rustdoc/clean/
mod.rs

1//! This module defines the primary IR[^1] used in rustdoc together with the procedures that
2//! transform rustc data types into it.
3//!
4//! This IR — commonly referred to as the *cleaned AST* — is modeled after the [AST][rustc_ast].
5//!
6//! There are two kinds of transformation — *cleaning* — procedures:
7//!
8//! 1. Cleans [HIR][hir] types. Used for user-written code and inlined local re-exports
9//!    both found in the local crate.
10//! 2. Cleans [`rustc_middle::ty`] types. Used for inlined cross-crate re-exports and anything
11//!    output by the trait solver (e.g., when synthesizing blanket and auto-trait impls).
12//!    They usually have `ty` or `middle` in their name.
13//!
14//! Their name is prefixed by `clean_`.
15//!
16//! Both the HIR and the `rustc_middle::ty` IR are quite removed from the source code.
17//! The cleaned AST on the other hand is closer to it which simplifies the rendering process.
18//! Furthermore, operating on a single IR instead of two avoids duplicating efforts down the line.
19//!
20//! This IR is consumed by both the HTML and the JSON backend.
21//!
22//! [^1]: Intermediate representation.
23
24mod auto_trait;
25mod blanket_impl;
26pub(crate) mod cfg;
27pub(crate) mod inline;
28mod render_macro_matchers;
29mod simplify;
30pub(crate) mod types;
31pub(crate) mod utils;
32
33use std::borrow::Cow;
34use std::collections::BTreeMap;
35use std::mem;
36
37use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet, IndexEntry};
38use rustc_data_structures::thin_vec::ThinVec;
39use rustc_errors::codes::*;
40use rustc_errors::{FatalError, struct_span_code_err};
41use rustc_hir as hir;
42use rustc_hir::attrs::{AttributeKind, DocAttribute, DocInline};
43use rustc_hir::def::{CtorKind, DefKind, MacroKinds, Res};
44use rustc_hir::def_id::{DefId, DefIdMap, DefIdSet, LOCAL_CRATE, LocalDefId};
45use rustc_hir::{LangItem, PredicateOrigin, find_attr};
46use rustc_hir_analysis::{lower_const_arg_for_rustdoc, lower_ty};
47use rustc_middle::metadata::Reexport;
48use rustc_middle::middle::resolve_bound_vars as rbv;
49use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TyCtxt, TypeVisitableExt, TypingMode};
50use rustc_middle::{bug, span_bug};
51use rustc_span::ExpnKind;
52use rustc_span::hygiene::{AstPass, MacroKind};
53use rustc_span::symbol::{Ident, Symbol, kw};
54use rustc_trait_selection::traits::wf::object_region_bounds;
55use tracing::{debug, instrument};
56use utils::*;
57
58pub(crate) use self::cfg::{CfgInfo, extract_cfg_from_attrs};
59pub(crate) use self::types::*;
60pub(crate) use self::utils::{krate, register_res, synthesize_auto_trait_and_blanket_impls};
61use crate::core::DocContext;
62use crate::formats::item_type::ItemType;
63use crate::visit_ast::Module as DocModule;
64
65pub(crate) fn clean_doc_module<'tcx>(doc: &DocModule<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
66    let mut items: Vec<Item> = vec![];
67    let mut inserted = FxHashSet::default();
68    items.extend(doc.foreigns.iter().map(|(item, renamed, import_id)| {
69        let item = clean_maybe_renamed_foreign_item(cx, item, *renamed, *import_id);
70        if let Some(name) = item.name
71            && (cx.document_hidden() || !item.is_doc_hidden())
72        {
73            inserted.insert((item.type_(), name));
74        }
75        item
76    }));
77    items.extend(doc.mods.iter().filter_map(|x| {
78        if !inserted.insert((ItemType::Module, x.name)) {
79            return None;
80        }
81        let item = clean_doc_module(x, cx);
82        if !cx.document_hidden() && item.is_doc_hidden() {
83            // Hidden modules are stripped at a later stage.
84            // If a hidden module has the same name as a visible one, we want
85            // to keep both of them around.
86            inserted.remove(&(ItemType::Module, x.name));
87        }
88        Some(item)
89    }));
90
91    // Split up glob imports from all other items.
92    //
93    // This covers the case where somebody does an import which should pull in an item,
94    // but there's already an item with the same namespace and same name. Rust gives
95    // priority to the not-imported one, so we should, too.
96    items.extend(doc.items.values().flat_map(|(item, renamed, import_ids)| {
97        // First, lower everything other than glob imports.
98        if matches!(item.kind, hir::ItemKind::Use(_, hir::UseKind::Glob)) {
99            return Vec::new();
100        }
101        let v = clean_maybe_renamed_item(cx, item, *renamed, import_ids);
102        for item in &v {
103            if let Some(name) = item.name
104                && (cx.document_hidden() || !item.is_doc_hidden())
105            {
106                inserted.insert((item.type_(), name));
107            }
108        }
109        v
110    }));
111    items.extend(doc.inlined_foreigns.iter().flat_map(|((_, renamed), (res, local_import_id))| {
112        let Some(def_id) = res.opt_def_id() else { return Vec::new() };
113        let name = renamed.unwrap_or_else(|| cx.tcx.item_name(def_id));
114        let import = cx.tcx.hir_expect_item(*local_import_id);
115        match import.kind {
116            hir::ItemKind::Use(path, kind) => {
117                let hir::UsePath { segments, span, .. } = *path;
118                let path = hir::Path { segments, res: *res, span };
119                clean_use_statement_inner(
120                    import,
121                    Some(name),
122                    &path,
123                    kind,
124                    cx,
125                    &mut Default::default(),
126                )
127            }
128            _ => unreachable!(),
129        }
130    }));
131    items.extend(doc.items.values().flat_map(|(item, renamed, _)| {
132        // Now we actually lower the imports, skipping everything else.
133        if let hir::ItemKind::Use(path, hir::UseKind::Glob) = item.kind {
134            clean_use_statement(item, *renamed, path, hir::UseKind::Glob, cx, &mut inserted)
135        } else {
136            // skip everything else
137            Vec::new()
138        }
139    }));
140
141    // determine if we should display the inner contents or
142    // the outer `mod` item for the source code.
143
144    let span = Span::new({
145        let where_outer = doc.where_outer(cx.tcx);
146        let sm = cx.sess().source_map();
147        let outer = sm.lookup_char_pos(where_outer.lo());
148        let inner = sm.lookup_char_pos(doc.where_inner.lo());
149        if outer.file.start_pos == inner.file.start_pos {
150            // mod foo { ... }
151            where_outer
152        } else {
153            // mod foo; (and a separate SourceFile for the contents)
154            doc.where_inner
155        }
156    });
157
158    let kind = ModuleItem(Module { items, span });
159    generate_item_with_correct_attrs(
160        cx,
161        kind,
162        doc.def_id.to_def_id(),
163        doc.name,
164        doc.import_id.as_slice(),
165        doc.renamed,
166    )
167}
168
169fn is_glob_import(tcx: TyCtxt<'_>, import_id: LocalDefId) -> bool {
170    if let hir::Node::Item(item) = tcx.hir_node_by_def_id(import_id)
171        && let hir::ItemKind::Use(_, use_kind) = item.kind
172    {
173        use_kind == hir::UseKind::Glob
174    } else {
175        false
176    }
177}
178
179fn generate_item_with_correct_attrs(
180    cx: &mut DocContext<'_>,
181    kind: ItemKind,
182    def_id: DefId,
183    name: Symbol,
184    import_ids: &[LocalDefId],
185    renamed: Option<Symbol>,
186) -> Item {
187    let target_attrs = inline::load_attrs(cx, def_id);
188    let attrs = if !import_ids.is_empty() {
189        let mut attrs = Vec::with_capacity(import_ids.len());
190        let mut is_inline = false;
191
192        for import_id in import_ids.iter().copied() {
193            // glob reexports are treated the same as `#[doc(inline)]` items.
194            //
195            // For glob re-exports the item may or may not exist to be re-exported (potentially the
196            // cfgs on the path up until the glob can be removed, and only cfgs on the globbed item
197            // itself matter), for non-inlined re-exports see #85043.
198            let import_is_inline = find_attr!(
199                inline::load_attrs(cx, import_id.to_def_id()),
200                AttributeKind::Doc(d)
201                if d.inline.first().is_some_and(|(inline, _)| *inline == DocInline::Inline)
202            ) || (is_glob_import(cx.tcx, import_id)
203                && (cx.document_hidden() || !cx.tcx.is_doc_hidden(def_id)));
204            attrs.extend(get_all_import_attributes(cx, import_id, def_id, is_inline));
205            is_inline = is_inline || import_is_inline;
206        }
207        add_without_unwanted_attributes(&mut attrs, target_attrs, is_inline, None);
208        attrs
209    } else {
210        // We only keep the item's attributes.
211        target_attrs.iter().map(|attr| (Cow::Borrowed(attr), None)).collect()
212    };
213    let attrs = Attributes::from_hir_iter(attrs.iter().map(|(attr, did)| (&**attr, *did)), false);
214
215    let name = renamed.or(Some(name));
216    let mut item = Item::from_def_id_and_attrs_and_parts(def_id, name, kind, attrs, None);
217    // FIXME (GuillaumeGomez): Should we also make `inline_stmt_id` a `Vec` instead of an `Option`?
218    item.inner.inline_stmt_id = import_ids.first().copied();
219    item
220}
221
222fn clean_generic_bound<'tcx>(
223    bound: &hir::GenericBound<'tcx>,
224    cx: &mut DocContext<'tcx>,
225) -> Option<GenericBound> {
226    Some(match bound {
227        hir::GenericBound::Outlives(lt) => GenericBound::Outlives(clean_lifetime(lt, cx)),
228        hir::GenericBound::Trait(t) => {
229            // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
230            if let hir::BoundConstness::Maybe(_) = t.modifiers.constness
231                && cx.tcx.lang_items().destruct_trait() == Some(t.trait_ref.trait_def_id().unwrap())
232            {
233                return None;
234            }
235
236            GenericBound::TraitBound(clean_poly_trait_ref(t, cx), t.modifiers)
237        }
238        hir::GenericBound::Use(args, ..) => {
239            GenericBound::Use(args.iter().map(|arg| clean_precise_capturing_arg(arg, cx)).collect())
240        }
241    })
242}
243
244pub(crate) fn clean_trait_ref_with_constraints<'tcx>(
245    cx: &mut DocContext<'tcx>,
246    trait_ref: ty::PolyTraitRef<'tcx>,
247    constraints: ThinVec<AssocItemConstraint>,
248) -> Path {
249    let kind = ItemType::from_def_id(trait_ref.def_id(), cx.tcx);
250    if !matches!(kind, ItemType::Trait | ItemType::TraitAlias) {
251        span_bug!(cx.tcx.def_span(trait_ref.def_id()), "`TraitRef` had unexpected kind {kind:?}");
252    }
253    inline::record_extern_fqn(cx, trait_ref.def_id(), kind);
254    let path = clean_middle_path(
255        cx,
256        trait_ref.def_id(),
257        true,
258        constraints,
259        trait_ref.map_bound(|tr| tr.args),
260    );
261
262    debug!(?trait_ref);
263
264    path
265}
266
267fn clean_poly_trait_ref_with_constraints<'tcx>(
268    cx: &mut DocContext<'tcx>,
269    poly_trait_ref: ty::PolyTraitRef<'tcx>,
270    constraints: ThinVec<AssocItemConstraint>,
271) -> GenericBound {
272    GenericBound::TraitBound(
273        PolyTrait {
274            trait_: clean_trait_ref_with_constraints(cx, poly_trait_ref, constraints),
275            generic_params: clean_bound_vars(poly_trait_ref.bound_vars(), cx),
276        },
277        hir::TraitBoundModifiers::NONE,
278    )
279}
280
281fn clean_lifetime(lifetime: &hir::Lifetime, cx: &DocContext<'_>) -> Lifetime {
282    if let Some(
283        rbv::ResolvedArg::EarlyBound(did)
284        | rbv::ResolvedArg::LateBound(_, _, did)
285        | rbv::ResolvedArg::Free(_, did),
286    ) = cx.tcx.named_bound_var(lifetime.hir_id)
287        && let Some(lt) = cx.args.get(&did.to_def_id()).and_then(|arg| arg.as_lt())
288    {
289        return *lt;
290    }
291    Lifetime(lifetime.ident.name)
292}
293
294pub(crate) fn clean_precise_capturing_arg(
295    arg: &hir::PreciseCapturingArg<'_>,
296    cx: &DocContext<'_>,
297) -> PreciseCapturingArg {
298    match arg {
299        hir::PreciseCapturingArg::Lifetime(lt) => {
300            PreciseCapturingArg::Lifetime(clean_lifetime(lt, cx))
301        }
302        hir::PreciseCapturingArg::Param(param) => PreciseCapturingArg::Param(param.ident.name),
303    }
304}
305
306pub(crate) fn clean_const_item_rhs<'tcx>(
307    ct_rhs: hir::ConstItemRhs<'tcx>,
308    parent: DefId,
309) -> ConstantKind {
310    match ct_rhs {
311        hir::ConstItemRhs::Body(body) => ConstantKind::Local { def_id: parent, body },
312        hir::ConstItemRhs::TypeConst(ct) => clean_const(ct),
313    }
314}
315
316pub(crate) fn clean_const<'tcx>(constant: &hir::ConstArg<'tcx>) -> ConstantKind {
317    match &constant.kind {
318        hir::ConstArgKind::Path(qpath) => {
319            ConstantKind::Path { path: qpath_to_string(qpath).into() }
320        }
321        hir::ConstArgKind::Struct(..) => {
322            // FIXME(mgca): proper printing :3
323            ConstantKind::Path { path: "/* STRUCT EXPR */".to_string().into() }
324        }
325        hir::ConstArgKind::TupleCall(..) => {
326            ConstantKind::Path { path: "/* TUPLE CALL */".to_string().into() }
327        }
328        hir::ConstArgKind::Tup(..) => {
329            // FIXME(mgca): proper printing :3
330            ConstantKind::Path { path: "/* TUPLE EXPR */".to_string().into() }
331        }
332        hir::ConstArgKind::Array(..) => {
333            ConstantKind::Path { path: "/* ARRAY EXPR */".to_string().into() }
334        }
335        hir::ConstArgKind::Anon(anon) => ConstantKind::Anonymous { body: anon.body },
336        hir::ConstArgKind::Infer(..) | hir::ConstArgKind::Error(..) => ConstantKind::Infer,
337        hir::ConstArgKind::Literal(..) => {
338            ConstantKind::Path { path: "/* LITERAL */".to_string().into() }
339        }
340    }
341}
342
343pub(crate) fn clean_middle_const<'tcx>(
344    constant: ty::Binder<'tcx, ty::Const<'tcx>>,
345    _cx: &mut DocContext<'tcx>,
346) -> ConstantKind {
347    // FIXME: instead of storing the stringified expression, store `self` directly instead.
348    ConstantKind::TyConst { expr: constant.skip_binder().to_string().into() }
349}
350
351pub(crate) fn clean_middle_region<'tcx>(
352    region: ty::Region<'tcx>,
353    cx: &mut DocContext<'tcx>,
354) -> Option<Lifetime> {
355    region.get_name(cx.tcx).map(Lifetime)
356}
357
358fn clean_where_predicate<'tcx>(
359    predicate: &hir::WherePredicate<'tcx>,
360    cx: &mut DocContext<'tcx>,
361) -> Option<WherePredicate> {
362    if !predicate.kind.in_where_clause() {
363        return None;
364    }
365    Some(match predicate.kind {
366        hir::WherePredicateKind::BoundPredicate(wbp) => {
367            let bound_params = wbp
368                .bound_generic_params
369                .iter()
370                .map(|param| clean_generic_param(cx, None, param))
371                .collect();
372            WherePredicate::BoundPredicate {
373                ty: clean_ty(wbp.bounded_ty, cx),
374                bounds: wbp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
375                bound_params,
376            }
377        }
378
379        hir::WherePredicateKind::RegionPredicate(wrp) => WherePredicate::RegionPredicate {
380            lifetime: clean_lifetime(wrp.lifetime, cx),
381            bounds: wrp.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
382        },
383
384        // We should never actually reach this case because these predicates should've already been
385        // rejected in an earlier compiler pass. This feature isn't fully implemented (#20041).
386        hir::WherePredicateKind::EqPredicate(_) => bug!("EqPredicate"),
387    })
388}
389
390pub(crate) fn clean_predicate<'tcx>(
391    predicate: ty::Clause<'tcx>,
392    cx: &mut DocContext<'tcx>,
393) -> Option<WherePredicate> {
394    let bound_predicate = predicate.kind();
395    match bound_predicate.skip_binder() {
396        ty::ClauseKind::Trait(pred) => clean_poly_trait_predicate(bound_predicate.rebind(pred), cx),
397        ty::ClauseKind::RegionOutlives(pred) => Some(clean_region_outlives_predicate(pred, cx)),
398        ty::ClauseKind::TypeOutlives(pred) => {
399            Some(clean_type_outlives_predicate(bound_predicate.rebind(pred), cx))
400        }
401        ty::ClauseKind::Projection(pred) => {
402            Some(clean_projection_predicate(bound_predicate.rebind(pred), cx))
403        }
404        // FIXME(generic_const_exprs): should this do something?
405        ty::ClauseKind::ConstEvaluatable(..)
406        | ty::ClauseKind::WellFormed(..)
407        | ty::ClauseKind::ConstArgHasType(..)
408        | ty::ClauseKind::UnstableFeature(..)
409        // FIXME(const_trait_impl): We can probably use this `HostEffect` pred to render `~const`.
410        | ty::ClauseKind::HostEffect(_) => None,
411    }
412}
413
414fn clean_poly_trait_predicate<'tcx>(
415    pred: ty::PolyTraitPredicate<'tcx>,
416    cx: &mut DocContext<'tcx>,
417) -> Option<WherePredicate> {
418    // `T: [const] Destruct` is hidden because `T: Destruct` is a no-op.
419    // FIXME(const_trait_impl) check constness
420    if Some(pred.skip_binder().def_id()) == cx.tcx.lang_items().destruct_trait() {
421        return None;
422    }
423
424    let poly_trait_ref = pred.map_bound(|pred| pred.trait_ref);
425    Some(WherePredicate::BoundPredicate {
426        ty: clean_middle_ty(poly_trait_ref.self_ty(), cx, None, None),
427        bounds: vec![clean_poly_trait_ref_with_constraints(cx, poly_trait_ref, ThinVec::new())],
428        bound_params: Vec::new(),
429    })
430}
431
432fn clean_region_outlives_predicate<'tcx>(
433    pred: ty::RegionOutlivesPredicate<'tcx>,
434    cx: &mut DocContext<'tcx>,
435) -> WherePredicate {
436    let ty::OutlivesPredicate(a, b) = pred;
437
438    WherePredicate::RegionPredicate {
439        lifetime: clean_middle_region(a, cx).expect("failed to clean lifetime"),
440        bounds: vec![GenericBound::Outlives(
441            clean_middle_region(b, cx).expect("failed to clean bounds"),
442        )],
443    }
444}
445
446fn clean_type_outlives_predicate<'tcx>(
447    pred: ty::Binder<'tcx, ty::TypeOutlivesPredicate<'tcx>>,
448    cx: &mut DocContext<'tcx>,
449) -> WherePredicate {
450    let ty::OutlivesPredicate(ty, lt) = pred.skip_binder();
451
452    WherePredicate::BoundPredicate {
453        ty: clean_middle_ty(pred.rebind(ty), cx, None, None),
454        bounds: vec![GenericBound::Outlives(
455            clean_middle_region(lt, cx).expect("failed to clean lifetimes"),
456        )],
457        bound_params: Vec::new(),
458    }
459}
460
461fn clean_middle_term<'tcx>(
462    term: ty::Binder<'tcx, ty::Term<'tcx>>,
463    cx: &mut DocContext<'tcx>,
464) -> Term {
465    match term.skip_binder().kind() {
466        ty::TermKind::Ty(ty) => Term::Type(clean_middle_ty(term.rebind(ty), cx, None, None)),
467        ty::TermKind::Const(c) => Term::Constant(clean_middle_const(term.rebind(c), cx)),
468    }
469}
470
471fn clean_hir_term<'tcx>(
472    assoc_item: Option<DefId>,
473    term: &hir::Term<'tcx>,
474    cx: &mut DocContext<'tcx>,
475) -> Term {
476    match term {
477        hir::Term::Ty(ty) => Term::Type(clean_ty(ty, cx)),
478        hir::Term::Const(c) => {
479            // FIXME(generic_const_items): this should instantiate with the alias item's args
480            let ty = cx.tcx.type_of(assoc_item.unwrap()).instantiate_identity();
481            let ct = lower_const_arg_for_rustdoc(cx.tcx, c, ty);
482            Term::Constant(clean_middle_const(ty::Binder::dummy(ct), cx))
483        }
484    }
485}
486
487fn clean_projection_predicate<'tcx>(
488    pred: ty::Binder<'tcx, ty::ProjectionPredicate<'tcx>>,
489    cx: &mut DocContext<'tcx>,
490) -> WherePredicate {
491    WherePredicate::EqPredicate {
492        lhs: clean_projection(pred.map_bound(|p| p.projection_term), cx, None),
493        rhs: clean_middle_term(pred.map_bound(|p| p.term), cx),
494    }
495}
496
497fn clean_projection<'tcx>(
498    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
499    cx: &mut DocContext<'tcx>,
500    parent_def_id: Option<DefId>,
501) -> QPathData {
502    let trait_ = clean_trait_ref_with_constraints(
503        cx,
504        proj.map_bound(|proj| proj.trait_ref(cx.tcx)),
505        ThinVec::new(),
506    );
507    let self_type = clean_middle_ty(proj.map_bound(|proj| proj.self_ty()), cx, None, None);
508    let self_def_id = match parent_def_id {
509        Some(parent_def_id) => cx.tcx.opt_parent(parent_def_id).or(Some(parent_def_id)),
510        None => self_type.def_id(&cx.cache),
511    };
512    let should_fully_qualify = should_fully_qualify_path(self_def_id, &trait_, &self_type);
513
514    QPathData {
515        assoc: projection_to_path_segment(proj, cx),
516        self_type,
517        should_fully_qualify,
518        trait_: Some(trait_),
519    }
520}
521
522fn should_fully_qualify_path(self_def_id: Option<DefId>, trait_: &Path, self_type: &Type) -> bool {
523    !trait_.segments.is_empty()
524        && self_def_id
525            .zip(Some(trait_.def_id()))
526            .map_or(!self_type.is_self_type(), |(id, trait_)| id != trait_)
527}
528
529fn projection_to_path_segment<'tcx>(
530    proj: ty::Binder<'tcx, ty::AliasTerm<'tcx>>,
531    cx: &mut DocContext<'tcx>,
532) -> PathSegment {
533    let def_id = proj.skip_binder().def_id;
534    let generics = cx.tcx.generics_of(def_id);
535    PathSegment {
536        name: cx.tcx.item_name(def_id),
537        args: GenericArgs::AngleBracketed {
538            args: clean_middle_generic_args(
539                cx,
540                proj.map_bound(|ty| &ty.args[generics.parent_count..]),
541                false,
542                def_id,
543            ),
544            constraints: Default::default(),
545        },
546    }
547}
548
549fn clean_generic_param_def(
550    def: &ty::GenericParamDef,
551    defaults: ParamDefaults,
552    cx: &mut DocContext<'_>,
553) -> GenericParamDef {
554    let (name, kind) = match def.kind {
555        ty::GenericParamDefKind::Lifetime => {
556            (def.name, GenericParamDefKind::Lifetime { outlives: ThinVec::new() })
557        }
558        ty::GenericParamDefKind::Type { has_default, synthetic, .. } => {
559            let default = if let ParamDefaults::Yes = defaults
560                && has_default
561            {
562                Some(clean_middle_ty(
563                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
564                    cx,
565                    Some(def.def_id),
566                    None,
567                ))
568            } else {
569                None
570            };
571            (
572                def.name,
573                GenericParamDefKind::Type {
574                    bounds: ThinVec::new(), // These are filled in from the where-clauses.
575                    default: default.map(Box::new),
576                    synthetic,
577                },
578            )
579        }
580        ty::GenericParamDefKind::Const { has_default } => (
581            def.name,
582            GenericParamDefKind::Const {
583                ty: Box::new(clean_middle_ty(
584                    ty::Binder::dummy(cx.tcx.type_of(def.def_id).instantiate_identity()),
585                    cx,
586                    Some(def.def_id),
587                    None,
588                )),
589                default: if let ParamDefaults::Yes = defaults
590                    && has_default
591                {
592                    Some(Box::new(
593                        cx.tcx.const_param_default(def.def_id).instantiate_identity().to_string(),
594                    ))
595                } else {
596                    None
597                },
598            },
599        ),
600    };
601
602    GenericParamDef { name, def_id: def.def_id, kind }
603}
604
605/// Whether to clean generic parameter defaults or not.
606enum ParamDefaults {
607    Yes,
608    No,
609}
610
611fn clean_generic_param<'tcx>(
612    cx: &mut DocContext<'tcx>,
613    generics: Option<&hir::Generics<'tcx>>,
614    param: &hir::GenericParam<'tcx>,
615) -> GenericParamDef {
616    let (name, kind) = match param.kind {
617        hir::GenericParamKind::Lifetime { .. } => {
618            let outlives = if let Some(generics) = generics {
619                generics
620                    .outlives_for_param(param.def_id)
621                    .filter(|bp| !bp.in_where_clause)
622                    .flat_map(|bp| bp.bounds)
623                    .map(|bound| match bound {
624                        hir::GenericBound::Outlives(lt) => clean_lifetime(lt, cx),
625                        _ => panic!(),
626                    })
627                    .collect()
628            } else {
629                ThinVec::new()
630            };
631            (param.name.ident().name, GenericParamDefKind::Lifetime { outlives })
632        }
633        hir::GenericParamKind::Type { ref default, synthetic } => {
634            let bounds = if let Some(generics) = generics {
635                generics
636                    .bounds_for_param(param.def_id)
637                    .filter(|bp| bp.origin != PredicateOrigin::WhereClause)
638                    .flat_map(|bp| bp.bounds)
639                    .filter_map(|x| clean_generic_bound(x, cx))
640                    .collect()
641            } else {
642                ThinVec::new()
643            };
644            (
645                param.name.ident().name,
646                GenericParamDefKind::Type {
647                    bounds,
648                    default: default.map(|t| clean_ty(t, cx)).map(Box::new),
649                    synthetic,
650                },
651            )
652        }
653        hir::GenericParamKind::Const { ty, default } => (
654            param.name.ident().name,
655            GenericParamDefKind::Const {
656                ty: Box::new(clean_ty(ty, cx)),
657                default: default.map(|ct| {
658                    Box::new(
659                        lower_const_arg_for_rustdoc(cx.tcx, ct, lower_ty(cx.tcx, ty)).to_string(),
660                    )
661                }),
662            },
663        ),
664    };
665
666    GenericParamDef { name, def_id: param.def_id.to_def_id(), kind }
667}
668
669/// Synthetic type-parameters are inserted after normal ones.
670/// In order for normal parameters to be able to refer to synthetic ones,
671/// scans them first.
672fn is_impl_trait(param: &hir::GenericParam<'_>) -> bool {
673    match param.kind {
674        hir::GenericParamKind::Type { synthetic, .. } => synthetic,
675        _ => false,
676    }
677}
678
679/// This can happen for `async fn`, e.g. `async fn f<'_>(&'_ self)`.
680///
681/// See `lifetime_to_generic_param` in `rustc_ast_lowering` for more information.
682fn is_elided_lifetime(param: &hir::GenericParam<'_>) -> bool {
683    matches!(
684        param.kind,
685        hir::GenericParamKind::Lifetime { kind: hir::LifetimeParamKind::Elided(_) }
686    )
687}
688
689pub(crate) fn clean_generics<'tcx>(
690    gens: &hir::Generics<'tcx>,
691    cx: &mut DocContext<'tcx>,
692) -> Generics {
693    let impl_trait_params = gens
694        .params
695        .iter()
696        .filter(|param| is_impl_trait(param))
697        .map(|param| {
698            let param = clean_generic_param(cx, Some(gens), param);
699            match param.kind {
700                GenericParamDefKind::Lifetime { .. } => unreachable!(),
701                GenericParamDefKind::Type { ref bounds, .. } => {
702                    cx.impl_trait_bounds.insert(param.def_id.into(), bounds.to_vec());
703                }
704                GenericParamDefKind::Const { .. } => unreachable!(),
705            }
706            param
707        })
708        .collect::<Vec<_>>();
709
710    let mut bound_predicates = FxIndexMap::default();
711    let mut region_predicates = FxIndexMap::default();
712    let mut eq_predicates = ThinVec::default();
713    for pred in gens.predicates.iter().filter_map(|x| clean_where_predicate(x, cx)) {
714        match pred {
715            WherePredicate::BoundPredicate { ty, bounds, bound_params } => {
716                match bound_predicates.entry(ty) {
717                    IndexEntry::Vacant(v) => {
718                        v.insert((bounds, bound_params));
719                    }
720                    IndexEntry::Occupied(mut o) => {
721                        // we merge both bounds.
722                        for bound in bounds {
723                            if !o.get().0.contains(&bound) {
724                                o.get_mut().0.push(bound);
725                            }
726                        }
727                        for bound_param in bound_params {
728                            if !o.get().1.contains(&bound_param) {
729                                o.get_mut().1.push(bound_param);
730                            }
731                        }
732                    }
733                }
734            }
735            WherePredicate::RegionPredicate { lifetime, bounds } => {
736                match region_predicates.entry(lifetime) {
737                    IndexEntry::Vacant(v) => {
738                        v.insert(bounds);
739                    }
740                    IndexEntry::Occupied(mut o) => {
741                        // we merge both bounds.
742                        for bound in bounds {
743                            if !o.get().contains(&bound) {
744                                o.get_mut().push(bound);
745                            }
746                        }
747                    }
748                }
749            }
750            WherePredicate::EqPredicate { lhs, rhs } => {
751                eq_predicates.push(WherePredicate::EqPredicate { lhs, rhs });
752            }
753        }
754    }
755
756    let mut params = ThinVec::with_capacity(gens.params.len());
757    // In this loop, we gather the generic parameters (`<'a, B: 'a>`) and check if they have
758    // bounds in the where predicates. If so, we move their bounds into the where predicates
759    // while also preventing duplicates.
760    for p in gens.params.iter().filter(|p| !is_impl_trait(p) && !is_elided_lifetime(p)) {
761        let mut p = clean_generic_param(cx, Some(gens), p);
762        match &mut p.kind {
763            GenericParamDefKind::Lifetime { outlives } => {
764                if let Some(region_pred) = region_predicates.get_mut(&Lifetime(p.name)) {
765                    // We merge bounds in the `where` clause.
766                    for outlive in outlives.drain(..) {
767                        let outlive = GenericBound::Outlives(outlive);
768                        if !region_pred.contains(&outlive) {
769                            region_pred.push(outlive);
770                        }
771                    }
772                }
773            }
774            GenericParamDefKind::Type { bounds, synthetic: false, .. } => {
775                if let Some(bound_pred) = bound_predicates.get_mut(&Type::Generic(p.name)) {
776                    // We merge bounds in the `where` clause.
777                    for bound in bounds.drain(..) {
778                        if !bound_pred.0.contains(&bound) {
779                            bound_pred.0.push(bound);
780                        }
781                    }
782                }
783            }
784            GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
785                // nothing to do here.
786            }
787        }
788        params.push(p);
789    }
790    params.extend(impl_trait_params);
791
792    Generics {
793        params,
794        where_predicates: bound_predicates
795            .into_iter()
796            .map(|(ty, (bounds, bound_params))| WherePredicate::BoundPredicate {
797                ty,
798                bounds,
799                bound_params,
800            })
801            .chain(
802                region_predicates
803                    .into_iter()
804                    .map(|(lifetime, bounds)| WherePredicate::RegionPredicate { lifetime, bounds }),
805            )
806            .chain(eq_predicates)
807            .collect(),
808    }
809}
810
811fn clean_ty_generics<'tcx>(cx: &mut DocContext<'tcx>, def_id: DefId) -> Generics {
812    clean_ty_generics_inner(cx, cx.tcx.generics_of(def_id), cx.tcx.explicit_predicates_of(def_id))
813}
814
815fn clean_ty_generics_inner<'tcx>(
816    cx: &mut DocContext<'tcx>,
817    gens: &ty::Generics,
818    preds: ty::GenericPredicates<'tcx>,
819) -> Generics {
820    // Don't populate `cx.impl_trait_bounds` before cleaning where clauses,
821    // since `clean_predicate` would consume them.
822    let mut impl_trait = BTreeMap::<u32, Vec<GenericBound>>::default();
823
824    let params: ThinVec<_> = gens
825        .own_params
826        .iter()
827        .filter(|param| match param.kind {
828            ty::GenericParamDefKind::Lifetime => !param.is_anonymous_lifetime(),
829            ty::GenericParamDefKind::Type { synthetic, .. } => {
830                if param.name == kw::SelfUpper {
831                    debug_assert_eq!(param.index, 0);
832                    return false;
833                }
834                if synthetic {
835                    impl_trait.insert(param.index, vec![]);
836                    return false;
837                }
838                true
839            }
840            ty::GenericParamDefKind::Const { .. } => true,
841        })
842        .map(|param| clean_generic_param_def(param, ParamDefaults::Yes, cx))
843        .collect();
844
845    // param index -> [(trait DefId, associated type name & generics, term)]
846    let mut impl_trait_proj =
847        FxHashMap::<u32, Vec<(DefId, PathSegment, ty::Binder<'_, ty::Term<'_>>)>>::default();
848
849    let where_predicates = preds
850        .predicates
851        .iter()
852        .flat_map(|(pred, _)| {
853            let mut proj_pred = None;
854            let param_idx = {
855                let bound_p = pred.kind();
856                match bound_p.skip_binder() {
857                    ty::ClauseKind::Trait(pred) if let ty::Param(param) = pred.self_ty().kind() => {
858                        Some(param.index)
859                    }
860                    ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg))
861                        if let ty::Param(param) = ty.kind() =>
862                    {
863                        Some(param.index)
864                    }
865                    ty::ClauseKind::Projection(p)
866                        if let ty::Param(param) = p.projection_term.self_ty().kind() =>
867                    {
868                        proj_pred = Some(bound_p.rebind(p));
869                        Some(param.index)
870                    }
871                    _ => None,
872                }
873            };
874
875            if let Some(param_idx) = param_idx
876                && let Some(bounds) = impl_trait.get_mut(&param_idx)
877            {
878                let pred = clean_predicate(*pred, cx)?;
879
880                bounds.extend(pred.get_bounds().into_iter().flatten().cloned());
881
882                if let Some(pred) = proj_pred {
883                    let lhs = clean_projection(pred.map_bound(|p| p.projection_term), cx, None);
884                    impl_trait_proj.entry(param_idx).or_default().push((
885                        lhs.trait_.unwrap().def_id(),
886                        lhs.assoc,
887                        pred.map_bound(|p| p.term),
888                    ));
889                }
890
891                return None;
892            }
893
894            Some(pred)
895        })
896        .collect::<Vec<_>>();
897
898    for (idx, mut bounds) in impl_trait {
899        let mut has_sized = false;
900        bounds.retain(|b| {
901            if b.is_sized_bound(cx) {
902                has_sized = true;
903                false
904            } else if b.is_meta_sized_bound(cx) {
905                // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
906                // is shown and none of the new sizedness traits leak into documentation.
907                false
908            } else {
909                true
910            }
911        });
912        if !has_sized {
913            bounds.push(GenericBound::maybe_sized(cx));
914        }
915
916        // Move trait bounds to the front.
917        bounds.sort_by_key(|b| !b.is_trait_bound());
918
919        // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
920        // Since all potential trait bounds are at the front we can just check the first bound.
921        if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
922            bounds.insert(0, GenericBound::sized(cx));
923        }
924
925        if let Some(proj) = impl_trait_proj.remove(&idx) {
926            for (trait_did, name, rhs) in proj {
927                let rhs = clean_middle_term(rhs, cx);
928                simplify::merge_bounds(cx, &mut bounds, trait_did, name, &rhs);
929            }
930        }
931
932        cx.impl_trait_bounds.insert(idx.into(), bounds);
933    }
934
935    // Now that `cx.impl_trait_bounds` is populated, we can process
936    // remaining predicates which could contain `impl Trait`.
937    let where_predicates =
938        where_predicates.into_iter().flat_map(|p| clean_predicate(*p, cx)).collect();
939
940    let mut generics = Generics { params, where_predicates };
941    simplify::sized_bounds(cx, &mut generics);
942    generics.where_predicates = simplify::where_clauses(cx, generics.where_predicates);
943    generics
944}
945
946fn clean_ty_alias_inner_type<'tcx>(
947    ty: Ty<'tcx>,
948    cx: &mut DocContext<'tcx>,
949    ret: &mut Vec<Item>,
950) -> Option<TypeAliasInnerType> {
951    let ty::Adt(adt_def, args) = ty.kind() else {
952        return None;
953    };
954
955    if !adt_def.did().is_local() {
956        cx.with_param_env(adt_def.did(), |cx| {
957            inline::build_impls(cx, adt_def.did(), None, ret);
958        });
959    }
960
961    Some(if adt_def.is_enum() {
962        let variants: rustc_index::IndexVec<_, _> = adt_def
963            .variants()
964            .iter()
965            .map(|variant| clean_variant_def_with_args(variant, args, cx))
966            .collect();
967
968        if !adt_def.did().is_local() {
969            inline::record_extern_fqn(cx, adt_def.did(), ItemType::Enum);
970        }
971
972        TypeAliasInnerType::Enum {
973            variants,
974            is_non_exhaustive: adt_def.is_variant_list_non_exhaustive(),
975        }
976    } else {
977        let variant = adt_def
978            .variants()
979            .iter()
980            .next()
981            .unwrap_or_else(|| bug!("a struct or union should always have one variant def"));
982
983        let fields: Vec<_> =
984            clean_variant_def_with_args(variant, args, cx).kind.inner_items().cloned().collect();
985
986        if adt_def.is_struct() {
987            if !adt_def.did().is_local() {
988                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Struct);
989            }
990            TypeAliasInnerType::Struct { ctor_kind: variant.ctor_kind(), fields }
991        } else {
992            if !adt_def.did().is_local() {
993                inline::record_extern_fqn(cx, adt_def.did(), ItemType::Union);
994            }
995            TypeAliasInnerType::Union { fields }
996        }
997    })
998}
999
1000fn clean_proc_macro<'tcx>(
1001    item: &hir::Item<'tcx>,
1002    name: &mut Symbol,
1003    kind: MacroKind,
1004    cx: &mut DocContext<'tcx>,
1005) -> ItemKind {
1006    if kind != MacroKind::Derive {
1007        return ProcMacroItem(ProcMacro { kind, helpers: vec![] });
1008    }
1009    let attrs = cx.tcx.hir_attrs(item.hir_id());
1010    let Some((trait_name, helper_attrs)) = find_attr!(attrs, AttributeKind::ProcMacroDerive { trait_name, helper_attrs, ..} => (*trait_name, helper_attrs))
1011    else {
1012        return ProcMacroItem(ProcMacro { kind, helpers: vec![] });
1013    };
1014    *name = trait_name;
1015    let helpers = helper_attrs.iter().copied().collect();
1016
1017    ProcMacroItem(ProcMacro { kind, helpers })
1018}
1019
1020fn clean_fn_or_proc_macro<'tcx>(
1021    item: &hir::Item<'tcx>,
1022    sig: &hir::FnSig<'tcx>,
1023    generics: &hir::Generics<'tcx>,
1024    body_id: hir::BodyId,
1025    name: &mut Symbol,
1026    cx: &mut DocContext<'tcx>,
1027) -> ItemKind {
1028    let attrs = cx.tcx.hir_attrs(item.hir_id());
1029    let macro_kind = if find_attr!(attrs, AttributeKind::ProcMacro(..)) {
1030        Some(MacroKind::Bang)
1031    } else if find_attr!(attrs, AttributeKind::ProcMacroDerive { .. }) {
1032        Some(MacroKind::Derive)
1033    } else if find_attr!(attrs, AttributeKind::ProcMacroAttribute(..)) {
1034        Some(MacroKind::Attr)
1035    } else {
1036        None
1037    };
1038
1039    match macro_kind {
1040        Some(kind) => clean_proc_macro(item, name, kind, cx),
1041        None => {
1042            let mut func = clean_function(cx, sig, generics, ParamsSrc::Body(body_id));
1043            clean_fn_decl_legacy_const_generics(&mut func, attrs);
1044            FunctionItem(func)
1045        }
1046    }
1047}
1048
1049/// This is needed to make it more "readable" when documenting functions using
1050/// `rustc_legacy_const_generics`. More information in
1051/// <https://github.com/rust-lang/rust/issues/83167>.
1052fn clean_fn_decl_legacy_const_generics(func: &mut Function, attrs: &[hir::Attribute]) {
1053    let Some(indexes) =
1054        find_attr!(attrs, AttributeKind::RustcLegacyConstGenerics{fn_indexes,..} => fn_indexes)
1055    else {
1056        return;
1057    };
1058
1059    for (pos, (index, _)) in indexes.iter().enumerate() {
1060        let GenericParamDef { name, kind, .. } = func.generics.params.remove(0);
1061        if let GenericParamDefKind::Const { ty, .. } = kind {
1062            func.decl
1063                .inputs
1064                .insert(*index, Parameter { name: Some(name), type_: *ty, is_const: true });
1065        } else {
1066            panic!("unexpected non const in position {pos}");
1067        }
1068    }
1069}
1070
1071enum ParamsSrc<'tcx> {
1072    Body(hir::BodyId),
1073    Idents(&'tcx [Option<Ident>]),
1074}
1075
1076fn clean_function<'tcx>(
1077    cx: &mut DocContext<'tcx>,
1078    sig: &hir::FnSig<'tcx>,
1079    generics: &hir::Generics<'tcx>,
1080    params: ParamsSrc<'tcx>,
1081) -> Box<Function> {
1082    let (generics, decl) = enter_impl_trait(cx, |cx| {
1083        // NOTE: Generics must be cleaned before params.
1084        let generics = clean_generics(generics, cx);
1085        let params = match params {
1086            ParamsSrc::Body(body_id) => clean_params_via_body(cx, sig.decl.inputs, body_id),
1087            // Let's not perpetuate anon params from Rust 2015; use `_` for them.
1088            ParamsSrc::Idents(idents) => clean_params(cx, sig.decl.inputs, idents, |ident| {
1089                Some(ident.map_or(kw::Underscore, |ident| ident.name))
1090            }),
1091        };
1092        let decl = clean_fn_decl_with_params(cx, sig.decl, Some(&sig.header), params);
1093        (generics, decl)
1094    });
1095    Box::new(Function { decl, generics })
1096}
1097
1098fn clean_params<'tcx>(
1099    cx: &mut DocContext<'tcx>,
1100    types: &[hir::Ty<'tcx>],
1101    idents: &[Option<Ident>],
1102    postprocess: impl Fn(Option<Ident>) -> Option<Symbol>,
1103) -> Vec<Parameter> {
1104    types
1105        .iter()
1106        .enumerate()
1107        .map(|(i, ty)| Parameter {
1108            name: postprocess(idents[i]),
1109            type_: clean_ty(ty, cx),
1110            is_const: false,
1111        })
1112        .collect()
1113}
1114
1115fn clean_params_via_body<'tcx>(
1116    cx: &mut DocContext<'tcx>,
1117    types: &[hir::Ty<'tcx>],
1118    body_id: hir::BodyId,
1119) -> Vec<Parameter> {
1120    types
1121        .iter()
1122        .zip(cx.tcx.hir_body(body_id).params)
1123        .map(|(ty, param)| Parameter {
1124            name: Some(name_from_pat(param.pat)),
1125            type_: clean_ty(ty, cx),
1126            is_const: false,
1127        })
1128        .collect()
1129}
1130
1131fn clean_fn_decl_with_params<'tcx>(
1132    cx: &mut DocContext<'tcx>,
1133    decl: &hir::FnDecl<'tcx>,
1134    header: Option<&hir::FnHeader>,
1135    params: Vec<Parameter>,
1136) -> FnDecl {
1137    let mut output = match decl.output {
1138        hir::FnRetTy::Return(typ) => clean_ty(typ, cx),
1139        hir::FnRetTy::DefaultReturn(..) => Type::Tuple(Vec::new()),
1140    };
1141    if let Some(header) = header
1142        && header.is_async()
1143    {
1144        output = output.sugared_async_return_type();
1145    }
1146    FnDecl { inputs: params, output, c_variadic: decl.c_variadic }
1147}
1148
1149fn clean_poly_fn_sig<'tcx>(
1150    cx: &mut DocContext<'tcx>,
1151    did: Option<DefId>,
1152    sig: ty::PolyFnSig<'tcx>,
1153) -> FnDecl {
1154    let mut output = clean_middle_ty(sig.output(), cx, None, None);
1155
1156    // If the return type isn't an `impl Trait`, we can safely assume that this
1157    // function isn't async without needing to execute the query `asyncness` at
1158    // all which gives us a noticeable performance boost.
1159    if let Some(did) = did
1160        && let Type::ImplTrait(_) = output
1161        && cx.tcx.asyncness(did).is_async()
1162    {
1163        output = output.sugared_async_return_type();
1164    }
1165
1166    let mut idents = did.map(|did| cx.tcx.fn_arg_idents(did)).unwrap_or_default().iter().copied();
1167
1168    // If this comes from a fn item, let's not perpetuate anon params from Rust 2015; use `_` for them.
1169    // If this comes from a fn ptr ty, we just keep params unnamed since it's more conventional stylistically.
1170    // Since the param name is not part of the semantic type, these params never bear a name unlike
1171    // in the HIR case, thus we can't perform any fancy fallback logic unlike `clean_bare_fn_ty`.
1172    let fallback = did.map(|_| kw::Underscore);
1173
1174    let params = sig
1175        .inputs()
1176        .iter()
1177        .map(|ty| Parameter {
1178            name: idents.next().flatten().map(|ident| ident.name).or(fallback),
1179            type_: clean_middle_ty(ty.map_bound(|ty| *ty), cx, None, None),
1180            is_const: false,
1181        })
1182        .collect();
1183
1184    FnDecl { inputs: params, output, c_variadic: sig.skip_binder().c_variadic }
1185}
1186
1187fn clean_trait_ref<'tcx>(trait_ref: &hir::TraitRef<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
1188    let path = clean_path(trait_ref.path, cx);
1189    register_res(cx, path.res);
1190    path
1191}
1192
1193fn clean_poly_trait_ref<'tcx>(
1194    poly_trait_ref: &hir::PolyTraitRef<'tcx>,
1195    cx: &mut DocContext<'tcx>,
1196) -> PolyTrait {
1197    PolyTrait {
1198        trait_: clean_trait_ref(&poly_trait_ref.trait_ref, cx),
1199        generic_params: poly_trait_ref
1200            .bound_generic_params
1201            .iter()
1202            .filter(|p| !is_elided_lifetime(p))
1203            .map(|x| clean_generic_param(cx, None, x))
1204            .collect(),
1205    }
1206}
1207
1208fn clean_trait_item<'tcx>(trait_item: &hir::TraitItem<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
1209    let local_did = trait_item.owner_id.to_def_id();
1210    cx.with_param_env(local_did, |cx| {
1211        let inner = match trait_item.kind {
1212            hir::TraitItemKind::Const(ty, Some(default)) => {
1213                ProvidedAssocConstItem(Box::new(Constant {
1214                    generics: enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx)),
1215                    kind: clean_const_item_rhs(default, local_did),
1216                    type_: clean_ty(ty, cx),
1217                }))
1218            }
1219            hir::TraitItemKind::Const(ty, None) => {
1220                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1221                RequiredAssocConstItem(generics, Box::new(clean_ty(ty, cx)))
1222            }
1223            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
1224                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Body(body));
1225                MethodItem(m, None)
1226            }
1227            hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Required(idents)) => {
1228                let m = clean_function(cx, sig, trait_item.generics, ParamsSrc::Idents(idents));
1229                RequiredMethodItem(m)
1230            }
1231            hir::TraitItemKind::Type(bounds, Some(default)) => {
1232                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1233                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1234                let item_type =
1235                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, default)), cx, None, None);
1236                AssocTypeItem(
1237                    Box::new(TypeAlias {
1238                        type_: clean_ty(default, cx),
1239                        generics,
1240                        inner_type: None,
1241                        item_type: Some(item_type),
1242                    }),
1243                    bounds,
1244                )
1245            }
1246            hir::TraitItemKind::Type(bounds, None) => {
1247                let generics = enter_impl_trait(cx, |cx| clean_generics(trait_item.generics, cx));
1248                let bounds = bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect();
1249                RequiredAssocTypeItem(generics, bounds)
1250            }
1251        };
1252        Item::from_def_id_and_parts(local_did, Some(trait_item.ident.name), inner, cx)
1253    })
1254}
1255
1256pub(crate) fn clean_impl_item<'tcx>(
1257    impl_: &hir::ImplItem<'tcx>,
1258    cx: &mut DocContext<'tcx>,
1259) -> Item {
1260    let local_did = impl_.owner_id.to_def_id();
1261    cx.with_param_env(local_did, |cx| {
1262        let inner = match impl_.kind {
1263            hir::ImplItemKind::Const(ty, expr) => ImplAssocConstItem(Box::new(Constant {
1264                generics: clean_generics(impl_.generics, cx),
1265                kind: clean_const_item_rhs(expr, local_did),
1266                type_: clean_ty(ty, cx),
1267            })),
1268            hir::ImplItemKind::Fn(ref sig, body) => {
1269                let m = clean_function(cx, sig, impl_.generics, ParamsSrc::Body(body));
1270                let defaultness = match impl_.impl_kind {
1271                    hir::ImplItemImplKind::Inherent { .. } => hir::Defaultness::Final,
1272                    hir::ImplItemImplKind::Trait { defaultness, .. } => defaultness,
1273                };
1274                MethodItem(m, Some(defaultness))
1275            }
1276            hir::ImplItemKind::Type(hir_ty) => {
1277                let type_ = clean_ty(hir_ty, cx);
1278                let generics = clean_generics(impl_.generics, cx);
1279                let item_type =
1280                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, hir_ty)), cx, None, None);
1281                AssocTypeItem(
1282                    Box::new(TypeAlias {
1283                        type_,
1284                        generics,
1285                        inner_type: None,
1286                        item_type: Some(item_type),
1287                    }),
1288                    Vec::new(),
1289                )
1290            }
1291        };
1292
1293        Item::from_def_id_and_parts(local_did, Some(impl_.ident.name), inner, cx)
1294    })
1295}
1296
1297pub(crate) fn clean_middle_assoc_item(assoc_item: &ty::AssocItem, cx: &mut DocContext<'_>) -> Item {
1298    let tcx = cx.tcx;
1299    let kind = match assoc_item.kind {
1300        ty::AssocKind::Const { .. } => {
1301            let ty = clean_middle_ty(
1302                ty::Binder::dummy(tcx.type_of(assoc_item.def_id).instantiate_identity()),
1303                cx,
1304                Some(assoc_item.def_id),
1305                None,
1306            );
1307
1308            let mut generics = clean_ty_generics(cx, assoc_item.def_id);
1309            simplify::move_bounds_to_generic_parameters(&mut generics);
1310
1311            match assoc_item.container {
1312                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {
1313                    ImplAssocConstItem(Box::new(Constant {
1314                        generics,
1315                        kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1316                        type_: ty,
1317                    }))
1318                }
1319                ty::AssocContainer::Trait => {
1320                    if tcx.defaultness(assoc_item.def_id).has_value() {
1321                        ProvidedAssocConstItem(Box::new(Constant {
1322                            generics,
1323                            kind: ConstantKind::Extern { def_id: assoc_item.def_id },
1324                            type_: ty,
1325                        }))
1326                    } else {
1327                        RequiredAssocConstItem(generics, Box::new(ty))
1328                    }
1329                }
1330            }
1331        }
1332        ty::AssocKind::Fn { has_self, .. } => {
1333            let mut item = inline::build_function(cx, assoc_item.def_id);
1334
1335            if has_self {
1336                let self_ty = match assoc_item.container {
1337                    ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => {
1338                        tcx.type_of(assoc_item.container_id(tcx)).instantiate_identity()
1339                    }
1340                    ty::AssocContainer::Trait => tcx.types.self_param,
1341                };
1342                let self_param_ty =
1343                    tcx.fn_sig(assoc_item.def_id).instantiate_identity().input(0).skip_binder();
1344                if self_param_ty == self_ty {
1345                    item.decl.inputs[0].type_ = SelfTy;
1346                } else if let ty::Ref(_, ty, _) = *self_param_ty.kind()
1347                    && ty == self_ty
1348                {
1349                    match item.decl.inputs[0].type_ {
1350                        BorrowedRef { ref mut type_, .. } => **type_ = SelfTy,
1351                        _ => unreachable!(),
1352                    }
1353                }
1354            }
1355
1356            let provided = match assoc_item.container {
1357                ty::AssocContainer::InherentImpl | ty::AssocContainer::TraitImpl(_) => true,
1358                ty::AssocContainer::Trait => assoc_item.defaultness(tcx).has_value(),
1359            };
1360            if provided {
1361                let defaultness = match assoc_item.container {
1362                    ty::AssocContainer::TraitImpl(_) => Some(assoc_item.defaultness(tcx)),
1363                    ty::AssocContainer::InherentImpl | ty::AssocContainer::Trait => None,
1364                };
1365                MethodItem(item, defaultness)
1366            } else {
1367                RequiredMethodItem(item)
1368            }
1369        }
1370        ty::AssocKind::Type { .. } => {
1371            let my_name = assoc_item.name();
1372
1373            fn param_eq_arg(param: &GenericParamDef, arg: &GenericArg) -> bool {
1374                match (&param.kind, arg) {
1375                    (GenericParamDefKind::Type { .. }, GenericArg::Type(Type::Generic(ty)))
1376                        if *ty == param.name =>
1377                    {
1378                        true
1379                    }
1380                    (GenericParamDefKind::Lifetime { .. }, GenericArg::Lifetime(Lifetime(lt)))
1381                        if *lt == param.name =>
1382                    {
1383                        true
1384                    }
1385                    (GenericParamDefKind::Const { .. }, GenericArg::Const(c)) => match &**c {
1386                        ConstantKind::TyConst { expr } => **expr == *param.name.as_str(),
1387                        _ => false,
1388                    },
1389                    _ => false,
1390                }
1391            }
1392
1393            let mut predicates = tcx.explicit_predicates_of(assoc_item.def_id).predicates;
1394            if let ty::AssocContainer::Trait = assoc_item.container {
1395                let bounds = tcx.explicit_item_bounds(assoc_item.def_id).iter_identity_copied();
1396                predicates = tcx.arena.alloc_from_iter(bounds.chain(predicates.iter().copied()));
1397            }
1398            let mut generics = clean_ty_generics_inner(
1399                cx,
1400                tcx.generics_of(assoc_item.def_id),
1401                ty::GenericPredicates { parent: None, predicates },
1402            );
1403            simplify::move_bounds_to_generic_parameters(&mut generics);
1404
1405            if let ty::AssocContainer::Trait = assoc_item.container {
1406                // Move bounds that are (likely) directly attached to the associated type
1407                // from the where-clause to the associated type.
1408                // There is no guarantee that this is what the user actually wrote but we have
1409                // no way of knowing.
1410                let mut bounds: Vec<GenericBound> = Vec::new();
1411                generics.where_predicates.retain_mut(|pred| match *pred {
1412                    WherePredicate::BoundPredicate {
1413                        ty:
1414                            QPath(box QPathData {
1415                                ref assoc,
1416                                ref self_type,
1417                                trait_: Some(ref trait_),
1418                                ..
1419                            }),
1420                        bounds: ref mut pred_bounds,
1421                        ..
1422                    } => {
1423                        if assoc.name != my_name {
1424                            return true;
1425                        }
1426                        if trait_.def_id() != assoc_item.container_id(tcx) {
1427                            return true;
1428                        }
1429                        if *self_type != SelfTy {
1430                            return true;
1431                        }
1432                        match &assoc.args {
1433                            GenericArgs::AngleBracketed { args, constraints } => {
1434                                if !constraints.is_empty()
1435                                    || generics
1436                                        .params
1437                                        .iter()
1438                                        .zip(args.iter())
1439                                        .any(|(param, arg)| !param_eq_arg(param, arg))
1440                                {
1441                                    return true;
1442                                }
1443                            }
1444                            GenericArgs::Parenthesized { .. } => {
1445                                // The only time this happens is if we're inside the rustdoc for Fn(),
1446                                // which only has one associated type, which is not a GAT, so whatever.
1447                            }
1448                            GenericArgs::ReturnTypeNotation => {
1449                                // Never move these.
1450                            }
1451                        }
1452                        bounds.extend(mem::take(pred_bounds));
1453                        false
1454                    }
1455                    _ => true,
1456                });
1457
1458                bounds.retain(|b| {
1459                    // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
1460                    // is shown and none of the new sizedness traits leak into documentation.
1461                    !b.is_meta_sized_bound(cx)
1462                });
1463
1464                // Our Sized/?Sized bound didn't get handled when creating the generics
1465                // because we didn't actually get our whole set of bounds until just now
1466                // (some of them may have come from the trait). If we do have a sized
1467                // bound, we remove it, and if we don't then we add the `?Sized` bound
1468                // at the end.
1469                match bounds.iter().position(|b| b.is_sized_bound(cx)) {
1470                    Some(i) => {
1471                        bounds.remove(i);
1472                    }
1473                    None => bounds.push(GenericBound::maybe_sized(cx)),
1474                }
1475
1476                if tcx.defaultness(assoc_item.def_id).has_value() {
1477                    AssocTypeItem(
1478                        Box::new(TypeAlias {
1479                            type_: clean_middle_ty(
1480                                ty::Binder::dummy(
1481                                    tcx.type_of(assoc_item.def_id).instantiate_identity(),
1482                                ),
1483                                cx,
1484                                Some(assoc_item.def_id),
1485                                None,
1486                            ),
1487                            generics,
1488                            inner_type: None,
1489                            item_type: None,
1490                        }),
1491                        bounds,
1492                    )
1493                } else {
1494                    RequiredAssocTypeItem(generics, bounds)
1495                }
1496            } else {
1497                AssocTypeItem(
1498                    Box::new(TypeAlias {
1499                        type_: clean_middle_ty(
1500                            ty::Binder::dummy(
1501                                tcx.type_of(assoc_item.def_id).instantiate_identity(),
1502                            ),
1503                            cx,
1504                            Some(assoc_item.def_id),
1505                            None,
1506                        ),
1507                        generics,
1508                        inner_type: None,
1509                        item_type: None,
1510                    }),
1511                    // Associated types inside trait or inherent impls are not allowed to have
1512                    // item bounds. Thus we don't attempt to move any bounds there.
1513                    Vec::new(),
1514                )
1515            }
1516        }
1517    };
1518
1519    Item::from_def_id_and_parts(assoc_item.def_id, Some(assoc_item.name()), kind, cx)
1520}
1521
1522fn first_non_private_clean_path<'tcx>(
1523    cx: &mut DocContext<'tcx>,
1524    path: &hir::Path<'tcx>,
1525    new_path_segments: &'tcx [hir::PathSegment<'tcx>],
1526    new_path_span: rustc_span::Span,
1527) -> Path {
1528    let new_hir_path =
1529        hir::Path { segments: new_path_segments, res: path.res, span: new_path_span };
1530    let mut new_clean_path = clean_path(&new_hir_path, cx);
1531    // In here we need to play with the path data one last time to provide it the
1532    // missing `args` and `res` of the final `Path` we get, which, since it comes
1533    // from a re-export, doesn't have the generics that were originally there, so
1534    // we add them by hand.
1535    if let Some(path_last) = path.segments.last().as_ref()
1536        && let Some(new_path_last) = new_clean_path.segments[..].last_mut()
1537        && let Some(path_last_args) = path_last.args.as_ref()
1538        && path_last.args.is_some()
1539    {
1540        assert!(new_path_last.args.is_empty());
1541        new_path_last.args = clean_generic_args(None, path_last_args, cx);
1542    }
1543    new_clean_path
1544}
1545
1546/// The goal of this function is to return the first `Path` which is not private (ie not private
1547/// or `doc(hidden)`). If it's not possible, it'll return the "end type".
1548///
1549/// If the path is not a re-export or is public, it'll return `None`.
1550fn first_non_private<'tcx>(
1551    cx: &mut DocContext<'tcx>,
1552    hir_id: hir::HirId,
1553    path: &hir::Path<'tcx>,
1554) -> Option<Path> {
1555    let target_def_id = path.res.opt_def_id()?;
1556    let (parent_def_id, ident) = match &path.segments {
1557        [] => return None,
1558        // Relative paths are available in the same scope as the owner.
1559        [leaf] => (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident),
1560        // So are self paths.
1561        [parent, leaf] if parent.ident.name == kw::SelfLower => {
1562            (cx.tcx.local_parent(hir_id.owner.def_id), leaf.ident)
1563        }
1564        // Crate paths are not. We start from the crate root.
1565        [parent, leaf] if matches!(parent.ident.name, kw::Crate | kw::PathRoot) => {
1566            (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1567        }
1568        [parent, leaf] if parent.ident.name == kw::Super => {
1569            let parent_mod = cx.tcx.parent_module(hir_id);
1570            if let Some(super_parent) = cx.tcx.opt_local_parent(parent_mod.to_local_def_id()) {
1571                (super_parent, leaf.ident)
1572            } else {
1573                // If we can't find the parent of the parent, then the parent is already the crate.
1574                (LOCAL_CRATE.as_def_id().as_local()?, leaf.ident)
1575            }
1576        }
1577        // Absolute paths are not. We start from the parent of the item.
1578        [.., parent, leaf] => (parent.res.opt_def_id()?.as_local()?, leaf.ident),
1579    };
1580    // First we try to get the `DefId` of the item.
1581    for child in
1582        cx.tcx.module_children_local(parent_def_id).iter().filter(move |c| c.ident == ident)
1583    {
1584        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = child.res {
1585            continue;
1586        }
1587
1588        if let Some(def_id) = child.res.opt_def_id()
1589            && target_def_id == def_id
1590        {
1591            let mut last_path_res = None;
1592            'reexps: for reexp in child.reexport_chain.iter() {
1593                if let Some(use_def_id) = reexp.id()
1594                    && let Some(local_use_def_id) = use_def_id.as_local()
1595                    && let hir::Node::Item(item) = cx.tcx.hir_node_by_def_id(local_use_def_id)
1596                    && let hir::ItemKind::Use(path, hir::UseKind::Single(_)) = item.kind
1597                {
1598                    for res in path.res.present_items() {
1599                        if let Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) = res {
1600                            continue;
1601                        }
1602                        if (cx.document_hidden() ||
1603                            !cx.tcx.is_doc_hidden(use_def_id)) &&
1604                            // We never check for "cx.document_private()"
1605                            // because if a re-export is not fully public, it's never
1606                            // documented.
1607                            cx.tcx.local_visibility(local_use_def_id).is_public()
1608                        {
1609                            break 'reexps;
1610                        }
1611                        last_path_res = Some((path, res));
1612                        continue 'reexps;
1613                    }
1614                }
1615            }
1616            if !child.reexport_chain.is_empty() {
1617                // So in here, we use the data we gathered from iterating the reexports. If
1618                // `last_path_res` is set, it can mean two things:
1619                //
1620                // 1. We found a public reexport.
1621                // 2. We didn't find a public reexport so it's the "end type" path.
1622                if let Some((new_path, _)) = last_path_res {
1623                    return Some(first_non_private_clean_path(
1624                        cx,
1625                        path,
1626                        new_path.segments,
1627                        new_path.span,
1628                    ));
1629                }
1630                // If `last_path_res` is `None`, it can mean two things:
1631                //
1632                // 1. The re-export is public, no need to change anything, just use the path as is.
1633                // 2. Nothing was found, so let's just return the original path.
1634                return None;
1635            }
1636        }
1637    }
1638    None
1639}
1640
1641fn clean_qpath<'tcx>(hir_ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1642    let hir::Ty { hir_id, span, ref kind } = *hir_ty;
1643    let hir::TyKind::Path(qpath) = kind else { unreachable!() };
1644
1645    match qpath {
1646        hir::QPath::Resolved(None, path) => {
1647            if let Res::Def(DefKind::TyParam, did) = path.res {
1648                if let Some(new_ty) = cx.args.get(&did).and_then(|p| p.as_ty()).cloned() {
1649                    return new_ty;
1650                }
1651                if let Some(bounds) = cx.impl_trait_bounds.remove(&did.into()) {
1652                    return ImplTrait(bounds);
1653                }
1654            }
1655
1656            if let Some(expanded) = maybe_expand_private_type_alias(cx, path) {
1657                expanded
1658            } else {
1659                // First we check if it's a private re-export.
1660                let path = if let Some(path) = first_non_private(cx, hir_id, path) {
1661                    path
1662                } else {
1663                    clean_path(path, cx)
1664                };
1665                resolve_type(cx, path)
1666            }
1667        }
1668        hir::QPath::Resolved(Some(qself), p) => {
1669            // Try to normalize `<X as Y>::T` to a type
1670            let ty = lower_ty(cx.tcx, hir_ty);
1671            // `hir_to_ty` can return projection types with escaping vars for GATs, e.g. `<() as Trait>::Gat<'_>`
1672            if !ty.has_escaping_bound_vars()
1673                && let Some(normalized_value) = normalize(cx, ty::Binder::dummy(ty))
1674            {
1675                return clean_middle_ty(normalized_value, cx, None, None);
1676            }
1677
1678            let trait_segments = &p.segments[..p.segments.len() - 1];
1679            let trait_def = cx.tcx.parent(p.res.def_id());
1680            let trait_ = self::Path {
1681                res: Res::Def(DefKind::Trait, trait_def),
1682                segments: trait_segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
1683            };
1684            register_res(cx, trait_.res);
1685            let self_def_id = DefId::local(qself.hir_id.owner.def_id.local_def_index);
1686            let self_type = clean_ty(qself, cx);
1687            let should_fully_qualify =
1688                should_fully_qualify_path(Some(self_def_id), &trait_, &self_type);
1689            Type::QPath(Box::new(QPathData {
1690                assoc: clean_path_segment(p.segments.last().expect("segments were empty"), cx),
1691                should_fully_qualify,
1692                self_type,
1693                trait_: Some(trait_),
1694            }))
1695        }
1696        hir::QPath::TypeRelative(qself, segment) => {
1697            let ty = lower_ty(cx.tcx, hir_ty);
1698            let self_type = clean_ty(qself, cx);
1699
1700            let (trait_, should_fully_qualify) = match ty.kind() {
1701                ty::Alias(ty::Projection, proj) => {
1702                    let res = Res::Def(DefKind::Trait, proj.trait_ref(cx.tcx).def_id);
1703                    let trait_ = clean_path(&hir::Path { span, res, segments: &[] }, cx);
1704                    register_res(cx, trait_.res);
1705                    let self_def_id = res.opt_def_id();
1706                    let should_fully_qualify =
1707                        should_fully_qualify_path(self_def_id, &trait_, &self_type);
1708
1709                    (Some(trait_), should_fully_qualify)
1710                }
1711                ty::Alias(ty::Inherent, _) => (None, false),
1712                // Rustdoc handles `ty::Error`s by turning them into `Type::Infer`s.
1713                ty::Error(_) => return Type::Infer,
1714                _ => bug!("clean: expected associated type, found `{ty:?}`"),
1715            };
1716
1717            Type::QPath(Box::new(QPathData {
1718                assoc: clean_path_segment(segment, cx),
1719                should_fully_qualify,
1720                self_type,
1721                trait_,
1722            }))
1723        }
1724    }
1725}
1726
1727fn maybe_expand_private_type_alias<'tcx>(
1728    cx: &mut DocContext<'tcx>,
1729    path: &hir::Path<'tcx>,
1730) -> Option<Type> {
1731    let Res::Def(DefKind::TyAlias, def_id) = path.res else { return None };
1732    // Substitute private type aliases
1733    let def_id = def_id.as_local()?;
1734    let alias = if !cx.cache.effective_visibilities.is_exported(cx.tcx, def_id.to_def_id())
1735        && !cx.current_type_aliases.contains_key(&def_id.to_def_id())
1736    {
1737        &cx.tcx.hir_expect_item(def_id).kind
1738    } else {
1739        return None;
1740    };
1741    let hir::ItemKind::TyAlias(_, generics, ty) = alias else { return None };
1742
1743    let final_seg = &path.segments.last().expect("segments were empty");
1744    let mut args = DefIdMap::default();
1745    let generic_args = final_seg.args();
1746
1747    let mut indices: hir::GenericParamCount = Default::default();
1748    for param in generics.params.iter() {
1749        match param.kind {
1750            hir::GenericParamKind::Lifetime { .. } => {
1751                let mut j = 0;
1752                let lifetime = generic_args.args.iter().find_map(|arg| match arg {
1753                    hir::GenericArg::Lifetime(lt) => {
1754                        if indices.lifetimes == j {
1755                            return Some(lt);
1756                        }
1757                        j += 1;
1758                        None
1759                    }
1760                    _ => None,
1761                });
1762                if let Some(lt) = lifetime {
1763                    let lt = if !lt.is_anonymous() {
1764                        clean_lifetime(lt, cx)
1765                    } else {
1766                        Lifetime::elided()
1767                    };
1768                    args.insert(param.def_id.to_def_id(), GenericArg::Lifetime(lt));
1769                }
1770                indices.lifetimes += 1;
1771            }
1772            hir::GenericParamKind::Type { ref default, .. } => {
1773                let mut j = 0;
1774                let type_ = generic_args.args.iter().find_map(|arg| match arg {
1775                    hir::GenericArg::Type(ty) => {
1776                        if indices.types == j {
1777                            return Some(ty.as_unambig_ty());
1778                        }
1779                        j += 1;
1780                        None
1781                    }
1782                    _ => None,
1783                });
1784                if let Some(ty) = type_.or(*default) {
1785                    args.insert(param.def_id.to_def_id(), GenericArg::Type(clean_ty(ty, cx)));
1786                }
1787                indices.types += 1;
1788            }
1789            // FIXME(#82852): Instantiate const parameters.
1790            hir::GenericParamKind::Const { .. } => {}
1791        }
1792    }
1793
1794    Some(cx.enter_alias(args, def_id.to_def_id(), |cx| {
1795        cx.with_param_env(def_id.to_def_id(), |cx| clean_ty(ty, cx))
1796    }))
1797}
1798
1799pub(crate) fn clean_ty<'tcx>(ty: &hir::Ty<'tcx>, cx: &mut DocContext<'tcx>) -> Type {
1800    use rustc_hir::*;
1801
1802    match ty.kind {
1803        TyKind::Never => Primitive(PrimitiveType::Never),
1804        TyKind::Ptr(ref m) => RawPointer(m.mutbl, Box::new(clean_ty(m.ty, cx))),
1805        TyKind::Ref(l, ref m) => {
1806            let lifetime = if l.is_anonymous() { None } else { Some(clean_lifetime(l, cx)) };
1807            BorrowedRef { lifetime, mutability: m.mutbl, type_: Box::new(clean_ty(m.ty, cx)) }
1808        }
1809        TyKind::Slice(ty) => Slice(Box::new(clean_ty(ty, cx))),
1810        TyKind::Pat(ty, pat) => Type::Pat(Box::new(clean_ty(ty, cx)), format!("{pat:?}").into()),
1811        TyKind::Array(ty, const_arg) => {
1812            // NOTE(min_const_generics): We can't use `const_eval_poly` for constants
1813            // as we currently do not supply the parent generics to anonymous constants
1814            // but do allow `ConstKind::Param`.
1815            //
1816            // `const_eval_poly` tries to first substitute generic parameters which
1817            // results in an ICE while manually constructing the constant and using `eval`
1818            // does nothing for `ConstKind::Param`.
1819            let length = match const_arg.kind {
1820                hir::ConstArgKind::Infer(..) | hir::ConstArgKind::Error(..) => "_".to_string(),
1821                hir::ConstArgKind::Anon(hir::AnonConst { def_id, .. }) => {
1822                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, cx.tcx.types.usize);
1823                    let typing_env = ty::TypingEnv::post_analysis(cx.tcx, *def_id);
1824                    let ct = cx.tcx.normalize_erasing_regions(typing_env, ct);
1825                    print_const(cx, ct)
1826                }
1827                hir::ConstArgKind::Struct(..)
1828                | hir::ConstArgKind::Path(..)
1829                | hir::ConstArgKind::TupleCall(..)
1830                | hir::ConstArgKind::Tup(..)
1831                | hir::ConstArgKind::Array(..)
1832                | hir::ConstArgKind::Literal(..) => {
1833                    let ct = lower_const_arg_for_rustdoc(cx.tcx, const_arg, cx.tcx.types.usize);
1834                    print_const(cx, ct)
1835                }
1836            };
1837            Array(Box::new(clean_ty(ty, cx)), length.into())
1838        }
1839        TyKind::Tup(tys) => Tuple(tys.iter().map(|ty| clean_ty(ty, cx)).collect()),
1840        TyKind::OpaqueDef(ty) => {
1841            ImplTrait(ty.bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect())
1842        }
1843        TyKind::Path(_) => clean_qpath(ty, cx),
1844        TyKind::TraitObject(bounds, lifetime) => {
1845            let bounds = bounds.iter().map(|bound| clean_poly_trait_ref(bound, cx)).collect();
1846            let lifetime = if !lifetime.is_elided() {
1847                Some(clean_lifetime(lifetime.pointer(), cx))
1848            } else {
1849                None
1850            };
1851            DynTrait(bounds, lifetime)
1852        }
1853        TyKind::FnPtr(barefn) => BareFunction(Box::new(clean_bare_fn_ty(barefn, cx))),
1854        TyKind::UnsafeBinder(unsafe_binder_ty) => {
1855            UnsafeBinder(Box::new(clean_unsafe_binder_ty(unsafe_binder_ty, cx)))
1856        }
1857        // Rustdoc handles `TyKind::Err`s by turning them into `Type::Infer`s.
1858        TyKind::Infer(())
1859        | TyKind::Err(_)
1860        | TyKind::InferDelegation(..)
1861        | TyKind::TraitAscription(_) => Infer,
1862    }
1863}
1864
1865/// Returns `None` if the type could not be normalized
1866fn normalize<'tcx>(
1867    cx: &DocContext<'tcx>,
1868    ty: ty::Binder<'tcx, Ty<'tcx>>,
1869) -> Option<ty::Binder<'tcx, Ty<'tcx>>> {
1870    // HACK: low-churn fix for #79459 while we wait for a trait normalization fix
1871    if !cx.tcx.sess.opts.unstable_opts.normalize_docs {
1872        return None;
1873    }
1874
1875    use rustc_middle::traits::ObligationCause;
1876    use rustc_trait_selection::infer::TyCtxtInferExt;
1877    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
1878
1879    // Try to normalize `<X as Y>::T` to a type
1880    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
1881    let normalized = infcx
1882        .at(&ObligationCause::dummy(), cx.param_env)
1883        .query_normalize(ty)
1884        .map(|resolved| infcx.resolve_vars_if_possible(resolved.value));
1885    match normalized {
1886        Ok(normalized_value) => {
1887            debug!("normalized {ty:?} to {normalized_value:?}");
1888            Some(normalized_value)
1889        }
1890        Err(err) => {
1891            debug!("failed to normalize {ty:?}: {err:?}");
1892            None
1893        }
1894    }
1895}
1896
1897fn clean_trait_object_lifetime_bound<'tcx>(
1898    region: ty::Region<'tcx>,
1899    container: Option<ContainerTy<'_, 'tcx>>,
1900    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1901    tcx: TyCtxt<'tcx>,
1902) -> Option<Lifetime> {
1903    if can_elide_trait_object_lifetime_bound(region, container, preds, tcx) {
1904        return None;
1905    }
1906
1907    // Since there is a semantic difference between an implicitly elided (i.e. "defaulted") object
1908    // lifetime and an explicitly elided object lifetime (`'_`), we intentionally don't hide the
1909    // latter contrary to `clean_middle_region`.
1910    match region.kind() {
1911        ty::ReStatic => Some(Lifetime::statik()),
1912        ty::ReEarlyParam(region) => Some(Lifetime(region.name)),
1913        ty::ReBound(_, ty::BoundRegion { kind: ty::BoundRegionKind::Named(def_id), .. }) => {
1914            Some(Lifetime(tcx.item_name(def_id)))
1915        }
1916        ty::ReBound(..)
1917        | ty::ReLateParam(_)
1918        | ty::ReVar(_)
1919        | ty::RePlaceholder(_)
1920        | ty::ReErased
1921        | ty::ReError(_) => None,
1922    }
1923}
1924
1925fn can_elide_trait_object_lifetime_bound<'tcx>(
1926    region: ty::Region<'tcx>,
1927    container: Option<ContainerTy<'_, 'tcx>>,
1928    preds: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1929    tcx: TyCtxt<'tcx>,
1930) -> bool {
1931    // Below we quote extracts from https://doc.rust-lang.org/stable/reference/lifetime-elision.html#default-trait-object-lifetimes
1932
1933    // > If the trait object is used as a type argument of a generic type then the containing type is
1934    // > first used to try to infer a bound.
1935    let default = container
1936        .map_or(ObjectLifetimeDefault::Empty, |container| container.object_lifetime_default(tcx));
1937
1938    // > If there is a unique bound from the containing type then that is the default
1939    // If there is a default object lifetime and the given region is lexically equal to it, elide it.
1940    match default {
1941        ObjectLifetimeDefault::Static => return region.kind() == ty::ReStatic,
1942        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1943        ObjectLifetimeDefault::Arg(default) => {
1944            return region.get_name(tcx) == default.get_name(tcx);
1945        }
1946        // > If there is more than one bound from the containing type then an explicit bound must be specified
1947        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1948        // Don't elide the lifetime.
1949        ObjectLifetimeDefault::Ambiguous => return false,
1950        // There is no meaningful bound. Further processing is needed...
1951        ObjectLifetimeDefault::Empty => {}
1952    }
1953
1954    // > If neither of those rules apply, then the bounds on the trait are used:
1955    match *object_region_bounds(tcx, preds) {
1956        // > If the trait has no lifetime bounds, then the lifetime is inferred in expressions
1957        // > and is 'static outside of expressions.
1958        // FIXME: If we are in an expression context (i.e. fn bodies and const exprs) then the default is
1959        // `'_` and not `'static`. Only if we are in a non-expression one, the default is `'static`.
1960        // Note however that at the time of this writing it should be fine to disregard this subtlety
1961        // as we neither render const exprs faithfully anyway (hiding them in some places or using `_` instead)
1962        // nor show the contents of fn bodies.
1963        [] => region.kind() == ty::ReStatic,
1964        // > If the trait is defined with a single lifetime bound then that bound is used.
1965        // > If 'static is used for any lifetime bound then 'static is used.
1966        // FIXME(fmease): Don't compare lexically but respect de Bruijn indices etc. to handle shadowing correctly.
1967        [object_region] => object_region.get_name(tcx) == region.get_name(tcx),
1968        // There are several distinct trait regions and none are `'static`.
1969        // Due to ambiguity there is no default trait-object lifetime and thus elision is impossible.
1970        // Don't elide the lifetime.
1971        _ => false,
1972    }
1973}
1974
1975#[derive(Debug)]
1976pub(crate) enum ContainerTy<'a, 'tcx> {
1977    Ref(ty::Region<'tcx>),
1978    Regular {
1979        ty: DefId,
1980        /// The arguments *have* to contain an arg for the self type if the corresponding generics
1981        /// contain a self type.
1982        args: ty::Binder<'tcx, &'a [ty::GenericArg<'tcx>]>,
1983        arg: usize,
1984    },
1985}
1986
1987impl<'tcx> ContainerTy<'_, 'tcx> {
1988    fn object_lifetime_default(self, tcx: TyCtxt<'tcx>) -> ObjectLifetimeDefault<'tcx> {
1989        match self {
1990            Self::Ref(region) => ObjectLifetimeDefault::Arg(region),
1991            Self::Regular { ty: container, args, arg: index } => {
1992                let (DefKind::Struct
1993                | DefKind::Union
1994                | DefKind::Enum
1995                | DefKind::TyAlias
1996                | DefKind::Trait) = tcx.def_kind(container)
1997                else {
1998                    return ObjectLifetimeDefault::Empty;
1999                };
2000
2001                let generics = tcx.generics_of(container);
2002                debug_assert_eq!(generics.parent_count, 0);
2003
2004                let param = generics.own_params[index].def_id;
2005                let default = tcx.object_lifetime_default(param);
2006                match default {
2007                    rbv::ObjectLifetimeDefault::Param(lifetime) => {
2008                        // The index is relative to the parent generics but since we don't have any,
2009                        // we don't need to translate it.
2010                        let index = generics.param_def_id_to_index[&lifetime];
2011                        let arg = args.skip_binder()[index as usize].expect_region();
2012                        ObjectLifetimeDefault::Arg(arg)
2013                    }
2014                    rbv::ObjectLifetimeDefault::Empty => ObjectLifetimeDefault::Empty,
2015                    rbv::ObjectLifetimeDefault::Static => ObjectLifetimeDefault::Static,
2016                    rbv::ObjectLifetimeDefault::Ambiguous => ObjectLifetimeDefault::Ambiguous,
2017                }
2018            }
2019        }
2020    }
2021}
2022
2023#[derive(Debug, Clone, Copy)]
2024pub(crate) enum ObjectLifetimeDefault<'tcx> {
2025    Empty,
2026    Static,
2027    Ambiguous,
2028    Arg(ty::Region<'tcx>),
2029}
2030
2031#[instrument(level = "trace", skip(cx), ret)]
2032pub(crate) fn clean_middle_ty<'tcx>(
2033    bound_ty: ty::Binder<'tcx, Ty<'tcx>>,
2034    cx: &mut DocContext<'tcx>,
2035    parent_def_id: Option<DefId>,
2036    container: Option<ContainerTy<'_, 'tcx>>,
2037) -> Type {
2038    let bound_ty = normalize(cx, bound_ty).unwrap_or(bound_ty);
2039    match *bound_ty.skip_binder().kind() {
2040        ty::Never => Primitive(PrimitiveType::Never),
2041        ty::Bool => Primitive(PrimitiveType::Bool),
2042        ty::Char => Primitive(PrimitiveType::Char),
2043        ty::Int(int_ty) => Primitive(int_ty.into()),
2044        ty::Uint(uint_ty) => Primitive(uint_ty.into()),
2045        ty::Float(float_ty) => Primitive(float_ty.into()),
2046        ty::Str => Primitive(PrimitiveType::Str),
2047        ty::Slice(ty) => Slice(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None))),
2048        ty::Pat(ty, pat) => Type::Pat(
2049            Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)),
2050            format!("{pat:?}").into_boxed_str(),
2051        ),
2052        ty::Array(ty, n) => {
2053            let n = cx.tcx.normalize_erasing_regions(cx.typing_env(), n);
2054            let n = print_const(cx, n);
2055            Array(Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)), n.into())
2056        }
2057        ty::RawPtr(ty, mutbl) => {
2058            RawPointer(mutbl, Box::new(clean_middle_ty(bound_ty.rebind(ty), cx, None, None)))
2059        }
2060        ty::Ref(r, ty, mutbl) => BorrowedRef {
2061            lifetime: clean_middle_region(r, cx),
2062            mutability: mutbl,
2063            type_: Box::new(clean_middle_ty(
2064                bound_ty.rebind(ty),
2065                cx,
2066                None,
2067                Some(ContainerTy::Ref(r)),
2068            )),
2069        },
2070        ty::FnDef(..) | ty::FnPtr(..) => {
2071            // FIXME: should we merge the outer and inner binders somehow?
2072            let sig = bound_ty.skip_binder().fn_sig(cx.tcx);
2073            let decl = clean_poly_fn_sig(cx, None, sig);
2074            let generic_params = clean_bound_vars(sig.bound_vars(), cx);
2075
2076            BareFunction(Box::new(BareFunctionDecl {
2077                safety: sig.safety(),
2078                generic_params,
2079                decl,
2080                abi: sig.abi(),
2081            }))
2082        }
2083        ty::UnsafeBinder(inner) => {
2084            let generic_params = clean_bound_vars(inner.bound_vars(), cx);
2085            let ty = clean_middle_ty(inner.into(), cx, None, None);
2086            UnsafeBinder(Box::new(UnsafeBinderTy { generic_params, ty }))
2087        }
2088        ty::Adt(def, args) => {
2089            let did = def.did();
2090            let kind = match def.adt_kind() {
2091                AdtKind::Struct => ItemType::Struct,
2092                AdtKind::Union => ItemType::Union,
2093                AdtKind::Enum => ItemType::Enum,
2094            };
2095            inline::record_extern_fqn(cx, did, kind);
2096            let path = clean_middle_path(cx, did, false, ThinVec::new(), bound_ty.rebind(args));
2097            Type::Path { path }
2098        }
2099        ty::Foreign(did) => {
2100            inline::record_extern_fqn(cx, did, ItemType::ForeignType);
2101            let path = clean_middle_path(
2102                cx,
2103                did,
2104                false,
2105                ThinVec::new(),
2106                ty::Binder::dummy(ty::GenericArgs::empty()),
2107            );
2108            Type::Path { path }
2109        }
2110        ty::Dynamic(obj, reg) => {
2111            // HACK: pick the first `did` as the `did` of the trait object. Someone
2112            // might want to implement "native" support for marker-trait-only
2113            // trait objects.
2114            let mut dids = obj.auto_traits();
2115            let did = obj
2116                .principal_def_id()
2117                .or_else(|| dids.next())
2118                .unwrap_or_else(|| panic!("found trait object `{bound_ty:?}` with no traits?"));
2119            let args = match obj.principal() {
2120                Some(principal) => principal.map_bound(|p| p.args),
2121                // marker traits have no args.
2122                _ => ty::Binder::dummy(ty::GenericArgs::empty()),
2123            };
2124
2125            inline::record_extern_fqn(cx, did, ItemType::Trait);
2126
2127            let lifetime = clean_trait_object_lifetime_bound(reg, container, obj, cx.tcx);
2128
2129            let mut bounds = dids
2130                .map(|did| {
2131                    let empty = ty::Binder::dummy(ty::GenericArgs::empty());
2132                    let path = clean_middle_path(cx, did, false, ThinVec::new(), empty);
2133                    inline::record_extern_fqn(cx, did, ItemType::Trait);
2134                    PolyTrait { trait_: path, generic_params: Vec::new() }
2135                })
2136                .collect::<Vec<_>>();
2137
2138            let constraints = obj
2139                .projection_bounds()
2140                .map(|pb| AssocItemConstraint {
2141                    assoc: projection_to_path_segment(
2142                        pb.map_bound(|pb| {
2143                            pb.with_self_ty(cx.tcx, cx.tcx.types.trait_object_dummy_self)
2144                                .projection_term
2145                        }),
2146                        cx,
2147                    ),
2148                    kind: AssocItemConstraintKind::Equality {
2149                        term: clean_middle_term(pb.map_bound(|pb| pb.term), cx),
2150                    },
2151                })
2152                .collect();
2153
2154            let late_bound_regions: FxIndexSet<_> = obj
2155                .iter()
2156                .flat_map(|pred| pred.bound_vars())
2157                .filter_map(|var| match var {
2158                    ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
2159                        let name = cx.tcx.item_name(def_id);
2160                        if name != kw::UnderscoreLifetime {
2161                            Some(GenericParamDef::lifetime(def_id, name))
2162                        } else {
2163                            None
2164                        }
2165                    }
2166                    _ => None,
2167                })
2168                .collect();
2169            let late_bound_regions = late_bound_regions.into_iter().collect();
2170
2171            let path = clean_middle_path(cx, did, false, constraints, args);
2172            bounds.insert(0, PolyTrait { trait_: path, generic_params: late_bound_regions });
2173
2174            DynTrait(bounds, lifetime)
2175        }
2176        ty::Tuple(t) => {
2177            Tuple(t.iter().map(|t| clean_middle_ty(bound_ty.rebind(t), cx, None, None)).collect())
2178        }
2179
2180        ty::Alias(ty::Projection, alias_ty @ ty::AliasTy { def_id, args, .. }) => {
2181            if cx.tcx.is_impl_trait_in_trait(def_id) {
2182                clean_middle_opaque_bounds(cx, def_id, args)
2183            } else {
2184                Type::QPath(Box::new(clean_projection(
2185                    bound_ty.rebind(alias_ty.into()),
2186                    cx,
2187                    parent_def_id,
2188                )))
2189            }
2190        }
2191
2192        ty::Alias(ty::Inherent, alias_ty @ ty::AliasTy { def_id, .. }) => {
2193            let alias_ty = bound_ty.rebind(alias_ty);
2194            let self_type = clean_middle_ty(alias_ty.map_bound(|ty| ty.self_ty()), cx, None, None);
2195
2196            Type::QPath(Box::new(QPathData {
2197                assoc: PathSegment {
2198                    name: cx.tcx.item_name(def_id),
2199                    args: GenericArgs::AngleBracketed {
2200                        args: clean_middle_generic_args(
2201                            cx,
2202                            alias_ty.map_bound(|ty| ty.args.as_slice()),
2203                            true,
2204                            def_id,
2205                        ),
2206                        constraints: Default::default(),
2207                    },
2208                },
2209                should_fully_qualify: false,
2210                self_type,
2211                trait_: None,
2212            }))
2213        }
2214
2215        ty::Alias(ty::Free, ty::AliasTy { def_id, args, .. }) => {
2216            if cx.tcx.features().lazy_type_alias() {
2217                // Free type alias `data` represents the `type X` in `type X = Y`. If we need `Y`,
2218                // we need to use `type_of`.
2219                let path =
2220                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2221                Type::Path { path }
2222            } else {
2223                let ty = cx.tcx.type_of(def_id).instantiate(cx.tcx, args);
2224                clean_middle_ty(bound_ty.rebind(ty), cx, None, None)
2225            }
2226        }
2227
2228        ty::Param(ref p) => {
2229            if let Some(bounds) = cx.impl_trait_bounds.remove(&p.index.into()) {
2230                ImplTrait(bounds)
2231            } else if p.name == kw::SelfUpper {
2232                SelfTy
2233            } else {
2234                Generic(p.name)
2235            }
2236        }
2237
2238        ty::Bound(_, ref ty) => match ty.kind {
2239            ty::BoundTyKind::Param(def_id) => Generic(cx.tcx.item_name(def_id)),
2240            ty::BoundTyKind::Anon => panic!("unexpected anonymous bound type variable"),
2241        },
2242
2243        ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2244            // If it's already in the same alias, don't get an infinite loop.
2245            if cx.current_type_aliases.contains_key(&def_id) {
2246                let path =
2247                    clean_middle_path(cx, def_id, false, ThinVec::new(), bound_ty.rebind(args));
2248                Type::Path { path }
2249            } else {
2250                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2251                // Grab the "TraitA + TraitB" from `impl TraitA + TraitB`,
2252                // by looking up the bounds associated with the def_id.
2253                let ty = clean_middle_opaque_bounds(cx, def_id, args);
2254                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2255                    *count -= 1;
2256                    if *count == 0 {
2257                        cx.current_type_aliases.remove(&def_id);
2258                    }
2259                }
2260                ty
2261            }
2262        }
2263
2264        ty::Closure(..) => panic!("Closure"),
2265        ty::CoroutineClosure(..) => panic!("CoroutineClosure"),
2266        ty::Coroutine(..) => panic!("Coroutine"),
2267        ty::Placeholder(..) => panic!("Placeholder"),
2268        ty::CoroutineWitness(..) => panic!("CoroutineWitness"),
2269        ty::Infer(..) => panic!("Infer"),
2270
2271        ty::Error(_) => FatalError.raise(),
2272    }
2273}
2274
2275fn clean_middle_opaque_bounds<'tcx>(
2276    cx: &mut DocContext<'tcx>,
2277    impl_trait_def_id: DefId,
2278    args: ty::GenericArgsRef<'tcx>,
2279) -> Type {
2280    let mut has_sized = false;
2281
2282    let bounds: Vec<_> = cx
2283        .tcx
2284        .explicit_item_bounds(impl_trait_def_id)
2285        .iter_instantiated_copied(cx.tcx, args)
2286        .collect();
2287
2288    let mut bounds = bounds
2289        .iter()
2290        .filter_map(|(bound, _)| {
2291            let bound_predicate = bound.kind();
2292            let trait_ref = match bound_predicate.skip_binder() {
2293                ty::ClauseKind::Trait(tr) => bound_predicate.rebind(tr.trait_ref),
2294                ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(_ty, reg)) => {
2295                    return clean_middle_region(reg, cx).map(GenericBound::Outlives);
2296                }
2297                _ => return None,
2298            };
2299
2300            // FIXME(sized-hierarchy): Always skip `MetaSized` bounds so that only `?Sized`
2301            // is shown and none of the new sizedness traits leak into documentation.
2302            if cx.tcx.is_lang_item(trait_ref.def_id(), LangItem::MetaSized) {
2303                return None;
2304            }
2305
2306            if let Some(sized) = cx.tcx.lang_items().sized_trait()
2307                && trait_ref.def_id() == sized
2308            {
2309                has_sized = true;
2310                return None;
2311            }
2312
2313            let bindings: ThinVec<_> = bounds
2314                .iter()
2315                .filter_map(|(bound, _)| {
2316                    let bound = bound.kind();
2317                    if let ty::ClauseKind::Projection(proj_pred) = bound.skip_binder()
2318                        && proj_pred.projection_term.trait_ref(cx.tcx) == trait_ref.skip_binder()
2319                    {
2320                        return Some(AssocItemConstraint {
2321                            assoc: projection_to_path_segment(
2322                                bound.rebind(proj_pred.projection_term),
2323                                cx,
2324                            ),
2325                            kind: AssocItemConstraintKind::Equality {
2326                                term: clean_middle_term(bound.rebind(proj_pred.term), cx),
2327                            },
2328                        });
2329                    }
2330                    None
2331                })
2332                .collect();
2333
2334            Some(clean_poly_trait_ref_with_constraints(cx, trait_ref, bindings))
2335        })
2336        .collect::<Vec<_>>();
2337
2338    if !has_sized {
2339        bounds.push(GenericBound::maybe_sized(cx));
2340    }
2341
2342    // Move trait bounds to the front.
2343    bounds.sort_by_key(|b| !b.is_trait_bound());
2344
2345    // Add back a `Sized` bound if there are no *trait* bounds remaining (incl. `?Sized`).
2346    // Since all potential trait bounds are at the front we can just check the first bound.
2347    if bounds.first().is_none_or(|b| !b.is_trait_bound()) {
2348        bounds.insert(0, GenericBound::sized(cx));
2349    }
2350
2351    if let Some(args) = cx.tcx.rendered_precise_capturing_args(impl_trait_def_id) {
2352        bounds.push(GenericBound::Use(
2353            args.iter()
2354                .map(|arg| match arg {
2355                    hir::PreciseCapturingArgKind::Lifetime(lt) => {
2356                        PreciseCapturingArg::Lifetime(Lifetime(*lt))
2357                    }
2358                    hir::PreciseCapturingArgKind::Param(param) => {
2359                        PreciseCapturingArg::Param(*param)
2360                    }
2361                })
2362                .collect(),
2363        ));
2364    }
2365
2366    ImplTrait(bounds)
2367}
2368
2369pub(crate) fn clean_field<'tcx>(field: &hir::FieldDef<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2370    clean_field_with_def_id(field.def_id.to_def_id(), field.ident.name, clean_ty(field.ty, cx), cx)
2371}
2372
2373pub(crate) fn clean_middle_field(field: &ty::FieldDef, cx: &mut DocContext<'_>) -> Item {
2374    clean_field_with_def_id(
2375        field.did,
2376        field.name,
2377        clean_middle_ty(
2378            ty::Binder::dummy(cx.tcx.type_of(field.did).instantiate_identity()),
2379            cx,
2380            Some(field.did),
2381            None,
2382        ),
2383        cx,
2384    )
2385}
2386
2387pub(crate) fn clean_field_with_def_id(
2388    def_id: DefId,
2389    name: Symbol,
2390    ty: Type,
2391    cx: &mut DocContext<'_>,
2392) -> Item {
2393    Item::from_def_id_and_parts(def_id, Some(name), StructFieldItem(ty), cx)
2394}
2395
2396pub(crate) fn clean_variant_def(variant: &ty::VariantDef, cx: &mut DocContext<'_>) -> Item {
2397    let discriminant = match variant.discr {
2398        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2399        ty::VariantDiscr::Relative(_) => None,
2400    };
2401
2402    let kind = match variant.ctor_kind() {
2403        Some(CtorKind::Const) => VariantKind::CLike,
2404        Some(CtorKind::Fn) => VariantKind::Tuple(
2405            variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2406        ),
2407        None => VariantKind::Struct(VariantStruct {
2408            fields: variant.fields.iter().map(|field| clean_middle_field(field, cx)).collect(),
2409        }),
2410    };
2411
2412    Item::from_def_id_and_parts(
2413        variant.def_id,
2414        Some(variant.name),
2415        VariantItem(Variant { kind, discriminant }),
2416        cx,
2417    )
2418}
2419
2420pub(crate) fn clean_variant_def_with_args<'tcx>(
2421    variant: &ty::VariantDef,
2422    args: &GenericArgsRef<'tcx>,
2423    cx: &mut DocContext<'tcx>,
2424) -> Item {
2425    let discriminant = match variant.discr {
2426        ty::VariantDiscr::Explicit(def_id) => Some(Discriminant { expr: None, value: def_id }),
2427        ty::VariantDiscr::Relative(_) => None,
2428    };
2429
2430    use rustc_middle::traits::ObligationCause;
2431    use rustc_trait_selection::infer::TyCtxtInferExt;
2432    use rustc_trait_selection::traits::query::normalize::QueryNormalizeExt;
2433
2434    let infcx = cx.tcx.infer_ctxt().build(TypingMode::non_body_analysis());
2435    let kind = match variant.ctor_kind() {
2436        Some(CtorKind::Const) => VariantKind::CLike,
2437        Some(CtorKind::Fn) => VariantKind::Tuple(
2438            variant
2439                .fields
2440                .iter()
2441                .map(|field| {
2442                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2443
2444                    // normalize the type to only show concrete types
2445                    // note: we do not use try_normalize_erasing_regions since we
2446                    // do care about showing the regions
2447                    let ty = infcx
2448                        .at(&ObligationCause::dummy(), cx.param_env)
2449                        .query_normalize(ty)
2450                        .map(|normalized| normalized.value)
2451                        .unwrap_or(ty);
2452
2453                    clean_field_with_def_id(
2454                        field.did,
2455                        field.name,
2456                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2457                        cx,
2458                    )
2459                })
2460                .collect(),
2461        ),
2462        None => VariantKind::Struct(VariantStruct {
2463            fields: variant
2464                .fields
2465                .iter()
2466                .map(|field| {
2467                    let ty = cx.tcx.type_of(field.did).instantiate(cx.tcx, args);
2468
2469                    // normalize the type to only show concrete types
2470                    // note: we do not use try_normalize_erasing_regions since we
2471                    // do care about showing the regions
2472                    let ty = infcx
2473                        .at(&ObligationCause::dummy(), cx.param_env)
2474                        .query_normalize(ty)
2475                        .map(|normalized| normalized.value)
2476                        .unwrap_or(ty);
2477
2478                    clean_field_with_def_id(
2479                        field.did,
2480                        field.name,
2481                        clean_middle_ty(ty::Binder::dummy(ty), cx, Some(field.did), None),
2482                        cx,
2483                    )
2484                })
2485                .collect(),
2486        }),
2487    };
2488
2489    Item::from_def_id_and_parts(
2490        variant.def_id,
2491        Some(variant.name),
2492        VariantItem(Variant { kind, discriminant }),
2493        cx,
2494    )
2495}
2496
2497fn clean_variant_data<'tcx>(
2498    variant: &hir::VariantData<'tcx>,
2499    disr_expr: &Option<&hir::AnonConst>,
2500    cx: &mut DocContext<'tcx>,
2501) -> Variant {
2502    let discriminant = disr_expr
2503        .map(|disr| Discriminant { expr: Some(disr.body), value: disr.def_id.to_def_id() });
2504
2505    let kind = match variant {
2506        hir::VariantData::Struct { fields, .. } => VariantKind::Struct(VariantStruct {
2507            fields: fields.iter().map(|x| clean_field(x, cx)).collect(),
2508        }),
2509        hir::VariantData::Tuple(..) => {
2510            VariantKind::Tuple(variant.fields().iter().map(|x| clean_field(x, cx)).collect())
2511        }
2512        hir::VariantData::Unit(..) => VariantKind::CLike,
2513    };
2514
2515    Variant { discriminant, kind }
2516}
2517
2518fn clean_path<'tcx>(path: &hir::Path<'tcx>, cx: &mut DocContext<'tcx>) -> Path {
2519    Path {
2520        res: path.res,
2521        segments: path.segments.iter().map(|x| clean_path_segment(x, cx)).collect(),
2522    }
2523}
2524
2525fn clean_generic_args<'tcx>(
2526    trait_did: Option<DefId>,
2527    generic_args: &hir::GenericArgs<'tcx>,
2528    cx: &mut DocContext<'tcx>,
2529) -> GenericArgs {
2530    match generic_args.parenthesized {
2531        hir::GenericArgsParentheses::No => {
2532            let args = generic_args
2533                .args
2534                .iter()
2535                .map(|arg| match arg {
2536                    hir::GenericArg::Lifetime(lt) if !lt.is_anonymous() => {
2537                        GenericArg::Lifetime(clean_lifetime(lt, cx))
2538                    }
2539                    hir::GenericArg::Lifetime(_) => GenericArg::Lifetime(Lifetime::elided()),
2540                    hir::GenericArg::Type(ty) => GenericArg::Type(clean_ty(ty.as_unambig_ty(), cx)),
2541                    hir::GenericArg::Const(ct) => {
2542                        GenericArg::Const(Box::new(clean_const(ct.as_unambig_ct())))
2543                    }
2544                    hir::GenericArg::Infer(_inf) => GenericArg::Infer,
2545                })
2546                .collect();
2547            let constraints = generic_args
2548                .constraints
2549                .iter()
2550                .map(|c| {
2551                    clean_assoc_item_constraint(
2552                        trait_did.expect("only trait ref has constraints"),
2553                        c,
2554                        cx,
2555                    )
2556                })
2557                .collect::<ThinVec<_>>();
2558            GenericArgs::AngleBracketed { args, constraints }
2559        }
2560        hir::GenericArgsParentheses::ParenSugar => {
2561            let Some((inputs, output)) = generic_args.paren_sugar_inputs_output() else {
2562                bug!();
2563            };
2564            let inputs = inputs.iter().map(|x| clean_ty(x, cx)).collect();
2565            let output = match output.kind {
2566                hir::TyKind::Tup(&[]) => None,
2567                _ => Some(Box::new(clean_ty(output, cx))),
2568            };
2569            GenericArgs::Parenthesized { inputs, output }
2570        }
2571        hir::GenericArgsParentheses::ReturnTypeNotation => GenericArgs::ReturnTypeNotation,
2572    }
2573}
2574
2575fn clean_path_segment<'tcx>(
2576    path: &hir::PathSegment<'tcx>,
2577    cx: &mut DocContext<'tcx>,
2578) -> PathSegment {
2579    let trait_did = match path.res {
2580        hir::def::Res::Def(DefKind::Trait | DefKind::TraitAlias, did) => Some(did),
2581        _ => None,
2582    };
2583    PathSegment { name: path.ident.name, args: clean_generic_args(trait_did, path.args(), cx) }
2584}
2585
2586fn clean_bare_fn_ty<'tcx>(
2587    bare_fn: &hir::FnPtrTy<'tcx>,
2588    cx: &mut DocContext<'tcx>,
2589) -> BareFunctionDecl {
2590    let (generic_params, decl) = enter_impl_trait(cx, |cx| {
2591        // NOTE: Generics must be cleaned before params.
2592        let generic_params = bare_fn
2593            .generic_params
2594            .iter()
2595            .filter(|p| !is_elided_lifetime(p))
2596            .map(|x| clean_generic_param(cx, None, x))
2597            .collect();
2598        // Since it's more conventional stylistically, elide the name of all params called `_`
2599        // unless there's at least one interestingly named param in which case don't elide any
2600        // name since mixing named and unnamed params is less legible.
2601        let filter = |ident: Option<Ident>| {
2602            ident.map(|ident| ident.name).filter(|&ident| ident != kw::Underscore)
2603        };
2604        let fallback =
2605            bare_fn.param_idents.iter().copied().find_map(filter).map(|_| kw::Underscore);
2606        let params = clean_params(cx, bare_fn.decl.inputs, bare_fn.param_idents, |ident| {
2607            filter(ident).or(fallback)
2608        });
2609        let decl = clean_fn_decl_with_params(cx, bare_fn.decl, None, params);
2610        (generic_params, decl)
2611    });
2612    BareFunctionDecl { safety: bare_fn.safety, abi: bare_fn.abi, decl, generic_params }
2613}
2614
2615fn clean_unsafe_binder_ty<'tcx>(
2616    unsafe_binder_ty: &hir::UnsafeBinderTy<'tcx>,
2617    cx: &mut DocContext<'tcx>,
2618) -> UnsafeBinderTy {
2619    let generic_params = unsafe_binder_ty
2620        .generic_params
2621        .iter()
2622        .filter(|p| !is_elided_lifetime(p))
2623        .map(|x| clean_generic_param(cx, None, x))
2624        .collect();
2625    let ty = clean_ty(unsafe_binder_ty.inner_ty, cx);
2626    UnsafeBinderTy { generic_params, ty }
2627}
2628
2629pub(crate) fn reexport_chain(
2630    tcx: TyCtxt<'_>,
2631    import_def_id: LocalDefId,
2632    target_def_id: DefId,
2633) -> &[Reexport] {
2634    for child in tcx.module_children_local(tcx.local_parent(import_def_id)) {
2635        if child.res.opt_def_id() == Some(target_def_id)
2636            && child.reexport_chain.first().and_then(|r| r.id()) == Some(import_def_id.to_def_id())
2637        {
2638            return &child.reexport_chain;
2639        }
2640    }
2641    &[]
2642}
2643
2644/// Collect attributes from the whole import chain.
2645fn get_all_import_attributes<'hir>(
2646    cx: &mut DocContext<'hir>,
2647    import_def_id: LocalDefId,
2648    target_def_id: DefId,
2649    is_inline: bool,
2650) -> Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)> {
2651    let mut attrs = Vec::new();
2652    let mut first = true;
2653    for def_id in reexport_chain(cx.tcx, import_def_id, target_def_id)
2654        .iter()
2655        .flat_map(|reexport| reexport.id())
2656    {
2657        let import_attrs = inline::load_attrs(cx, def_id);
2658        if first {
2659            // This is the "original" reexport so we get all its attributes without filtering them.
2660            attrs = import_attrs.iter().map(|attr| (Cow::Borrowed(attr), Some(def_id))).collect();
2661            first = false;
2662        // We don't add attributes of an intermediate re-export if it has `#[doc(hidden)]`.
2663        } else if cx.document_hidden() || !cx.tcx.is_doc_hidden(def_id) {
2664            add_without_unwanted_attributes(&mut attrs, import_attrs, is_inline, Some(def_id));
2665        }
2666    }
2667    attrs
2668}
2669
2670/// When inlining items, we merge their attributes (and all the reexports attributes too) with the
2671/// final reexport. For example:
2672///
2673/// ```ignore (just an example)
2674/// #[doc(hidden, cfg(feature = "foo"))]
2675/// pub struct Foo;
2676///
2677/// #[doc(cfg(feature = "bar"))]
2678/// #[doc(hidden, no_inline)]
2679/// pub use Foo as Foo1;
2680///
2681/// #[doc(inline)]
2682/// pub use Foo2 as Bar;
2683/// ```
2684///
2685/// So `Bar` at the end will have both `cfg(feature = "...")`. However, we don't want to merge all
2686/// attributes so we filter out the following ones:
2687/// * `doc(inline)`
2688/// * `doc(no_inline)`
2689/// * `doc(hidden)`
2690fn add_without_unwanted_attributes<'hir>(
2691    attrs: &mut Vec<(Cow<'hir, hir::Attribute>, Option<DefId>)>,
2692    new_attrs: &'hir [hir::Attribute],
2693    is_inline: bool,
2694    import_parent: Option<DefId>,
2695) {
2696    for attr in new_attrs {
2697        match attr {
2698            hir::Attribute::Parsed(AttributeKind::DocComment { .. }) => {
2699                attrs.push((Cow::Borrowed(attr), import_parent));
2700            }
2701            hir::Attribute::Parsed(AttributeKind::Doc(box d)) => {
2702                // Remove attributes from `normal` that should not be inherited by `use` re-export.
2703                let DocAttribute { hidden, inline, cfg, .. } = d;
2704                let mut attr = DocAttribute::default();
2705                if is_inline {
2706                    attr.cfg = cfg.clone();
2707                } else {
2708                    attr.inline = inline.clone();
2709                    attr.hidden = hidden.clone();
2710                }
2711                attrs.push((
2712                    Cow::Owned(hir::Attribute::Parsed(AttributeKind::Doc(Box::new(attr)))),
2713                    import_parent,
2714                ));
2715            }
2716
2717            // We discard `#[cfg(...)]` attributes unless we're inlining
2718            hir::Attribute::Parsed(AttributeKind::CfgTrace(..)) if !is_inline => {}
2719            // We keep all other attributes
2720            _ => {
2721                attrs.push((Cow::Borrowed(attr), import_parent));
2722            }
2723        }
2724    }
2725}
2726
2727fn clean_maybe_renamed_item<'tcx>(
2728    cx: &mut DocContext<'tcx>,
2729    item: &hir::Item<'tcx>,
2730    renamed: Option<Symbol>,
2731    import_ids: &[LocalDefId],
2732) -> Vec<Item> {
2733    use hir::ItemKind;
2734    fn get_name(
2735        cx: &DocContext<'_>,
2736        item: &hir::Item<'_>,
2737        renamed: Option<Symbol>,
2738    ) -> Option<Symbol> {
2739        renamed.or_else(|| cx.tcx.hir_opt_name(item.hir_id()))
2740    }
2741
2742    let def_id = item.owner_id.to_def_id();
2743    cx.with_param_env(def_id, |cx| {
2744        // These kinds of item either don't need a `name` or accept a `None` one so we handle them
2745        // before.
2746        match item.kind {
2747            ItemKind::Impl(ref impl_) => return clean_impl(impl_, item.owner_id.def_id, cx),
2748            ItemKind::Use(path, kind) => {
2749                return clean_use_statement(
2750                    item,
2751                    get_name(cx, item, renamed),
2752                    path,
2753                    kind,
2754                    cx,
2755                    &mut FxHashSet::default(),
2756                );
2757            }
2758            _ => {}
2759        }
2760
2761        let mut name = get_name(cx, item, renamed).unwrap();
2762
2763        let kind = match item.kind {
2764            ItemKind::Static(mutability, _, ty, body_id) => StaticItem(Static {
2765                type_: Box::new(clean_ty(ty, cx)),
2766                mutability,
2767                expr: Some(body_id),
2768            }),
2769            ItemKind::Const(_, generics, ty, rhs) => ConstantItem(Box::new(Constant {
2770                generics: clean_generics(generics, cx),
2771                type_: clean_ty(ty, cx),
2772                kind: clean_const_item_rhs(rhs, def_id),
2773            })),
2774            ItemKind::TyAlias(_, generics, ty) => {
2775                *cx.current_type_aliases.entry(def_id).or_insert(0) += 1;
2776                let rustdoc_ty = clean_ty(ty, cx);
2777                let type_ =
2778                    clean_middle_ty(ty::Binder::dummy(lower_ty(cx.tcx, ty)), cx, None, None);
2779                let generics = clean_generics(generics, cx);
2780                if let Some(count) = cx.current_type_aliases.get_mut(&def_id) {
2781                    *count -= 1;
2782                    if *count == 0 {
2783                        cx.current_type_aliases.remove(&def_id);
2784                    }
2785                }
2786
2787                let ty = cx.tcx.type_of(def_id).instantiate_identity();
2788
2789                let mut ret = Vec::new();
2790                let inner_type = clean_ty_alias_inner_type(ty, cx, &mut ret);
2791
2792                ret.push(generate_item_with_correct_attrs(
2793                    cx,
2794                    TypeAliasItem(Box::new(TypeAlias {
2795                        generics,
2796                        inner_type,
2797                        type_: rustdoc_ty,
2798                        item_type: Some(type_),
2799                    })),
2800                    item.owner_id.def_id.to_def_id(),
2801                    name,
2802                    import_ids,
2803                    renamed,
2804                ));
2805                return ret;
2806            }
2807            ItemKind::Enum(_, generics, def) => EnumItem(Enum {
2808                variants: def.variants.iter().map(|v| clean_variant(v, cx)).collect(),
2809                generics: clean_generics(generics, cx),
2810            }),
2811            ItemKind::TraitAlias(_, _, generics, bounds) => TraitAliasItem(TraitAlias {
2812                generics: clean_generics(generics, cx),
2813                bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2814            }),
2815            ItemKind::Union(_, generics, variant_data) => UnionItem(Union {
2816                generics: clean_generics(generics, cx),
2817                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2818            }),
2819            ItemKind::Struct(_, generics, variant_data) => StructItem(Struct {
2820                ctor_kind: variant_data.ctor_kind(),
2821                generics: clean_generics(generics, cx),
2822                fields: variant_data.fields().iter().map(|x| clean_field(x, cx)).collect(),
2823            }),
2824            // FIXME: handle attributes and derives that aren't proc macros, and macros with
2825            // multiple kinds
2826            ItemKind::Macro(_, macro_def, MacroKinds::BANG) => MacroItem(Macro {
2827                source: display_macro_source(cx, name, macro_def),
2828                macro_rules: macro_def.macro_rules,
2829            }),
2830            ItemKind::Macro(_, _, MacroKinds::ATTR) => {
2831                clean_proc_macro(item, &mut name, MacroKind::Attr, cx)
2832            }
2833            ItemKind::Macro(_, _, MacroKinds::DERIVE) => {
2834                clean_proc_macro(item, &mut name, MacroKind::Derive, cx)
2835            }
2836            ItemKind::Macro(_, _, _) => todo!("Handle macros with multiple kinds"),
2837            // proc macros can have a name set by attributes
2838            ItemKind::Fn { ref sig, generics, body: body_id, .. } => {
2839                clean_fn_or_proc_macro(item, sig, generics, body_id, &mut name, cx)
2840            }
2841            ItemKind::Trait(_, _, _, _, generics, bounds, item_ids) => {
2842                let items = item_ids
2843                    .iter()
2844                    .map(|&ti| clean_trait_item(cx.tcx.hir_trait_item(ti), cx))
2845                    .collect();
2846
2847                TraitItem(Box::new(Trait {
2848                    def_id,
2849                    items,
2850                    generics: clean_generics(generics, cx),
2851                    bounds: bounds.iter().filter_map(|x| clean_generic_bound(x, cx)).collect(),
2852                }))
2853            }
2854            ItemKind::ExternCrate(orig_name, _) => {
2855                return clean_extern_crate(item, name, orig_name, cx);
2856            }
2857            _ => span_bug!(item.span, "not yet converted"),
2858        };
2859
2860        vec![generate_item_with_correct_attrs(
2861            cx,
2862            kind,
2863            item.owner_id.def_id.to_def_id(),
2864            name,
2865            import_ids,
2866            renamed,
2867        )]
2868    })
2869}
2870
2871fn clean_variant<'tcx>(variant: &hir::Variant<'tcx>, cx: &mut DocContext<'tcx>) -> Item {
2872    let kind = VariantItem(clean_variant_data(&variant.data, &variant.disr_expr, cx));
2873    Item::from_def_id_and_parts(variant.def_id.to_def_id(), Some(variant.ident.name), kind, cx)
2874}
2875
2876fn clean_impl<'tcx>(
2877    impl_: &hir::Impl<'tcx>,
2878    def_id: LocalDefId,
2879    cx: &mut DocContext<'tcx>,
2880) -> Vec<Item> {
2881    let tcx = cx.tcx;
2882    let mut ret = Vec::new();
2883    let trait_ = impl_.of_trait.map(|t| clean_trait_ref(&t.trait_ref, cx));
2884    let items = impl_
2885        .items
2886        .iter()
2887        .map(|&ii| clean_impl_item(tcx.hir_impl_item(ii), cx))
2888        .collect::<Vec<_>>();
2889
2890    // If this impl block is an implementation of the Deref trait, then we
2891    // need to try inlining the target's inherent impl blocks as well.
2892    if trait_.as_ref().map(|t| t.def_id()) == tcx.lang_items().deref_trait() {
2893        build_deref_target_impls(cx, &items, &mut ret);
2894    }
2895
2896    let for_ = clean_ty(impl_.self_ty, cx);
2897    let type_alias =
2898        for_.def_id(&cx.cache).and_then(|alias_def_id: DefId| match tcx.def_kind(alias_def_id) {
2899            DefKind::TyAlias => Some(clean_middle_ty(
2900                ty::Binder::dummy(tcx.type_of(def_id).instantiate_identity()),
2901                cx,
2902                Some(def_id.to_def_id()),
2903                None,
2904            )),
2905            _ => None,
2906        });
2907    let mut make_item = |trait_: Option<Path>, for_: Type, items: Vec<Item>| {
2908        let kind = ImplItem(Box::new(Impl {
2909            safety: match impl_.of_trait {
2910                Some(of_trait) => of_trait.safety,
2911                None => hir::Safety::Safe,
2912            },
2913            generics: clean_generics(impl_.generics, cx),
2914            trait_,
2915            for_,
2916            items,
2917            polarity: if impl_.of_trait.is_some() {
2918                tcx.impl_polarity(def_id)
2919            } else {
2920                ty::ImplPolarity::Positive
2921            },
2922            kind: if utils::has_doc_flag(tcx, def_id.to_def_id(), |d| d.fake_variadic.is_some()) {
2923                ImplKind::FakeVariadic
2924            } else {
2925                ImplKind::Normal
2926            },
2927        }));
2928        Item::from_def_id_and_parts(def_id.to_def_id(), None, kind, cx)
2929    };
2930    if let Some(type_alias) = type_alias {
2931        ret.push(make_item(trait_.clone(), type_alias, items.clone()));
2932    }
2933    ret.push(make_item(trait_, for_, items));
2934    ret
2935}
2936
2937fn clean_extern_crate<'tcx>(
2938    krate: &hir::Item<'tcx>,
2939    name: Symbol,
2940    orig_name: Option<Symbol>,
2941    cx: &mut DocContext<'tcx>,
2942) -> Vec<Item> {
2943    // this is the ID of the `extern crate` statement
2944    let cnum = cx.tcx.extern_mod_stmt_cnum(krate.owner_id.def_id).unwrap_or(LOCAL_CRATE);
2945    // this is the ID of the crate itself
2946    let crate_def_id = cnum.as_def_id();
2947    let attrs = cx.tcx.hir_attrs(krate.hir_id());
2948    let ty_vis = cx.tcx.visibility(krate.owner_id);
2949    let please_inline = ty_vis.is_public()
2950        && attrs.iter().any(|a| {
2951            matches!(
2952            a,
2953            hir::Attribute::Parsed(AttributeKind::Doc(d))
2954            if d.inline.first().is_some_and(|(i, _)| *i == DocInline::Inline))
2955        })
2956        && !cx.is_json_output();
2957
2958    let krate_owner_def_id = krate.owner_id.def_id;
2959
2960    if please_inline
2961        && let Some(items) = inline::try_inline(
2962            cx,
2963            Res::Def(DefKind::Mod, crate_def_id),
2964            name,
2965            Some((attrs, Some(krate_owner_def_id))),
2966            &mut Default::default(),
2967        )
2968    {
2969        return items;
2970    }
2971
2972    vec![Item::from_def_id_and_parts(
2973        krate_owner_def_id.to_def_id(),
2974        Some(name),
2975        ExternCrateItem { src: orig_name },
2976        cx,
2977    )]
2978}
2979
2980fn clean_use_statement<'tcx>(
2981    import: &hir::Item<'tcx>,
2982    name: Option<Symbol>,
2983    path: &hir::UsePath<'tcx>,
2984    kind: hir::UseKind,
2985    cx: &mut DocContext<'tcx>,
2986    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
2987) -> Vec<Item> {
2988    let mut items = Vec::new();
2989    let hir::UsePath { segments, ref res, span } = *path;
2990    for res in res.present_items() {
2991        let path = hir::Path { segments, res, span };
2992        items.append(&mut clean_use_statement_inner(import, name, &path, kind, cx, inlined_names));
2993    }
2994    items
2995}
2996
2997fn clean_use_statement_inner<'tcx>(
2998    import: &hir::Item<'tcx>,
2999    name: Option<Symbol>,
3000    path: &hir::Path<'tcx>,
3001    kind: hir::UseKind,
3002    cx: &mut DocContext<'tcx>,
3003    inlined_names: &mut FxHashSet<(ItemType, Symbol)>,
3004) -> Vec<Item> {
3005    if should_ignore_res(path.res) {
3006        return Vec::new();
3007    }
3008    // We need this comparison because some imports (for std types for example)
3009    // are "inserted" as well but directly by the compiler and they should not be
3010    // taken into account.
3011    if import.span.ctxt().outer_expn_data().kind == ExpnKind::AstPass(AstPass::StdImports) {
3012        return Vec::new();
3013    }
3014
3015    let visibility = cx.tcx.visibility(import.owner_id);
3016    let attrs = cx.tcx.hir_attrs(import.hir_id());
3017    let inline_attr = find_attr!(
3018        attrs,
3019        AttributeKind::Doc(d) if d.inline.first().is_some_and(|(i, _)| *i == DocInline::Inline) => d
3020    )
3021    .and_then(|d| d.inline.first());
3022    let pub_underscore = visibility.is_public() && name == Some(kw::Underscore);
3023    let current_mod = cx.tcx.parent_module_from_def_id(import.owner_id.def_id);
3024    let import_def_id = import.owner_id.def_id;
3025
3026    // The parent of the module in which this import resides. This
3027    // is the same as `current_mod` if that's already the top
3028    // level module.
3029    let parent_mod = cx.tcx.parent_module_from_def_id(current_mod.to_local_def_id());
3030
3031    // This checks if the import can be seen from a higher level module.
3032    // In other words, it checks if the visibility is the equivalent of
3033    // `pub(super)` or higher. If the current module is the top level
3034    // module, there isn't really a parent module, which makes the results
3035    // meaningless. In this case, we make sure the answer is `false`.
3036    let is_visible_from_parent_mod =
3037        visibility.is_accessible_from(parent_mod, cx.tcx) && !current_mod.is_top_level_module();
3038
3039    if pub_underscore && let Some((_, inline_span)) = inline_attr {
3040        struct_span_code_err!(
3041            cx.tcx.dcx(),
3042            *inline_span,
3043            E0780,
3044            "anonymous imports cannot be inlined"
3045        )
3046        .with_span_label(import.span, "anonymous import")
3047        .emit();
3048    }
3049
3050    // We consider inlining the documentation of `pub use` statements, but we
3051    // forcefully don't inline if this is not public or if the
3052    // #[doc(no_inline)] attribute is present.
3053    // Don't inline doc(hidden) imports so they can be stripped at a later stage.
3054    let mut denied = cx.is_json_output()
3055        || !(visibility.is_public() || (cx.document_private() && is_visible_from_parent_mod))
3056        || pub_underscore
3057        || attrs.iter().any(|a| matches!(
3058            a,
3059            hir::Attribute::Parsed(AttributeKind::Doc(d))
3060            if d.hidden.is_some() || d.inline.first().is_some_and(|(i, _)| *i == DocInline::NoInline)
3061        ));
3062
3063    // Also check whether imports were asked to be inlined, in case we're trying to re-export a
3064    // crate in Rust 2018+
3065    let path = clean_path(path, cx);
3066    let inner = if kind == hir::UseKind::Glob {
3067        if !denied {
3068            let mut visited = DefIdSet::default();
3069            if let Some(items) = inline::try_inline_glob(
3070                cx,
3071                path.res,
3072                current_mod,
3073                &mut visited,
3074                inlined_names,
3075                import,
3076            ) {
3077                return items;
3078            }
3079        }
3080        Import::new_glob(resolve_use_source(cx, path), true)
3081    } else {
3082        let name = name.unwrap();
3083        if inline_attr.is_none()
3084            && let Res::Def(DefKind::Mod, did) = path.res
3085            && !did.is_local()
3086            && did.is_crate_root()
3087        {
3088            // if we're `pub use`ing an extern crate root, don't inline it unless we
3089            // were specifically asked for it
3090            denied = true;
3091        }
3092        if !denied
3093            && let Some(mut items) = inline::try_inline(
3094                cx,
3095                path.res,
3096                name,
3097                Some((attrs, Some(import_def_id))),
3098                &mut Default::default(),
3099            )
3100        {
3101            items.push(Item::from_def_id_and_parts(
3102                import_def_id.to_def_id(),
3103                None,
3104                ImportItem(Import::new_simple(name, resolve_use_source(cx, path), false)),
3105                cx,
3106            ));
3107            return items;
3108        }
3109        Import::new_simple(name, resolve_use_source(cx, path), true)
3110    };
3111
3112    vec![Item::from_def_id_and_parts(import_def_id.to_def_id(), None, ImportItem(inner), cx)]
3113}
3114
3115fn clean_maybe_renamed_foreign_item<'tcx>(
3116    cx: &mut DocContext<'tcx>,
3117    item: &hir::ForeignItem<'tcx>,
3118    renamed: Option<Symbol>,
3119    import_id: Option<LocalDefId>,
3120) -> Item {
3121    let def_id = item.owner_id.to_def_id();
3122    cx.with_param_env(def_id, |cx| {
3123        let kind = match item.kind {
3124            hir::ForeignItemKind::Fn(sig, idents, generics) => ForeignFunctionItem(
3125                clean_function(cx, &sig, generics, ParamsSrc::Idents(idents)),
3126                sig.header.safety(),
3127            ),
3128            hir::ForeignItemKind::Static(ty, mutability, safety) => ForeignStaticItem(
3129                Static { type_: Box::new(clean_ty(ty, cx)), mutability, expr: None },
3130                safety,
3131            ),
3132            hir::ForeignItemKind::Type => ForeignTypeItem,
3133        };
3134
3135        generate_item_with_correct_attrs(
3136            cx,
3137            kind,
3138            item.owner_id.def_id.to_def_id(),
3139            item.ident.name,
3140            import_id.as_slice(),
3141            renamed,
3142        )
3143    })
3144}
3145
3146fn clean_assoc_item_constraint<'tcx>(
3147    trait_did: DefId,
3148    constraint: &hir::AssocItemConstraint<'tcx>,
3149    cx: &mut DocContext<'tcx>,
3150) -> AssocItemConstraint {
3151    AssocItemConstraint {
3152        assoc: PathSegment {
3153            name: constraint.ident.name,
3154            args: clean_generic_args(None, constraint.gen_args, cx),
3155        },
3156        kind: match constraint.kind {
3157            hir::AssocItemConstraintKind::Equality { ref term } => {
3158                let assoc_tag = match term {
3159                    hir::Term::Ty(_) => ty::AssocTag::Type,
3160                    hir::Term::Const(_) => ty::AssocTag::Const,
3161                };
3162                let assoc_item = cx
3163                    .tcx
3164                    .associated_items(trait_did)
3165                    .find_by_ident_and_kind(cx.tcx, constraint.ident, assoc_tag, trait_did)
3166                    .map(|item| item.def_id);
3167                AssocItemConstraintKind::Equality { term: clean_hir_term(assoc_item, term, cx) }
3168            }
3169            hir::AssocItemConstraintKind::Bound { bounds } => AssocItemConstraintKind::Bound {
3170                bounds: bounds.iter().filter_map(|b| clean_generic_bound(b, cx)).collect(),
3171            },
3172        },
3173    }
3174}
3175
3176fn clean_bound_vars<'tcx>(
3177    bound_vars: &ty::List<ty::BoundVariableKind>,
3178    cx: &mut DocContext<'tcx>,
3179) -> Vec<GenericParamDef> {
3180    bound_vars
3181        .into_iter()
3182        .filter_map(|var| match var {
3183            ty::BoundVariableKind::Region(ty::BoundRegionKind::Named(def_id)) => {
3184                let name = cx.tcx.item_name(def_id);
3185                if name != kw::UnderscoreLifetime {
3186                    Some(GenericParamDef::lifetime(def_id, name))
3187                } else {
3188                    None
3189                }
3190            }
3191            ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(def_id)) => {
3192                let name = cx.tcx.item_name(def_id);
3193                Some(GenericParamDef {
3194                    name,
3195                    def_id,
3196                    kind: GenericParamDefKind::Type {
3197                        bounds: ThinVec::new(),
3198                        default: None,
3199                        synthetic: false,
3200                    },
3201                })
3202            }
3203            // FIXME(non_lifetime_binders): Support higher-ranked const parameters.
3204            ty::BoundVariableKind::Const => None,
3205            _ => None,
3206        })
3207        .collect()
3208}