalar_layout) => {
1283 if !scalar_layout.is_uninit_valid() {
1284 // There is something to check here.
1285 let scalar = self.read_scalar(val, ExpectedKind::InitScalar)?;
1286 self.visit_scalar(scalar, scalar_layout)?;
1287 }
1288 }
1289 BackendRepr::ScalarPair(a_layout, b_layout) => {
1290 // We can only proceed if *both* scalars need to be initialized.
1291 // FIXME: find a way to also check ScalarPair when one side can be uninit but
1292 // the other must be init.
1293 if !a_layout.is_uninit_valid() && !b_layout.is_uninit_valid() {
1294 let (a, b) =
1295 self.read_immediate(val, ExpectedKind::InitScalar)?.to_scalar_pair();
1296 self.visit_scalar(a, a_layout)?;
1297 self.visit_scalar(b, b_layout)?;
1298 }
1299 }
1300 BackendRepr::Vector { .. } => {
1301 // No checks here, we assume layout computation gets this right.
1302 // (This is harder to check since Miri does not represent these as `Immediate`. We
1303 // also cannot use field projections since this might be a newtype around a vector.)
1304 }
1305 BackendRepr::Memory { .. } => {
1306 // Nothing to do.
1307 }
1308 }
1309
1310 interp_ok(())
1311 }
1312}
1313
1314impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
1315 fn validate_operand_internal(
1316 &mut self,
1317 val: &PlaceTy<'tcx, M::Provenance>,
1318 path: Vec<PathElem>,
1319 ref_tracking: Option<&mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>>,
1320 ctfe_mode: Option<CtfeValidationMode>,
1321 reset_provenance_and_padding: bool,
1322 ) -> InterpResult<'tcx> {
1323 trace!("validate_operand_internal: {:?}, {:?}", *val, val.layout.ty);
1324
1325 // Run the visitor.
1326 self.run_for_validation(|ecx| {
1327 let reset_padding = reset_provenance_and_padding && {
1328 // Check if `val` is actually stored in memory. If not, padding is not even
1329 // represented and we need not reset it.
1330 ecx.place_to_op(val)?.as_mplace_or_imm().is_left()
1331 };
1332 let mut v = ValidityVisitor {
1333 path,
1334 ref_tracking,
1335 ctfe_mode,
1336 ecx,
1337 reset_provenance_and_padding,
1338 data_bytes: reset_padding.then_some(RangeSet(Vec::new())),
1339 };
1340 v.visit_value(val)?;
1341 v.reset_padding(val)?;
1342 interp_ok(())
1343 })
1344 .map_err_info(|err| {
1345 if !matches!(
1346 err.kind(),
1347 err_ub!(ValidationError { .. })
1348 | InterpErrorKind::InvalidProgram(_)
1349 | InterpErrorKind::Unsupported(UnsupportedOpInfo::ExternTypeField)
1350 ) {
1351 bug!(
1352 "Unexpected error during validation: {}",
1353 format_interp_error(self.tcx.dcx(), err)
1354 );
1355 }
1356 err
1357 })
1358 }
1359
1360 /// This function checks the data at `op` to be const-valid.
1361 /// `op` is assumed to cover valid memory if it is an indirect operand.
1362 /// It will error if the bits at the destination do not match the ones described by the layout.
1363 ///
1364 /// `ref_tracking` is used to record references that we encounter so that they
1365 /// can be checked recursively by an outside driving loop.
1366 ///
1367 /// `constant` controls whether this must satisfy the rules for constants:
1368 /// - no pointers to statics.
1369 /// - no `UnsafeCell` or non-ZST `&mut`.
1370 #[inline(always)]
1371 pub(crate) fn const_validate_operand(
1372 &mut self,
1373 val: &PlaceTy<'tcx, M::Provenance>,
1374 path: Vec<PathElem>,
1375 ref_tracking: &mut RefTracking<MPlaceTy<'tcx, M::Provenance>, Vec<PathElem>>,
1376 ctfe_mode: CtfeValidationMode,
1377 ) -> InterpResult<'tcx> {
1378 self.validate_operand_internal(
1379 val,
1380 path,
1381 Some(ref_tracking),
1382 Some(ctfe_mode),
1383 /*reset_provenance*/ false,
1384 )
1385 }
1386
1387 /// This function checks the data at `op` to be runtime-valid.
1388 /// `op` is assumed to cover valid memory if it is an indirect operand.
1389 /// It will error if the bits at the destination do not match the ones described by the layout.
1390 #[inline(always)]
1391 pub fn validate_operand(
1392 &mut self,
1393 val: &PlaceTy<'tcx, M::Provenance>,
1394 recursive: bool,
1395 reset_provenance_and_padding: bool,
1396 ) -> InterpResult<'tcx> {
1397 // Note that we *could* actually be in CTFE here with `-Zextra-const-ub-checks`, but it's
1398 // still correct to not use `ctfe_mode`: that mode is for validation of the final constant
1399 // value, it rules out things like `UnsafeCell` in awkward places.
1400 if !recursive {
1401 return self.validate_operand_internal(
1402 val,
1403 vec![],
1404 None,
1405 None,
1406 reset_provenance_and_padding,
1407 );
1408 }
1409 // Do a recursive check.
1410 let mut ref_tracking = RefTracking::empty();
1411 self.validate_operand_internal(
1412 val,
1413 vec![],
1414 Some(&mut ref_tracking),
1415 None,
1416 reset_provenance_and_padding,
1417 )?;
1418 while let Some((mplace, path)) = ref_tracking.todo.pop() {
1419 // Things behind reference do *not* have the provenance reset.
1420 self.validate_operand_internal(
1421 &mplace.into(),
1422 path,
1423 Some(&mut ref_tracking),
1424 None,
1425 /*reset_provenance_and_padding*/ false,
1426 )?;
1427 }
1428 interp_ok(())
1429 }
1430}