rustc_expand/mbe/quoted.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
use rustc_ast::token::{self, Delimiter, IdentIsRaw, NonterminalKind, Token};
use rustc_ast::{NodeId, tokenstream};
use rustc_ast_pretty::pprust;
use rustc_feature::Features;
use rustc_session::Session;
use rustc_session::parse::feature_err;
use rustc_span::Span;
use rustc_span::edition::Edition;
use rustc_span::symbol::{Ident, kw, sym};
use crate::errors;
use crate::mbe::macro_parser::count_metavar_decls;
use crate::mbe::{Delimited, KleeneOp, KleeneToken, MetaVarExpr, SequenceRepetition, TokenTree};
pub(crate) const VALID_FRAGMENT_NAMES_MSG: &str = "valid fragment specifiers are \
`ident`, `block`, `stmt`, `expr`, `pat`, `ty`, `lifetime`, `literal`, `path`, \
`meta`, `tt`, `item` and `vis`, along with `expr_2021` and `pat_param` for edition compatibility";
/// Takes a `tokenstream::TokenStream` and returns a `Vec<self::TokenTree>`. Specifically, this
/// takes a generic `TokenStream`, such as is used in the rest of the compiler, and returns a
/// collection of `TokenTree` for use in parsing a macro.
///
/// # Parameters
///
/// - `input`: a token stream to read from, the contents of which we are parsing.
/// - `parsing_patterns`: `parse` can be used to parse either the "patterns" or the "body" of a
/// macro. Both take roughly the same form _except_ that:
/// - In a pattern, metavars are declared with their "matcher" type. For example `$var:expr` or
/// `$id:ident`. In this example, `expr` and `ident` are "matchers". They are not present in the
/// body of a macro rule -- just in the pattern.
/// - Metavariable expressions are only valid in the "body", not the "pattern".
/// - `sess`: the parsing session. Any errors will be emitted to this session.
/// - `node_id`: the NodeId of the macro we are parsing.
/// - `features`: language features so we can do feature gating.
///
/// # Returns
///
/// A collection of `self::TokenTree`. There may also be some errors emitted to `sess`.
pub(super) fn parse(
input: &tokenstream::TokenStream,
parsing_patterns: bool,
sess: &Session,
node_id: NodeId,
features: &Features,
edition: Edition,
) -> Vec<TokenTree> {
// Will contain the final collection of `self::TokenTree`
let mut result = Vec::new();
// For each token tree in `input`, parse the token into a `self::TokenTree`, consuming
// additional trees if need be.
let mut trees = input.trees().peekable();
while let Some(tree) = trees.next() {
// Given the parsed tree, if there is a metavar and we are expecting matchers, actually
// parse out the matcher (i.e., in `$id:ident` this would parse the `:` and `ident`).
let tree = parse_tree(tree, &mut trees, parsing_patterns, sess, node_id, features, edition);
match tree {
TokenTree::MetaVar(start_sp, ident) if parsing_patterns => {
// Not consuming the next token immediately, as it may not be a colon
let span = match trees.peek() {
Some(&tokenstream::TokenTree::Token(
Token { kind: token::Colon, span: colon_span },
_,
)) => {
// Consume the colon first
trees.next();
// It's ok to consume the next tree no matter how,
// since if it's not a token then it will be an invalid declaration.
match trees.next() {
Some(tokenstream::TokenTree::Token(token, _)) => match token.ident() {
Some((fragment, _)) => {
let span = token.span.with_lo(start_sp.lo());
let edition = || {
// FIXME(#85708) - once we properly decode a foreign
// crate's `SyntaxContext::root`, then we can replace
// this with just `span.edition()`. A
// `SyntaxContext::root()` from the current crate will
// have the edition of the current crate, and a
// `SyntaxContext::root()` from a foreign crate will
// have the edition of that crate (which we manually
// retrieve via the `edition` parameter).
if !span.from_expansion() {
edition
} else {
span.edition()
}
};
let kind = NonterminalKind::from_symbol(fragment.name, edition)
.unwrap_or_else(|| {
sess.dcx().emit_err(errors::InvalidFragmentSpecifier {
span,
fragment,
help: VALID_FRAGMENT_NAMES_MSG.into(),
});
NonterminalKind::Ident
});
result.push(TokenTree::MetaVarDecl(span, ident, Some(kind)));
continue;
}
_ => token.span,
},
// Invalid, return a nice source location
_ => colon_span.with_lo(start_sp.lo()),
}
}
// Whether it's none or some other tree, it doesn't belong to
// the current meta variable, returning the original span.
_ => start_sp,
};
result.push(TokenTree::MetaVarDecl(span, ident, None));
}
// Not a metavar or no matchers allowed, so just return the tree
_ => result.push(tree),
}
}
result
}
/// Asks for the `macro_metavar_expr` feature if it is not already declared
fn maybe_emit_macro_metavar_expr_feature(features: &Features, sess: &Session, span: Span) {
if !features.macro_metavar_expr {
let msg = "meta-variable expressions are unstable";
feature_err(sess, sym::macro_metavar_expr, span, msg).emit();
}
}
fn maybe_emit_macro_metavar_expr_concat_feature(features: &Features, sess: &Session, span: Span) {
if !features.macro_metavar_expr_concat {
let msg = "the `concat` meta-variable expression is unstable";
feature_err(sess, sym::macro_metavar_expr_concat, span, msg).emit();
}
}
/// Takes a `tokenstream::TokenTree` and returns a `self::TokenTree`. Specifically, this takes a
/// generic `TokenTree`, such as is used in the rest of the compiler, and returns a `TokenTree`
/// for use in parsing a macro.
///
/// Converting the given tree may involve reading more tokens.
///
/// # Parameters
///
/// - `tree`: the tree we wish to convert.
/// - `outer_trees`: an iterator over trees. We may need to read more tokens from it in order to finish
/// converting `tree`
/// - `parsing_patterns`: same as [parse].
/// - `sess`: the parsing session. Any errors will be emitted to this session.
/// - `features`: language features so we can do feature gating.
fn parse_tree<'a>(
tree: &'a tokenstream::TokenTree,
outer_trees: &mut impl Iterator<Item = &'a tokenstream::TokenTree>,
parsing_patterns: bool,
sess: &Session,
node_id: NodeId,
features: &Features,
edition: Edition,
) -> TokenTree {
// Depending on what `tree` is, we could be parsing different parts of a macro
match tree {
// `tree` is a `$` token. Look at the next token in `trees`
&tokenstream::TokenTree::Token(Token { kind: token::Dollar, span: dollar_span }, _) => {
// FIXME: Handle `Invisible`-delimited groups in a more systematic way
// during parsing.
let mut next = outer_trees.next();
let mut trees: Box<dyn Iterator<Item = &tokenstream::TokenTree>>;
if let Some(tokenstream::TokenTree::Delimited(.., Delimiter::Invisible, tts)) = next {
trees = Box::new(tts.trees());
next = trees.next();
} else {
trees = Box::new(outer_trees);
}
match next {
// `tree` is followed by a delimited set of token trees.
Some(&tokenstream::TokenTree::Delimited(delim_span, _, delim, ref tts)) => {
if parsing_patterns {
if delim != Delimiter::Parenthesis {
span_dollar_dollar_or_metavar_in_the_lhs_err(sess, &Token {
kind: token::OpenDelim(delim),
span: delim_span.entire(),
});
}
} else {
match delim {
Delimiter::Brace => {
// The delimiter is `{`. This indicates the beginning
// of a meta-variable expression (e.g. `${count(ident)}`).
// Try to parse the meta-variable expression.
match MetaVarExpr::parse(tts, delim_span.entire(), &sess.psess) {
Err(err) => {
err.emit();
// Returns early the same read `$` to avoid spanning
// unrelated diagnostics that could be performed afterwards
return TokenTree::token(token::Dollar, dollar_span);
}
Ok(elem) => {
if let MetaVarExpr::Concat(_) = elem {
maybe_emit_macro_metavar_expr_concat_feature(
features,
sess,
delim_span.entire(),
);
} else {
maybe_emit_macro_metavar_expr_feature(
features,
sess,
delim_span.entire(),
);
}
return TokenTree::MetaVarExpr(delim_span, elem);
}
}
}
Delimiter::Parenthesis => {}
_ => {
let token = pprust::token_kind_to_string(&token::OpenDelim(delim));
sess.dcx().emit_err(errors::ExpectedParenOrBrace {
span: delim_span.entire(),
token,
});
}
}
}
// If we didn't find a metavar expression above, then we must have a
// repetition sequence in the macro (e.g. `$(pat)*`). Parse the
// contents of the sequence itself
let sequence = parse(tts, parsing_patterns, sess, node_id, features, edition);
// Get the Kleene operator and optional separator
let (separator, kleene) =
parse_sep_and_kleene_op(&mut trees, delim_span.entire(), sess);
// Count the number of captured "names" (i.e., named metavars)
let num_captures =
if parsing_patterns { count_metavar_decls(&sequence) } else { 0 };
TokenTree::Sequence(delim_span, SequenceRepetition {
tts: sequence,
separator,
kleene,
num_captures,
})
}
// `tree` is followed by an `ident`. This could be `$meta_var` or the `$crate`
// special metavariable that names the crate of the invocation.
Some(tokenstream::TokenTree::Token(token, _)) if token.is_ident() => {
let (ident, is_raw) = token.ident().unwrap();
let span = ident.span.with_lo(dollar_span.lo());
if ident.name == kw::Crate && matches!(is_raw, IdentIsRaw::No) {
TokenTree::token(token::Ident(kw::DollarCrate, is_raw), span)
} else {
TokenTree::MetaVar(span, ident)
}
}
// `tree` is followed by another `$`. This is an escaped `$`.
Some(&tokenstream::TokenTree::Token(
Token { kind: token::Dollar, span: dollar_span2 },
_,
)) => {
if parsing_patterns {
span_dollar_dollar_or_metavar_in_the_lhs_err(sess, &Token {
kind: token::Dollar,
span: dollar_span2,
});
} else {
maybe_emit_macro_metavar_expr_feature(features, sess, dollar_span2);
}
TokenTree::token(token::Dollar, dollar_span2)
}
// `tree` is followed by some other token. This is an error.
Some(tokenstream::TokenTree::Token(token, _)) => {
let msg =
format!("expected identifier, found `{}`", pprust::token_to_string(token),);
sess.dcx().span_err(token.span, msg);
TokenTree::MetaVar(token.span, Ident::empty())
}
// There are no more tokens. Just return the `$` we already have.
None => TokenTree::token(token::Dollar, dollar_span),
}
}
// `tree` is an arbitrary token. Keep it.
tokenstream::TokenTree::Token(token, _) => TokenTree::Token(token.clone()),
// `tree` is the beginning of a delimited set of tokens (e.g., `(` or `{`). We need to
// descend into the delimited set and further parse it.
&tokenstream::TokenTree::Delimited(span, spacing, delim, ref tts) => {
TokenTree::Delimited(span, spacing, Delimited {
delim,
tts: parse(tts, parsing_patterns, sess, node_id, features, edition),
})
}
}
}
/// Takes a token and returns `Some(KleeneOp)` if the token is `+` `*` or `?`. Otherwise, return
/// `None`.
fn kleene_op(token: &Token) -> Option<KleeneOp> {
match token.kind {
token::BinOp(token::Star) => Some(KleeneOp::ZeroOrMore),
token::BinOp(token::Plus) => Some(KleeneOp::OneOrMore),
token::Question => Some(KleeneOp::ZeroOrOne),
_ => None,
}
}
/// Parse the next token tree of the input looking for a KleeneOp. Returns
///
/// - Ok(Ok((op, span))) if the next token tree is a KleeneOp
/// - Ok(Err(tok, span)) if the next token tree is a token but not a KleeneOp
/// - Err(span) if the next token tree is not a token
fn parse_kleene_op<'a>(
input: &mut impl Iterator<Item = &'a tokenstream::TokenTree>,
span: Span,
) -> Result<Result<(KleeneOp, Span), Token>, Span> {
match input.next() {
Some(tokenstream::TokenTree::Token(token, _)) => match kleene_op(token) {
Some(op) => Ok(Ok((op, token.span))),
None => Ok(Err(token.clone())),
},
tree => Err(tree.map_or(span, tokenstream::TokenTree::span)),
}
}
/// Attempt to parse a single Kleene star, possibly with a separator.
///
/// For example, in a pattern such as `$(a),*`, `a` is the pattern to be repeated, `,` is the
/// separator, and `*` is the Kleene operator. This function is specifically concerned with parsing
/// the last two tokens of such a pattern: namely, the optional separator and the Kleene operator
/// itself. Note that here we are parsing the _macro_ itself, rather than trying to match some
/// stream of tokens in an invocation of a macro.
///
/// This function will take some input iterator `input` corresponding to `span` and a parsing
/// session `sess`. If the next one (or possibly two) tokens in `input` correspond to a Kleene
/// operator and separator, then a tuple with `(separator, KleeneOp)` is returned. Otherwise, an
/// error with the appropriate span is emitted to `sess` and a dummy value is returned.
fn parse_sep_and_kleene_op<'a>(
input: &mut impl Iterator<Item = &'a tokenstream::TokenTree>,
span: Span,
sess: &Session,
) -> (Option<Token>, KleeneToken) {
// We basically look at two token trees here, denoted as #1 and #2 below
let span = match parse_kleene_op(input, span) {
// #1 is a `?`, `+`, or `*` KleeneOp
Ok(Ok((op, span))) => return (None, KleeneToken::new(op, span)),
// #1 is a separator followed by #2, a KleeneOp
Ok(Err(token)) => match parse_kleene_op(input, token.span) {
// #2 is the `?` Kleene op, which does not take a separator (error)
Ok(Ok((KleeneOp::ZeroOrOne, span))) => {
// Error!
sess.dcx().span_err(
token.span,
"the `?` macro repetition operator does not take a separator",
);
// Return a dummy
return (None, KleeneToken::new(KleeneOp::ZeroOrMore, span));
}
// #2 is a KleeneOp :D
Ok(Ok((op, span))) => return (Some(token), KleeneToken::new(op, span)),
// #2 is a random token or not a token at all :(
Ok(Err(Token { span, .. })) | Err(span) => span,
},
// #1 is not a token
Err(span) => span,
};
// If we ever get to this point, we have experienced an "unexpected token" error
sess.dcx().span_err(span, "expected one of: `*`, `+`, or `?`");
// Return a dummy
(None, KleeneToken::new(KleeneOp::ZeroOrMore, span))
}
// `$$` or a meta-variable is the lhs of a macro but shouldn't.
//
// For example, `macro_rules! foo { ( ${len()} ) => {} }`
fn span_dollar_dollar_or_metavar_in_the_lhs_err(sess: &Session, token: &Token) {
sess.dcx()
.span_err(token.span, format!("unexpected token: {}", pprust::token_to_string(token)));
sess.dcx().span_note(
token.span,
"`$$` and meta-variable expressions are not allowed inside macro parameter definitions",
);
}