rustc_trait_selection/error_reporting/infer/
mod.rs

1//! Error Reporting Code for the inference engine
2//!
3//! Because of the way inference, and in particular region inference,
4//! works, it often happens that errors are not detected until far after
5//! the relevant line of code has been type-checked. Therefore, there is
6//! an elaborate system to track why a particular constraint in the
7//! inference graph arose so that we can explain to the user what gave
8//! rise to a particular error.
9//!
10//! The system is based around a set of "origin" types. An "origin" is the
11//! reason that a constraint or inference variable arose. There are
12//! different "origin" enums for different kinds of constraints/variables
13//! (e.g., `TypeOrigin`, `RegionVariableOrigin`). An origin always has
14//! a span, but also more information so that we can generate a meaningful
15//! error message.
16//!
17//! Having a catalog of all the different reasons an error can arise is
18//! also useful for other reasons, like cross-referencing FAQs etc, though
19//! we are not really taking advantage of this yet.
20//!
21//! # Region Inference
22//!
23//! Region inference is particularly tricky because it always succeeds "in
24//! the moment" and simply registers a constraint. Then, at the end, we
25//! can compute the full graph and report errors, so we need to be able to
26//! store and later report what gave rise to the conflicting constraints.
27//!
28//! # Subtype Trace
29//!
30//! Determining whether `T1 <: T2` often involves a number of subtypes and
31//! subconstraints along the way. A "TypeTrace" is an extended version
32//! of an origin that traces the types and other values that were being
33//! compared. It is not necessarily comprehensive (in fact, at the time of
34//! this writing it only tracks the root values being compared) but I'd
35//! like to extend it to include significant "waypoints". For example, if
36//! you are comparing `(T1, T2) <: (T3, T4)`, and the problem is that `T2
37//! <: T4` fails, I'd like the trace to include enough information to say
38//! "in the 2nd element of the tuple". Similarly, failures when comparing
39//! arguments or return types in fn types should be able to cite the
40//! specific position, etc.
41//!
42//! # Reality vs plan
43//!
44//! Of course, there is still a LOT of code in typeck that has yet to be
45//! ported to this system, and which relies on string concatenation at the
46//! time of error detection.
47
48use std::borrow::Cow;
49use std::ops::ControlFlow;
50use std::path::PathBuf;
51use std::{cmp, fmt, iter};
52
53use rustc_abi::ExternAbi;
54use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
55use rustc_errors::{
56    Applicability, Diag, DiagStyledString, IntoDiagArg, MultiSpan, StringPart, pluralize,
57};
58use rustc_hir::def::DefKind;
59use rustc_hir::def_id::DefId;
60use rustc_hir::intravisit::Visitor;
61use rustc_hir::lang_items::LangItem;
62use rustc_hir::{self as hir};
63use rustc_macros::extension;
64use rustc_middle::bug;
65use rustc_middle::dep_graph::DepContext;
66use rustc_middle::traits::PatternOriginExpr;
67use rustc_middle::ty::error::{ExpectedFound, TypeError, TypeErrorToStringExt};
68use rustc_middle::ty::print::{PrintError, PrintTraitRefExt as _, with_forced_trimmed_paths};
69use rustc_middle::ty::{
70    self, List, ParamEnv, Region, Ty, TyCtxt, TypeFoldable, TypeSuperVisitable, TypeVisitable,
71    TypeVisitableExt,
72};
73use rustc_span::def_id::LOCAL_CRATE;
74use rustc_span::{BytePos, DesugaringKind, Pos, Span, sym};
75use tracing::{debug, instrument};
76
77use crate::error_reporting::TypeErrCtxt;
78use crate::errors::{ObligationCauseFailureCode, TypeErrorAdditionalDiags};
79use crate::infer;
80use crate::infer::relate::{self, RelateResult, TypeRelation};
81use crate::infer::{InferCtxt, InferCtxtExt as _, TypeTrace, ValuePairs};
82use crate::solve::deeply_normalize_for_diagnostics;
83use crate::traits::{
84    IfExpressionCause, MatchExpressionArmCause, ObligationCause, ObligationCauseCode,
85};
86
87mod note_and_explain;
88mod suggest;
89
90pub mod need_type_info;
91pub mod nice_region_error;
92pub mod region;
93pub mod sub_relations;
94
95/// Makes a valid string literal from a string by escaping special characters (" and \),
96/// unless they are already escaped.
97fn escape_literal(s: &str) -> String {
98    let mut escaped = String::with_capacity(s.len());
99    let mut chrs = s.chars().peekable();
100    while let Some(first) = chrs.next() {
101        match (first, chrs.peek()) {
102            ('\\', Some(&delim @ '"') | Some(&delim @ '\'')) => {
103                escaped.push('\\');
104                escaped.push(delim);
105                chrs.next();
106            }
107            ('"' | '\'', _) => {
108                escaped.push('\\');
109                escaped.push(first)
110            }
111            (c, _) => escaped.push(c),
112        };
113    }
114    escaped
115}
116
117impl<'a, 'tcx> TypeErrCtxt<'a, 'tcx> {
118    // [Note-Type-error-reporting]
119    // An invariant is that anytime the expected or actual type is Error (the special
120    // error type, meaning that an error occurred when typechecking this expression),
121    // this is a derived error. The error cascaded from another error (that was already
122    // reported), so it's not useful to display it to the user.
123    // The following methods implement this logic.
124    // They check if either the actual or expected type is Error, and don't print the error
125    // in this case. The typechecker should only ever report type errors involving mismatched
126    // types using one of these methods, and should not call span_err directly for such
127    // errors.
128    pub fn type_error_struct_with_diag<M>(
129        &self,
130        sp: Span,
131        mk_diag: M,
132        actual_ty: Ty<'tcx>,
133    ) -> Diag<'a>
134    where
135        M: FnOnce(String) -> Diag<'a>,
136    {
137        let actual_ty = self.resolve_vars_if_possible(actual_ty);
138        debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
139
140        let mut err = mk_diag(self.ty_to_string(actual_ty));
141
142        // Don't report an error if actual type is `Error`.
143        if actual_ty.references_error() {
144            err.downgrade_to_delayed_bug();
145        }
146
147        err
148    }
149
150    pub fn report_mismatched_types(
151        &self,
152        cause: &ObligationCause<'tcx>,
153        param_env: ty::ParamEnv<'tcx>,
154        expected: Ty<'tcx>,
155        actual: Ty<'tcx>,
156        err: TypeError<'tcx>,
157    ) -> Diag<'a> {
158        self.report_and_explain_type_error(
159            TypeTrace::types(cause, expected, actual),
160            param_env,
161            err,
162        )
163    }
164
165    pub fn report_mismatched_consts(
166        &self,
167        cause: &ObligationCause<'tcx>,
168        param_env: ty::ParamEnv<'tcx>,
169        expected: ty::Const<'tcx>,
170        actual: ty::Const<'tcx>,
171        err: TypeError<'tcx>,
172    ) -> Diag<'a> {
173        self.report_and_explain_type_error(
174            TypeTrace::consts(cause, expected, actual),
175            param_env,
176            err,
177        )
178    }
179
180    pub fn get_impl_future_output_ty(&self, ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
181        let (def_id, args) = match *ty.kind() {
182            ty::Alias(_, ty::AliasTy { def_id, args, .. })
183                if matches!(self.tcx.def_kind(def_id), DefKind::OpaqueTy) =>
184            {
185                (def_id, args)
186            }
187            ty::Alias(_, ty::AliasTy { def_id, args, .. })
188                if self.tcx.is_impl_trait_in_trait(def_id) =>
189            {
190                (def_id, args)
191            }
192            _ => return None,
193        };
194
195        let future_trait = self.tcx.require_lang_item(LangItem::Future, None);
196        let item_def_id = self.tcx.associated_item_def_ids(future_trait)[0];
197
198        self.tcx
199            .explicit_item_self_bounds(def_id)
200            .iter_instantiated_copied(self.tcx, args)
201            .find_map(|(predicate, _)| {
202                predicate
203                    .kind()
204                    .map_bound(|kind| match kind {
205                        ty::ClauseKind::Projection(projection_predicate)
206                            if projection_predicate.projection_term.def_id == item_def_id =>
207                        {
208                            projection_predicate.term.as_type()
209                        }
210                        _ => None,
211                    })
212                    .no_bound_vars()
213                    .flatten()
214            })
215    }
216
217    /// Adds a note if the types come from similarly named crates
218    fn check_and_note_conflicting_crates(&self, err: &mut Diag<'_>, terr: TypeError<'tcx>) -> bool {
219        // FIXME(estebank): unify with `report_similar_impl_candidates`. The message is similar,
220        // even if the logic needed to detect the case is very different.
221        use hir::def_id::CrateNum;
222        use rustc_hir::definitions::DisambiguatedDefPathData;
223        use ty::GenericArg;
224        use ty::print::Printer;
225
226        struct AbsolutePathPrinter<'tcx> {
227            tcx: TyCtxt<'tcx>,
228            segments: Vec<String>,
229        }
230
231        impl<'tcx> Printer<'tcx> for AbsolutePathPrinter<'tcx> {
232            fn tcx<'a>(&'a self) -> TyCtxt<'tcx> {
233                self.tcx
234            }
235
236            fn print_region(&mut self, _region: ty::Region<'_>) -> Result<(), PrintError> {
237                Err(fmt::Error)
238            }
239
240            fn print_type(&mut self, _ty: Ty<'tcx>) -> Result<(), PrintError> {
241                Err(fmt::Error)
242            }
243
244            fn print_dyn_existential(
245                &mut self,
246                _predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
247            ) -> Result<(), PrintError> {
248                Err(fmt::Error)
249            }
250
251            fn print_const(&mut self, _ct: ty::Const<'tcx>) -> Result<(), PrintError> {
252                Err(fmt::Error)
253            }
254
255            fn path_crate(&mut self, cnum: CrateNum) -> Result<(), PrintError> {
256                self.segments = vec![self.tcx.crate_name(cnum).to_string()];
257                Ok(())
258            }
259            fn path_qualified(
260                &mut self,
261                _self_ty: Ty<'tcx>,
262                _trait_ref: Option<ty::TraitRef<'tcx>>,
263            ) -> Result<(), PrintError> {
264                Err(fmt::Error)
265            }
266
267            fn path_append_impl(
268                &mut self,
269                _print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
270                _disambiguated_data: &DisambiguatedDefPathData,
271                _self_ty: Ty<'tcx>,
272                _trait_ref: Option<ty::TraitRef<'tcx>>,
273            ) -> Result<(), PrintError> {
274                Err(fmt::Error)
275            }
276            fn path_append(
277                &mut self,
278                print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
279                disambiguated_data: &DisambiguatedDefPathData,
280            ) -> Result<(), PrintError> {
281                print_prefix(self)?;
282                self.segments.push(disambiguated_data.to_string());
283                Ok(())
284            }
285            fn path_generic_args(
286                &mut self,
287                print_prefix: impl FnOnce(&mut Self) -> Result<(), PrintError>,
288                _args: &[GenericArg<'tcx>],
289            ) -> Result<(), PrintError> {
290                print_prefix(self)
291            }
292        }
293
294        let report_path_match = |err: &mut Diag<'_>, did1: DefId, did2: DefId, ty: &str| -> bool {
295            // Only report definitions from different crates. If both definitions
296            // are from a local module we could have false positives, e.g.
297            // let _ = [{struct Foo; Foo}, {struct Foo; Foo}];
298            if did1.krate != did2.krate {
299                let abs_path = |def_id| {
300                    let mut printer = AbsolutePathPrinter { tcx: self.tcx, segments: vec![] };
301                    printer.print_def_path(def_id, &[]).map(|_| printer.segments)
302                };
303
304                // We compare strings because DefPath can be different
305                // for imported and non-imported crates
306                let expected_str = self.tcx.def_path_str(did1);
307                let found_str = self.tcx.def_path_str(did2);
308                let Ok(expected_abs) = abs_path(did1) else { return false };
309                let Ok(found_abs) = abs_path(did2) else { return false };
310                let same_path = || -> Result<_, PrintError> {
311                    Ok(expected_str == found_str || expected_abs == found_abs)
312                };
313                // We want to use as unique a type path as possible. If both types are "locally
314                // known" by the same name, we use the "absolute path" which uses the original
315                // crate name instead.
316                let (expected, found) = if expected_str == found_str {
317                    (expected_abs.join("::"), found_abs.join("::"))
318                } else {
319                    (expected_str.clone(), found_str.clone())
320                };
321                if same_path().unwrap_or(false) {
322                    // We've displayed "expected `a::b`, found `a::b`". We add context to
323                    // differentiate the different cases where that might happen.
324                    let expected_crate_name = self.tcx.crate_name(did1.krate);
325                    let found_crate_name = self.tcx.crate_name(did2.krate);
326                    let same_crate = expected_crate_name == found_crate_name;
327                    let expected_sp = self.tcx.def_span(did1);
328                    let found_sp = self.tcx.def_span(did2);
329
330                    let both_direct_dependencies = if !did1.is_local()
331                        && !did2.is_local()
332                        && let Some(data1) = self.tcx.extern_crate(did1.krate)
333                        && let Some(data2) = self.tcx.extern_crate(did2.krate)
334                        && data1.dependency_of == LOCAL_CRATE
335                        && data2.dependency_of == LOCAL_CRATE
336                    {
337                        // If both crates are directly depended on, we don't want to mention that
338                        // in the final message, as it is redundant wording.
339                        // We skip the case of semver trick, where one version of the local crate
340                        // depends on another version of itself by checking that both crates at play
341                        // are not the current one.
342                        true
343                    } else {
344                        false
345                    };
346
347                    let mut span: MultiSpan = vec![expected_sp, found_sp].into();
348                    span.push_span_label(
349                        self.tcx.def_span(did1),
350                        format!("this is the expected {ty} `{expected}`"),
351                    );
352                    span.push_span_label(
353                        self.tcx.def_span(did2),
354                        format!("this is the found {ty} `{found}`"),
355                    );
356                    for def_id in [did1, did2] {
357                        let crate_name = self.tcx.crate_name(def_id.krate);
358                        if !def_id.is_local()
359                            && let Some(data) = self.tcx.extern_crate(def_id.krate)
360                        {
361                            let descr = if same_crate {
362                                "one version of".to_string()
363                            } else {
364                                format!("one {ty} comes from")
365                            };
366                            let dependency = if both_direct_dependencies {
367                                if let rustc_session::cstore::ExternCrateSource::Extern(def_id) =
368                                    data.src
369                                    && let Some(name) = self.tcx.opt_item_name(def_id)
370                                {
371                                    format!(", which is renamed locally to `{name}`")
372                                } else {
373                                    String::new()
374                                }
375                            } else if data.dependency_of == LOCAL_CRATE {
376                                ", as a direct dependency of the current crate".to_string()
377                            } else {
378                                let dep = self.tcx.crate_name(data.dependency_of);
379                                format!(", as a dependency of crate `{dep}`")
380                            };
381                            span.push_span_label(
382                                data.span,
383                                format!("{descr} crate `{crate_name}` used here{dependency}"),
384                            );
385                        }
386                    }
387                    let msg = if (did1.is_local() || did2.is_local()) && same_crate {
388                        format!(
389                            "the crate `{expected_crate_name}` is compiled multiple times, \
390                             possibly with different configurations",
391                        )
392                    } else if same_crate {
393                        format!(
394                            "two different versions of crate `{expected_crate_name}` are being \
395                             used; two types coming from two different versions of the same crate \
396                             are different types even if they look the same",
397                        )
398                    } else {
399                        format!(
400                            "two types coming from two different crates are different types even \
401                             if they look the same",
402                        )
403                    };
404                    err.span_note(span, msg);
405                    if same_crate {
406                        err.help("you can use `cargo tree` to explore your dependency tree");
407                    }
408                    return true;
409                }
410            }
411            false
412        };
413        match terr {
414            TypeError::Sorts(ref exp_found) => {
415                // if they are both "path types", there's a chance of ambiguity
416                // due to different versions of the same crate
417                if let (&ty::Adt(exp_adt, _), &ty::Adt(found_adt, _)) =
418                    (exp_found.expected.kind(), exp_found.found.kind())
419                {
420                    return report_path_match(err, exp_adt.did(), found_adt.did(), "type");
421                }
422            }
423            TypeError::Traits(ref exp_found) => {
424                return report_path_match(err, exp_found.expected, exp_found.found, "trait");
425            }
426            _ => (), // FIXME(#22750) handle traits and stuff
427        }
428        false
429    }
430
431    fn note_error_origin(
432        &self,
433        err: &mut Diag<'_>,
434        cause: &ObligationCause<'tcx>,
435        exp_found: Option<ty::error::ExpectedFound<Ty<'tcx>>>,
436        terr: TypeError<'tcx>,
437        param_env: Option<ParamEnv<'tcx>>,
438    ) {
439        match *cause.code() {
440            ObligationCauseCode::Pattern {
441                origin_expr: Some(origin_expr),
442                span: Some(span),
443                root_ty,
444            } => {
445                let expected_ty = self.resolve_vars_if_possible(root_ty);
446                if !matches!(
447                    expected_ty.kind(),
448                    ty::Infer(ty::InferTy::TyVar(_) | ty::InferTy::FreshTy(_))
449                ) {
450                    // don't show type `_`
451                    if span.desugaring_kind() == Some(DesugaringKind::ForLoop)
452                        && let ty::Adt(def, args) = expected_ty.kind()
453                        && Some(def.did()) == self.tcx.get_diagnostic_item(sym::Option)
454                    {
455                        err.span_label(
456                            span,
457                            format!("this is an iterator with items of type `{}`", args.type_at(0)),
458                        );
459                    } else {
460                        let expected_ty = self.tcx.short_string(expected_ty, err.long_ty_path());
461                        err.span_label(span, format!("this expression has type `{expected_ty}`"));
462                    }
463                }
464                if let Some(ty::error::ExpectedFound { found, .. }) = exp_found
465                    && let Ok(mut peeled_snippet) =
466                        self.tcx.sess.source_map().span_to_snippet(origin_expr.peeled_span)
467                {
468                    // Parentheses are needed for cases like as casts.
469                    // We use the peeled_span for deref suggestions.
470                    // It's also safe to use for box, since box only triggers if there
471                    // wasn't a reference to begin with.
472                    if origin_expr.peeled_prefix_suggestion_parentheses {
473                        peeled_snippet = format!("({peeled_snippet})");
474                    }
475
476                    // Try giving a box suggestion first, as it is a special case of the
477                    // deref suggestion.
478                    if expected_ty.boxed_ty() == Some(found) {
479                        err.span_suggestion_verbose(
480                            span,
481                            "consider dereferencing the boxed value",
482                            format!("*{peeled_snippet}"),
483                            Applicability::MachineApplicable,
484                        );
485                    } else if let Some(param_env) = param_env
486                        && let Some(prefix) = self.should_deref_suggestion_on_mismatch(
487                            param_env,
488                            found,
489                            expected_ty,
490                            origin_expr,
491                        )
492                    {
493                        err.span_suggestion_verbose(
494                            span,
495                            "consider dereferencing to access the inner value using the Deref trait",
496                            format!("{prefix}{peeled_snippet}"),
497                            Applicability::MaybeIncorrect,
498                        );
499                    }
500                }
501            }
502            ObligationCauseCode::Pattern { origin_expr: None, span: Some(span), .. } => {
503                err.span_label(span, "expected due to this");
504            }
505            ObligationCauseCode::BlockTailExpression(
506                _,
507                hir::MatchSource::TryDesugar(scrut_hir_id),
508            ) => {
509                if let Some(ty::error::ExpectedFound { expected, .. }) = exp_found {
510                    let scrut_expr = self.tcx.hir().expect_expr(scrut_hir_id);
511                    let scrut_ty = if let hir::ExprKind::Call(_, args) = &scrut_expr.kind {
512                        let arg_expr = args.first().expect("try desugaring call w/out arg");
513                        self.typeck_results
514                            .as_ref()
515                            .and_then(|typeck_results| typeck_results.expr_ty_opt(arg_expr))
516                    } else {
517                        bug!("try desugaring w/out call expr as scrutinee");
518                    };
519
520                    match scrut_ty {
521                        Some(ty) if expected == ty => {
522                            let source_map = self.tcx.sess.source_map();
523                            err.span_suggestion(
524                                source_map.end_point(cause.span),
525                                "try removing this `?`",
526                                "",
527                                Applicability::MachineApplicable,
528                            );
529                        }
530                        _ => {}
531                    }
532                }
533            }
534            ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
535                arm_block_id,
536                arm_span,
537                arm_ty,
538                prior_arm_block_id,
539                prior_arm_span,
540                prior_arm_ty,
541                source,
542                ref prior_non_diverging_arms,
543                scrut_span,
544                expr_span,
545                ..
546            }) => match source {
547                hir::MatchSource::TryDesugar(scrut_hir_id) => {
548                    if let Some(ty::error::ExpectedFound { expected, .. }) = exp_found {
549                        let scrut_expr = self.tcx.hir().expect_expr(scrut_hir_id);
550                        let scrut_ty = if let hir::ExprKind::Call(_, args) = &scrut_expr.kind {
551                            let arg_expr = args.first().expect("try desugaring call w/out arg");
552                            self.typeck_results
553                                .as_ref()
554                                .and_then(|typeck_results| typeck_results.expr_ty_opt(arg_expr))
555                        } else {
556                            bug!("try desugaring w/out call expr as scrutinee");
557                        };
558
559                        match scrut_ty {
560                            Some(ty) if expected == ty => {
561                                let source_map = self.tcx.sess.source_map();
562                                err.span_suggestion(
563                                    source_map.end_point(cause.span),
564                                    "try removing this `?`",
565                                    "",
566                                    Applicability::MachineApplicable,
567                                );
568                            }
569                            _ => {}
570                        }
571                    }
572                }
573                _ => {
574                    // `prior_arm_ty` can be `!`, `expected` will have better info when present.
575                    let t = self.resolve_vars_if_possible(match exp_found {
576                        Some(ty::error::ExpectedFound { expected, .. }) => expected,
577                        _ => prior_arm_ty,
578                    });
579                    let source_map = self.tcx.sess.source_map();
580                    let mut any_multiline_arm = source_map.is_multiline(arm_span);
581                    if prior_non_diverging_arms.len() <= 4 {
582                        for sp in prior_non_diverging_arms {
583                            any_multiline_arm |= source_map.is_multiline(*sp);
584                            err.span_label(*sp, format!("this is found to be of type `{t}`"));
585                        }
586                    } else if let Some(sp) = prior_non_diverging_arms.last() {
587                        any_multiline_arm |= source_map.is_multiline(*sp);
588                        err.span_label(
589                            *sp,
590                            format!("this and all prior arms are found to be of type `{t}`"),
591                        );
592                    }
593                    let outer = if any_multiline_arm || !source_map.is_multiline(expr_span) {
594                        // Cover just `match` and the scrutinee expression, not
595                        // the entire match body, to reduce diagram noise.
596                        expr_span.shrink_to_lo().to(scrut_span)
597                    } else {
598                        expr_span
599                    };
600                    let msg = "`match` arms have incompatible types";
601                    err.span_label(outer, msg);
602                    if let Some(subdiag) = self.suggest_remove_semi_or_return_binding(
603                        prior_arm_block_id,
604                        prior_arm_ty,
605                        prior_arm_span,
606                        arm_block_id,
607                        arm_ty,
608                        arm_span,
609                    ) {
610                        err.subdiagnostic(subdiag);
611                    }
612                }
613            },
614            ObligationCauseCode::IfExpression(box IfExpressionCause {
615                then_id,
616                else_id,
617                then_ty,
618                else_ty,
619                outer_span,
620                ..
621            }) => {
622                let then_span = self.find_block_span_from_hir_id(then_id);
623                let else_span = self.find_block_span_from_hir_id(else_id);
624                if let hir::Node::Expr(e) = self.tcx.hir_node(else_id)
625                    && let hir::ExprKind::If(_cond, _then, None) = e.kind
626                    && else_ty.is_unit()
627                {
628                    // Account for `let x = if a { 1 } else if b { 2 };`
629                    err.note("`if` expressions without `else` evaluate to `()`");
630                    err.note("consider adding an `else` block that evaluates to the expected type");
631                }
632                err.span_label(then_span, "expected because of this");
633                if let Some(sp) = outer_span {
634                    err.span_label(sp, "`if` and `else` have incompatible types");
635                }
636                if let Some(subdiag) = self.suggest_remove_semi_or_return_binding(
637                    Some(then_id),
638                    then_ty,
639                    then_span,
640                    Some(else_id),
641                    else_ty,
642                    else_span,
643                ) {
644                    err.subdiagnostic(subdiag);
645                }
646            }
647            ObligationCauseCode::LetElse => {
648                err.help("try adding a diverging expression, such as `return` or `panic!(..)`");
649                err.help("...or use `match` instead of `let...else`");
650            }
651            _ => {
652                if let ObligationCauseCode::WhereClause(_, span)
653                | ObligationCauseCode::WhereClauseInExpr(_, span, ..) =
654                    cause.code().peel_derives()
655                    && !span.is_dummy()
656                    && let TypeError::RegionsPlaceholderMismatch = terr
657                {
658                    err.span_note(*span, "the lifetime requirement is introduced here");
659                }
660            }
661        }
662    }
663
664    /// Determines whether deref_to == <deref_from as Deref>::Target, and if so,
665    /// returns a prefix that should be added to deref_from as a suggestion.
666    fn should_deref_suggestion_on_mismatch(
667        &self,
668        param_env: ParamEnv<'tcx>,
669        deref_to: Ty<'tcx>,
670        deref_from: Ty<'tcx>,
671        origin_expr: PatternOriginExpr,
672    ) -> Option<String> {
673        // origin_expr contains stripped away versions of our expression.
674        // We'll want to use that to avoid suggesting things like *&x.
675        // However, the type that we have access to hasn't been stripped away,
676        // so we need to ignore the first n dereferences, where n is the number
677        // that's been stripped away in origin_expr.
678
679        // Find a way to autoderef from deref_from to deref_to.
680        let Some((num_derefs, (after_deref_ty, _))) = (self.autoderef_steps)(deref_from)
681            .into_iter()
682            .enumerate()
683            .find(|(_, (ty, _))| self.infcx.can_eq(param_env, *ty, deref_to))
684        else {
685            return None;
686        };
687
688        if num_derefs <= origin_expr.peeled_count {
689            return None;
690        }
691
692        let deref_part = "*".repeat(num_derefs - origin_expr.peeled_count);
693
694        // If the user used a reference in the original expression, they probably
695        // want the suggestion to still give a reference.
696        if deref_from.is_ref() && !after_deref_ty.is_ref() {
697            Some(format!("&{deref_part}"))
698        } else {
699            Some(deref_part)
700        }
701    }
702
703    /// Given that `other_ty` is the same as a type argument for `name` in `sub`, populate `value`
704    /// highlighting `name` and every type argument that isn't at `pos` (which is `other_ty`), and
705    /// populate `other_value` with `other_ty`.
706    ///
707    /// ```text
708    /// Foo<Bar<Qux>>
709    /// ^^^^--------^ this is highlighted
710    /// |   |
711    /// |   this type argument is exactly the same as the other type, not highlighted
712    /// this is highlighted
713    /// Bar<Qux>
714    /// -------- this type is the same as a type argument in the other type, not highlighted
715    /// ```
716    fn highlight_outer(
717        &self,
718        value: &mut DiagStyledString,
719        other_value: &mut DiagStyledString,
720        name: String,
721        args: &[ty::GenericArg<'tcx>],
722        pos: usize,
723        other_ty: Ty<'tcx>,
724    ) {
725        // `value` and `other_value` hold two incomplete type representation for display.
726        // `name` is the path of both types being compared. `sub`
727        value.push_highlighted(name);
728
729        if args.is_empty() {
730            return;
731        }
732        value.push_highlighted("<");
733
734        for (i, arg) in args.iter().enumerate() {
735            if i > 0 {
736                value.push_normal(", ");
737            }
738
739            match arg.unpack() {
740                ty::GenericArgKind::Lifetime(lt) => {
741                    let s = lt.to_string();
742                    value.push_normal(if s.is_empty() { "'_" } else { &s });
743                }
744                ty::GenericArgKind::Const(ct) => {
745                    value.push_normal(ct.to_string());
746                }
747                // Highlight all the type arguments that aren't at `pos` and compare
748                // the type argument at `pos` and `other_ty`.
749                ty::GenericArgKind::Type(type_arg) => {
750                    if i == pos {
751                        let values = self.cmp(type_arg, other_ty);
752                        value.0.extend((values.0).0);
753                        other_value.0.extend((values.1).0);
754                    } else {
755                        value.push_highlighted(type_arg.to_string());
756                    }
757                }
758            }
759        }
760
761        value.push_highlighted(">");
762    }
763
764    /// If `other_ty` is the same as a type argument present in `sub`, highlight `path` in `t1_out`,
765    /// as that is the difference to the other type.
766    ///
767    /// For the following code:
768    ///
769    /// ```ignore (illustrative)
770    /// let x: Foo<Bar<Qux>> = foo::<Bar<Qux>>();
771    /// ```
772    ///
773    /// The type error output will behave in the following way:
774    ///
775    /// ```text
776    /// Foo<Bar<Qux>>
777    /// ^^^^--------^ this is highlighted
778    /// |   |
779    /// |   this type argument is exactly the same as the other type, not highlighted
780    /// this is highlighted
781    /// Bar<Qux>
782    /// -------- this type is the same as a type argument in the other type, not highlighted
783    /// ```
784    fn cmp_type_arg(
785        &self,
786        t1_out: &mut DiagStyledString,
787        t2_out: &mut DiagStyledString,
788        path: String,
789        args: &'tcx [ty::GenericArg<'tcx>],
790        other_path: String,
791        other_ty: Ty<'tcx>,
792    ) -> bool {
793        for (i, arg) in args.iter().enumerate() {
794            if let Some(ta) = arg.as_type() {
795                if ta == other_ty {
796                    self.highlight_outer(t1_out, t2_out, path, args, i, other_ty);
797                    return true;
798                }
799                if let ty::Adt(def, _) = ta.kind() {
800                    let path_ = self.tcx.def_path_str(def.did());
801                    if path_ == other_path {
802                        self.highlight_outer(t1_out, t2_out, path, args, i, other_ty);
803                        return true;
804                    }
805                }
806            }
807        }
808        false
809    }
810
811    /// Adds a `,` to the type representation only if it is appropriate.
812    fn push_comma(
813        &self,
814        value: &mut DiagStyledString,
815        other_value: &mut DiagStyledString,
816        pos: usize,
817    ) {
818        if pos > 0 {
819            value.push_normal(", ");
820            other_value.push_normal(", ");
821        }
822    }
823
824    /// Given two `fn` signatures highlight only sub-parts that are different.
825    fn cmp_fn_sig(
826        &self,
827        sig1: &ty::PolyFnSig<'tcx>,
828        fn_def1: Option<(DefId, Option<&'tcx [ty::GenericArg<'tcx>]>)>,
829        sig2: &ty::PolyFnSig<'tcx>,
830        fn_def2: Option<(DefId, Option<&'tcx [ty::GenericArg<'tcx>]>)>,
831    ) -> (DiagStyledString, DiagStyledString) {
832        let sig1 = &(self.normalize_fn_sig)(*sig1);
833        let sig2 = &(self.normalize_fn_sig)(*sig2);
834
835        let get_lifetimes = |sig| {
836            use rustc_hir::def::Namespace;
837            let (sig, reg) = ty::print::FmtPrinter::new(self.tcx, Namespace::TypeNS)
838                .name_all_regions(sig)
839                .unwrap();
840            let lts: Vec<String> =
841                reg.into_items().map(|(_, kind)| kind.to_string()).into_sorted_stable_ord();
842            (if lts.is_empty() { String::new() } else { format!("for<{}> ", lts.join(", ")) }, sig)
843        };
844
845        let (lt1, sig1) = get_lifetimes(sig1);
846        let (lt2, sig2) = get_lifetimes(sig2);
847
848        // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
849        let mut values =
850            (DiagStyledString::normal("".to_string()), DiagStyledString::normal("".to_string()));
851
852        // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
853        // ^^^^^^
854        let safety = |fn_def, sig: ty::FnSig<'_>| match fn_def {
855            None => sig.safety.prefix_str(),
856            Some((did, _)) => {
857                if self.tcx.codegen_fn_attrs(did).safe_target_features {
858                    "#[target_features] "
859                } else {
860                    sig.safety.prefix_str()
861                }
862            }
863        };
864        let safety1 = safety(fn_def1, sig1);
865        let safety2 = safety(fn_def2, sig2);
866        values.0.push(safety1, safety1 != safety2);
867        values.1.push(safety2, safety1 != safety2);
868
869        // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
870        //        ^^^^^^^^^^
871        if sig1.abi != ExternAbi::Rust {
872            values.0.push(format!("extern {} ", sig1.abi), sig1.abi != sig2.abi);
873        }
874        if sig2.abi != ExternAbi::Rust {
875            values.1.push(format!("extern {} ", sig2.abi), sig1.abi != sig2.abi);
876        }
877
878        // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
879        //                   ^^^^^^^^
880        let lifetime_diff = lt1 != lt2;
881        values.0.push(lt1, lifetime_diff);
882        values.1.push(lt2, lifetime_diff);
883
884        // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
885        //                           ^^^
886        values.0.push_normal("fn(");
887        values.1.push_normal("fn(");
888
889        // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
890        //                              ^^^^^
891        let len1 = sig1.inputs().len();
892        let len2 = sig2.inputs().len();
893        if len1 == len2 {
894            for (i, (l, r)) in iter::zip(sig1.inputs(), sig2.inputs()).enumerate() {
895                self.push_comma(&mut values.0, &mut values.1, i);
896                let (x1, x2) = self.cmp(*l, *r);
897                (values.0).0.extend(x1.0);
898                (values.1).0.extend(x2.0);
899            }
900        } else {
901            for (i, l) in sig1.inputs().iter().enumerate() {
902                values.0.push_highlighted(l.to_string());
903                if i != len1 - 1 {
904                    values.0.push_highlighted(", ");
905                }
906            }
907            for (i, r) in sig2.inputs().iter().enumerate() {
908                values.1.push_highlighted(r.to_string());
909                if i != len2 - 1 {
910                    values.1.push_highlighted(", ");
911                }
912            }
913        }
914
915        if sig1.c_variadic {
916            if len1 > 0 {
917                values.0.push_normal(", ");
918            }
919            values.0.push("...", !sig2.c_variadic);
920        }
921        if sig2.c_variadic {
922            if len2 > 0 {
923                values.1.push_normal(", ");
924            }
925            values.1.push("...", !sig1.c_variadic);
926        }
927
928        // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
929        //                                   ^
930        values.0.push_normal(")");
931        values.1.push_normal(")");
932
933        // unsafe extern "C" for<'a> fn(&'a T) -> &'a T
934        //                                     ^^^^^^^^
935        let output1 = sig1.output();
936        let output2 = sig2.output();
937        let (x1, x2) = self.cmp(output1, output2);
938        let output_diff = x1 != x2;
939        if !output1.is_unit() || output_diff {
940            values.0.push_normal(" -> ");
941            (values.0).0.extend(x1.0);
942        }
943        if !output2.is_unit() || output_diff {
944            values.1.push_normal(" -> ");
945            (values.1).0.extend(x2.0);
946        }
947
948        let fmt = |did, args| format!(" {{{}}}", self.tcx.def_path_str_with_args(did, args));
949
950        match (fn_def1, fn_def2) {
951            (Some((fn_def1, Some(fn_args1))), Some((fn_def2, Some(fn_args2)))) => {
952                let path1 = fmt(fn_def1, fn_args1);
953                let path2 = fmt(fn_def2, fn_args2);
954                let same_path = path1 == path2;
955                values.0.push(path1, !same_path);
956                values.1.push(path2, !same_path);
957            }
958            (Some((fn_def1, Some(fn_args1))), None) => {
959                values.0.push_highlighted(fmt(fn_def1, fn_args1));
960            }
961            (None, Some((fn_def2, Some(fn_args2)))) => {
962                values.1.push_highlighted(fmt(fn_def2, fn_args2));
963            }
964            _ => {}
965        }
966
967        values
968    }
969
970    pub fn cmp_traits(
971        &self,
972        def_id1: DefId,
973        args1: &[ty::GenericArg<'tcx>],
974        def_id2: DefId,
975        args2: &[ty::GenericArg<'tcx>],
976    ) -> (DiagStyledString, DiagStyledString) {
977        let mut values = (DiagStyledString::new(), DiagStyledString::new());
978
979        if def_id1 != def_id2 {
980            values.0.push_highlighted(self.tcx.def_path_str(def_id1).as_str());
981            values.1.push_highlighted(self.tcx.def_path_str(def_id2).as_str());
982        } else {
983            values.0.push_normal(self.tcx.item_name(def_id1).as_str());
984            values.1.push_normal(self.tcx.item_name(def_id2).as_str());
985        }
986
987        if args1.len() != args2.len() {
988            let (pre, post) = if args1.len() > 0 { ("<", ">") } else { ("", "") };
989            values.0.push_normal(format!(
990                "{pre}{}{post}",
991                args1.iter().map(|a| a.to_string()).collect::<Vec<_>>().join(", ")
992            ));
993            let (pre, post) = if args2.len() > 0 { ("<", ">") } else { ("", "") };
994            values.1.push_normal(format!(
995                "{pre}{}{post}",
996                args2.iter().map(|a| a.to_string()).collect::<Vec<_>>().join(", ")
997            ));
998            return values;
999        }
1000
1001        if args1.len() > 0 {
1002            values.0.push_normal("<");
1003            values.1.push_normal("<");
1004        }
1005        for (i, (a, b)) in std::iter::zip(args1, args2).enumerate() {
1006            let a_str = a.to_string();
1007            let b_str = b.to_string();
1008            if let (Some(a), Some(b)) = (a.as_type(), b.as_type()) {
1009                let (a, b) = self.cmp(a, b);
1010                values.0.0.extend(a.0);
1011                values.1.0.extend(b.0);
1012            } else if a_str != b_str {
1013                values.0.push_highlighted(a_str);
1014                values.1.push_highlighted(b_str);
1015            } else {
1016                values.0.push_normal(a_str);
1017                values.1.push_normal(b_str);
1018            }
1019            if i + 1 < args1.len() {
1020                values.0.push_normal(", ");
1021                values.1.push_normal(", ");
1022            }
1023        }
1024        if args1.len() > 0 {
1025            values.0.push_normal(">");
1026            values.1.push_normal(">");
1027        }
1028        values
1029    }
1030
1031    /// Compares two given types, eliding parts that are the same between them and highlighting
1032    /// relevant differences, and return two representation of those types for highlighted printing.
1033    pub fn cmp(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> (DiagStyledString, DiagStyledString) {
1034        debug!("cmp(t1={}, t1.kind={:?}, t2={}, t2.kind={:?})", t1, t1.kind(), t2, t2.kind());
1035
1036        // helper functions
1037        let recurse = |t1, t2, values: &mut (DiagStyledString, DiagStyledString)| {
1038            let (x1, x2) = self.cmp(t1, t2);
1039            (values.0).0.extend(x1.0);
1040            (values.1).0.extend(x2.0);
1041        };
1042
1043        fn fmt_region<'tcx>(region: ty::Region<'tcx>) -> String {
1044            let mut r = region.to_string();
1045            if r == "'_" {
1046                r.clear();
1047            } else {
1048                r.push(' ');
1049            }
1050            format!("&{r}")
1051        }
1052
1053        fn push_ref<'tcx>(
1054            region: ty::Region<'tcx>,
1055            mutbl: hir::Mutability,
1056            s: &mut DiagStyledString,
1057        ) {
1058            s.push_highlighted(fmt_region(region));
1059            s.push_highlighted(mutbl.prefix_str());
1060        }
1061
1062        fn maybe_highlight<T: Eq + ToString>(
1063            t1: T,
1064            t2: T,
1065            (buf1, buf2): &mut (DiagStyledString, DiagStyledString),
1066            tcx: TyCtxt<'_>,
1067        ) {
1068            let highlight = t1 != t2;
1069            let (t1, t2) = if highlight || tcx.sess.opts.verbose {
1070                (t1.to_string(), t2.to_string())
1071            } else {
1072                // The two types are the same, elide and don't highlight.
1073                ("_".into(), "_".into())
1074            };
1075            buf1.push(t1, highlight);
1076            buf2.push(t2, highlight);
1077        }
1078
1079        fn cmp_ty_refs<'tcx>(
1080            r1: ty::Region<'tcx>,
1081            mut1: hir::Mutability,
1082            r2: ty::Region<'tcx>,
1083            mut2: hir::Mutability,
1084            ss: &mut (DiagStyledString, DiagStyledString),
1085        ) {
1086            let (r1, r2) = (fmt_region(r1), fmt_region(r2));
1087            if r1 != r2 {
1088                ss.0.push_highlighted(r1);
1089                ss.1.push_highlighted(r2);
1090            } else {
1091                ss.0.push_normal(r1);
1092                ss.1.push_normal(r2);
1093            }
1094
1095            if mut1 != mut2 {
1096                ss.0.push_highlighted(mut1.prefix_str());
1097                ss.1.push_highlighted(mut2.prefix_str());
1098            } else {
1099                ss.0.push_normal(mut1.prefix_str());
1100                ss.1.push_normal(mut2.prefix_str());
1101            }
1102        }
1103
1104        // process starts here
1105        match (t1.kind(), t2.kind()) {
1106            (&ty::Adt(def1, sub1), &ty::Adt(def2, sub2)) => {
1107                let did1 = def1.did();
1108                let did2 = def2.did();
1109
1110                let generics1 = self.tcx.generics_of(did1);
1111                let generics2 = self.tcx.generics_of(did2);
1112
1113                let non_default_after_default = generics1
1114                    .check_concrete_type_after_default(self.tcx, sub1)
1115                    || generics2.check_concrete_type_after_default(self.tcx, sub2);
1116                let sub_no_defaults_1 = if non_default_after_default {
1117                    generics1.own_args(sub1)
1118                } else {
1119                    generics1.own_args_no_defaults(self.tcx, sub1)
1120                };
1121                let sub_no_defaults_2 = if non_default_after_default {
1122                    generics2.own_args(sub2)
1123                } else {
1124                    generics2.own_args_no_defaults(self.tcx, sub2)
1125                };
1126                let mut values = (DiagStyledString::new(), DiagStyledString::new());
1127                let path1 = self.tcx.def_path_str(did1);
1128                let path2 = self.tcx.def_path_str(did2);
1129                if did1 == did2 {
1130                    // Easy case. Replace same types with `_` to shorten the output and highlight
1131                    // the differing ones.
1132                    //     let x: Foo<Bar, Qux> = y::<Foo<Quz, Qux>>();
1133                    //     Foo<Bar, _>
1134                    //     Foo<Quz, _>
1135                    //         ---  ^ type argument elided
1136                    //         |
1137                    //         highlighted in output
1138                    values.0.push_normal(path1);
1139                    values.1.push_normal(path2);
1140
1141                    // Avoid printing out default generic parameters that are common to both
1142                    // types.
1143                    let len1 = sub_no_defaults_1.len();
1144                    let len2 = sub_no_defaults_2.len();
1145                    let common_len = cmp::min(len1, len2);
1146                    let remainder1 = &sub1[common_len..];
1147                    let remainder2 = &sub2[common_len..];
1148                    let common_default_params =
1149                        iter::zip(remainder1.iter().rev(), remainder2.iter().rev())
1150                            .filter(|(a, b)| a == b)
1151                            .count();
1152                    let len = sub1.len() - common_default_params;
1153
1154                    // Only draw `<...>` if there are lifetime/type arguments.
1155                    if len > 0 {
1156                        values.0.push_normal("<");
1157                        values.1.push_normal("<");
1158                    }
1159
1160                    fn lifetime_display(lifetime: Region<'_>) -> String {
1161                        let s = lifetime.to_string();
1162                        if s.is_empty() { "'_".to_string() } else { s }
1163                    }
1164
1165                    for (i, (arg1, arg2)) in sub1.iter().zip(sub2).enumerate().take(len) {
1166                        self.push_comma(&mut values.0, &mut values.1, i);
1167                        match arg1.unpack() {
1168                            // At one point we'd like to elide all lifetimes here, they are
1169                            // irrelevant for all diagnostics that use this output.
1170                            //
1171                            //     Foo<'x, '_, Bar>
1172                            //     Foo<'y, '_, Qux>
1173                            //         ^^  ^^  --- type arguments are not elided
1174                            //         |   |
1175                            //         |   elided as they were the same
1176                            //         not elided, they were different, but irrelevant
1177                            //
1178                            // For bound lifetimes, keep the names of the lifetimes,
1179                            // even if they are the same so that it's clear what's happening
1180                            // if we have something like
1181                            //
1182                            // for<'r, 's> fn(Inv<'r>, Inv<'s>)
1183                            // for<'r> fn(Inv<'r>, Inv<'r>)
1184                            ty::GenericArgKind::Lifetime(l1) => {
1185                                let l1_str = lifetime_display(l1);
1186                                let l2 = arg2.expect_region();
1187                                let l2_str = lifetime_display(l2);
1188                                if l1 != l2 {
1189                                    values.0.push_highlighted(l1_str);
1190                                    values.1.push_highlighted(l2_str);
1191                                } else if l1.is_bound() || self.tcx.sess.opts.verbose {
1192                                    values.0.push_normal(l1_str);
1193                                    values.1.push_normal(l2_str);
1194                                } else {
1195                                    values.0.push_normal("'_");
1196                                    values.1.push_normal("'_");
1197                                }
1198                            }
1199                            ty::GenericArgKind::Type(ta1) => {
1200                                let ta2 = arg2.expect_ty();
1201                                if ta1 == ta2 && !self.tcx.sess.opts.verbose {
1202                                    values.0.push_normal("_");
1203                                    values.1.push_normal("_");
1204                                } else {
1205                                    recurse(ta1, ta2, &mut values);
1206                                }
1207                            }
1208                            // We're comparing two types with the same path, so we compare the type
1209                            // arguments for both. If they are the same, do not highlight and elide
1210                            // from the output.
1211                            //     Foo<_, Bar>
1212                            //     Foo<_, Qux>
1213                            //         ^ elided type as this type argument was the same in both sides
1214
1215                            // Do the same for const arguments, if they are equal, do not highlight and
1216                            // elide them from the output.
1217                            ty::GenericArgKind::Const(ca1) => {
1218                                let ca2 = arg2.expect_const();
1219                                maybe_highlight(ca1, ca2, &mut values, self.tcx);
1220                            }
1221                        }
1222                    }
1223
1224                    // Close the type argument bracket.
1225                    // Only draw `<...>` if there are arguments.
1226                    if len > 0 {
1227                        values.0.push_normal(">");
1228                        values.1.push_normal(">");
1229                    }
1230                    values
1231                } else {
1232                    // Check for case:
1233                    //     let x: Foo<Bar<Qux> = foo::<Bar<Qux>>();
1234                    //     Foo<Bar<Qux>
1235                    //         ------- this type argument is exactly the same as the other type
1236                    //     Bar<Qux>
1237                    if self.cmp_type_arg(
1238                        &mut values.0,
1239                        &mut values.1,
1240                        path1.clone(),
1241                        sub_no_defaults_1,
1242                        path2.clone(),
1243                        t2,
1244                    ) {
1245                        return values;
1246                    }
1247                    // Check for case:
1248                    //     let x: Bar<Qux> = y:<Foo<Bar<Qux>>>();
1249                    //     Bar<Qux>
1250                    //     Foo<Bar<Qux>>
1251                    //         ------- this type argument is exactly the same as the other type
1252                    if self.cmp_type_arg(
1253                        &mut values.1,
1254                        &mut values.0,
1255                        path2,
1256                        sub_no_defaults_2,
1257                        path1,
1258                        t1,
1259                    ) {
1260                        return values;
1261                    }
1262
1263                    // We can't find anything in common, highlight relevant part of type path.
1264                    //     let x: foo::bar::Baz<Qux> = y:<foo::bar::Bar<Zar>>();
1265                    //     foo::bar::Baz<Qux>
1266                    //     foo::bar::Bar<Zar>
1267                    //               -------- this part of the path is different
1268
1269                    let t1_str = t1.to_string();
1270                    let t2_str = t2.to_string();
1271                    let min_len = t1_str.len().min(t2_str.len());
1272
1273                    const SEPARATOR: &str = "::";
1274                    let separator_len = SEPARATOR.len();
1275                    let split_idx: usize =
1276                        iter::zip(t1_str.split(SEPARATOR), t2_str.split(SEPARATOR))
1277                            .take_while(|(mod1_str, mod2_str)| mod1_str == mod2_str)
1278                            .map(|(mod_str, _)| mod_str.len() + separator_len)
1279                            .sum();
1280
1281                    debug!(?separator_len, ?split_idx, ?min_len, "cmp");
1282
1283                    if split_idx >= min_len {
1284                        // paths are identical, highlight everything
1285                        (
1286                            DiagStyledString::highlighted(t1_str),
1287                            DiagStyledString::highlighted(t2_str),
1288                        )
1289                    } else {
1290                        let (common, uniq1) = t1_str.split_at(split_idx);
1291                        let (_, uniq2) = t2_str.split_at(split_idx);
1292                        debug!(?common, ?uniq1, ?uniq2, "cmp");
1293
1294                        values.0.push_normal(common);
1295                        values.0.push_highlighted(uniq1);
1296                        values.1.push_normal(common);
1297                        values.1.push_highlighted(uniq2);
1298
1299                        values
1300                    }
1301                }
1302            }
1303
1304            // When finding `&T != &T`, compare the references, then recurse into pointee type
1305            (&ty::Ref(r1, ref_ty1, mutbl1), &ty::Ref(r2, ref_ty2, mutbl2)) => {
1306                let mut values = (DiagStyledString::new(), DiagStyledString::new());
1307                cmp_ty_refs(r1, mutbl1, r2, mutbl2, &mut values);
1308                recurse(ref_ty1, ref_ty2, &mut values);
1309                values
1310            }
1311            // When finding T != &T, highlight the borrow
1312            (&ty::Ref(r1, ref_ty1, mutbl1), _) => {
1313                let mut values = (DiagStyledString::new(), DiagStyledString::new());
1314                push_ref(r1, mutbl1, &mut values.0);
1315                recurse(ref_ty1, t2, &mut values);
1316                values
1317            }
1318            (_, &ty::Ref(r2, ref_ty2, mutbl2)) => {
1319                let mut values = (DiagStyledString::new(), DiagStyledString::new());
1320                push_ref(r2, mutbl2, &mut values.1);
1321                recurse(t1, ref_ty2, &mut values);
1322                values
1323            }
1324
1325            // When encountering tuples of the same size, highlight only the differing types
1326            (&ty::Tuple(args1), &ty::Tuple(args2)) if args1.len() == args2.len() => {
1327                let mut values = (DiagStyledString::normal("("), DiagStyledString::normal("("));
1328                let len = args1.len();
1329                for (i, (left, right)) in args1.iter().zip(args2).enumerate() {
1330                    self.push_comma(&mut values.0, &mut values.1, i);
1331                    recurse(left, right, &mut values);
1332                }
1333                if len == 1 {
1334                    // Keep the output for single element tuples as `(ty,)`.
1335                    values.0.push_normal(",");
1336                    values.1.push_normal(",");
1337                }
1338                values.0.push_normal(")");
1339                values.1.push_normal(")");
1340                values
1341            }
1342
1343            (ty::FnDef(did1, args1), ty::FnDef(did2, args2)) => {
1344                let sig1 = self.tcx.fn_sig(*did1).instantiate(self.tcx, args1);
1345                let sig2 = self.tcx.fn_sig(*did2).instantiate(self.tcx, args2);
1346                self.cmp_fn_sig(
1347                    &sig1,
1348                    Some((*did1, Some(args1))),
1349                    &sig2,
1350                    Some((*did2, Some(args2))),
1351                )
1352            }
1353
1354            (ty::FnDef(did1, args1), ty::FnPtr(sig_tys2, hdr2)) => {
1355                let sig1 = self.tcx.fn_sig(*did1).instantiate(self.tcx, args1);
1356                self.cmp_fn_sig(&sig1, Some((*did1, Some(args1))), &sig_tys2.with(*hdr2), None)
1357            }
1358
1359            (ty::FnPtr(sig_tys1, hdr1), ty::FnDef(did2, args2)) => {
1360                let sig2 = self.tcx.fn_sig(*did2).instantiate(self.tcx, args2);
1361                self.cmp_fn_sig(&sig_tys1.with(*hdr1), None, &sig2, Some((*did2, Some(args2))))
1362            }
1363
1364            (ty::FnPtr(sig_tys1, hdr1), ty::FnPtr(sig_tys2, hdr2)) => {
1365                self.cmp_fn_sig(&sig_tys1.with(*hdr1), None, &sig_tys2.with(*hdr2), None)
1366            }
1367
1368            _ => {
1369                let mut strs = (DiagStyledString::new(), DiagStyledString::new());
1370                maybe_highlight(t1, t2, &mut strs, self.tcx);
1371                strs
1372            }
1373        }
1374    }
1375
1376    /// Extend a type error with extra labels pointing at "non-trivial" types, like closures and
1377    /// the return type of `async fn`s.
1378    ///
1379    /// `secondary_span` gives the caller the opportunity to expand `diag` with a `span_label`.
1380    ///
1381    /// `swap_secondary_and_primary` is used to make projection errors in particular nicer by using
1382    /// the message in `secondary_span` as the primary label, and apply the message that would
1383    /// otherwise be used for the primary label on the `secondary_span` `Span`. This applies on
1384    /// E0271, like `tests/ui/issues/issue-39970.stderr`.
1385    #[instrument(level = "debug", skip(self, diag, secondary_span, prefer_label))]
1386    pub fn note_type_err(
1387        &self,
1388        diag: &mut Diag<'_>,
1389        cause: &ObligationCause<'tcx>,
1390        secondary_span: Option<(Span, Cow<'static, str>, bool)>,
1391        mut values: Option<ty::ParamEnvAnd<'tcx, ValuePairs<'tcx>>>,
1392        terr: TypeError<'tcx>,
1393        prefer_label: bool,
1394        override_span: Option<Span>,
1395    ) {
1396        // We use `override_span` when we want the error to point at a `Span` other than
1397        // `cause.span`. This is used in E0271, when a closure is passed in where the return type
1398        // isn't what was expected. We want to point at the closure's return type (or expression),
1399        // instead of the expression where the closure is passed as call argument.
1400        let span = override_span.unwrap_or(cause.span);
1401        // For some types of errors, expected-found does not make
1402        // sense, so just ignore the values we were given.
1403        if let TypeError::CyclicTy(_) = terr {
1404            values = None;
1405        }
1406        struct OpaqueTypesVisitor<'tcx> {
1407            types: FxIndexMap<TyCategory, FxIndexSet<Span>>,
1408            expected: FxIndexMap<TyCategory, FxIndexSet<Span>>,
1409            found: FxIndexMap<TyCategory, FxIndexSet<Span>>,
1410            ignore_span: Span,
1411            tcx: TyCtxt<'tcx>,
1412        }
1413
1414        impl<'tcx> OpaqueTypesVisitor<'tcx> {
1415            fn visit_expected_found(
1416                tcx: TyCtxt<'tcx>,
1417                expected: impl TypeVisitable<TyCtxt<'tcx>>,
1418                found: impl TypeVisitable<TyCtxt<'tcx>>,
1419                ignore_span: Span,
1420            ) -> Self {
1421                let mut types_visitor = OpaqueTypesVisitor {
1422                    types: Default::default(),
1423                    expected: Default::default(),
1424                    found: Default::default(),
1425                    ignore_span,
1426                    tcx,
1427                };
1428                // The visitor puts all the relevant encountered types in `self.types`, but in
1429                // here we want to visit two separate types with no relation to each other, so we
1430                // move the results from `types` to `expected` or `found` as appropriate.
1431                expected.visit_with(&mut types_visitor);
1432                std::mem::swap(&mut types_visitor.expected, &mut types_visitor.types);
1433                found.visit_with(&mut types_visitor);
1434                std::mem::swap(&mut types_visitor.found, &mut types_visitor.types);
1435                types_visitor
1436            }
1437
1438            fn report(&self, err: &mut Diag<'_>) {
1439                self.add_labels_for_types(err, "expected", &self.expected);
1440                self.add_labels_for_types(err, "found", &self.found);
1441            }
1442
1443            fn add_labels_for_types(
1444                &self,
1445                err: &mut Diag<'_>,
1446                target: &str,
1447                types: &FxIndexMap<TyCategory, FxIndexSet<Span>>,
1448            ) {
1449                for (kind, values) in types.iter() {
1450                    let count = values.len();
1451                    for &sp in values {
1452                        err.span_label(
1453                            sp,
1454                            format!(
1455                                "{}{} {:#}{}",
1456                                if count == 1 { "the " } else { "one of the " },
1457                                target,
1458                                kind,
1459                                pluralize!(count),
1460                            ),
1461                        );
1462                    }
1463                }
1464            }
1465        }
1466
1467        impl<'tcx> ty::visit::TypeVisitor<TyCtxt<'tcx>> for OpaqueTypesVisitor<'tcx> {
1468            fn visit_ty(&mut self, t: Ty<'tcx>) {
1469                if let Some((kind, def_id)) = TyCategory::from_ty(self.tcx, t) {
1470                    let span = self.tcx.def_span(def_id);
1471                    // Avoid cluttering the output when the "found" and error span overlap:
1472                    //
1473                    // error[E0308]: mismatched types
1474                    //   --> $DIR/issue-20862.rs:2:5
1475                    //    |
1476                    // LL |     |y| x + y
1477                    //    |     ^^^^^^^^^
1478                    //    |     |
1479                    //    |     the found closure
1480                    //    |     expected `()`, found closure
1481                    //    |
1482                    //    = note: expected unit type `()`
1483                    //                 found closure `{closure@$DIR/issue-20862.rs:2:5: 2:14 x:_}`
1484                    //
1485                    // Also ignore opaque `Future`s that come from async fns.
1486                    if !self.ignore_span.overlaps(span)
1487                        && !span.is_desugaring(DesugaringKind::Async)
1488                    {
1489                        self.types.entry(kind).or_default().insert(span);
1490                    }
1491                }
1492                t.super_visit_with(self)
1493            }
1494        }
1495
1496        debug!("note_type_err(diag={:?})", diag);
1497        enum Mismatch<'a> {
1498            Variable(ty::error::ExpectedFound<Ty<'a>>),
1499            Fixed(&'static str),
1500        }
1501        let (expected_found, exp_found, is_simple_error, values, param_env) = match values {
1502            None => (None, Mismatch::Fixed("type"), false, None, None),
1503            Some(ty::ParamEnvAnd { param_env, value: values }) => {
1504                let mut values = self.resolve_vars_if_possible(values);
1505                if self.next_trait_solver() {
1506                    values = deeply_normalize_for_diagnostics(self, param_env, values);
1507                }
1508                let (is_simple_error, exp_found) = match values {
1509                    ValuePairs::Terms(ExpectedFound { expected, found }) => {
1510                        match (expected.unpack(), found.unpack()) {
1511                            (ty::TermKind::Ty(expected), ty::TermKind::Ty(found)) => {
1512                                let is_simple_err =
1513                                    expected.is_simple_text() && found.is_simple_text();
1514                                OpaqueTypesVisitor::visit_expected_found(
1515                                    self.tcx, expected, found, span,
1516                                )
1517                                .report(diag);
1518
1519                                (
1520                                    is_simple_err,
1521                                    Mismatch::Variable(ExpectedFound { expected, found }),
1522                                )
1523                            }
1524                            (ty::TermKind::Const(_), ty::TermKind::Const(_)) => {
1525                                (false, Mismatch::Fixed("constant"))
1526                            }
1527                            _ => (false, Mismatch::Fixed("type")),
1528                        }
1529                    }
1530                    ValuePairs::PolySigs(ExpectedFound { expected, found }) => {
1531                        OpaqueTypesVisitor::visit_expected_found(self.tcx, expected, found, span)
1532                            .report(diag);
1533                        (false, Mismatch::Fixed("signature"))
1534                    }
1535                    ValuePairs::TraitRefs(_) => (false, Mismatch::Fixed("trait")),
1536                    ValuePairs::Aliases(ExpectedFound { expected, .. }) => {
1537                        (false, Mismatch::Fixed(self.tcx.def_descr(expected.def_id)))
1538                    }
1539                    ValuePairs::Regions(_) => (false, Mismatch::Fixed("lifetime")),
1540                    ValuePairs::ExistentialTraitRef(_) => {
1541                        (false, Mismatch::Fixed("existential trait ref"))
1542                    }
1543                    ValuePairs::ExistentialProjection(_) => {
1544                        (false, Mismatch::Fixed("existential projection"))
1545                    }
1546                };
1547                let Some(vals) = self.values_str(values, cause, diag.long_ty_path()) else {
1548                    // Derived error. Cancel the emitter.
1549                    // NOTE(eddyb) this was `.cancel()`, but `diag`
1550                    // is borrowed, so we can't fully defuse it.
1551                    diag.downgrade_to_delayed_bug();
1552                    return;
1553                };
1554                (Some(vals), exp_found, is_simple_error, Some(values), Some(param_env))
1555            }
1556        };
1557
1558        let mut label_or_note = |span: Span, msg: Cow<'static, str>| {
1559            if (prefer_label && is_simple_error) || &[span] == diag.span.primary_spans() {
1560                diag.span_label(span, msg);
1561            } else {
1562                diag.span_note(span, msg);
1563            }
1564        };
1565        if let Some((secondary_span, secondary_msg, swap_secondary_and_primary)) = secondary_span {
1566            if swap_secondary_and_primary {
1567                let terr = if let Some(infer::ValuePairs::Terms(ExpectedFound {
1568                    expected, ..
1569                })) = values
1570                {
1571                    Cow::from(format!("expected this to be `{expected}`"))
1572                } else {
1573                    terr.to_string(self.tcx)
1574                };
1575                label_or_note(secondary_span, terr);
1576                label_or_note(span, secondary_msg);
1577            } else {
1578                label_or_note(span, terr.to_string(self.tcx));
1579                label_or_note(secondary_span, secondary_msg);
1580            }
1581        } else if let Some(values) = values
1582            && let Some((e, f)) = values.ty()
1583            && let TypeError::ArgumentSorts(..) | TypeError::Sorts(_) = terr
1584        {
1585            let e = self.tcx.erase_regions(e);
1586            let f = self.tcx.erase_regions(f);
1587            let expected = with_forced_trimmed_paths!(e.sort_string(self.tcx));
1588            let found = with_forced_trimmed_paths!(f.sort_string(self.tcx));
1589            if expected == found {
1590                label_or_note(span, terr.to_string(self.tcx));
1591            } else {
1592                label_or_note(span, Cow::from(format!("expected {expected}, found {found}")));
1593            }
1594        } else {
1595            label_or_note(span, terr.to_string(self.tcx));
1596        }
1597
1598        if self.check_and_note_conflicting_crates(diag, terr) {
1599            return;
1600        }
1601
1602        if let Some((expected, found)) = expected_found {
1603            let (expected_label, found_label, exp_found) = match exp_found {
1604                Mismatch::Variable(ef) => (
1605                    ef.expected.prefix_string(self.tcx),
1606                    ef.found.prefix_string(self.tcx),
1607                    Some(ef),
1608                ),
1609                Mismatch::Fixed(s) => (s.into(), s.into(), None),
1610            };
1611
1612            enum Similar<'tcx> {
1613                Adts { expected: ty::AdtDef<'tcx>, found: ty::AdtDef<'tcx> },
1614                PrimitiveFound { expected: ty::AdtDef<'tcx>, found: Ty<'tcx> },
1615                PrimitiveExpected { expected: Ty<'tcx>, found: ty::AdtDef<'tcx> },
1616            }
1617
1618            let similarity = |ExpectedFound { expected, found }: ExpectedFound<Ty<'tcx>>| {
1619                if let ty::Adt(expected, _) = expected.kind()
1620                    && let Some(primitive) = found.primitive_symbol()
1621                {
1622                    let path = self.tcx.def_path(expected.did()).data;
1623                    let name = path.last().unwrap().data.get_opt_name();
1624                    if name == Some(primitive) {
1625                        return Some(Similar::PrimitiveFound { expected: *expected, found });
1626                    }
1627                } else if let Some(primitive) = expected.primitive_symbol()
1628                    && let ty::Adt(found, _) = found.kind()
1629                {
1630                    let path = self.tcx.def_path(found.did()).data;
1631                    let name = path.last().unwrap().data.get_opt_name();
1632                    if name == Some(primitive) {
1633                        return Some(Similar::PrimitiveExpected { expected, found: *found });
1634                    }
1635                } else if let ty::Adt(expected, _) = expected.kind()
1636                    && let ty::Adt(found, _) = found.kind()
1637                {
1638                    if !expected.did().is_local() && expected.did().krate == found.did().krate {
1639                        // Most likely types from different versions of the same crate
1640                        // are in play, in which case this message isn't so helpful.
1641                        // A "perhaps two different versions..." error is already emitted for that.
1642                        return None;
1643                    }
1644                    let f_path = self.tcx.def_path(found.did()).data;
1645                    let e_path = self.tcx.def_path(expected.did()).data;
1646
1647                    if let (Some(e_last), Some(f_last)) = (e_path.last(), f_path.last())
1648                        && e_last == f_last
1649                    {
1650                        return Some(Similar::Adts { expected: *expected, found: *found });
1651                    }
1652                }
1653                None
1654            };
1655
1656            match terr {
1657                // If two types mismatch but have similar names, mention that specifically.
1658                TypeError::Sorts(values) if let Some(s) = similarity(values) => {
1659                    let diagnose_primitive =
1660                        |prim: Ty<'tcx>, shadow: Ty<'tcx>, defid: DefId, diag: &mut Diag<'_>| {
1661                            let name = shadow.sort_string(self.tcx);
1662                            diag.note(format!(
1663                                "`{prim}` and {name} have similar names, but are actually distinct types"
1664                            ));
1665                            diag.note(format!(
1666                                "one `{prim}` is a primitive defined by the language",
1667                            ));
1668                            let def_span = self.tcx.def_span(defid);
1669                            let msg = if defid.is_local() {
1670                                format!("the other {name} is defined in the current crate")
1671                            } else {
1672                                let crate_name = self.tcx.crate_name(defid.krate);
1673                                format!("the other {name} is defined in crate `{crate_name}`")
1674                            };
1675                            diag.span_note(def_span, msg);
1676                        };
1677
1678                    let diagnose_adts =
1679                        |expected_adt: ty::AdtDef<'tcx>,
1680                         found_adt: ty::AdtDef<'tcx>,
1681                         diag: &mut Diag<'_>| {
1682                            let found_name = values.found.sort_string(self.tcx);
1683                            let expected_name = values.expected.sort_string(self.tcx);
1684
1685                            let found_defid = found_adt.did();
1686                            let expected_defid = expected_adt.did();
1687
1688                            diag.note(format!("{found_name} and {expected_name} have similar names, but are actually distinct types"));
1689                            for (defid, name) in
1690                                [(found_defid, found_name), (expected_defid, expected_name)]
1691                            {
1692                                let def_span = self.tcx.def_span(defid);
1693
1694                                let msg = if found_defid.is_local() && expected_defid.is_local() {
1695                                    let module = self
1696                                        .tcx
1697                                        .parent_module_from_def_id(defid.expect_local())
1698                                        .to_def_id();
1699                                    let module_name =
1700                                        self.tcx.def_path(module).to_string_no_crate_verbose();
1701                                    format!(
1702                                        "{name} is defined in module `crate{module_name}` of the current crate"
1703                                    )
1704                                } else if defid.is_local() {
1705                                    format!("{name} is defined in the current crate")
1706                                } else {
1707                                    let crate_name = self.tcx.crate_name(defid.krate);
1708                                    format!("{name} is defined in crate `{crate_name}`")
1709                                };
1710                                diag.span_note(def_span, msg);
1711                            }
1712                        };
1713
1714                    match s {
1715                        Similar::Adts { expected, found } => diagnose_adts(expected, found, diag),
1716                        Similar::PrimitiveFound { expected, found: prim } => {
1717                            diagnose_primitive(prim, values.expected, expected.did(), diag)
1718                        }
1719                        Similar::PrimitiveExpected { expected: prim, found } => {
1720                            diagnose_primitive(prim, values.found, found.did(), diag)
1721                        }
1722                    }
1723                }
1724                TypeError::Sorts(values) => {
1725                    let extra = expected == found
1726                        // Ensure that we don't ever say something like
1727                        // expected `impl Trait` (opaque type `impl Trait`)
1728                        //    found `impl Trait` (opaque type `impl Trait`)
1729                        && values.expected.sort_string(self.tcx)
1730                            != values.found.sort_string(self.tcx);
1731                    let sort_string = |ty: Ty<'tcx>| match (extra, ty.kind()) {
1732                        (true, ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. })) => {
1733                            let sm = self.tcx.sess.source_map();
1734                            let pos = sm.lookup_char_pos(self.tcx.def_span(*def_id).lo());
1735                            DiagStyledString::normal(format!(
1736                                " (opaque type at <{}:{}:{}>)",
1737                                sm.filename_for_diagnostics(&pos.file.name),
1738                                pos.line,
1739                                pos.col.to_usize() + 1,
1740                            ))
1741                        }
1742                        (true, ty::Alias(ty::Projection, proj))
1743                            if self.tcx.is_impl_trait_in_trait(proj.def_id) =>
1744                        {
1745                            let sm = self.tcx.sess.source_map();
1746                            let pos = sm.lookup_char_pos(self.tcx.def_span(proj.def_id).lo());
1747                            DiagStyledString::normal(format!(
1748                                " (trait associated opaque type at <{}:{}:{}>)",
1749                                sm.filename_for_diagnostics(&pos.file.name),
1750                                pos.line,
1751                                pos.col.to_usize() + 1,
1752                            ))
1753                        }
1754                        (true, _) => {
1755                            let mut s = DiagStyledString::normal(" (");
1756                            s.push_highlighted(ty.sort_string(self.tcx));
1757                            s.push_normal(")");
1758                            s
1759                        }
1760                        (false, _) => DiagStyledString::normal(""),
1761                    };
1762                    if !(values.expected.is_simple_text() && values.found.is_simple_text())
1763                        || (exp_found.is_some_and(|ef| {
1764                            // This happens when the type error is a subset of the expectation,
1765                            // like when you have two references but one is `usize` and the other
1766                            // is `f32`. In those cases we still want to show the `note`. If the
1767                            // value from `ef` is `Infer(_)`, then we ignore it.
1768                            if !ef.expected.is_ty_or_numeric_infer() {
1769                                ef.expected != values.expected
1770                            } else if !ef.found.is_ty_or_numeric_infer() {
1771                                ef.found != values.found
1772                            } else {
1773                                false
1774                            }
1775                        }))
1776                    {
1777                        if let Some(ExpectedFound { found: found_ty, .. }) = exp_found
1778                            && !self.tcx.ty_is_opaque_future(found_ty)
1779                        {
1780                            // `Future` is a special opaque type that the compiler
1781                            // will try to hide in some case such as `async fn`, so
1782                            // to make an error more use friendly we will
1783                            // avoid to suggest a mismatch type with a
1784                            // type that the user usually are not using
1785                            // directly such as `impl Future<Output = u8>`.
1786                            diag.note_expected_found_extra(
1787                                &expected_label,
1788                                expected,
1789                                &found_label,
1790                                found,
1791                                sort_string(values.expected),
1792                                sort_string(values.found),
1793                            );
1794                        }
1795                    }
1796                }
1797                _ => {
1798                    debug!(
1799                        "note_type_err: exp_found={:?}, expected={:?} found={:?}",
1800                        exp_found, expected, found
1801                    );
1802                    if !is_simple_error || terr.must_include_note() {
1803                        diag.note_expected_found(&expected_label, expected, &found_label, found);
1804
1805                        if let Some(ty::Closure(_, args)) =
1806                            exp_found.map(|expected_type_found| expected_type_found.found.kind())
1807                        {
1808                            diag.highlighted_note(vec![
1809                                StringPart::normal("closure has signature: `"),
1810                                StringPart::highlighted(
1811                                    self.tcx
1812                                        .signature_unclosure(
1813                                            args.as_closure().sig(),
1814                                            rustc_hir::Safety::Safe,
1815                                        )
1816                                        .to_string(),
1817                                ),
1818                                StringPart::normal("`"),
1819                            ]);
1820                        }
1821                    }
1822                }
1823            }
1824        }
1825        let exp_found = match exp_found {
1826            Mismatch::Variable(exp_found) => Some(exp_found),
1827            Mismatch::Fixed(_) => None,
1828        };
1829        let exp_found = match terr {
1830            // `terr` has more accurate type information than `exp_found` in match expressions.
1831            ty::error::TypeError::Sorts(terr)
1832                if exp_found.is_some_and(|ef| terr.found == ef.found) =>
1833            {
1834                Some(terr)
1835            }
1836            _ => exp_found,
1837        };
1838        debug!("exp_found {:?} terr {:?} cause.code {:?}", exp_found, terr, cause.code());
1839        if let Some(exp_found) = exp_found {
1840            let should_suggest_fixes =
1841                if let ObligationCauseCode::Pattern { root_ty, .. } = cause.code() {
1842                    // Skip if the root_ty of the pattern is not the same as the expected_ty.
1843                    // If these types aren't equal then we've probably peeled off a layer of arrays.
1844                    self.same_type_modulo_infer(*root_ty, exp_found.expected)
1845                } else {
1846                    true
1847                };
1848
1849            // FIXME(#73154): For now, we do leak check when coercing function
1850            // pointers in typeck, instead of only during borrowck. This can lead
1851            // to these `RegionsInsufficientlyPolymorphic` errors that aren't helpful.
1852            if should_suggest_fixes
1853                && !matches!(terr, TypeError::RegionsInsufficientlyPolymorphic(..))
1854            {
1855                self.suggest_tuple_pattern(cause, &exp_found, diag);
1856                self.suggest_accessing_field_where_appropriate(cause, &exp_found, diag);
1857                self.suggest_await_on_expect_found(cause, span, &exp_found, diag);
1858                self.suggest_function_pointers(cause, span, &exp_found, terr, diag);
1859                self.suggest_turning_stmt_into_expr(cause, &exp_found, diag);
1860            }
1861        }
1862
1863        self.note_and_explain_type_err(diag, terr, cause, span, cause.body_id.to_def_id());
1864        if let Some(exp_found) = exp_found
1865            && let exp_found = TypeError::Sorts(exp_found)
1866            && exp_found != terr
1867        {
1868            self.note_and_explain_type_err(diag, exp_found, cause, span, cause.body_id.to_def_id());
1869        }
1870
1871        if let Some(ValuePairs::TraitRefs(exp_found)) = values
1872            && let ty::Closure(def_id, _) = exp_found.expected.self_ty().kind()
1873            && let Some(def_id) = def_id.as_local()
1874            && terr.involves_regions()
1875        {
1876            let span = self.tcx.def_span(def_id);
1877            diag.span_note(span, "this closure does not fulfill the lifetime requirements");
1878            self.suggest_for_all_lifetime_closure(
1879                span,
1880                self.tcx.hir_node_by_def_id(def_id),
1881                &exp_found,
1882                diag,
1883            );
1884        }
1885
1886        // It reads better to have the error origin as the final
1887        // thing.
1888        self.note_error_origin(diag, cause, exp_found, terr, param_env);
1889
1890        debug!(?diag);
1891    }
1892
1893    pub fn type_error_additional_suggestions(
1894        &self,
1895        trace: &TypeTrace<'tcx>,
1896        terr: TypeError<'tcx>,
1897        path: &mut Option<PathBuf>,
1898    ) -> Vec<TypeErrorAdditionalDiags> {
1899        let mut suggestions = Vec::new();
1900        let span = trace.cause.span;
1901        let values = self.resolve_vars_if_possible(trace.values);
1902        if let Some((expected, found)) = values.ty() {
1903            match (expected.kind(), found.kind()) {
1904                (ty::Tuple(_), ty::Tuple(_)) => {}
1905                // If a tuple of length one was expected and the found expression has
1906                // parentheses around it, perhaps the user meant to write `(expr,)` to
1907                // build a tuple (issue #86100)
1908                (ty::Tuple(fields), _) => {
1909                    suggestions.extend(self.suggest_wrap_to_build_a_tuple(span, found, fields))
1910                }
1911                // If a byte was expected and the found expression is a char literal
1912                // containing a single ASCII character, perhaps the user meant to write `b'c'` to
1913                // specify a byte literal
1914                (ty::Uint(ty::UintTy::U8), ty::Char) => {
1915                    if let Ok(code) = self.tcx.sess().source_map().span_to_snippet(span)
1916                        && let Some(code) =
1917                            code.strip_prefix('\'').and_then(|s| s.strip_suffix('\''))
1918                        // forbid all Unicode escapes
1919                        && !code.starts_with("\\u")
1920                        // forbids literal Unicode characters beyond ASCII
1921                        && code.chars().next().is_some_and(|c| c.is_ascii())
1922                    {
1923                        suggestions.push(TypeErrorAdditionalDiags::MeantByteLiteral {
1924                            span,
1925                            code: escape_literal(code),
1926                        })
1927                    }
1928                }
1929                // If a character was expected and the found expression is a string literal
1930                // containing a single character, perhaps the user meant to write `'c'` to
1931                // specify a character literal (issue #92479)
1932                (ty::Char, ty::Ref(_, r, _)) if r.is_str() => {
1933                    if let Ok(code) = self.tcx.sess().source_map().span_to_snippet(span)
1934                        && let Some(code) = code.strip_prefix('"').and_then(|s| s.strip_suffix('"'))
1935                        && code.chars().count() == 1
1936                    {
1937                        suggestions.push(TypeErrorAdditionalDiags::MeantCharLiteral {
1938                            span,
1939                            code: escape_literal(code),
1940                        })
1941                    }
1942                }
1943                // If a string was expected and the found expression is a character literal,
1944                // perhaps the user meant to write `"s"` to specify a string literal.
1945                (ty::Ref(_, r, _), ty::Char) if r.is_str() => {
1946                    if let Ok(code) = self.tcx.sess().source_map().span_to_snippet(span)
1947                        && code.starts_with("'")
1948                        && code.ends_with("'")
1949                    {
1950                        suggestions.push(TypeErrorAdditionalDiags::MeantStrLiteral {
1951                            start: span.with_hi(span.lo() + BytePos(1)),
1952                            end: span.with_lo(span.hi() - BytePos(1)),
1953                        });
1954                    }
1955                }
1956                // For code `if Some(..) = expr `, the type mismatch may be expected `bool` but found `()`,
1957                // we try to suggest to add the missing `let` for `if let Some(..) = expr`
1958                (ty::Bool, ty::Tuple(list)) => {
1959                    if list.len() == 0 {
1960                        suggestions.extend(self.suggest_let_for_letchains(&trace.cause, span));
1961                    }
1962                }
1963                (ty::Array(_, _), ty::Array(_, _)) => {
1964                    suggestions.extend(self.suggest_specify_actual_length(terr, trace, span))
1965                }
1966                _ => {}
1967            }
1968        }
1969        let code = trace.cause.code();
1970        if let &(ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
1971            source,
1972            ..
1973        })
1974        | ObligationCauseCode::BlockTailExpression(.., source)) = code
1975            && let hir::MatchSource::TryDesugar(_) = source
1976            && let Some((expected_ty, found_ty)) = self.values_str(trace.values, &trace.cause, path)
1977        {
1978            suggestions.push(TypeErrorAdditionalDiags::TryCannotConvert {
1979                found: found_ty.content(),
1980                expected: expected_ty.content(),
1981            });
1982        }
1983        suggestions
1984    }
1985
1986    fn suggest_specify_actual_length(
1987        &self,
1988        terr: TypeError<'tcx>,
1989        trace: &TypeTrace<'tcx>,
1990        span: Span,
1991    ) -> Option<TypeErrorAdditionalDiags> {
1992        let hir = self.tcx.hir();
1993        let TypeError::ArraySize(sz) = terr else {
1994            return None;
1995        };
1996        let tykind = match self.tcx.hir_node_by_def_id(trace.cause.body_id) {
1997            hir::Node::Item(hir::Item {
1998                kind: hir::ItemKind::Fn { body: body_id, .. }, ..
1999            }) => {
2000                let body = hir.body(*body_id);
2001                struct LetVisitor {
2002                    span: Span,
2003                }
2004                impl<'v> Visitor<'v> for LetVisitor {
2005                    type Result = ControlFlow<&'v hir::TyKind<'v>>;
2006                    fn visit_stmt(&mut self, s: &'v hir::Stmt<'v>) -> Self::Result {
2007                        // Find a local statement where the initializer has
2008                        // the same span as the error and the type is specified.
2009                        if let hir::Stmt {
2010                            kind:
2011                                hir::StmtKind::Let(hir::LetStmt {
2012                                    init: Some(hir::Expr { span: init_span, .. }),
2013                                    ty: Some(array_ty),
2014                                    ..
2015                                }),
2016                            ..
2017                        } = s
2018                            && init_span == &self.span
2019                        {
2020                            ControlFlow::Break(&array_ty.peel_refs().kind)
2021                        } else {
2022                            ControlFlow::Continue(())
2023                        }
2024                    }
2025                }
2026                LetVisitor { span }.visit_body(body).break_value()
2027            }
2028            hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(ty, _, _), .. }) => {
2029                Some(&ty.peel_refs().kind)
2030            }
2031            _ => None,
2032        };
2033        if let Some(tykind) = tykind
2034            && let hir::TyKind::Array(_, length_arg) = tykind
2035            && let Some(length_val) = sz.found.try_to_target_usize(self.tcx)
2036        {
2037            Some(TypeErrorAdditionalDiags::ConsiderSpecifyingLength {
2038                span: length_arg.span(),
2039                length: length_val,
2040            })
2041        } else {
2042            None
2043        }
2044    }
2045
2046    pub fn report_and_explain_type_error(
2047        &self,
2048        trace: TypeTrace<'tcx>,
2049        param_env: ty::ParamEnv<'tcx>,
2050        terr: TypeError<'tcx>,
2051    ) -> Diag<'a> {
2052        debug!("report_and_explain_type_error(trace={:?}, terr={:?})", trace, terr);
2053
2054        let span = trace.cause.span;
2055        let mut path = None;
2056        let failure_code = trace.cause.as_failure_code_diag(
2057            terr,
2058            span,
2059            self.type_error_additional_suggestions(&trace, terr, &mut path),
2060        );
2061        let mut diag = self.dcx().create_err(failure_code);
2062        *diag.long_ty_path() = path;
2063        self.note_type_err(
2064            &mut diag,
2065            &trace.cause,
2066            None,
2067            Some(param_env.and(trace.values)),
2068            terr,
2069            false,
2070            None,
2071        );
2072        diag
2073    }
2074
2075    fn suggest_wrap_to_build_a_tuple(
2076        &self,
2077        span: Span,
2078        found: Ty<'tcx>,
2079        expected_fields: &List<Ty<'tcx>>,
2080    ) -> Option<TypeErrorAdditionalDiags> {
2081        let [expected_tup_elem] = expected_fields[..] else { return None };
2082
2083        if !self.same_type_modulo_infer(expected_tup_elem, found) {
2084            return None;
2085        }
2086
2087        let Ok(code) = self.tcx.sess().source_map().span_to_snippet(span) else { return None };
2088
2089        let sugg = if code.starts_with('(') && code.ends_with(')') {
2090            let before_close = span.hi() - BytePos::from_u32(1);
2091            TypeErrorAdditionalDiags::TupleOnlyComma {
2092                span: span.with_hi(before_close).shrink_to_hi(),
2093            }
2094        } else {
2095            TypeErrorAdditionalDiags::TupleAlsoParentheses {
2096                span_low: span.shrink_to_lo(),
2097                span_high: span.shrink_to_hi(),
2098            }
2099        };
2100        Some(sugg)
2101    }
2102
2103    fn values_str(
2104        &self,
2105        values: ValuePairs<'tcx>,
2106        cause: &ObligationCause<'tcx>,
2107        file: &mut Option<PathBuf>,
2108    ) -> Option<(DiagStyledString, DiagStyledString)> {
2109        match values {
2110            ValuePairs::Regions(exp_found) => self.expected_found_str(exp_found),
2111            ValuePairs::Terms(exp_found) => self.expected_found_str_term(exp_found, file),
2112            ValuePairs::Aliases(exp_found) => self.expected_found_str(exp_found),
2113            ValuePairs::ExistentialTraitRef(exp_found) => self.expected_found_str(exp_found),
2114            ValuePairs::ExistentialProjection(exp_found) => self.expected_found_str(exp_found),
2115            ValuePairs::TraitRefs(exp_found) => {
2116                let pretty_exp_found = ty::error::ExpectedFound {
2117                    expected: exp_found.expected.print_trait_sugared(),
2118                    found: exp_found.found.print_trait_sugared(),
2119                };
2120                match self.expected_found_str(pretty_exp_found) {
2121                    Some((expected, found)) if expected == found => {
2122                        self.expected_found_str(exp_found)
2123                    }
2124                    ret => ret,
2125                }
2126            }
2127            ValuePairs::PolySigs(exp_found) => {
2128                let exp_found = self.resolve_vars_if_possible(exp_found);
2129                if exp_found.references_error() {
2130                    return None;
2131                }
2132                let (fn_def1, fn_def2) = if let ObligationCauseCode::CompareImplItem {
2133                    impl_item_def_id,
2134                    trait_item_def_id,
2135                    ..
2136                } = *cause.code()
2137                {
2138                    (Some((trait_item_def_id, None)), Some((impl_item_def_id.to_def_id(), None)))
2139                } else {
2140                    (None, None)
2141                };
2142
2143                Some(self.cmp_fn_sig(&exp_found.expected, fn_def1, &exp_found.found, fn_def2))
2144            }
2145        }
2146    }
2147
2148    fn expected_found_str_term(
2149        &self,
2150        exp_found: ty::error::ExpectedFound<ty::Term<'tcx>>,
2151        path: &mut Option<PathBuf>,
2152    ) -> Option<(DiagStyledString, DiagStyledString)> {
2153        let exp_found = self.resolve_vars_if_possible(exp_found);
2154        if exp_found.references_error() {
2155            return None;
2156        }
2157
2158        Some(match (exp_found.expected.unpack(), exp_found.found.unpack()) {
2159            (ty::TermKind::Ty(expected), ty::TermKind::Ty(found)) => {
2160                let (mut exp, mut fnd) = self.cmp(expected, found);
2161                // Use the terminal width as the basis to determine when to compress the printed
2162                // out type, but give ourselves some leeway to avoid ending up creating a file for
2163                // a type that is somewhat shorter than the path we'd write to.
2164                let len = self.tcx.sess().diagnostic_width() + 40;
2165                let exp_s = exp.content();
2166                let fnd_s = fnd.content();
2167                if exp_s.len() > len {
2168                    let exp_s = self.tcx.short_string(expected, path);
2169                    exp = DiagStyledString::highlighted(exp_s);
2170                }
2171                if fnd_s.len() > len {
2172                    let fnd_s = self.tcx.short_string(found, path);
2173                    fnd = DiagStyledString::highlighted(fnd_s);
2174                }
2175                (exp, fnd)
2176            }
2177            _ => (
2178                DiagStyledString::highlighted(exp_found.expected.to_string()),
2179                DiagStyledString::highlighted(exp_found.found.to_string()),
2180            ),
2181        })
2182    }
2183
2184    /// Returns a string of the form "expected `{}`, found `{}`".
2185    fn expected_found_str<T: fmt::Display + TypeFoldable<TyCtxt<'tcx>>>(
2186        &self,
2187        exp_found: ty::error::ExpectedFound<T>,
2188    ) -> Option<(DiagStyledString, DiagStyledString)> {
2189        let exp_found = self.resolve_vars_if_possible(exp_found);
2190        if exp_found.references_error() {
2191            return None;
2192        }
2193
2194        Some((
2195            DiagStyledString::highlighted(exp_found.expected.to_string()),
2196            DiagStyledString::highlighted(exp_found.found.to_string()),
2197        ))
2198    }
2199
2200    /// Determine whether an error associated with the given span and definition
2201    /// should be treated as being caused by the implicit `From` conversion
2202    /// within `?` desugaring.
2203    pub fn is_try_conversion(&self, span: Span, trait_def_id: DefId) -> bool {
2204        span.is_desugaring(DesugaringKind::QuestionMark)
2205            && self.tcx.is_diagnostic_item(sym::From, trait_def_id)
2206    }
2207
2208    /// Structurally compares two types, modulo any inference variables.
2209    ///
2210    /// Returns `true` if two types are equal, or if one type is an inference variable compatible
2211    /// with the other type. A TyVar inference type is compatible with any type, and an IntVar or
2212    /// FloatVar inference type are compatible with themselves or their concrete types (Int and
2213    /// Float types, respectively). When comparing two ADTs, these rules apply recursively.
2214    pub fn same_type_modulo_infer<T: relate::Relate<TyCtxt<'tcx>>>(&self, a: T, b: T) -> bool {
2215        let (a, b) = self.resolve_vars_if_possible((a, b));
2216        SameTypeModuloInfer(self).relate(a, b).is_ok()
2217    }
2218}
2219
2220struct SameTypeModuloInfer<'a, 'tcx>(&'a InferCtxt<'tcx>);
2221
2222impl<'tcx> TypeRelation<TyCtxt<'tcx>> for SameTypeModuloInfer<'_, 'tcx> {
2223    fn cx(&self) -> TyCtxt<'tcx> {
2224        self.0.tcx
2225    }
2226
2227    fn relate_with_variance<T: relate::Relate<TyCtxt<'tcx>>>(
2228        &mut self,
2229        _variance: ty::Variance,
2230        _info: ty::VarianceDiagInfo<TyCtxt<'tcx>>,
2231        a: T,
2232        b: T,
2233    ) -> relate::RelateResult<'tcx, T> {
2234        self.relate(a, b)
2235    }
2236
2237    fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
2238        match (a.kind(), b.kind()) {
2239            (ty::Int(_) | ty::Uint(_), ty::Infer(ty::InferTy::IntVar(_)))
2240            | (
2241                ty::Infer(ty::InferTy::IntVar(_)),
2242                ty::Int(_) | ty::Uint(_) | ty::Infer(ty::InferTy::IntVar(_)),
2243            )
2244            | (ty::Float(_), ty::Infer(ty::InferTy::FloatVar(_)))
2245            | (
2246                ty::Infer(ty::InferTy::FloatVar(_)),
2247                ty::Float(_) | ty::Infer(ty::InferTy::FloatVar(_)),
2248            )
2249            | (ty::Infer(ty::InferTy::TyVar(_)), _)
2250            | (_, ty::Infer(ty::InferTy::TyVar(_))) => Ok(a),
2251            (ty::Infer(_), _) | (_, ty::Infer(_)) => Err(TypeError::Mismatch),
2252            _ => relate::structurally_relate_tys(self, a, b),
2253        }
2254    }
2255
2256    fn regions(
2257        &mut self,
2258        a: ty::Region<'tcx>,
2259        b: ty::Region<'tcx>,
2260    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
2261        if (a.is_var() && b.is_free())
2262            || (b.is_var() && a.is_free())
2263            || (a.is_var() && b.is_var())
2264            || a == b
2265        {
2266            Ok(a)
2267        } else {
2268            Err(TypeError::Mismatch)
2269        }
2270    }
2271
2272    fn binders<T>(
2273        &mut self,
2274        a: ty::Binder<'tcx, T>,
2275        b: ty::Binder<'tcx, T>,
2276    ) -> relate::RelateResult<'tcx, ty::Binder<'tcx, T>>
2277    where
2278        T: relate::Relate<TyCtxt<'tcx>>,
2279    {
2280        Ok(a.rebind(self.relate(a.skip_binder(), b.skip_binder())?))
2281    }
2282
2283    fn consts(
2284        &mut self,
2285        a: ty::Const<'tcx>,
2286        _b: ty::Const<'tcx>,
2287    ) -> relate::RelateResult<'tcx, ty::Const<'tcx>> {
2288        // FIXME(compiler-errors): This could at least do some first-order
2289        // relation
2290        Ok(a)
2291    }
2292}
2293
2294pub enum FailureCode {
2295    Error0317,
2296    Error0580,
2297    Error0308,
2298    Error0644,
2299}
2300
2301#[extension(pub trait ObligationCauseExt<'tcx>)]
2302impl<'tcx> ObligationCause<'tcx> {
2303    fn as_failure_code(&self, terr: TypeError<'tcx>) -> FailureCode {
2304        match self.code() {
2305            ObligationCauseCode::IfExpressionWithNoElse => FailureCode::Error0317,
2306            ObligationCauseCode::MainFunctionType => FailureCode::Error0580,
2307            ObligationCauseCode::CompareImplItem { .. }
2308            | ObligationCauseCode::MatchExpressionArm(_)
2309            | ObligationCauseCode::IfExpression { .. }
2310            | ObligationCauseCode::LetElse
2311            | ObligationCauseCode::LangFunctionType(_)
2312            | ObligationCauseCode::IntrinsicType
2313            | ObligationCauseCode::MethodReceiver => FailureCode::Error0308,
2314
2315            // In the case where we have no more specific thing to
2316            // say, also take a look at the error code, maybe we can
2317            // tailor to that.
2318            _ => match terr {
2319                TypeError::CyclicTy(ty)
2320                    if ty.is_closure() || ty.is_coroutine() || ty.is_coroutine_closure() =>
2321                {
2322                    FailureCode::Error0644
2323                }
2324                TypeError::IntrinsicCast | TypeError::ForceInlineCast => FailureCode::Error0308,
2325                _ => FailureCode::Error0308,
2326            },
2327        }
2328    }
2329    fn as_failure_code_diag(
2330        &self,
2331        terr: TypeError<'tcx>,
2332        span: Span,
2333        subdiags: Vec<TypeErrorAdditionalDiags>,
2334    ) -> ObligationCauseFailureCode {
2335        match self.code() {
2336            ObligationCauseCode::CompareImplItem { kind: ty::AssocKind::Fn, .. } => {
2337                ObligationCauseFailureCode::MethodCompat { span, subdiags }
2338            }
2339            ObligationCauseCode::CompareImplItem { kind: ty::AssocKind::Type, .. } => {
2340                ObligationCauseFailureCode::TypeCompat { span, subdiags }
2341            }
2342            ObligationCauseCode::CompareImplItem { kind: ty::AssocKind::Const, .. } => {
2343                ObligationCauseFailureCode::ConstCompat { span, subdiags }
2344            }
2345            ObligationCauseCode::BlockTailExpression(.., hir::MatchSource::TryDesugar(_)) => {
2346                ObligationCauseFailureCode::TryCompat { span, subdiags }
2347            }
2348            ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
2349                source, ..
2350            }) => match source {
2351                hir::MatchSource::TryDesugar(_) => {
2352                    ObligationCauseFailureCode::TryCompat { span, subdiags }
2353                }
2354                _ => ObligationCauseFailureCode::MatchCompat { span, subdiags },
2355            },
2356            ObligationCauseCode::IfExpression { .. } => {
2357                ObligationCauseFailureCode::IfElseDifferent { span, subdiags }
2358            }
2359            ObligationCauseCode::IfExpressionWithNoElse => {
2360                ObligationCauseFailureCode::NoElse { span }
2361            }
2362            ObligationCauseCode::LetElse => {
2363                ObligationCauseFailureCode::NoDiverge { span, subdiags }
2364            }
2365            ObligationCauseCode::MainFunctionType => {
2366                ObligationCauseFailureCode::FnMainCorrectType { span }
2367            }
2368            &ObligationCauseCode::LangFunctionType(lang_item_name) => {
2369                ObligationCauseFailureCode::FnLangCorrectType { span, subdiags, lang_item_name }
2370            }
2371            ObligationCauseCode::IntrinsicType => {
2372                ObligationCauseFailureCode::IntrinsicCorrectType { span, subdiags }
2373            }
2374            ObligationCauseCode::MethodReceiver => {
2375                ObligationCauseFailureCode::MethodCorrectType { span, subdiags }
2376            }
2377
2378            // In the case where we have no more specific thing to
2379            // say, also take a look at the error code, maybe we can
2380            // tailor to that.
2381            _ => match terr {
2382                TypeError::CyclicTy(ty)
2383                    if ty.is_closure() || ty.is_coroutine() || ty.is_coroutine_closure() =>
2384                {
2385                    ObligationCauseFailureCode::ClosureSelfref { span }
2386                }
2387                TypeError::ForceInlineCast => {
2388                    ObligationCauseFailureCode::CantCoerceForceInline { span, subdiags }
2389                }
2390                TypeError::IntrinsicCast => {
2391                    ObligationCauseFailureCode::CantCoerceIntrinsic { span, subdiags }
2392                }
2393                _ => ObligationCauseFailureCode::Generic { span, subdiags },
2394            },
2395        }
2396    }
2397
2398    fn as_requirement_str(&self) -> &'static str {
2399        match self.code() {
2400            ObligationCauseCode::CompareImplItem { kind: ty::AssocKind::Fn, .. } => {
2401                "method type is compatible with trait"
2402            }
2403            ObligationCauseCode::CompareImplItem { kind: ty::AssocKind::Type, .. } => {
2404                "associated type is compatible with trait"
2405            }
2406            ObligationCauseCode::CompareImplItem { kind: ty::AssocKind::Const, .. } => {
2407                "const is compatible with trait"
2408            }
2409            ObligationCauseCode::MainFunctionType => "`main` function has the correct type",
2410            ObligationCauseCode::LangFunctionType(_) => "lang item function has the correct type",
2411            ObligationCauseCode::IntrinsicType => "intrinsic has the correct type",
2412            ObligationCauseCode::MethodReceiver => "method receiver has the correct type",
2413            _ => "types are compatible",
2414        }
2415    }
2416}
2417
2418/// Newtype to allow implementing IntoDiagArg
2419pub struct ObligationCauseAsDiagArg<'tcx>(pub ObligationCause<'tcx>);
2420
2421impl IntoDiagArg for ObligationCauseAsDiagArg<'_> {
2422    fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
2423        let kind = match self.0.code() {
2424            ObligationCauseCode::CompareImplItem { kind: ty::AssocKind::Fn, .. } => "method_compat",
2425            ObligationCauseCode::CompareImplItem { kind: ty::AssocKind::Type, .. } => "type_compat",
2426            ObligationCauseCode::CompareImplItem { kind: ty::AssocKind::Const, .. } => {
2427                "const_compat"
2428            }
2429            ObligationCauseCode::MainFunctionType => "fn_main_correct_type",
2430            ObligationCauseCode::LangFunctionType(_) => "fn_lang_correct_type",
2431            ObligationCauseCode::IntrinsicType => "intrinsic_correct_type",
2432            ObligationCauseCode::MethodReceiver => "method_correct_type",
2433            _ => "other",
2434        }
2435        .into();
2436        rustc_errors::DiagArgValue::Str(kind)
2437    }
2438}
2439
2440/// This is a bare signal of what kind of type we're dealing with. `ty::TyKind` tracks
2441/// extra information about each type, but we only care about the category.
2442#[derive(Clone, Copy, PartialEq, Eq, Hash)]
2443pub enum TyCategory {
2444    Closure,
2445    Opaque,
2446    OpaqueFuture,
2447    Coroutine(hir::CoroutineKind),
2448    Foreign,
2449}
2450
2451impl fmt::Display for TyCategory {
2452    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2453        match self {
2454            Self::Closure => "closure".fmt(f),
2455            Self::Opaque => "opaque type".fmt(f),
2456            Self::OpaqueFuture => "future".fmt(f),
2457            Self::Coroutine(gk) => gk.fmt(f),
2458            Self::Foreign => "foreign type".fmt(f),
2459        }
2460    }
2461}
2462
2463impl TyCategory {
2464    pub fn from_ty(tcx: TyCtxt<'_>, ty: Ty<'_>) -> Option<(Self, DefId)> {
2465        match *ty.kind() {
2466            ty::Closure(def_id, _) => Some((Self::Closure, def_id)),
2467            ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) => {
2468                let kind =
2469                    if tcx.ty_is_opaque_future(ty) { Self::OpaqueFuture } else { Self::Opaque };
2470                Some((kind, def_id))
2471            }
2472            ty::Coroutine(def_id, ..) => {
2473                Some((Self::Coroutine(tcx.coroutine_kind(def_id).unwrap()), def_id))
2474            }
2475            ty::Foreign(def_id) => Some((Self::Foreign, def_id)),
2476            _ => None,
2477        }
2478    }
2479}