rustc_next_trait_solver/
canonicalizer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
use std::cmp::Ordering;

use rustc_type_ir::data_structures::HashMap;
use rustc_type_ir::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
use rustc_type_ir::inherent::*;
use rustc_type_ir::visit::TypeVisitableExt;
use rustc_type_ir::{
    self as ty, Canonical, CanonicalTyVarKind, CanonicalVarInfo, CanonicalVarKind, InferCtxtLike,
    Interner,
};

use crate::delegate::SolverDelegate;

/// Whether we're canonicalizing a query input or the query response.
///
/// When canonicalizing an input we're in the context of the caller
/// while canonicalizing the response happens in the context of the
/// query.
#[derive(Debug, Clone, Copy)]
pub enum CanonicalizeMode {
    Input,
    /// FIXME: We currently return region constraints referring to
    /// placeholders and inference variables from a binder instantiated
    /// inside of the query.
    ///
    /// In the long term we should eagerly deal with these constraints
    /// inside of the query and only propagate constraints which are
    /// actually nameable by the caller.
    Response {
        /// The highest universe nameable by the caller.
        ///
        /// All variables in a universe nameable by the caller get mapped
        /// to the root universe in the response and then mapped back to
        /// their correct universe when applying the query response in the
        /// context of the caller.
        ///
        /// This doesn't work for universes created inside of the query so
        /// we do remember their universe in the response.
        max_input_universe: ty::UniverseIndex,
    },
}

pub struct Canonicalizer<'a, D: SolverDelegate<Interner = I>, I: Interner> {
    delegate: &'a D,

    // Immutable field.
    canonicalize_mode: CanonicalizeMode,

    // Mutable fields.
    variables: &'a mut Vec<I::GenericArg>,
    primitive_var_infos: Vec<CanonicalVarInfo<I>>,
    variable_lookup_table: HashMap<I::GenericArg, usize>,
    binder_index: ty::DebruijnIndex,

    /// We only use the debruijn index during lookup. We don't need to
    /// track the `variables` as each generic arg only results in a single
    /// bound variable regardless of how many times it is encountered.
    cache: HashMap<(ty::DebruijnIndex, I::Ty), I::Ty>,
}

impl<'a, D: SolverDelegate<Interner = I>, I: Interner> Canonicalizer<'a, D, I> {
    pub fn canonicalize<T: TypeFoldable<I>>(
        delegate: &'a D,
        canonicalize_mode: CanonicalizeMode,
        variables: &'a mut Vec<I::GenericArg>,
        value: T,
    ) -> ty::Canonical<I, T> {
        let mut canonicalizer = Canonicalizer {
            delegate,
            canonicalize_mode,

            variables,
            variable_lookup_table: Default::default(),
            primitive_var_infos: Vec::new(),
            binder_index: ty::INNERMOST,

            cache: Default::default(),
        };

        let value = value.fold_with(&mut canonicalizer);
        assert!(!value.has_infer(), "unexpected infer in {value:?}");
        assert!(!value.has_placeholders(), "unexpected placeholders in {value:?}");

        let (max_universe, variables) = canonicalizer.finalize();

        let defining_opaque_types = delegate.defining_opaque_types();
        Canonical { defining_opaque_types, max_universe, variables, value }
    }

    fn get_or_insert_bound_var(
        &mut self,
        arg: impl Into<I::GenericArg>,
        canonical_var_info: CanonicalVarInfo<I>,
    ) -> ty::BoundVar {
        // FIXME: 16 is made up and arbitrary. We should look at some
        // perf data here.
        let arg = arg.into();
        let idx = if self.variables.len() > 16 {
            if self.variable_lookup_table.is_empty() {
                self.variable_lookup_table.extend(self.variables.iter().copied().zip(0..));
            }

            *self.variable_lookup_table.entry(arg).or_insert_with(|| {
                let var = self.variables.len();
                self.variables.push(arg);
                self.primitive_var_infos.push(canonical_var_info);
                var
            })
        } else {
            self.variables.iter().position(|&v| v == arg).unwrap_or_else(|| {
                let var = self.variables.len();
                self.variables.push(arg);
                self.primitive_var_infos.push(canonical_var_info);
                var
            })
        };

        ty::BoundVar::from(idx)
    }

    fn finalize(self) -> (ty::UniverseIndex, I::CanonicalVars) {
        let mut var_infos = self.primitive_var_infos;
        // See the rustc-dev-guide section about how we deal with universes
        // during canonicalization in the new solver.
        match self.canonicalize_mode {
            // We try to deduplicate as many query calls as possible and hide
            // all information which should not matter for the solver.
            //
            // For this we compress universes as much as possible.
            CanonicalizeMode::Input => {}
            // When canonicalizing a response we map a universes already entered
            // by the caller to the root universe and only return useful universe
            // information for placeholders and inference variables created inside
            // of the query.
            CanonicalizeMode::Response { max_input_universe } => {
                for var in var_infos.iter_mut() {
                    let uv = var.universe();
                    let new_uv = ty::UniverseIndex::from(
                        uv.index().saturating_sub(max_input_universe.index()),
                    );
                    *var = var.with_updated_universe(new_uv);
                }
                let max_universe = var_infos
                    .iter()
                    .map(|info| info.universe())
                    .max()
                    .unwrap_or(ty::UniverseIndex::ROOT);

                let var_infos = self.delegate.cx().mk_canonical_var_infos(&var_infos);
                return (max_universe, var_infos);
            }
        }

        // Given a `var_infos` with existentials `En` and universals `Un` in
        // universes `n`, this algorithm compresses them in place so that:
        //
        // - the new universe indices are as small as possible
        // - we create a new universe if we would otherwise
        //   1. put existentials from a different universe into the same one
        //   2. put a placeholder in the same universe as an existential which cannot name it
        //
        // Let's walk through an example:
        // - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 0
        // - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 1
        // - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 1, next_orig_uv: 2
        // - var_infos: [E0, U1, E5, U1, E1, E6, U6], curr_compressed_uv: 1, next_orig_uv: 5
        // - var_infos: [E0, U1, E2, U1, E1, E6, U6], curr_compressed_uv: 2, next_orig_uv: 6
        // - var_infos: [E0, U1, E1, U1, E1, E3, U3], curr_compressed_uv: 2, next_orig_uv: -
        //
        // This algorithm runs in `O(mn)` where `n` is the number of different universes and
        // `m` the number of variables. This should be fine as both are expected to be small.
        let mut curr_compressed_uv = ty::UniverseIndex::ROOT;
        let mut existential_in_new_uv = None;
        let mut next_orig_uv = Some(ty::UniverseIndex::ROOT);
        while let Some(orig_uv) = next_orig_uv.take() {
            let mut update_uv = |var: &mut CanonicalVarInfo<I>, orig_uv, is_existential| {
                let uv = var.universe();
                match uv.cmp(&orig_uv) {
                    Ordering::Less => (), // Already updated
                    Ordering::Equal => {
                        if is_existential {
                            if existential_in_new_uv.is_some_and(|uv| uv < orig_uv) {
                                // Condition 1.
                                //
                                // We already put an existential from a outer universe
                                // into the current compressed universe, so we need to
                                // create a new one.
                                curr_compressed_uv = curr_compressed_uv.next_universe();
                            }

                            // `curr_compressed_uv` will now contain an existential from
                            // `orig_uv`. Trying to canonicalizing an existential from
                            // a higher universe has to therefore use a new compressed
                            // universe.
                            existential_in_new_uv = Some(orig_uv);
                        } else if existential_in_new_uv.is_some() {
                            // Condition 2.
                            //
                            //  `var` is a placeholder from a universe which is not nameable
                            // by an existential which we already put into the compressed
                            // universe `curr_compressed_uv`. We therefore have to create a
                            // new universe for `var`.
                            curr_compressed_uv = curr_compressed_uv.next_universe();
                            existential_in_new_uv = None;
                        }

                        *var = var.with_updated_universe(curr_compressed_uv);
                    }
                    Ordering::Greater => {
                        // We can ignore this variable in this iteration. We only look at
                        // universes which actually occur in the input for performance.
                        //
                        // For this we set `next_orig_uv` to the next smallest, not yet compressed,
                        // universe of the input.
                        if next_orig_uv.map_or(true, |curr_next_uv| uv.cannot_name(curr_next_uv)) {
                            next_orig_uv = Some(uv);
                        }
                    }
                }
            };

            // For each universe which occurs in the input, we first iterate over all
            // placeholders and then over all inference variables.
            //
            // Whenever we compress the universe of a placeholder, no existential with
            // an already compressed universe can name that placeholder.
            for is_existential in [false, true] {
                for var in var_infos.iter_mut() {
                    // We simply put all regions from the input into the highest
                    // compressed universe, so we only deal with them at the end.
                    if !var.is_region() {
                        if is_existential == var.is_existential() {
                            update_uv(var, orig_uv, is_existential)
                        }
                    }
                }
            }
        }

        // We put all regions into a separate universe.
        let mut first_region = true;
        for var in var_infos.iter_mut() {
            if var.is_region() {
                if first_region {
                    first_region = false;
                    curr_compressed_uv = curr_compressed_uv.next_universe();
                }
                assert!(var.is_existential());
                *var = var.with_updated_universe(curr_compressed_uv);
            }
        }

        let var_infos = self.delegate.cx().mk_canonical_var_infos(&var_infos);
        (curr_compressed_uv, var_infos)
    }

    fn cached_fold_ty(&mut self, t: I::Ty) -> I::Ty {
        let kind = match t.kind() {
            ty::Infer(i) => match i {
                ty::TyVar(vid) => {
                    assert_eq!(
                        self.delegate.opportunistic_resolve_ty_var(vid),
                        t,
                        "ty vid should have been resolved fully before canonicalization"
                    );

                    CanonicalVarKind::Ty(CanonicalTyVarKind::General(
                        self.delegate
                            .universe_of_ty(vid)
                            .unwrap_or_else(|| panic!("ty var should have been resolved: {t:?}")),
                    ))
                }
                ty::IntVar(vid) => {
                    assert_eq!(
                        self.delegate.opportunistic_resolve_int_var(vid),
                        t,
                        "ty vid should have been resolved fully before canonicalization"
                    );
                    CanonicalVarKind::Ty(CanonicalTyVarKind::Int)
                }
                ty::FloatVar(vid) => {
                    assert_eq!(
                        self.delegate.opportunistic_resolve_float_var(vid),
                        t,
                        "ty vid should have been resolved fully before canonicalization"
                    );
                    CanonicalVarKind::Ty(CanonicalTyVarKind::Float)
                }
                ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => {
                    panic!("fresh vars not expected in canonicalization")
                }
            },
            ty::Placeholder(placeholder) => match self.canonicalize_mode {
                CanonicalizeMode::Input => CanonicalVarKind::PlaceholderTy(PlaceholderLike::new(
                    placeholder.universe(),
                    self.variables.len().into(),
                )),
                CanonicalizeMode::Response { .. } => CanonicalVarKind::PlaceholderTy(placeholder),
            },
            ty::Param(_) => match self.canonicalize_mode {
                CanonicalizeMode::Input => CanonicalVarKind::PlaceholderTy(PlaceholderLike::new(
                    ty::UniverseIndex::ROOT,
                    self.variables.len().into(),
                )),
                CanonicalizeMode::Response { .. } => panic!("param ty in response: {t:?}"),
            },
            ty::Bool
            | ty::Char
            | ty::Int(_)
            | ty::Uint(_)
            | ty::Float(_)
            | ty::Adt(_, _)
            | ty::Foreign(_)
            | ty::Str
            | ty::Array(_, _)
            | ty::Slice(_)
            | ty::RawPtr(_, _)
            | ty::Ref(_, _, _)
            | ty::Pat(_, _)
            | ty::FnDef(_, _)
            | ty::FnPtr(..)
            | ty::Dynamic(_, _, _)
            | ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Coroutine(_, _)
            | ty::CoroutineWitness(..)
            | ty::Never
            | ty::Tuple(_)
            | ty::Alias(_, _)
            | ty::Bound(_, _)
            | ty::Error(_) => {
                return t.super_fold_with(self);
            }
        };

        let var = self.get_or_insert_bound_var(t, CanonicalVarInfo { kind });

        Ty::new_anon_bound(self.cx(), self.binder_index, var)
    }
}

impl<D: SolverDelegate<Interner = I>, I: Interner> TypeFolder<I> for Canonicalizer<'_, D, I> {
    fn cx(&self) -> I {
        self.delegate.cx()
    }

    fn fold_binder<T>(&mut self, t: ty::Binder<I, T>) -> ty::Binder<I, T>
    where
        T: TypeFoldable<I>,
    {
        self.binder_index.shift_in(1);
        let t = t.super_fold_with(self);
        self.binder_index.shift_out(1);
        t
    }

    fn fold_region(&mut self, r: I::Region) -> I::Region {
        let kind = match r.kind() {
            ty::ReBound(..) => return r,

            // We may encounter `ReStatic` in item signatures or the hidden type
            // of an opaque. `ReErased` should only be encountered in the hidden
            // type of an opaque for regions that are ignored for the purposes of
            // captures.
            //
            // FIXME: We should investigate the perf implications of not uniquifying
            // `ReErased`. We may be able to short-circuit registering region
            // obligations if we encounter a `ReErased` on one side, for example.
            ty::ReStatic | ty::ReErased | ty::ReError(_) => match self.canonicalize_mode {
                CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT),
                CanonicalizeMode::Response { .. } => return r,
            },

            ty::ReEarlyParam(_) | ty::ReLateParam(_) => match self.canonicalize_mode {
                CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT),
                CanonicalizeMode::Response { .. } => {
                    panic!("unexpected region in response: {r:?}")
                }
            },

            ty::RePlaceholder(placeholder) => match self.canonicalize_mode {
                // We canonicalize placeholder regions as existentials in query inputs.
                CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT),
                CanonicalizeMode::Response { max_input_universe } => {
                    // If we have a placeholder region inside of a query, it must be from
                    // a new universe.
                    if max_input_universe.can_name(placeholder.universe()) {
                        panic!("new placeholder in universe {max_input_universe:?}: {r:?}");
                    }
                    CanonicalVarKind::PlaceholderRegion(placeholder)
                }
            },

            ty::ReVar(vid) => {
                assert_eq!(
                    self.delegate.opportunistic_resolve_lt_var(vid),
                    r,
                    "region vid should have been resolved fully before canonicalization"
                );
                match self.canonicalize_mode {
                    CanonicalizeMode::Input => CanonicalVarKind::Region(ty::UniverseIndex::ROOT),
                    CanonicalizeMode::Response { .. } => {
                        CanonicalVarKind::Region(self.delegate.universe_of_lt(vid).unwrap())
                    }
                }
            }
        };

        let var = self.get_or_insert_bound_var(r, CanonicalVarInfo { kind });

        Region::new_anon_bound(self.cx(), self.binder_index, var)
    }

    fn fold_ty(&mut self, t: I::Ty) -> I::Ty {
        if let Some(&ty) = self.cache.get(&(self.binder_index, t)) {
            ty
        } else {
            let res = self.cached_fold_ty(t);
            assert!(self.cache.insert((self.binder_index, t), res).is_none());
            res
        }
    }

    fn fold_const(&mut self, c: I::Const) -> I::Const {
        let kind = match c.kind() {
            ty::ConstKind::Infer(i) => match i {
                ty::InferConst::Var(vid) => {
                    assert_eq!(
                        self.delegate.opportunistic_resolve_ct_var(vid),
                        c,
                        "const vid should have been resolved fully before canonicalization"
                    );
                    CanonicalVarKind::Const(self.delegate.universe_of_ct(vid).unwrap())
                }
                ty::InferConst::EffectVar(_) => CanonicalVarKind::Effect,
                ty::InferConst::Fresh(_) => todo!(),
            },
            ty::ConstKind::Placeholder(placeholder) => match self.canonicalize_mode {
                CanonicalizeMode::Input => CanonicalVarKind::PlaceholderConst(
                    PlaceholderLike::new(placeholder.universe(), self.variables.len().into()),
                ),
                CanonicalizeMode::Response { .. } => {
                    CanonicalVarKind::PlaceholderConst(placeholder)
                }
            },
            ty::ConstKind::Param(_) => match self.canonicalize_mode {
                CanonicalizeMode::Input => CanonicalVarKind::PlaceholderConst(
                    PlaceholderLike::new(ty::UniverseIndex::ROOT, self.variables.len().into()),
                ),
                CanonicalizeMode::Response { .. } => panic!("param ty in response: {c:?}"),
            },
            // FIXME: See comment above -- we could fold the region separately or something.
            ty::ConstKind::Bound(_, _)
            | ty::ConstKind::Unevaluated(_)
            | ty::ConstKind::Value(_, _)
            | ty::ConstKind::Error(_)
            | ty::ConstKind::Expr(_) => return c.super_fold_with(self),
        };

        let var = self.get_or_insert_bound_var(c, CanonicalVarInfo { kind });

        Const::new_anon_bound(self.cx(), self.binder_index, var)
    }
}