rustc_codegen_ssa/
size_of_val.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//! Computing the size and alignment of a value.

use rustc_hir::LangItem;
use rustc_middle::bug;
use rustc_middle::ty::print::{with_no_trimmed_paths, with_no_visible_paths};
use rustc_middle::ty::{self, Ty};
use rustc_target::abi::WrappingRange;
use tracing::{debug, trace};

use crate::common::IntPredicate;
use crate::traits::*;
use crate::{common, meth};

pub fn size_and_align_of_dst<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
    bx: &mut Bx,
    t: Ty<'tcx>,
    info: Option<Bx::Value>,
) -> (Bx::Value, Bx::Value) {
    let layout = bx.layout_of(t);
    trace!("size_and_align_of_dst(ty={}, info={:?}): layout: {:?}", t, info, layout);
    if layout.is_sized() {
        let size = bx.const_usize(layout.size.bytes());
        let align = bx.const_usize(layout.align.abi.bytes());
        return (size, align);
    }
    match t.kind() {
        ty::Dynamic(..) => {
            // Load size/align from vtable.
            let vtable = info.unwrap();
            let size = meth::VirtualIndex::from_index(ty::COMMON_VTABLE_ENTRIES_SIZE)
                .get_usize(bx, vtable, t);
            let align = meth::VirtualIndex::from_index(ty::COMMON_VTABLE_ENTRIES_ALIGN)
                .get_usize(bx, vtable, t);

            // Size is always <= isize::MAX.
            let size_bound = bx.data_layout().ptr_sized_integer().signed_max() as u128;
            bx.range_metadata(size, WrappingRange { start: 0, end: size_bound });
            // Alignment is always nonzero.
            bx.range_metadata(align, WrappingRange { start: 1, end: !0 });

            (size, align)
        }
        ty::Slice(_) | ty::Str => {
            let unit = layout.field(bx, 0);
            // The info in this case is the length of the str, so the size is that
            // times the unit size.
            (
                // All slice sizes must fit into `isize`, so this multiplication cannot (signed)
                // wrap.
                // NOTE: ideally, we want the effects of both `unchecked_smul` and `unchecked_umul`
                // (resulting in `mul nsw nuw` in LLVM IR), since we know that the multiplication
                // cannot signed wrap, and that both operands are non-negative. But at the time of
                // writing, the `LLVM-C` binding can't do this, and it doesn't seem to enable any
                // further optimizations.
                bx.unchecked_smul(info.unwrap(), bx.const_usize(unit.size.bytes())),
                bx.const_usize(unit.align.abi.bytes()),
            )
        }
        ty::Foreign(_) => {
            // `extern` type. We cannot compute the size, so panic.
            let msg_str = with_no_visible_paths!({
                with_no_trimmed_paths!({
                    format!("attempted to compute the size or alignment of extern type `{t}`")
                })
            });
            let msg = bx.const_str(&msg_str);

            // Obtain the panic entry point.
            let (fn_abi, llfn, _instance) =
                common::build_langcall(bx, None, LangItem::PanicNounwind);

            // Generate the call. Cannot use `do_call` since we don't have a MIR terminator so we
            // can't create a `TerminationCodegenHelper`. (But we are in good company, this code is
            // duplicated plenty of times.)
            let fn_ty = bx.fn_decl_backend_type(fn_abi);

            bx.call(
                fn_ty,
                /* fn_attrs */ None,
                Some(fn_abi),
                llfn,
                &[msg.0, msg.1],
                None,
                None,
            );

            // This function does not return so we can now return whatever we want.
            let size = bx.const_usize(layout.size.bytes());
            let align = bx.const_usize(layout.align.abi.bytes());
            (size, align)
        }
        ty::Adt(..) | ty::Tuple(..) => {
            // First get the size of all statically known fields.
            // Don't use size_of because it also rounds up to alignment, which we
            // want to avoid, as the unsized field's alignment could be smaller.
            assert!(!t.is_simd());
            debug!("DST {} layout: {:?}", t, layout);

            let i = layout.fields.count() - 1;
            let unsized_offset_unadjusted = layout.fields.offset(i).bytes();
            let sized_align = layout.align.abi.bytes();
            debug!(
                "DST {} offset of dyn field: {}, statically sized align: {}",
                t, unsized_offset_unadjusted, sized_align
            );
            let unsized_offset_unadjusted = bx.const_usize(unsized_offset_unadjusted);
            let sized_align = bx.const_usize(sized_align);

            // Recurse to get the size of the dynamically sized field (must be
            // the last field).
            let field_ty = layout.field(bx, i).ty;
            let (unsized_size, mut unsized_align) = size_and_align_of_dst(bx, field_ty, info);

            // # First compute the dynamic alignment

            // For packed types, we need to cap the alignment.
            if let ty::Adt(def, _) = t.kind()
                && let Some(packed) = def.repr().pack
            {
                if packed.bytes() == 1 {
                    // We know this will be capped to 1.
                    unsized_align = bx.const_usize(1);
                } else {
                    // We have to dynamically compute `min(unsized_align, packed)`.
                    let packed = bx.const_usize(packed.bytes());
                    let cmp = bx.icmp(IntPredicate::IntULT, unsized_align, packed);
                    unsized_align = bx.select(cmp, unsized_align, packed);
                }
            }

            // Choose max of two known alignments (combined value must
            // be aligned according to more restrictive of the two).
            let full_align = match (
                bx.const_to_opt_u128(sized_align, false),
                bx.const_to_opt_u128(unsized_align, false),
            ) {
                (Some(sized_align), Some(unsized_align)) => {
                    // If both alignments are constant, (the sized_align should always be), then
                    // pick the correct alignment statically.
                    bx.const_usize(std::cmp::max(sized_align, unsized_align) as u64)
                }
                _ => {
                    let cmp = bx.icmp(IntPredicate::IntUGT, sized_align, unsized_align);
                    bx.select(cmp, sized_align, unsized_align)
                }
            };

            // # Then compute the dynamic size

            // The full formula for the size would be:
            // let unsized_offset_adjusted = unsized_offset_unadjusted.align_to(unsized_align);
            // let full_size = (unsized_offset_adjusted + unsized_size).align_to(full_align);
            // However, `unsized_size` is a multiple of `unsized_align`. Therefore, we can
            // equivalently do the `align_to(unsized_align)` *after* adding `unsized_size`:
            //
            // let full_size =
            //     (unsized_offset_unadjusted + unsized_size)
            //     .align_to(unsized_align)
            //     .align_to(full_align);
            //
            // Furthermore, `align >= unsized_align`, and therefore we only need to do:
            // let full_size = (unsized_offset_unadjusted + unsized_size).align_to(full_align);

            let full_size = bx.add(unsized_offset_unadjusted, unsized_size);

            // Issue #27023: must add any necessary padding to `size`
            // (to make it a multiple of `align`) before returning it.
            //
            // Namely, the returned size should be, in C notation:
            //
            //   `size + ((size & (align-1)) ? align : 0)`
            //
            // emulated via the semi-standard fast bit trick:
            //
            //   `(size + (align-1)) & -align`
            let one = bx.const_usize(1);
            let addend = bx.sub(full_align, one);
            let add = bx.add(full_size, addend);
            let neg = bx.neg(full_align);
            let full_size = bx.and(add, neg);

            (full_size, full_align)
        }
        _ => bug!("size_and_align_of_dst: {t} not supported"),
    }
}