rustc_type_ir/relate/
combine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
use tracing::debug;

use super::{
    ExpectedFound, RelateResult, StructurallyRelateAliases, TypeRelation,
    structurally_relate_consts, structurally_relate_tys,
};
use crate::error::TypeError;
use crate::inherent::*;
use crate::solve::{Goal, SolverMode};
use crate::visit::TypeVisitableExt as _;
use crate::{self as ty, InferCtxtLike, Interner, Upcast};

pub trait PredicateEmittingRelation<Infcx, I = <Infcx as InferCtxtLike>::Interner>:
    TypeRelation<I>
where
    Infcx: InferCtxtLike<Interner = I>,
    I: Interner,
{
    fn span(&self) -> I::Span;

    fn param_env(&self) -> I::ParamEnv;

    /// Whether aliases should be related structurally. This is pretty much
    /// always `No` unless you're equating in some specific locations of the
    /// new solver. See the comments in these use-cases for more details.
    fn structurally_relate_aliases(&self) -> StructurallyRelateAliases;

    /// Register obligations that must hold in order for this relation to hold
    fn register_goals(&mut self, obligations: impl IntoIterator<Item = Goal<I, I::Predicate>>);

    /// Register predicates that must hold in order for this relation to hold.
    /// This uses the default `param_env` of the obligation.
    fn register_predicates(
        &mut self,
        obligations: impl IntoIterator<Item: Upcast<I, I::Predicate>>,
    );

    /// Register `AliasRelate` obligation(s) that both types must be related to each other.
    fn register_alias_relate_predicate(&mut self, a: I::Ty, b: I::Ty);
}

pub fn super_combine_tys<Infcx, I, R>(
    infcx: &Infcx,
    relation: &mut R,
    a: I::Ty,
    b: I::Ty,
) -> RelateResult<I, I::Ty>
where
    Infcx: InferCtxtLike<Interner = I>,
    I: Interner,
    R: PredicateEmittingRelation<Infcx>,
{
    debug!("super_combine_tys::<{}>({:?}, {:?})", std::any::type_name::<R>(), a, b);
    debug_assert!(!a.has_escaping_bound_vars());
    debug_assert!(!b.has_escaping_bound_vars());

    match (a.kind(), b.kind()) {
        (ty::Error(e), _) | (_, ty::Error(e)) => {
            infcx.set_tainted_by_errors(e);
            return Ok(Ty::new_error(infcx.cx(), e));
        }

        // Relate integral variables to other types
        (ty::Infer(ty::IntVar(a_id)), ty::Infer(ty::IntVar(b_id))) => {
            infcx.equate_int_vids_raw(a_id, b_id);
            Ok(a)
        }
        (ty::Infer(ty::IntVar(v_id)), ty::Int(v)) => {
            infcx.instantiate_int_var_raw(v_id, ty::IntVarValue::IntType(v));
            Ok(b)
        }
        (ty::Int(v), ty::Infer(ty::IntVar(v_id))) => {
            infcx.instantiate_int_var_raw(v_id, ty::IntVarValue::IntType(v));
            Ok(a)
        }
        (ty::Infer(ty::IntVar(v_id)), ty::Uint(v)) => {
            infcx.instantiate_int_var_raw(v_id, ty::IntVarValue::UintType(v));
            Ok(b)
        }
        (ty::Uint(v), ty::Infer(ty::IntVar(v_id))) => {
            infcx.instantiate_int_var_raw(v_id, ty::IntVarValue::UintType(v));
            Ok(a)
        }

        // Relate floating-point variables to other types
        (ty::Infer(ty::FloatVar(a_id)), ty::Infer(ty::FloatVar(b_id))) => {
            infcx.equate_float_vids_raw(a_id, b_id);
            Ok(a)
        }
        (ty::Infer(ty::FloatVar(v_id)), ty::Float(v)) => {
            infcx.instantiate_float_var_raw(v_id, ty::FloatVarValue::Known(v));
            Ok(b)
        }
        (ty::Float(v), ty::Infer(ty::FloatVar(v_id))) => {
            infcx.instantiate_float_var_raw(v_id, ty::FloatVarValue::Known(v));
            Ok(a)
        }

        // We don't expect `TyVar` or `Fresh*` vars at this point with lazy norm.
        (ty::Alias(..), ty::Infer(ty::TyVar(_))) | (ty::Infer(ty::TyVar(_)), ty::Alias(..))
            if infcx.next_trait_solver() =>
        {
            panic!(
                "We do not expect to encounter `TyVar` this late in combine \
                    -- they should have been handled earlier"
            )
        }
        (_, ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)))
        | (ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)), _)
            if infcx.next_trait_solver() =>
        {
            panic!("We do not expect to encounter `Fresh` variables in the new solver")
        }

        (_, ty::Alias(..)) | (ty::Alias(..), _) if infcx.next_trait_solver() => {
            match relation.structurally_relate_aliases() {
                StructurallyRelateAliases::Yes => structurally_relate_tys(relation, a, b),
                StructurallyRelateAliases::No => {
                    relation.register_alias_relate_predicate(a, b);
                    Ok(a)
                }
            }
        }

        // All other cases of inference are errors
        (ty::Infer(_), _) | (_, ty::Infer(_)) => {
            Err(TypeError::Sorts(ExpectedFound::new(true, a, b)))
        }

        (ty::Alias(ty::Opaque, _), _) | (_, ty::Alias(ty::Opaque, _)) => {
            match infcx.solver_mode() {
                SolverMode::Normal => {
                    assert!(!infcx.next_trait_solver());
                    structurally_relate_tys(relation, a, b)
                }
                // During coherence, opaque types should be treated as *possibly*
                // equal to any other type (except for possibly itinfcx). This is an
                // extremely heavy hammer, but can be relaxed in a forwards-compatible
                // way later.
                SolverMode::Coherence => {
                    relation.register_predicates([ty::Binder::dummy(ty::PredicateKind::Ambiguous)]);
                    Ok(a)
                }
            }
        }

        _ => structurally_relate_tys(relation, a, b),
    }
}

pub fn super_combine_consts<Infcx, I, R>(
    infcx: &Infcx,
    relation: &mut R,
    a: I::Const,
    b: I::Const,
) -> RelateResult<I, I::Const>
where
    Infcx: InferCtxtLike<Interner = I>,
    I: Interner,
    R: PredicateEmittingRelation<Infcx>,
{
    debug!("super_combine_consts::<{}>({:?}, {:?})", std::any::type_name::<R>(), a, b);
    debug_assert!(!a.has_escaping_bound_vars());
    debug_assert!(!b.has_escaping_bound_vars());

    if a == b {
        return Ok(a);
    }

    let a = infcx.shallow_resolve_const(a);
    let b = infcx.shallow_resolve_const(b);

    match (a.kind(), b.kind()) {
        (
            ty::ConstKind::Infer(ty::InferConst::Var(a_vid)),
            ty::ConstKind::Infer(ty::InferConst::Var(b_vid)),
        ) => {
            infcx.equate_const_vids_raw(a_vid, b_vid);
            Ok(a)
        }

        (
            ty::ConstKind::Infer(ty::InferConst::EffectVar(a_vid)),
            ty::ConstKind::Infer(ty::InferConst::EffectVar(b_vid)),
        ) => {
            infcx.equate_effect_vids_raw(a_vid, b_vid);
            Ok(a)
        }

        // All other cases of inference with other variables are errors.
        (
            ty::ConstKind::Infer(ty::InferConst::Var(_) | ty::InferConst::EffectVar(_)),
            ty::ConstKind::Infer(_),
        )
        | (
            ty::ConstKind::Infer(_),
            ty::ConstKind::Infer(ty::InferConst::Var(_) | ty::InferConst::EffectVar(_)),
        ) => {
            panic!(
                "tried to combine ConstKind::Infer/ConstKind::Infer(InferConst::Var): {a:?} and {b:?}"
            )
        }

        (ty::ConstKind::Infer(ty::InferConst::Var(vid)), _) => {
            infcx.instantiate_const_var_raw(relation, true, vid, b)?;
            Ok(b)
        }

        (_, ty::ConstKind::Infer(ty::InferConst::Var(vid))) => {
            infcx.instantiate_const_var_raw(relation, false, vid, a)?;
            Ok(a)
        }

        (ty::ConstKind::Infer(ty::InferConst::EffectVar(vid)), _) => {
            infcx.instantiate_effect_var_raw(vid, b);
            Ok(b)
        }

        (_, ty::ConstKind::Infer(ty::InferConst::EffectVar(vid))) => {
            infcx.instantiate_effect_var_raw(vid, a);
            Ok(a)
        }

        (ty::ConstKind::Unevaluated(..), _) | (_, ty::ConstKind::Unevaluated(..))
            if infcx.cx().features().generic_const_exprs() || infcx.next_trait_solver() =>
        {
            match relation.structurally_relate_aliases() {
                StructurallyRelateAliases::No => {
                    relation.register_predicates([if infcx.next_trait_solver() {
                        ty::PredicateKind::AliasRelate(
                            a.into(),
                            b.into(),
                            ty::AliasRelationDirection::Equate,
                        )
                    } else {
                        ty::PredicateKind::ConstEquate(a, b)
                    }]);

                    Ok(b)
                }
                StructurallyRelateAliases::Yes => structurally_relate_consts(relation, a, b),
            }
        }
        _ => structurally_relate_consts(relation, a, b),
    }
}