rustc_const_eval/interpret/eval_context.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
use std::assert_matches::debug_assert_matches;
use either::{Left, Right};
use rustc_abi::{Align, HasDataLayout, Size, TargetDataLayout};
use rustc_errors::DiagCtxtHandle;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::infer::at::ToTrace;
use rustc_infer::traits::ObligationCause;
use rustc_middle::mir::interpret::{ErrorHandled, InvalidMetaKind, ReportedErrorInfo};
use rustc_middle::query::TyCtxtAt;
use rustc_middle::ty::layout::{
self, FnAbiError, FnAbiOfHelpers, FnAbiRequest, LayoutError, LayoutOfHelpers, TyAndLayout,
};
use rustc_middle::ty::{self, GenericArgsRef, Ty, TyCtxt, TypeFoldable, TypingEnv, Variance};
use rustc_middle::{mir, span_bug};
use rustc_session::Limit;
use rustc_span::Span;
use rustc_target::callconv::FnAbi;
use rustc_trait_selection::traits::ObligationCtxt;
use tracing::{debug, instrument, trace};
use super::{
Frame, FrameInfo, GlobalId, InterpErrorInfo, InterpErrorKind, InterpResult, MPlaceTy, Machine,
MemPlaceMeta, Memory, OpTy, Place, PlaceTy, PointerArithmetic, Projectable, Provenance,
err_inval, interp_ok, throw_inval, throw_ub, throw_ub_custom,
};
use crate::{ReportErrorExt, fluent_generated as fluent, util};
pub struct InterpCx<'tcx, M: Machine<'tcx>> {
/// Stores the `Machine` instance.
///
/// Note: the stack is provided by the machine.
pub machine: M,
/// The results of the type checker, from rustc.
/// The span in this is the "root" of the evaluation, i.e., the const
/// we are evaluating (if this is CTFE).
pub tcx: TyCtxtAt<'tcx>,
/// The current context in case we're evaluating in a
/// polymorphic context. This always uses `ty::TypingMode::PostAnalysis`.
pub(super) typing_env: ty::TypingEnv<'tcx>,
/// The virtual memory system.
pub memory: Memory<'tcx, M>,
/// The recursion limit (cached from `tcx.recursion_limit(())`)
pub recursion_limit: Limit,
}
impl<'tcx, M: Machine<'tcx>> HasDataLayout for InterpCx<'tcx, M> {
#[inline]
fn data_layout(&self) -> &TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'tcx, M> layout::HasTyCtxt<'tcx> for InterpCx<'tcx, M>
where
M: Machine<'tcx>,
{
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
*self.tcx
}
}
impl<'tcx, M> layout::HasTypingEnv<'tcx> for InterpCx<'tcx, M>
where
M: Machine<'tcx>,
{
fn typing_env(&self) -> ty::TypingEnv<'tcx> {
self.typing_env
}
}
impl<'tcx, M: Machine<'tcx>> LayoutOfHelpers<'tcx> for InterpCx<'tcx, M> {
type LayoutOfResult = Result<TyAndLayout<'tcx>, InterpErrorKind<'tcx>>;
#[inline]
fn layout_tcx_at_span(&self) -> Span {
// Using the cheap root span for performance.
self.tcx.span
}
#[inline]
fn handle_layout_err(
&self,
err: LayoutError<'tcx>,
_: Span,
_: Ty<'tcx>,
) -> InterpErrorKind<'tcx> {
err_inval!(Layout(err))
}
}
impl<'tcx, M: Machine<'tcx>> FnAbiOfHelpers<'tcx> for InterpCx<'tcx, M> {
type FnAbiOfResult = Result<&'tcx FnAbi<'tcx, Ty<'tcx>>, InterpErrorKind<'tcx>>;
fn handle_fn_abi_err(
&self,
err: FnAbiError<'tcx>,
_span: Span,
_fn_abi_request: FnAbiRequest<'tcx>,
) -> InterpErrorKind<'tcx> {
match err {
FnAbiError::Layout(err) => err_inval!(Layout(err)),
FnAbiError::AdjustForForeignAbi(err) => {
err_inval!(FnAbiAdjustForForeignAbi(err))
}
}
}
}
/// Test if it is valid for a MIR assignment to assign `src`-typed place to `dest`-typed value.
/// This test should be symmetric, as it is primarily about layout compatibility.
pub(super) fn mir_assign_valid_types<'tcx>(
tcx: TyCtxt<'tcx>,
typing_env: TypingEnv<'tcx>,
src: TyAndLayout<'tcx>,
dest: TyAndLayout<'tcx>,
) -> bool {
// Type-changing assignments can happen when subtyping is used. While
// all normal lifetimes are erased, higher-ranked types with their
// late-bound lifetimes are still around and can lead to type
// differences.
if util::relate_types(tcx, typing_env, Variance::Covariant, src.ty, dest.ty) {
// Make sure the layout is equal, too -- just to be safe. Miri really
// needs layout equality. For performance reason we skip this check when
// the types are equal. Equal types *can* have different layouts when
// enum downcast is involved (as enum variants carry the type of the
// enum), but those should never occur in assignments.
if cfg!(debug_assertions) || src.ty != dest.ty {
assert_eq!(src.layout, dest.layout);
}
true
} else {
false
}
}
/// Use the already known layout if given (but sanity check in debug mode),
/// or compute the layout.
#[cfg_attr(not(debug_assertions), inline(always))]
pub(super) fn from_known_layout<'tcx>(
tcx: TyCtxtAt<'tcx>,
typing_env: TypingEnv<'tcx>,
known_layout: Option<TyAndLayout<'tcx>>,
compute: impl FnOnce() -> InterpResult<'tcx, TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
match known_layout {
None => compute(),
Some(known_layout) => {
if cfg!(debug_assertions) {
let check_layout = compute()?;
if !mir_assign_valid_types(tcx.tcx, typing_env, check_layout, known_layout) {
span_bug!(
tcx.span,
"expected type differs from actual type.\nexpected: {}\nactual: {}",
known_layout.ty,
check_layout.ty,
);
}
}
interp_ok(known_layout)
}
}
}
/// Turn the given error into a human-readable string. Expects the string to be printed, so if
/// `RUSTC_CTFE_BACKTRACE` is set this will show a backtrace of the rustc internals that
/// triggered the error.
///
/// This is NOT the preferred way to render an error; use `report` from `const_eval` instead.
/// However, this is useful when error messages appear in ICEs.
pub fn format_interp_error<'tcx>(dcx: DiagCtxtHandle<'_>, e: InterpErrorInfo<'tcx>) -> String {
let (e, backtrace) = e.into_parts();
backtrace.print_backtrace();
// FIXME(fee1-dead), HACK: we want to use the error as title therefore we can just extract the
// label and arguments from the InterpError.
#[allow(rustc::untranslatable_diagnostic)]
let mut diag = dcx.struct_allow("");
let msg = e.diagnostic_message();
e.add_args(&mut diag);
let s = dcx.eagerly_translate_to_string(msg, diag.args.iter());
diag.cancel();
s
}
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
pub fn new(
tcx: TyCtxt<'tcx>,
root_span: Span,
typing_env: ty::TypingEnv<'tcx>,
machine: M,
) -> Self {
// Const eval always happens in post analysis mode in order to be able to use the hidden types of
// opaque types. This is needed for trivial things like `size_of`, but also for using associated
// types that are not specified in the opaque type. We also use MIR bodies whose opaque types have
// already been revealed, so we'd be able to at least partially observe the hidden types anyways.
debug_assert_matches!(typing_env.typing_mode, ty::TypingMode::PostAnalysis);
InterpCx {
machine,
tcx: tcx.at(root_span),
typing_env,
memory: Memory::new(),
recursion_limit: tcx.recursion_limit(),
}
}
/// Returns the span of the currently executed statement/terminator.
/// This is the span typically used for error reporting.
#[inline(always)]
pub fn cur_span(&self) -> Span {
// This deliberately does *not* honor `requires_caller_location` since it is used for much
// more than just panics.
self.stack().last().map_or(self.tcx.span, |f| f.current_span())
}
pub(crate) fn stack(&self) -> &[Frame<'tcx, M::Provenance, M::FrameExtra>] {
M::stack(self)
}
#[inline(always)]
pub(crate) fn stack_mut(&mut self) -> &mut Vec<Frame<'tcx, M::Provenance, M::FrameExtra>> {
M::stack_mut(self)
}
#[inline(always)]
pub fn frame_idx(&self) -> usize {
let stack = self.stack();
assert!(!stack.is_empty());
stack.len() - 1
}
#[inline(always)]
pub fn frame(&self) -> &Frame<'tcx, M::Provenance, M::FrameExtra> {
self.stack().last().expect("no call frames exist")
}
#[inline(always)]
pub fn frame_mut(&mut self) -> &mut Frame<'tcx, M::Provenance, M::FrameExtra> {
self.stack_mut().last_mut().expect("no call frames exist")
}
#[inline(always)]
pub fn body(&self) -> &'tcx mir::Body<'tcx> {
self.frame().body
}
#[inline]
pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool {
ty.is_freeze(*self.tcx, self.typing_env)
}
pub fn load_mir(
&self,
instance: ty::InstanceKind<'tcx>,
promoted: Option<mir::Promoted>,
) -> InterpResult<'tcx, &'tcx mir::Body<'tcx>> {
trace!("load mir(instance={:?}, promoted={:?})", instance, promoted);
let body = if let Some(promoted) = promoted {
let def = instance.def_id();
&self.tcx.promoted_mir(def)[promoted]
} else {
M::load_mir(self, instance)?
};
// do not continue if typeck errors occurred (can only occur in local crate)
if let Some(err) = body.tainted_by_errors {
throw_inval!(AlreadyReported(ReportedErrorInfo::tainted_by_errors(err)));
}
interp_ok(body)
}
/// Call this on things you got out of the MIR (so it is as generic as the current
/// stack frame), to bring it into the proper environment for this interpreter.
pub(super) fn instantiate_from_current_frame_and_normalize_erasing_regions<
T: TypeFoldable<TyCtxt<'tcx>>,
>(
&self,
value: T,
) -> Result<T, ErrorHandled> {
self.instantiate_from_frame_and_normalize_erasing_regions(self.frame(), value)
}
/// Call this on things you got out of the MIR (so it is as generic as the provided
/// stack frame), to bring it into the proper environment for this interpreter.
pub(super) fn instantiate_from_frame_and_normalize_erasing_regions<
T: TypeFoldable<TyCtxt<'tcx>>,
>(
&self,
frame: &Frame<'tcx, M::Provenance, M::FrameExtra>,
value: T,
) -> Result<T, ErrorHandled> {
frame
.instance
.try_instantiate_mir_and_normalize_erasing_regions(
*self.tcx,
self.typing_env,
ty::EarlyBinder::bind(value),
)
.map_err(|_| ErrorHandled::TooGeneric(self.cur_span()))
}
/// The `args` are assumed to already be in our interpreter "universe".
pub(super) fn resolve(
&self,
def: DefId,
args: GenericArgsRef<'tcx>,
) -> InterpResult<'tcx, ty::Instance<'tcx>> {
trace!("resolve: {:?}, {:#?}", def, args);
trace!("typing_env: {:#?}", self.typing_env);
trace!("args: {:#?}", args);
match ty::Instance::try_resolve(*self.tcx, self.typing_env, def, args) {
Ok(Some(instance)) => interp_ok(instance),
Ok(None) => throw_inval!(TooGeneric),
// FIXME(eddyb) this could be a bit more specific than `AlreadyReported`.
Err(error_reported) => throw_inval!(AlreadyReported(error_reported.into())),
}
}
/// Check if the two things are equal in the current param_env, using an infcx to get proper
/// equality checks.
#[instrument(level = "trace", skip(self), ret)]
pub(super) fn eq_in_param_env<T>(&self, a: T, b: T) -> bool
where
T: PartialEq + TypeFoldable<TyCtxt<'tcx>> + ToTrace<'tcx>,
{
// Fast path: compare directly.
if a == b {
return true;
}
// Slow path: spin up an inference context to check if these traits are sufficiently equal.
let (infcx, param_env) = self.tcx.infer_ctxt().build_with_typing_env(self.typing_env);
let ocx = ObligationCtxt::new(&infcx);
let cause = ObligationCause::dummy_with_span(self.cur_span());
// equate the two trait refs after normalization
let a = ocx.normalize(&cause, param_env, a);
let b = ocx.normalize(&cause, param_env, b);
if let Err(terr) = ocx.eq(&cause, param_env, a, b) {
trace!(?terr);
return false;
}
let errors = ocx.select_all_or_error();
if !errors.is_empty() {
trace!(?errors);
return false;
}
// All good.
true
}
/// Walks up the callstack from the intrinsic's callsite, searching for the first callsite in a
/// frame which is not `#[track_caller]`. This matches the `caller_location` intrinsic,
/// and is primarily intended for the panic machinery.
pub(crate) fn find_closest_untracked_caller_location(&self) -> Span {
for frame in self.stack().iter().rev() {
debug!("find_closest_untracked_caller_location: checking frame {:?}", frame.instance);
// Assert that the frame we look at is actually executing code currently
// (`loc` is `Right` when we are unwinding and the frame does not require cleanup).
let loc = frame.loc.left().unwrap();
// This could be a non-`Call` terminator (such as `Drop`), or not a terminator at all
// (such as `box`). Use the normal span by default.
let mut source_info = *frame.body.source_info(loc);
// If this is a `Call` terminator, use the `fn_span` instead.
let block = &frame.body.basic_blocks[loc.block];
if loc.statement_index == block.statements.len() {
debug!(
"find_closest_untracked_caller_location: got terminator {:?} ({:?})",
block.terminator(),
block.terminator().kind,
);
if let mir::TerminatorKind::Call { fn_span, .. } = block.terminator().kind {
source_info.span = fn_span;
}
}
let caller_location = if frame.instance.def.requires_caller_location(*self.tcx) {
// We use `Err(())` as indication that we should continue up the call stack since
// this is a `#[track_caller]` function.
Some(Err(()))
} else {
None
};
if let Ok(span) =
frame.body.caller_location_span(source_info, caller_location, *self.tcx, Ok)
{
return span;
}
}
span_bug!(self.cur_span(), "no non-`#[track_caller]` frame found")
}
/// Returns the actual dynamic size and alignment of the place at the given type.
/// Only the "meta" (metadata) part of the place matters.
/// This can fail to provide an answer for extern types.
pub(super) fn size_and_align_of(
&self,
metadata: &MemPlaceMeta<M::Provenance>,
layout: &TyAndLayout<'tcx>,
) -> InterpResult<'tcx, Option<(Size, Align)>> {
if layout.is_sized() {
return interp_ok(Some((layout.size, layout.align.abi)));
}
match layout.ty.kind() {
ty::Adt(..) | ty::Tuple(..) => {
// First get the size of all statically known fields.
// Don't use type_of::sizing_type_of because that expects t to be sized,
// and it also rounds up to alignment, which we want to avoid,
// as the unsized field's alignment could be smaller.
assert!(!layout.ty.is_simd());
assert!(layout.fields.count() > 0);
trace!("DST layout: {:?}", layout);
let unsized_offset_unadjusted = layout.fields.offset(layout.fields.count() - 1);
let sized_align = layout.align.abi;
// Recurse to get the size of the dynamically sized field (must be
// the last field). Can't have foreign types here, how would we
// adjust alignment and size for them?
let field = layout.field(self, layout.fields.count() - 1);
let Some((unsized_size, mut unsized_align)) =
self.size_and_align_of(metadata, &field)?
else {
// A field with an extern type. We don't know the actual dynamic size
// or the alignment.
return interp_ok(None);
};
// # First compute the dynamic alignment
// Packed type alignment needs to be capped.
if let ty::Adt(def, _) = layout.ty.kind() {
if let Some(packed) = def.repr().pack {
unsized_align = unsized_align.min(packed);
}
}
// Choose max of two known alignments (combined value must
// be aligned according to more restrictive of the two).
let full_align = sized_align.max(unsized_align);
// # Then compute the dynamic size
let unsized_offset_adjusted = unsized_offset_unadjusted.align_to(unsized_align);
let full_size = (unsized_offset_adjusted + unsized_size).align_to(full_align);
// Just for our sanitiy's sake, assert that this is equal to what codegen would compute.
assert_eq!(
full_size,
(unsized_offset_unadjusted + unsized_size).align_to(full_align)
);
// Check if this brought us over the size limit.
if full_size > self.max_size_of_val() {
throw_ub!(InvalidMeta(InvalidMetaKind::TooBig));
}
interp_ok(Some((full_size, full_align)))
}
ty::Dynamic(expected_trait, _, ty::Dyn) => {
let vtable = metadata.unwrap_meta().to_pointer(self)?;
// Read size and align from vtable (already checks size).
interp_ok(Some(self.get_vtable_size_and_align(vtable, Some(expected_trait))?))
}
ty::Slice(_) | ty::Str => {
let len = metadata.unwrap_meta().to_target_usize(self)?;
let elem = layout.field(self, 0);
// Make sure the slice is not too big.
let size = elem.size.bytes().saturating_mul(len); // we rely on `max_size_of_val` being smaller than `u64::MAX`.
let size = Size::from_bytes(size);
if size > self.max_size_of_val() {
throw_ub!(InvalidMeta(InvalidMetaKind::SliceTooBig));
}
interp_ok(Some((size, elem.align.abi)))
}
ty::Foreign(_) => interp_ok(None),
_ => span_bug!(self.cur_span(), "size_and_align_of::<{}> not supported", layout.ty),
}
}
#[inline]
pub fn size_and_align_of_mplace(
&self,
mplace: &MPlaceTy<'tcx, M::Provenance>,
) -> InterpResult<'tcx, Option<(Size, Align)>> {
self.size_and_align_of(&mplace.meta(), &mplace.layout)
}
/// Jump to the given block.
#[inline]
pub fn go_to_block(&mut self, target: mir::BasicBlock) {
self.frame_mut().loc = Left(mir::Location { block: target, statement_index: 0 });
}
/// *Return* to the given `target` basic block.
/// Do *not* use for unwinding! Use `unwind_to_block` instead.
///
/// If `target` is `None`, that indicates the function cannot return, so we raise UB.
pub fn return_to_block(&mut self, target: Option<mir::BasicBlock>) -> InterpResult<'tcx> {
if let Some(target) = target {
self.go_to_block(target);
interp_ok(())
} else {
throw_ub!(Unreachable)
}
}
/// *Unwind* to the given `target` basic block.
/// Do *not* use for returning! Use `return_to_block` instead.
///
/// If `target` is `UnwindAction::Continue`, that indicates the function does not need cleanup
/// during unwinding, and we will just keep propagating that upwards.
///
/// If `target` is `UnwindAction::Unreachable`, that indicates the function does not allow
/// unwinding, and doing so is UB.
#[cold] // usually we have normal returns, not unwinding
pub fn unwind_to_block(&mut self, target: mir::UnwindAction) -> InterpResult<'tcx> {
self.frame_mut().loc = match target {
mir::UnwindAction::Cleanup(block) => Left(mir::Location { block, statement_index: 0 }),
mir::UnwindAction::Continue => Right(self.frame_mut().body.span),
mir::UnwindAction::Unreachable => {
throw_ub_custom!(fluent::const_eval_unreachable_unwind);
}
mir::UnwindAction::Terminate(reason) => {
self.frame_mut().loc = Right(self.frame_mut().body.span);
M::unwind_terminate(self, reason)?;
// This might have pushed a new stack frame, or it terminated execution.
// Either way, `loc` will not be updated.
return interp_ok(());
}
};
interp_ok(())
}
/// Call a query that can return `ErrorHandled`. Should be used for statics and other globals.
/// (`mir::Const`/`ty::Const` have `eval` methods that can be used directly instead.)
pub fn ctfe_query<T>(
&self,
query: impl FnOnce(TyCtxtAt<'tcx>) -> Result<T, ErrorHandled>,
) -> Result<T, ErrorHandled> {
// Use a precise span for better cycle errors.
query(self.tcx.at(self.cur_span())).map_err(|err| {
err.emit_note(*self.tcx);
err
})
}
pub fn eval_global(
&self,
instance: ty::Instance<'tcx>,
) -> InterpResult<'tcx, MPlaceTy<'tcx, M::Provenance>> {
let gid = GlobalId { instance, promoted: None };
let val = if self.tcx.is_static(gid.instance.def_id()) {
let alloc_id = self.tcx.reserve_and_set_static_alloc(gid.instance.def_id());
let ty = instance.ty(self.tcx.tcx, self.typing_env);
mir::ConstAlloc { alloc_id, ty }
} else {
self.ctfe_query(|tcx| tcx.eval_to_allocation_raw(self.typing_env.as_query_input(gid)))?
};
self.raw_const_to_mplace(val)
}
pub fn eval_mir_constant(
&self,
val: &mir::Const<'tcx>,
span: Span,
layout: Option<TyAndLayout<'tcx>>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>> {
M::eval_mir_constant(self, *val, span, layout, |ecx, val, span, layout| {
let const_val = val.eval(*ecx.tcx, ecx.typing_env, span).map_err(|err| {
if M::ALL_CONSTS_ARE_PRECHECKED {
match err {
ErrorHandled::TooGeneric(..) => {},
ErrorHandled::Reported(reported, span) => {
if reported.is_tainted_by_errors() {
// const-eval will return "tainted" errors if e.g. the layout cannot
// be computed as the type references non-existing names.
// See <https://github.com/rust-lang/rust/issues/124348>.
} else if reported.can_be_spurious() {
// These errors can just sometimes happen, even when the expression
// is nominally "infallible", e.g. when running out of memory.
} else {
// Looks like the const is not captured by `required_consts`, that's bad.
span_bug!(span, "interpret const eval failure of {val:?} which is not in required_consts");
}
}
}
}
err.emit_note(*ecx.tcx);
err
})?;
ecx.const_val_to_op(const_val, val.ty(), layout)
})
}
#[must_use]
pub fn dump_place(&self, place: &PlaceTy<'tcx, M::Provenance>) -> PlacePrinter<'_, 'tcx, M> {
PlacePrinter { ecx: self, place: *place.place() }
}
#[must_use]
pub fn generate_stacktrace(&self) -> Vec<FrameInfo<'tcx>> {
Frame::generate_stacktrace_from_stack(self.stack())
}
pub fn adjust_nan<F1, F2>(&self, f: F2, inputs: &[F1]) -> F2
where
F1: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F2>,
F2: rustc_apfloat::Float,
{
if f.is_nan() { M::generate_nan(self, inputs) } else { f }
}
}
#[doc(hidden)]
/// Helper struct for the `dump_place` function.
pub struct PlacePrinter<'a, 'tcx, M: Machine<'tcx>> {
ecx: &'a InterpCx<'tcx, M>,
place: Place<M::Provenance>,
}
impl<'a, 'tcx, M: Machine<'tcx>> std::fmt::Debug for PlacePrinter<'a, 'tcx, M> {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self.place {
Place::Local { local, offset, locals_addr } => {
debug_assert_eq!(locals_addr, self.ecx.frame().locals_addr());
let mut allocs = Vec::new();
write!(fmt, "{local:?}")?;
if let Some(offset) = offset {
write!(fmt, "+{:#x}", offset.bytes())?;
}
write!(fmt, ":")?;
self.ecx.frame().locals[local].print(&mut allocs, fmt)?;
write!(fmt, ": {:?}", self.ecx.dump_allocs(allocs.into_iter().flatten().collect()))
}
Place::Ptr(mplace) => match mplace.ptr.provenance.and_then(Provenance::get_alloc_id) {
Some(alloc_id) => {
write!(fmt, "by ref {:?}: {:?}", mplace.ptr, self.ecx.dump_alloc(alloc_id))
}
ptr => write!(fmt, " integral by ref: {ptr:?}"),
},
}
}
}