rustc_const_eval/check_consts/
check.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
//! The `Visitor` responsible for actually checking a `mir::Body` for invalid operations.

use std::assert_matches::assert_matches;
use std::borrow::Cow;
use std::mem;
use std::num::NonZero;
use std::ops::Deref;

use rustc_attr::{ConstStability, StabilityLevel};
use rustc_errors::{Diag, ErrorGuaranteed};
use rustc_hir::def_id::DefId;
use rustc_hir::{self as hir, LangItem};
use rustc_index::bit_set::BitSet;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_middle::mir::visit::Visitor;
use rustc_middle::mir::*;
use rustc_middle::span_bug;
use rustc_middle::ty::adjustment::PointerCoercion;
use rustc_middle::ty::{self, Ty, TypeVisitableExt};
use rustc_mir_dataflow::Analysis;
use rustc_mir_dataflow::impls::MaybeStorageLive;
use rustc_mir_dataflow::storage::always_storage_live_locals;
use rustc_span::{Span, Symbol, sym};
use rustc_trait_selection::traits::{
    Obligation, ObligationCause, ObligationCauseCode, ObligationCtxt,
};
use tracing::{debug, instrument, trace};

use super::ops::{self, NonConstOp, Status};
use super::qualifs::{self, HasMutInterior, NeedsDrop, NeedsNonConstDrop};
use super::resolver::FlowSensitiveAnalysis;
use super::{ConstCx, Qualif};
use crate::check_consts::is_safe_to_expose_on_stable_const_fn;
use crate::errors;

type QualifResults<'mir, 'tcx, Q> =
    rustc_mir_dataflow::ResultsCursor<'mir, 'tcx, FlowSensitiveAnalysis<'mir, 'mir, 'tcx, Q>>;

#[derive(Default)]
pub(crate) struct Qualifs<'mir, 'tcx> {
    has_mut_interior: Option<QualifResults<'mir, 'tcx, HasMutInterior>>,
    needs_drop: Option<QualifResults<'mir, 'tcx, NeedsDrop>>,
    needs_non_const_drop: Option<QualifResults<'mir, 'tcx, NeedsNonConstDrop>>,
}

impl<'mir, 'tcx> Qualifs<'mir, 'tcx> {
    /// Returns `true` if `local` is `NeedsDrop` at the given `Location`.
    ///
    /// Only updates the cursor if absolutely necessary
    fn needs_drop(
        &mut self,
        ccx: &'mir ConstCx<'mir, 'tcx>,
        local: Local,
        location: Location,
    ) -> bool {
        let ty = ccx.body.local_decls[local].ty;
        // Peeking into opaque types causes cycles if the current function declares said opaque
        // type. Thus we avoid short circuiting on the type and instead run the more expensive
        // analysis that looks at the actual usage within this function
        if !ty.has_opaque_types() && !NeedsDrop::in_any_value_of_ty(ccx, ty) {
            return false;
        }

        let needs_drop = self.needs_drop.get_or_insert_with(|| {
            let ConstCx { tcx, body, .. } = *ccx;

            FlowSensitiveAnalysis::new(NeedsDrop, ccx)
                .iterate_to_fixpoint(tcx, body, None)
                .into_results_cursor(body)
        });

        needs_drop.seek_before_primary_effect(location);
        needs_drop.get().contains(local)
    }

    /// Returns `true` if `local` is `NeedsNonConstDrop` at the given `Location`.
    ///
    /// Only updates the cursor if absolutely necessary
    pub(crate) fn needs_non_const_drop(
        &mut self,
        ccx: &'mir ConstCx<'mir, 'tcx>,
        local: Local,
        location: Location,
    ) -> bool {
        let ty = ccx.body.local_decls[local].ty;
        // Peeking into opaque types causes cycles if the current function declares said opaque
        // type. Thus we avoid short circuiting on the type and instead run the more expensive
        // analysis that looks at the actual usage within this function
        if !ty.has_opaque_types() && !NeedsNonConstDrop::in_any_value_of_ty(ccx, ty) {
            return false;
        }

        let needs_non_const_drop = self.needs_non_const_drop.get_or_insert_with(|| {
            let ConstCx { tcx, body, .. } = *ccx;

            FlowSensitiveAnalysis::new(NeedsNonConstDrop, ccx)
                .iterate_to_fixpoint(tcx, body, None)
                .into_results_cursor(body)
        });

        needs_non_const_drop.seek_before_primary_effect(location);
        needs_non_const_drop.get().contains(local)
    }

    /// Returns `true` if `local` is `HasMutInterior` at the given `Location`.
    ///
    /// Only updates the cursor if absolutely necessary.
    fn has_mut_interior(
        &mut self,
        ccx: &'mir ConstCx<'mir, 'tcx>,
        local: Local,
        location: Location,
    ) -> bool {
        let ty = ccx.body.local_decls[local].ty;
        // Peeking into opaque types causes cycles if the current function declares said opaque
        // type. Thus we avoid short circuiting on the type and instead run the more expensive
        // analysis that looks at the actual usage within this function
        if !ty.has_opaque_types() && !HasMutInterior::in_any_value_of_ty(ccx, ty) {
            return false;
        }

        let has_mut_interior = self.has_mut_interior.get_or_insert_with(|| {
            let ConstCx { tcx, body, .. } = *ccx;

            FlowSensitiveAnalysis::new(HasMutInterior, ccx)
                .iterate_to_fixpoint(tcx, body, None)
                .into_results_cursor(body)
        });

        has_mut_interior.seek_before_primary_effect(location);
        has_mut_interior.get().contains(local)
    }

    fn in_return_place(
        &mut self,
        ccx: &'mir ConstCx<'mir, 'tcx>,
        tainted_by_errors: Option<ErrorGuaranteed>,
    ) -> ConstQualifs {
        // FIXME(explicit_tail_calls): uhhhh I think we can return without return now, does it change anything

        // Find the `Return` terminator if one exists.
        //
        // If no `Return` terminator exists, this MIR is divergent. Just return the conservative
        // qualifs for the return type.
        let return_block = ccx
            .body
            .basic_blocks
            .iter_enumerated()
            .find(|(_, block)| matches!(block.terminator().kind, TerminatorKind::Return))
            .map(|(bb, _)| bb);

        let Some(return_block) = return_block else {
            return qualifs::in_any_value_of_ty(ccx, ccx.body.return_ty(), tainted_by_errors);
        };

        let return_loc = ccx.body.terminator_loc(return_block);

        ConstQualifs {
            needs_drop: self.needs_drop(ccx, RETURN_PLACE, return_loc),
            needs_non_const_drop: self.needs_non_const_drop(ccx, RETURN_PLACE, return_loc),
            has_mut_interior: self.has_mut_interior(ccx, RETURN_PLACE, return_loc),
            tainted_by_errors,
        }
    }
}

pub struct Checker<'mir, 'tcx> {
    ccx: &'mir ConstCx<'mir, 'tcx>,
    qualifs: Qualifs<'mir, 'tcx>,

    /// The span of the current statement.
    span: Span,

    /// A set that stores for each local whether it is "transient", i.e. guaranteed to be dead
    /// when this MIR body returns.
    transient_locals: Option<BitSet<Local>>,

    error_emitted: Option<ErrorGuaranteed>,
    secondary_errors: Vec<Diag<'tcx>>,
}

impl<'mir, 'tcx> Deref for Checker<'mir, 'tcx> {
    type Target = ConstCx<'mir, 'tcx>;

    fn deref(&self) -> &Self::Target {
        self.ccx
    }
}

impl<'mir, 'tcx> Checker<'mir, 'tcx> {
    pub fn new(ccx: &'mir ConstCx<'mir, 'tcx>) -> Self {
        Checker {
            span: ccx.body.span,
            ccx,
            qualifs: Default::default(),
            transient_locals: None,
            error_emitted: None,
            secondary_errors: Vec::new(),
        }
    }

    pub fn check_body(&mut self) {
        let ConstCx { tcx, body, .. } = *self.ccx;
        let def_id = self.ccx.def_id();

        // `async` functions cannot be `const fn`. This is checked during AST lowering, so there's
        // no need to emit duplicate errors here.
        if self.ccx.is_async() || body.coroutine.is_some() {
            tcx.dcx().span_delayed_bug(body.span, "`async` functions cannot be `const fn`");
            return;
        }

        if !tcx.has_attr(def_id, sym::rustc_do_not_const_check) {
            self.visit_body(body);
        }

        // If we got through const-checking without emitting any "primary" errors, emit any
        // "secondary" errors if they occurred. Otherwise, cancel the "secondary" errors.
        let secondary_errors = mem::take(&mut self.secondary_errors);
        if self.error_emitted.is_none() {
            for error in secondary_errors {
                self.error_emitted = Some(error.emit());
            }
        } else {
            assert!(self.tcx.dcx().has_errors().is_some());
            for error in secondary_errors {
                error.cancel();
            }
        }
    }

    fn local_is_transient(&mut self, local: Local) -> bool {
        let ccx = self.ccx;
        self.transient_locals
            .get_or_insert_with(|| {
                // A local is "transient" if it is guaranteed dead at all `Return`.
                // So first compute the say of "maybe live" locals at each program point.
                let always_live_locals = &always_storage_live_locals(&ccx.body);
                let mut maybe_storage_live =
                    MaybeStorageLive::new(Cow::Borrowed(always_live_locals))
                        .iterate_to_fixpoint(ccx.tcx, &ccx.body, None)
                        .into_results_cursor(&ccx.body);

                // And then check all `Return` in the MIR, and if a local is "maybe live" at a
                // `Return` then it is definitely not transient.
                let mut transient = BitSet::new_filled(ccx.body.local_decls.len());
                // Make sure to only visit reachable blocks, the dataflow engine can ICE otherwise.
                for (bb, data) in traversal::reachable(&ccx.body) {
                    if matches!(data.terminator().kind, TerminatorKind::Return) {
                        let location = ccx.body.terminator_loc(bb);
                        maybe_storage_live.seek_after_primary_effect(location);
                        // If a local may be live here, it is definitely not transient.
                        transient.subtract(maybe_storage_live.get());
                    }
                }

                transient
            })
            .contains(local)
    }

    pub fn qualifs_in_return_place(&mut self) -> ConstQualifs {
        self.qualifs.in_return_place(self.ccx, self.error_emitted)
    }

    /// Emits an error if an expression cannot be evaluated in the current context.
    pub fn check_op(&mut self, op: impl NonConstOp<'tcx>) {
        self.check_op_spanned(op, self.span);
    }

    /// Emits an error at the given `span` if an expression cannot be evaluated in the current
    /// context.
    pub fn check_op_spanned<O: NonConstOp<'tcx>>(&mut self, op: O, span: Span) {
        let gate = match op.status_in_item(self.ccx) {
            Status::Unstable {
                gate,
                safe_to_expose_on_stable,
                is_function_call,
                gate_already_checked,
            } if gate_already_checked || self.tcx.features().enabled(gate) => {
                if gate_already_checked {
                    assert!(
                        !safe_to_expose_on_stable,
                        "setting `gate_already_checked` without `safe_to_expose_on_stable` makes no sense"
                    );
                }
                // Generally this is allowed since the feature gate is enabled -- except
                // if this function wants to be safe-to-expose-on-stable.
                if !safe_to_expose_on_stable
                    && self.enforce_recursive_const_stability()
                    && !super::rustc_allow_const_fn_unstable(self.tcx, self.def_id(), gate)
                {
                    emit_unstable_in_stable_exposed_error(self.ccx, span, gate, is_function_call);
                }

                return;
            }

            Status::Unstable { gate, .. } => Some(gate),
            Status::Forbidden => None,
        };

        if self.tcx.sess.opts.unstable_opts.unleash_the_miri_inside_of_you {
            self.tcx.sess.miri_unleashed_feature(span, gate);
            return;
        }

        let err = op.build_error(self.ccx, span);
        assert!(err.is_error());

        match op.importance() {
            ops::DiagImportance::Primary => {
                let reported = err.emit();
                self.error_emitted = Some(reported);
            }

            ops::DiagImportance::Secondary => {
                self.secondary_errors.push(err);
                self.tcx.dcx().span_delayed_bug(
                    span,
                    "compilation must fail when there is a secondary const checker error",
                );
            }
        }
    }

    fn check_static(&mut self, def_id: DefId, span: Span) {
        if self.tcx.is_thread_local_static(def_id) {
            self.tcx.dcx().span_bug(span, "tls access is checked in `Rvalue::ThreadLocalRef`");
        }
        if let Some(def_id) = def_id.as_local()
            && let Err(guar) = self.tcx.at(span).check_well_formed(hir::OwnerId { def_id })
        {
            self.error_emitted = Some(guar);
        }
    }

    /// Returns whether this place can possibly escape the evaluation of the current const/static
    /// initializer. The check assumes that all already existing pointers and references point to
    /// non-escaping places.
    fn place_may_escape(&mut self, place: &Place<'_>) -> bool {
        let is_transient = match self.const_kind() {
            // In a const fn all borrows are transient or point to the places given via
            // references in the arguments (so we already checked them with
            // TransientMutBorrow/MutBorrow as appropriate).
            // The borrow checker guarantees that no new non-transient borrows are created.
            // NOTE: Once we have heap allocations during CTFE we need to figure out
            // how to prevent `const fn` to create long-lived allocations that point
            // to mutable memory.
            hir::ConstContext::ConstFn => true,
            _ => {
                // For indirect places, we are not creating a new permanent borrow, it's just as
                // transient as the already existing one. For reborrowing references this is handled
                // at the top of `visit_rvalue`, but for raw pointers we handle it here.
                // Pointers/references to `static mut` and cases where the `*` is not the first
                // projection also end up here.
                // Locals with StorageDead do not live beyond the evaluation and can
                // thus safely be borrowed without being able to be leaked to the final
                // value of the constant.
                // Note: This is only sound if every local that has a `StorageDead` has a
                // `StorageDead` in every control flow path leading to a `return` terminator.
                // If anything slips through, there's no safety net -- safe code can create
                // references to variants of `!Freeze` enums as long as that variant is `Freeze`, so
                // interning can't protect us here. (There *is* a safety net for mutable references
                // though, interning will ICE if we miss something here.)
                place.is_indirect() || self.local_is_transient(place.local)
            }
        };
        // Transient places cannot possibly escape because the place doesn't exist any more at the
        // end of evaluation.
        !is_transient
    }

    /// Returns whether there are const-conditions.
    fn revalidate_conditional_constness(
        &mut self,
        callee: DefId,
        callee_args: ty::GenericArgsRef<'tcx>,
        call_span: Span,
    ) -> bool {
        let tcx = self.tcx;
        if !tcx.is_conditionally_const(callee) {
            return false;
        }

        let const_conditions = tcx.const_conditions(callee).instantiate(tcx, callee_args);
        if const_conditions.is_empty() {
            return false;
        }

        let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(self.body.typing_env(tcx));
        let ocx = ObligationCtxt::new_with_diagnostics(&infcx);

        let body_id = self.body.source.def_id().expect_local();
        let host_polarity = match self.const_kind() {
            hir::ConstContext::ConstFn => ty::BoundConstness::Maybe,
            hir::ConstContext::Static(_) | hir::ConstContext::Const { .. } => {
                ty::BoundConstness::Const
            }
        };
        let const_conditions =
            ocx.normalize(&ObligationCause::misc(call_span, body_id), param_env, const_conditions);
        ocx.register_obligations(const_conditions.into_iter().map(|(trait_ref, span)| {
            Obligation::new(
                tcx,
                ObligationCause::new(
                    call_span,
                    body_id,
                    ObligationCauseCode::WhereClause(callee, span),
                ),
                param_env,
                trait_ref.to_host_effect_clause(tcx, host_polarity),
            )
        }));

        let errors = ocx.select_all_or_error();
        if !errors.is_empty() {
            tcx.dcx()
                .span_delayed_bug(call_span, "this should have reported a ~const error in HIR");
        }

        true
    }
}

impl<'tcx> Visitor<'tcx> for Checker<'_, 'tcx> {
    fn visit_basic_block_data(&mut self, bb: BasicBlock, block: &BasicBlockData<'tcx>) {
        trace!("visit_basic_block_data: bb={:?} is_cleanup={:?}", bb, block.is_cleanup);

        // We don't const-check basic blocks on the cleanup path since we never unwind during
        // const-eval: a panic causes an immediate compile error. In other words, cleanup blocks
        // are unreachable during const-eval.
        //
        // We can't be more conservative (e.g., by const-checking cleanup blocks anyways) because
        // locals that would never be dropped during normal execution are sometimes dropped during
        // unwinding, which means backwards-incompatible live-drop errors.
        if block.is_cleanup {
            return;
        }

        self.super_basic_block_data(bb, block);
    }

    fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
        trace!("visit_rvalue: rvalue={:?} location={:?}", rvalue, location);

        self.super_rvalue(rvalue, location);

        match rvalue {
            Rvalue::ThreadLocalRef(_) => self.check_op(ops::ThreadLocalAccess),

            Rvalue::Use(_)
            | Rvalue::CopyForDeref(..)
            | Rvalue::Repeat(..)
            | Rvalue::Discriminant(..)
            | Rvalue::Len(_) => {}

            Rvalue::Aggregate(kind, ..) => {
                if let AggregateKind::Coroutine(def_id, ..) = kind.as_ref()
                    && let Some(
                        coroutine_kind @ hir::CoroutineKind::Desugared(
                            hir::CoroutineDesugaring::Async,
                            _,
                        ),
                    ) = self.tcx.coroutine_kind(def_id)
                {
                    self.check_op(ops::Coroutine(coroutine_kind));
                }
            }

            Rvalue::Ref(_, BorrowKind::Mut { .. }, place)
            | Rvalue::RawPtr(Mutability::Mut, place) => {
                // Inside mutable statics, we allow arbitrary mutable references.
                // We've allowed `static mut FOO = &mut [elements];` for a long time (the exact
                // reasons why are lost to history), and there is no reason to restrict that to
                // arrays and slices.
                let is_allowed =
                    self.const_kind() == hir::ConstContext::Static(hir::Mutability::Mut);

                if !is_allowed && self.place_may_escape(place) {
                    self.check_op(ops::EscapingMutBorrow(if matches!(rvalue, Rvalue::Ref(..)) {
                        hir::BorrowKind::Ref
                    } else {
                        hir::BorrowKind::Raw
                    }));
                }
            }

            Rvalue::Ref(_, BorrowKind::Shared | BorrowKind::Fake(_), place)
            | Rvalue::RawPtr(Mutability::Not, place) => {
                let borrowed_place_has_mut_interior = qualifs::in_place::<HasMutInterior, _>(
                    self.ccx,
                    &mut |local| self.qualifs.has_mut_interior(self.ccx, local, location),
                    place.as_ref(),
                );

                if borrowed_place_has_mut_interior && self.place_may_escape(place) {
                    self.check_op(ops::EscapingCellBorrow);
                }
            }

            Rvalue::Cast(
                CastKind::PointerCoercion(
                    PointerCoercion::MutToConstPointer
                    | PointerCoercion::ArrayToPointer
                    | PointerCoercion::UnsafeFnPointer
                    | PointerCoercion::ClosureFnPointer(_)
                    | PointerCoercion::ReifyFnPointer,
                    _,
                ),
                _,
                _,
            ) => {
                // These are all okay; they only change the type, not the data.
            }

            Rvalue::Cast(
                CastKind::PointerCoercion(PointerCoercion::Unsize | PointerCoercion::DynStar, _),
                _,
                _,
            ) => {
                // Unsizing and `dyn*` coercions are implemented for CTFE.
            }

            Rvalue::Cast(CastKind::PointerExposeProvenance, _, _) => {
                self.check_op(ops::RawPtrToIntCast);
            }
            Rvalue::Cast(CastKind::PointerWithExposedProvenance, _, _) => {
                // Since no pointer can ever get exposed (rejected above), this is easy to support.
            }

            Rvalue::Cast(_, _, _) => {}

            Rvalue::NullaryOp(
                NullOp::SizeOf | NullOp::AlignOf | NullOp::OffsetOf(_) | NullOp::UbChecks,
                _,
            ) => {}
            Rvalue::ShallowInitBox(_, _) => {}

            Rvalue::UnaryOp(_, operand) => {
                let ty = operand.ty(self.body, self.tcx);
                if is_int_bool_float_or_char(ty) {
                    // Int, bool, float, and char operations are fine.
                } else {
                    span_bug!(self.span, "non-primitive type in `Rvalue::UnaryOp`: {:?}", ty);
                }
            }

            Rvalue::BinaryOp(op, box (lhs, rhs)) => {
                let lhs_ty = lhs.ty(self.body, self.tcx);
                let rhs_ty = rhs.ty(self.body, self.tcx);

                if is_int_bool_float_or_char(lhs_ty) && is_int_bool_float_or_char(rhs_ty) {
                    // Int, bool, float, and char operations are fine.
                } else if lhs_ty.is_fn_ptr() || lhs_ty.is_unsafe_ptr() {
                    assert_matches!(
                        op,
                        BinOp::Eq
                            | BinOp::Ne
                            | BinOp::Le
                            | BinOp::Lt
                            | BinOp::Ge
                            | BinOp::Gt
                            | BinOp::Offset
                    );

                    self.check_op(ops::RawPtrComparison);
                } else {
                    span_bug!(
                        self.span,
                        "non-primitive type in `Rvalue::BinaryOp`: {:?} ⚬ {:?}",
                        lhs_ty,
                        rhs_ty
                    );
                }
            }
        }
    }

    fn visit_operand(&mut self, op: &Operand<'tcx>, location: Location) {
        self.super_operand(op, location);
        if let Operand::Constant(c) = op {
            if let Some(def_id) = c.check_static_ptr(self.tcx) {
                self.check_static(def_id, self.span);
            }
        }
    }

    fn visit_source_info(&mut self, source_info: &SourceInfo) {
        trace!("visit_source_info: source_info={:?}", source_info);
        self.span = source_info.span;
    }

    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        trace!("visit_statement: statement={:?} location={:?}", statement, location);

        self.super_statement(statement, location);

        match statement.kind {
            StatementKind::Assign(..)
            | StatementKind::SetDiscriminant { .. }
            | StatementKind::Deinit(..)
            | StatementKind::FakeRead(..)
            | StatementKind::StorageLive(_)
            | StatementKind::StorageDead(_)
            | StatementKind::Retag { .. }
            | StatementKind::PlaceMention(..)
            | StatementKind::AscribeUserType(..)
            | StatementKind::Coverage(..)
            | StatementKind::Intrinsic(..)
            | StatementKind::ConstEvalCounter
            | StatementKind::BackwardIncompatibleDropHint { .. }
            | StatementKind::Nop => {}
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
        self.super_terminator(terminator, location);

        match &terminator.kind {
            TerminatorKind::Call { func, args, fn_span, .. }
            | TerminatorKind::TailCall { func, args, fn_span, .. } => {
                let call_source = match terminator.kind {
                    TerminatorKind::Call { call_source, .. } => call_source,
                    TerminatorKind::TailCall { .. } => CallSource::Normal,
                    _ => unreachable!(),
                };

                let ConstCx { tcx, body, .. } = *self.ccx;

                let fn_ty = func.ty(body, tcx);

                let (callee, fn_args) = match *fn_ty.kind() {
                    ty::FnDef(def_id, fn_args) => (def_id, fn_args),

                    ty::FnPtr(..) => {
                        self.check_op(ops::FnCallIndirect);
                        // We can get here without an error in miri-unleashed mode... might as well
                        // skip the rest of the checks as well then.
                        return;
                    }
                    _ => {
                        span_bug!(terminator.source_info.span, "invalid callee of type {:?}", fn_ty)
                    }
                };

                let has_const_conditions =
                    self.revalidate_conditional_constness(callee, fn_args, *fn_span);

                // Attempting to call a trait method?
                if let Some(trait_did) = tcx.trait_of_item(callee) {
                    // We can't determine the actual callee here, so we have to do different checks
                    // than usual.

                    trace!("attempting to call a trait method");
                    let trait_is_const = tcx.is_const_trait(trait_did);

                    if trait_is_const {
                        // Trait calls are always conditionally-const.
                        self.check_op(ops::ConditionallyConstCall { callee, args: fn_args });
                        // FIXME(const_trait_impl): do a more fine-grained check whether this
                        // particular trait can be const-stably called.
                    } else {
                        // Not even a const trait.
                        self.check_op(ops::FnCallNonConst {
                            callee,
                            args: fn_args,
                            span: *fn_span,
                            call_source,
                        });
                    }
                    // That's all we can check here.
                    return;
                }

                // Even if we know the callee, ensure we can use conditionally-const calls.
                if has_const_conditions {
                    self.check_op(ops::ConditionallyConstCall { callee, args: fn_args });
                }

                // At this point, we are calling a function, `callee`, whose `DefId` is known...

                // `begin_panic` and `#[rustc_const_panic_str]` functions accept generic
                // types other than str. Check to enforce that only str can be used in
                // const-eval.

                // const-eval of the `begin_panic` fn assumes the argument is `&str`
                if tcx.is_lang_item(callee, LangItem::BeginPanic) {
                    match args[0].node.ty(&self.ccx.body.local_decls, tcx).kind() {
                        ty::Ref(_, ty, _) if ty.is_str() => {}
                        _ => self.check_op(ops::PanicNonStr),
                    }
                    // Allow this call, skip all the checks below.
                    return;
                }

                // const-eval of `#[rustc_const_panic_str]` functions assumes the argument is `&&str`
                if tcx.has_attr(callee, sym::rustc_const_panic_str) {
                    match args[0].node.ty(&self.ccx.body.local_decls, tcx).kind() {
                        ty::Ref(_, ty, _) if matches!(ty.kind(), ty::Ref(_, ty, _) if ty.is_str()) =>
                            {}
                        _ => {
                            self.check_op(ops::PanicNonStr);
                        }
                    }
                    // Allow this call, skip all the checks below.
                    return;
                }

                // This can be called on stable via the `vec!` macro.
                if tcx.is_lang_item(callee, LangItem::ExchangeMalloc) {
                    self.check_op(ops::HeapAllocation);
                    // Allow this call, skip all the checks below.
                    return;
                }

                // Intrinsics are language primitives, not regular calls, so treat them separately.
                if let Some(intrinsic) = tcx.intrinsic(callee) {
                    if !tcx.is_const_fn(callee) {
                        // Non-const intrinsic.
                        self.check_op(ops::IntrinsicNonConst { name: intrinsic.name });
                        // If we allowed this, we're in miri-unleashed mode, so we might
                        // as well skip the remaining checks.
                        return;
                    }
                    // We use `intrinsic.const_stable` to determine if this can be safely exposed to
                    // stable code, rather than `const_stable_indirect`. This is to make
                    // `#[rustc_const_stable_indirect]` an attribute that is always safe to add.
                    // We also ask is_safe_to_expose_on_stable_const_fn; this determines whether the intrinsic
                    // fallback body is safe to expose on stable.
                    let is_const_stable = intrinsic.const_stable
                        || (!intrinsic.must_be_overridden
                            && is_safe_to_expose_on_stable_const_fn(tcx, callee));
                    match tcx.lookup_const_stability(callee) {
                        None => {
                            // This doesn't need a separate const-stability check -- const-stability equals
                            // regular stability, and regular stability is checked separately.
                            // However, we *do* have to worry about *recursive* const stability.
                            if !is_const_stable && self.enforce_recursive_const_stability() {
                                self.dcx().emit_err(errors::UnmarkedIntrinsicExposed {
                                    span: self.span,
                                    def_path: self.tcx.def_path_str(callee),
                                });
                            }
                        }
                        Some(ConstStability {
                            level: StabilityLevel::Unstable { .. },
                            feature,
                            ..
                        }) => {
                            self.check_op(ops::IntrinsicUnstable {
                                name: intrinsic.name,
                                feature,
                                const_stable_indirect: is_const_stable,
                            });
                        }
                        Some(ConstStability { level: StabilityLevel::Stable { .. }, .. }) => {
                            // All good. Note that a `#[rustc_const_stable]` intrinsic (meaning it
                            // can be *directly* invoked from stable const code) does not always
                            // have the `#[rustc_intrinsic_const_stable_indirect]` attribute (which controls
                            // exposing an intrinsic indirectly); we accept this call anyway.
                        }
                    }
                    // This completes the checks for intrinsics.
                    return;
                }

                if !tcx.is_const_fn(callee) {
                    self.check_op(ops::FnCallNonConst {
                        callee,
                        args: fn_args,
                        span: *fn_span,
                        call_source,
                    });
                    // If we allowed this, we're in miri-unleashed mode, so we might
                    // as well skip the remaining checks.
                    return;
                }

                // Finally, stability for regular function calls -- this is the big one.
                match tcx.lookup_const_stability(callee) {
                    Some(ConstStability { level: StabilityLevel::Stable { .. }, .. }) => {
                        // All good.
                    }
                    None => {
                        // This doesn't need a separate const-stability check -- const-stability equals
                        // regular stability, and regular stability is checked separately.
                        // However, we *do* have to worry about *recursive* const stability.
                        if self.enforce_recursive_const_stability()
                            && !is_safe_to_expose_on_stable_const_fn(tcx, callee)
                        {
                            self.dcx().emit_err(errors::UnmarkedConstFnExposed {
                                span: self.span,
                                def_path: self.tcx.def_path_str(callee),
                            });
                        }
                    }
                    Some(ConstStability {
                        level: StabilityLevel::Unstable { implied_by: implied_feature, issue, .. },
                        feature,
                        ..
                    }) => {
                        // An unstable const fn with a feature gate.
                        let callee_safe_to_expose_on_stable =
                            is_safe_to_expose_on_stable_const_fn(tcx, callee);

                        // We only honor `span.allows_unstable` aka `#[allow_internal_unstable]` if
                        // the callee is safe to expose, to avoid bypassing recursive stability.
                        // This is not ideal since it means the user sees an error, not the macro
                        // author, but that's also the case if one forgets to set
                        // `#[allow_internal_unstable]` in the first place. Note that this cannot be
                        // integrated in the check below since we want to enforce
                        // `callee_safe_to_expose_on_stable` even if
                        // `!self.enforce_recursive_const_stability()`.
                        if (self.span.allows_unstable(feature)
                            || implied_feature.is_some_and(|f| self.span.allows_unstable(f)))
                            && callee_safe_to_expose_on_stable
                        {
                            return;
                        }

                        // We can't use `check_op` to check whether the feature is enabled because
                        // the logic is a bit different than elsewhere: local functions don't need
                        // the feature gate, and there might be an "implied" gate that also suffices
                        // to allow this.
                        let feature_enabled = callee.is_local()
                            || tcx.features().enabled(feature)
                            || implied_feature.is_some_and(|f| tcx.features().enabled(f))
                            || {
                                // When we're compiling the compiler itself we may pull in
                                // crates from crates.io, but those crates may depend on other
                                // crates also pulled in from crates.io. We want to ideally be
                                // able to compile everything without requiring upstream
                                // modifications, so in the case that this looks like a
                                // `rustc_private` crate (e.g., a compiler crate) and we also have
                                // the `-Z force-unstable-if-unmarked` flag present (we're
                                // compiling a compiler crate), then let this missing feature
                                // annotation slide.
                                // This matches what we do in `eval_stability_allow_unstable` for
                                // regular stability.
                                feature == sym::rustc_private
                                    && issue == NonZero::new(27812)
                                    && self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked
                            };
                        // Even if the feature is enabled, we still need check_op to double-check
                        // this if the callee is not safe to expose on stable.
                        if !feature_enabled || !callee_safe_to_expose_on_stable {
                            self.check_op(ops::FnCallUnstable {
                                def_id: callee,
                                feature,
                                feature_enabled,
                                safe_to_expose_on_stable: callee_safe_to_expose_on_stable,
                            });
                        }
                    }
                }
            }

            // Forbid all `Drop` terminators unless the place being dropped is a local with no
            // projections that cannot be `NeedsNonConstDrop`.
            TerminatorKind::Drop { place: dropped_place, .. } => {
                // If we are checking live drops after drop-elaboration, don't emit duplicate
                // errors here.
                if super::post_drop_elaboration::checking_enabled(self.ccx) {
                    return;
                }

                let mut err_span = self.span;
                let ty_of_dropped_place = dropped_place.ty(self.body, self.tcx).ty;

                let ty_needs_non_const_drop =
                    qualifs::NeedsNonConstDrop::in_any_value_of_ty(self.ccx, ty_of_dropped_place);

                debug!(?ty_of_dropped_place, ?ty_needs_non_const_drop);

                if !ty_needs_non_const_drop {
                    return;
                }

                let needs_non_const_drop = if let Some(local) = dropped_place.as_local() {
                    // Use the span where the local was declared as the span of the drop error.
                    err_span = self.body.local_decls[local].source_info.span;
                    self.qualifs.needs_non_const_drop(self.ccx, local, location)
                } else {
                    true
                };

                if needs_non_const_drop {
                    self.check_op_spanned(
                        ops::LiveDrop {
                            dropped_at: Some(terminator.source_info.span),
                            dropped_ty: ty_of_dropped_place,
                        },
                        err_span,
                    );
                }
            }

            TerminatorKind::InlineAsm { .. } => self.check_op(ops::InlineAsm),

            TerminatorKind::Yield { .. } => {
                self.check_op(ops::Coroutine(
                    self.tcx
                        .coroutine_kind(self.body.source.def_id())
                        .expect("Only expected to have a yield in a coroutine"),
                ));
            }

            TerminatorKind::CoroutineDrop => {
                span_bug!(
                    self.body.source_info(location).span,
                    "We should not encounter TerminatorKind::CoroutineDrop after coroutine transform"
                );
            }

            TerminatorKind::UnwindTerminate(_) => {
                // Cleanup blocks are skipped for const checking (see `visit_basic_block_data`).
                span_bug!(self.span, "`Terminate` terminator outside of cleanup block")
            }

            TerminatorKind::Assert { .. }
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. }
            | TerminatorKind::Goto { .. }
            | TerminatorKind::UnwindResume
            | TerminatorKind::Return
            | TerminatorKind::SwitchInt { .. }
            | TerminatorKind::Unreachable => {}
        }
    }
}

fn is_int_bool_float_or_char(ty: Ty<'_>) -> bool {
    ty.is_bool() || ty.is_integral() || ty.is_char() || ty.is_floating_point()
}

fn emit_unstable_in_stable_exposed_error(
    ccx: &ConstCx<'_, '_>,
    span: Span,
    gate: Symbol,
    is_function_call: bool,
) -> ErrorGuaranteed {
    let attr_span = ccx.tcx.def_span(ccx.def_id()).shrink_to_lo();

    ccx.dcx().emit_err(errors::UnstableInStableExposed {
        gate: gate.to_string(),
        span,
        attr_span,
        is_function_call,
        is_function_call2: is_function_call,
    })
}