# 1.0.0[−]Primitive Type u8

The 8-bit unsigned integer type.

## Implementations

`impl u8`

[src]

`pub const `**MIN**: u8

1.43.0[src]

**MIN**: u8

The smallest value that can be represented by this integer type.

# Examples

Basic usage:

assert_eq!(u8::MIN, 0);Run

`pub const `**MAX**: u8

1.43.0[src]

**MAX**: u8

The largest value that can be represented by this integer type.

# Examples

Basic usage:

assert_eq!(u8::MAX, 255);Run

`pub const `**BITS**: u32

[src]

**BITS**: u32

The size of this integer type in bits.

# Examples

#![feature(int_bits_const)] assert_eq!(u8::BITS, 8);Run

`pub fn from_str_radix(src: &str, radix: u32) -> Result<u8, ParseIntError>`

[src]

Converts a string slice in a given base to an integer.

The string is expected to be an optional `+`

sign
followed by digits.
Leading and trailing whitespace represent an error.
Digits are a subset of these characters, depending on `radix`

:

`0-9`

`a-z`

`A-Z`

# Panics

This function panics if `radix`

is not in the range from 2 to 36.

# Examples

Basic usage:

assert_eq!(u8::from_str_radix("A", 16), Ok(10));Run

`pub const fn count_ones(self) -> u32`

[src]

Returns the number of ones in the binary representation of `self`

.

# Examples

Basic usage:

let n = 0b01001100u8; assert_eq!(n.count_ones(), 3);Run

`pub const fn count_zeros(self) -> u32`

[src]

Returns the number of zeros in the binary representation of `self`

.

# Examples

Basic usage:

assert_eq!(u8::MAX.count_zeros(), 0);Run

`pub const fn leading_zeros(self) -> u32`

[src]

Returns the number of leading zeros in the binary representation of `self`

.

# Examples

Basic usage:

let n = u8::MAX >> 2; assert_eq!(n.leading_zeros(), 2);Run

`pub const fn trailing_zeros(self) -> u32`

[src]

Returns the number of trailing zeros in the binary representation
of `self`

.

# Examples

Basic usage:

let n = 0b0101000u8; assert_eq!(n.trailing_zeros(), 3);Run

`pub const fn leading_ones(self) -> u32`

1.46.0[src]

Returns the number of leading ones in the binary representation of `self`

.

# Examples

Basic usage:

let n = !(u8::MAX >> 2); assert_eq!(n.leading_ones(), 2);Run

`pub const fn trailing_ones(self) -> u32`

1.46.0[src]

Returns the number of trailing ones in the binary representation
of `self`

.

# Examples

Basic usage:

let n = 0b1010111u8; assert_eq!(n.trailing_ones(), 3);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn rotate_left(self, n: u32) -> u8
```

[src]

Shifts the bits to the left by a specified amount, `n`

,
wrapping the truncated bits to the end of the resulting integer.

Please note this isn't the same operation as the `<<`

shifting operator!

# Examples

Basic usage:

let n = 0x82u8; let m = 0xa; assert_eq!(n.rotate_left(2), m);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn rotate_right(self, n: u32) -> u8
```

[src]

Shifts the bits to the right by a specified amount, `n`

,
wrapping the truncated bits to the beginning of the resulting
integer.

Please note this isn't the same operation as the `>>`

shifting operator!

# Examples

Basic usage:

let n = 0xau8; let m = 0x82; assert_eq!(n.rotate_right(2), m);Run

`pub const fn swap_bytes(self) -> u8`

[src]

Reverses the byte order of the integer.

# Examples

Basic usage:

let n = 0x12u8; let m = n.swap_bytes(); assert_eq!(m, 0x12);Run

`#[must_use]pub const fn reverse_bits(self) -> u8`

1.37.0[src]

Reverses the bit pattern of the integer.

# Examples

Basic usage:

let n = 0x12u8; let m = n.reverse_bits(); assert_eq!(m, 0x48);Run

`pub const fn from_be(x: u8) -> u8`

[src]

Converts an integer from big endian to the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

# Examples

Basic usage:

let n = 0x1Au8; if cfg!(target_endian = "big") { assert_eq!(u8::from_be(n), n) } else { assert_eq!(u8::from_be(n), n.swap_bytes()) }Run

`pub const fn from_le(x: u8) -> u8`

[src]

Converts an integer from little endian to the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

# Examples

Basic usage:

let n = 0x1Au8; if cfg!(target_endian = "little") { assert_eq!(u8::from_le(n), n) } else { assert_eq!(u8::from_le(n), n.swap_bytes()) }Run

`pub const fn to_be(self) -> u8`

[src]

Converts `self`

to big endian from the target's endianness.

On big endian this is a no-op. On little endian the bytes are swapped.

# Examples

Basic usage:

let n = 0x1Au8; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }Run

`pub const fn to_le(self) -> u8`

[src]

Converts `self`

to little endian from the target's endianness.

On little endian this is a no-op. On big endian the bytes are swapped.

# Examples

Basic usage:

let n = 0x1Au8; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_add(self, rhs: u8) -> Option<u8>
```

[src]

Checked integer addition. Computes `self + rhs`

, returning `None`

if overflow occurred.

# Examples

Basic usage:

assert_eq!((u8::MAX - 2).checked_add(1), Some(u8::MAX - 1)); assert_eq!((u8::MAX - 2).checked_add(3), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub unsafe fn unchecked_add(self, rhs: u8) -> u8
```

[src]

## 🔬 This is a nightly-only experimental API. (`unchecked_math`

)

niche optimization path

Unchecked integer addition. Computes `self + rhs`

, assuming overflow
cannot occur. This results in undefined behavior when `self + rhs > u8::MAX`

or `self + rhs < u8::MIN`

.

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_sub(self, rhs: u8) -> Option<u8>
```

[src]

Checked integer subtraction. Computes `self - rhs`

, returning
`None`

if overflow occurred.

# Examples

Basic usage:

assert_eq!(1u8.checked_sub(1), Some(0)); assert_eq!(0u8.checked_sub(1), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub unsafe fn unchecked_sub(self, rhs: u8) -> u8
```

[src]

## 🔬 This is a nightly-only experimental API. (`unchecked_math`

)

niche optimization path

Unchecked integer subtraction. Computes `self - rhs`

, assuming overflow
cannot occur. This results in undefined behavior when `self - rhs > u8::MAX`

or `self - rhs < u8::MIN`

.

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_mul(self, rhs: u8) -> Option<u8>
```

[src]

Checked integer multiplication. Computes `self * rhs`

, returning
`None`

if overflow occurred.

# Examples

Basic usage:

assert_eq!(5u8.checked_mul(1), Some(5)); assert_eq!(u8::MAX.checked_mul(2), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub unsafe fn unchecked_mul(self, rhs: u8) -> u8
```

[src]

## 🔬 This is a nightly-only experimental API. (`unchecked_math`

)

niche optimization path

Unchecked integer multiplication. Computes `self * rhs`

, assuming overflow
cannot occur. This results in undefined behavior when `self * rhs > u8::MAX`

or `self * rhs < u8::MIN`

.

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_div(self, rhs: u8) -> Option<u8>
```

[src]

Checked integer division. Computes `self / rhs`

, returning `None`

if `rhs == 0`

.

# Examples

Basic usage:

assert_eq!(128u8.checked_div(2), Some(64)); assert_eq!(1u8.checked_div(0), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_div_euclid(self, rhs: u8) -> Option<u8>
```

1.38.0[src]

Checked Euclidean division. Computes `self.div_euclid(rhs)`

, returning `None`

if `rhs == 0`

.

# Examples

Basic usage:

assert_eq!(128u8.checked_div_euclid(2), Some(64)); assert_eq!(1u8.checked_div_euclid(0), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_rem(self, rhs: u8) -> Option<u8>
```

1.7.0[src]

Checked integer remainder. Computes `self % rhs`

, returning `None`

if `rhs == 0`

.

# Examples

Basic usage:

assert_eq!(5u8.checked_rem(2), Some(1)); assert_eq!(5u8.checked_rem(0), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_rem_euclid(self, rhs: u8) -> Option<u8>
```

1.38.0[src]

Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`

, returning `None`

if `rhs == 0`

.

# Examples

Basic usage:

assert_eq!(5u8.checked_rem_euclid(2), Some(1)); assert_eq!(5u8.checked_rem_euclid(0), None);Run

`pub const fn checked_neg(self) -> Option<u8>`

1.7.0[src]

Checked negation. Computes `-self`

, returning `None`

unless `self == 0`

.

Note that negating any positive integer will overflow.

# Examples

Basic usage:

assert_eq!(0u8.checked_neg(), Some(0)); assert_eq!(1u8.checked_neg(), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_shl(self, rhs: u32) -> Option<u8>
```

1.7.0[src]

Checked shift left. Computes `self << rhs`

, returning `None`

if `rhs`

is larger than or equal to the number of bits in `self`

.

# Examples

Basic usage:

assert_eq!(0x1u8.checked_shl(4), Some(0x10)); assert_eq!(0x10u8.checked_shl(129), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn checked_shr(self, rhs: u32) -> Option<u8>
```

1.7.0[src]

Checked shift right. Computes `self >> rhs`

, returning `None`

if `rhs`

is larger than or equal to the number of bits in `self`

.

# Examples

Basic usage:

assert_eq!(0x10u8.checked_shr(4), Some(0x1)); assert_eq!(0x10u8.checked_shr(129), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn checked_pow(self, exp: u32) -> Option<u8>
```

1.34.0[src]

Checked exponentiation. Computes `self.pow(exp)`

, returning `None`

if
overflow occurred.

# Examples

Basic usage:

assert_eq!(2u8.checked_pow(5), Some(32)); assert_eq!(u8::MAX.checked_pow(2), None);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn saturating_add(self, rhs: u8) -> u8
```

[src]

Saturating integer addition. Computes `self + rhs`

, saturating at
the numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(100u8.saturating_add(1), 101); assert_eq!(u8::MAX.saturating_add(127), u8::MAX);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn saturating_sub(self, rhs: u8) -> u8
```

[src]

Saturating integer subtraction. Computes `self - rhs`

, saturating
at the numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(100u8.saturating_sub(27), 73); assert_eq!(13u8.saturating_sub(127), 0);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn saturating_mul(self, rhs: u8) -> u8
```

1.7.0[src]

Saturating integer multiplication. Computes `self * rhs`

,
saturating at the numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(2u8.saturating_mul(10), 20); assert_eq!((u8::MAX).saturating_mul(10), u8::MAX);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn saturating_pow(self, exp: u32) -> u8
```

1.34.0[src]

Saturating integer exponentiation. Computes `self.pow(exp)`

,
saturating at the numeric bounds instead of overflowing.

# Examples

Basic usage:

assert_eq!(4u8.saturating_pow(3), 64); assert_eq!(u8::MAX.saturating_pow(2), u8::MAX);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_add(self, rhs: u8) -> u8
```

[src]

Wrapping (modular) addition. Computes `self + rhs`

,
wrapping around at the boundary of the type.

# Examples

Basic usage:

assert_eq!(200u8.wrapping_add(55), 255); assert_eq!(200u8.wrapping_add(u8::MAX), 199);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_sub(self, rhs: u8) -> u8
```

[src]

Wrapping (modular) subtraction. Computes `self - rhs`

,
wrapping around at the boundary of the type.

# Examples

Basic usage:

assert_eq!(100u8.wrapping_sub(100), 0); assert_eq!(100u8.wrapping_sub(u8::MAX), 101);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_mul(self, rhs: u8) -> u8
```

[src]

Wrapping (modular) multiplication. Computes `self * rhs`

, wrapping around at the boundary of the type.

# Examples

Basic usage:

Please note that this example is shared between integer types.
Which explains why `u8`

is used here.

assert_eq!(10u8.wrapping_mul(12), 120); assert_eq!(25u8.wrapping_mul(12), 44);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_div(self, rhs: u8) -> u8
```

1.2.0[src]

Wrapping (modular) division. Computes `self / rhs`

.
Wrapped division on unsigned types is just normal division.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.

# Examples

Basic usage:

assert_eq!(100u8.wrapping_div(10), 10);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_div_euclid(self, rhs: u8) -> u8
```

1.38.0[src]

Wrapping Euclidean division. Computes `self.div_euclid(rhs)`

.
Wrapped division on unsigned types is just normal division.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to `self.wrapping_div(rhs)`

.

# Examples

Basic usage:

assert_eq!(100u8.wrapping_div_euclid(10), 10);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_rem(self, rhs: u8) -> u8
```

1.2.0[src]

Wrapping (modular) remainder. Computes `self % rhs`

.
Wrapped remainder calculation on unsigned types is
just the regular remainder calculation.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.

# Examples

Basic usage:

assert_eq!(100u8.wrapping_rem(10), 0);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_rem_euclid(self, rhs: u8) -> u8
```

1.38.0[src]

Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`

.
Wrapped modulo calculation on unsigned types is
just the regular remainder calculation.
There's no way wrapping could ever happen.
This function exists, so that all operations
are accounted for in the wrapping operations.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to `self.wrapping_rem(rhs)`

.

# Examples

Basic usage:

assert_eq!(100u8.wrapping_rem_euclid(10), 0);Run

`pub const fn wrapping_neg(self) -> u8`

1.2.0[src]

Wrapping (modular) negation. Computes `-self`

,
wrapping around at the boundary of the type.

Since unsigned types do not have negative equivalents
all applications of this function will wrap (except for `-0`

).
For values smaller than the corresponding signed type's maximum
the result is the same as casting the corresponding signed value.
Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)`

where
`MAX`

is the corresponding signed type's maximum.

# Examples

Basic usage:

Please note that this example is shared between integer types.
Which explains why `i8`

is used here.

assert_eq!(100i8.wrapping_neg(), -100); assert_eq!((-128i8).wrapping_neg(), -128);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_shl(self, rhs: u32) -> u8
```

1.2.0[src]

Panic-free bitwise shift-left; yields `self << mask(rhs)`

,
where `mask`

removes any high-order bits of `rhs`

that
would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-left; the
RHS of a wrapping shift-left is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a `rotate_left`

function,
which may be what you want instead.

# Examples

Basic usage:

assert_eq!(1u8.wrapping_shl(7), 128); assert_eq!(1u8.wrapping_shl(128), 1);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn wrapping_shr(self, rhs: u32) -> u8
```

1.2.0[src]

Panic-free bitwise shift-right; yields `self >> mask(rhs)`

,
where `mask`

removes any high-order bits of `rhs`

that
would cause the shift to exceed the bitwidth of the type.

Note that this is *not* the same as a rotate-right; the
RHS of a wrapping shift-right is restricted to the range
of the type, rather than the bits shifted out of the LHS
being returned to the other end. The primitive integer
types all implement a `rotate_right`

function,
which may be what you want instead.

# Examples

Basic usage:

assert_eq!(128u8.wrapping_shr(7), 1); assert_eq!(128u8.wrapping_shr(128), 128);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn wrapping_pow(self, exp: u32) -> u8
```

1.34.0[src]

Wrapping (modular) exponentiation. Computes `self.pow(exp)`

,
wrapping around at the boundary of the type.

# Examples

Basic usage:

assert_eq!(3u8.wrapping_pow(5), 243); assert_eq!(3u8.wrapping_pow(6), 217);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_add(self, rhs: u8) -> (u8, bool)
```

1.7.0[src]

Calculates `self`

+ `rhs`

Returns a tuple of the addition along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

# Examples

Basic usage

assert_eq!(5u8.overflowing_add(2), (7, false)); assert_eq!(u8::MAX.overflowing_add(1), (0, true));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_sub(self, rhs: u8) -> (u8, bool)
```

1.7.0[src]

Calculates `self`

- `rhs`

Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

# Examples

Basic usage

assert_eq!(5u8.overflowing_sub(2), (3, false)); assert_eq!(0u8.overflowing_sub(1), (u8::MAX, true));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_mul(self, rhs: u8) -> (u8, bool)
```

1.7.0[src]

Calculates the multiplication of `self`

and `rhs`

.

Returns a tuple of the multiplication along with a boolean indicating whether an arithmetic overflow would occur. If an overflow would have occurred then the wrapped value is returned.

# Examples

Basic usage:

Please note that this example is shared between integer types.
Which explains why `u32`

is used here.

assert_eq!(5u32.overflowing_mul(2), (10, false)); assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_div(self, rhs: u8) -> (u8, bool)
```

1.7.0[src]

Calculates the divisor when `self`

is divided by `rhs`

.

Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
`false`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage

assert_eq!(5u8.overflowing_div(2), (2, false));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_div_euclid(self, rhs: u8) -> (u8, bool)
```

1.38.0[src]

Calculates the quotient of Euclidean division `self.div_euclid(rhs)`

.

Returns a tuple of the divisor along with a boolean indicating
whether an arithmetic overflow would occur. Note that for unsigned
integers overflow never occurs, so the second value is always
`false`

.
Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to `self.overflowing_div(rhs)`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage

assert_eq!(5u8.overflowing_div_euclid(2), (2, false));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_rem(self, rhs: u8) -> (u8, bool)
```

1.7.0[src]

Calculates the remainder when `self`

is divided by `rhs`

.

Returns a tuple of the remainder after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always `false`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage

assert_eq!(5u8.overflowing_rem(2), (1, false));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_rem_euclid(self, rhs: u8) -> (u8, bool)
```

1.38.0[src]

Calculates the remainder `self.rem_euclid(rhs)`

as if by Euclidean division.

Returns a tuple of the modulo after dividing along with a boolean
indicating whether an arithmetic overflow would occur. Note that for
unsigned integers overflow never occurs, so the second value is
always `false`

.
Since, for the positive integers, all common
definitions of division are equal, this operation
is exactly equal to `self.overflowing_rem(rhs)`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage

assert_eq!(5u8.overflowing_rem_euclid(2), (1, false));Run

`pub const fn overflowing_neg(self) -> (u8, bool)`

1.7.0[src]

Negates self in an overflowing fashion.

Returns `!self + 1`

using wrapping operations to return the value
that represents the negation of this unsigned value. Note that for
positive unsigned values overflow always occurs, but negating 0 does
not overflow.

# Examples

Basic usage

assert_eq!(0u8.overflowing_neg(), (0, false)); assert_eq!(2u8.overflowing_neg(), (-2i32 as u8, true));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_shl(self, rhs: u32) -> (u8, bool)
```

1.7.0[src]

Shifts self left by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

# Examples

Basic usage

assert_eq!(0x1u8.overflowing_shl(4), (0x10, false)); assert_eq!(0x1u8.overflowing_shl(132), (0x10, true));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub const fn overflowing_shr(self, rhs: u32) -> (u8, bool)
```

1.7.0[src]

Shifts self right by `rhs`

bits.

Returns a tuple of the shifted version of self along with a boolean indicating whether the shift value was larger than or equal to the number of bits. If the shift value is too large, then value is masked (N-1) where N is the number of bits, and this value is then used to perform the shift.

# Examples

Basic usage

assert_eq!(0x10u8.overflowing_shr(4), (0x1, false)); assert_eq!(0x10u8.overflowing_shr(132), (0x1, true));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn overflowing_pow(self, exp: u32) -> (u8, bool)
```

1.34.0[src]

Raises self to the power of `exp`

, using exponentiation by squaring.

Returns a tuple of the exponentiation along with a bool indicating whether an overflow happened.

# Examples

Basic usage:

assert_eq!(3u8.overflowing_pow(5), (243, false)); assert_eq!(3u8.overflowing_pow(6), (217, true));Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn pow(self, exp: u32) -> u8
```

[src]

Raises self to the power of `exp`

, using exponentiation by squaring.

# Examples

Basic usage:

assert_eq!(2u8.pow(5), 32);Run

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn div_euclid(self, rhs: u8) -> u8
```

1.38.0[src]

Performs Euclidean division.

Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to `self / rhs`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(7u8.div_euclid(4), 1); // or any other integer typeRun

```
#[must_use =
"this returns the result of the operation, \
without modifying the original"]pub fn rem_euclid(self, rhs: u8) -> u8
```

1.38.0[src]

Calculates the least remainder of `self (mod rhs)`

.

Since, for the positive integers, all common
definitions of division are equal, this
is exactly equal to `self % rhs`

.

# Panics

This function will panic if `rhs`

is 0.

# Examples

Basic usage:

assert_eq!(7u8.rem_euclid(4), 3); // or any other integer typeRun

`pub const fn is_power_of_two(self) -> bool`

[src]

Returns `true`

if and only if `self == 2^k`

for some `k`

.

# Examples

Basic usage:

assert!(16u8.is_power_of_two()); assert!(!10u8.is_power_of_two());Run

`pub fn next_power_of_two(self) -> u8`

[src]

Returns the smallest power of two greater than or equal to `self`

.

When return value overflows (i.e., `self > (1 << (N-1))`

for type
`uN`

), it panics in debug mode and return value is wrapped to 0 in
release mode (the only situation in which method can return 0).

# Examples

Basic usage:

assert_eq!(2u8.next_power_of_two(), 2); assert_eq!(3u8.next_power_of_two(), 4);Run

`pub fn checked_next_power_of_two(self) -> Option<u8>`

[src]

Returns the smallest power of two greater than or equal to `n`

. If
the next power of two is greater than the type's maximum value,
`None`

is returned, otherwise the power of two is wrapped in `Some`

.

# Examples

Basic usage:

assert_eq!(2u8.checked_next_power_of_two(), Some(2)); assert_eq!(3u8.checked_next_power_of_two(), Some(4)); assert_eq!(u8::MAX.checked_next_power_of_two(), None);Run

`pub fn wrapping_next_power_of_two(self) -> u8`

[src]

## 🔬 This is a nightly-only experimental API. (`wrapping_next_power_of_two`

#32463)

needs decision on wrapping behaviour

Returns the smallest power of two greater than or equal to `n`

. If
the next power of two is greater than the type's maximum value,
the return value is wrapped to `0`

.

# Examples

Basic usage:

#![feature(wrapping_next_power_of_two)] assert_eq!(2u8.wrapping_next_power_of_two(), 2); assert_eq!(3u8.wrapping_next_power_of_two(), 4); assert_eq!(u8::MAX.wrapping_next_power_of_two(), 0);Run

`pub const fn to_be_bytes(self) -> [u8; 1]`

1.32.0[src]

Return the memory representation of this integer as a byte array in big-endian (network) byte order.

# Examples

let bytes = 0x12u8.to_be_bytes(); assert_eq!(bytes, [0x12]);Run

`pub const fn to_le_bytes(self) -> [u8; 1]`

1.32.0[src]

Return the memory representation of this integer as a byte array in little-endian byte order.

# Examples

let bytes = 0x12u8.to_le_bytes(); assert_eq!(bytes, [0x12]);Run

`pub const fn to_ne_bytes(self) -> [u8; 1]`

1.32.0[src]

Return the memory representation of this integer as a byte array in native byte order.

As the target platform's native endianness is used, portable code
should use `to_be_bytes`

or `to_le_bytes`

, as appropriate,
instead.

# Examples

let bytes = 0x12u8.to_ne_bytes(); assert_eq!( bytes, if cfg!(target_endian = "big") { [0x12] } else { [0x12] } );Run

`pub const fn from_be_bytes(bytes: [u8; 1]) -> u8`

1.32.0[src]

Create a native endian integer value from its representation as a byte array in big endian.

# Examples

let value = u8::from_be_bytes([0x12]); assert_eq!(value, 0x12);Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto; fn read_be_u8(input: &mut &[u8]) -> u8 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<u8>()); *input = rest; u8::from_be_bytes(int_bytes.try_into().unwrap()) }Run

`pub const fn from_le_bytes(bytes: [u8; 1]) -> u8`

1.32.0[src]

Create a native endian integer value from its representation as a byte array in little endian.

# Examples

let value = u8::from_le_bytes([0x12]); assert_eq!(value, 0x12);Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto; fn read_le_u8(input: &mut &[u8]) -> u8 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<u8>()); *input = rest; u8::from_le_bytes(int_bytes.try_into().unwrap()) }Run

`pub const fn from_ne_bytes(bytes: [u8; 1]) -> u8`

1.32.0[src]

Create a native endian integer value from its memory representation as a byte array in native endianness.

As the target platform's native endianness is used, portable code
likely wants to use `from_be_bytes`

or `from_le_bytes`

, as
appropriate instead.

# Examples

let value = u8::from_ne_bytes(if cfg!(target_endian = "big") { [0x12] } else { [0x12] }); assert_eq!(value, 0x12);Run

When starting from a slice rather than an array, fallible conversion APIs can be used:

use std::convert::TryInto; fn read_ne_u8(input: &mut &[u8]) -> u8 { let (int_bytes, rest) = input.split_at(std::mem::size_of::<u8>()); *input = rest; u8::from_ne_bytes(int_bytes.try_into().unwrap()) }Run

`pub const fn min_value() -> u8`

[src]

**This method is soft-deprecated.**

Although using it won’t cause compilation warning,
new code should use `u8::MIN`

instead.

Returns the smallest value that can be represented by this integer type.

`pub const fn max_value() -> u8`

[src]

**This method is soft-deprecated.**

Although using it won’t cause compilation warning,
new code should use `u8::MAX`

instead.

Returns the largest value that can be represented by this integer type.

`pub const fn is_ascii(&self) -> bool`

1.23.0[src]

Checks if the value is within the ASCII range.

# Examples

let ascii = 97u8; let non_ascii = 150u8; assert!(ascii.is_ascii()); assert!(!non_ascii.is_ascii());Run

`pub fn to_ascii_uppercase(&self) -> u8`

1.23.0[src]

Makes a copy of the value in its ASCII upper case equivalent.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To uppercase the value in-place, use `make_ascii_uppercase`

.

# Examples

let lowercase_a = 97u8; assert_eq!(65, lowercase_a.to_ascii_uppercase());Run

`pub fn to_ascii_lowercase(&self) -> u8`

1.23.0[src]

Makes a copy of the value in its ASCII lower case equivalent.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To lowercase the value in-place, use `make_ascii_lowercase`

.

# Examples

let uppercase_a = 65u8; assert_eq!(97, uppercase_a.to_ascii_lowercase());Run

`pub fn eq_ignore_ascii_case(&self, other: &u8) -> bool`

1.23.0[src]

Checks that two values are an ASCII case-insensitive match.

This is equivalent to `to_ascii_lowercase(a) == to_ascii_lowercase(b)`

.

# Examples

let lowercase_a = 97u8; let uppercase_a = 65u8; assert!(lowercase_a.eq_ignore_ascii_case(&uppercase_a));Run

`pub fn make_ascii_uppercase(&mut self)`

1.23.0[src]

Converts this value to its ASCII upper case equivalent in-place.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To return a new uppercased value without modifying the existing one, use
`to_ascii_uppercase`

.

# Examples

let mut byte = b'a'; byte.make_ascii_uppercase(); assert_eq!(b'A', byte);Run

`pub fn make_ascii_lowercase(&mut self)`

1.23.0[src]

Converts this value to its ASCII lower case equivalent in-place.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To return a new lowercased value without modifying the existing one, use
`to_ascii_lowercase`

.

# Examples

let mut byte = b'A'; byte.make_ascii_lowercase(); assert_eq!(b'a', byte);Run

`pub const fn is_ascii_alphabetic(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII alphabetic character:

- U+0041 'A' ..= U+005A 'Z', or
- U+0061 'a' ..= U+007A 'z'.

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_alphabetic()); assert!(uppercase_g.is_ascii_alphabetic()); assert!(a.is_ascii_alphabetic()); assert!(g.is_ascii_alphabetic()); assert!(!zero.is_ascii_alphabetic()); assert!(!percent.is_ascii_alphabetic()); assert!(!space.is_ascii_alphabetic()); assert!(!lf.is_ascii_alphabetic()); assert!(!esc.is_ascii_alphabetic());Run

`pub const fn is_ascii_uppercase(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII uppercase character: U+0041 'A' ..= U+005A 'Z'.

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_uppercase()); assert!(uppercase_g.is_ascii_uppercase()); assert!(!a.is_ascii_uppercase()); assert!(!g.is_ascii_uppercase()); assert!(!zero.is_ascii_uppercase()); assert!(!percent.is_ascii_uppercase()); assert!(!space.is_ascii_uppercase()); assert!(!lf.is_ascii_uppercase()); assert!(!esc.is_ascii_uppercase());Run

`pub const fn is_ascii_lowercase(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII lowercase character: U+0061 'a' ..= U+007A 'z'.

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_lowercase()); assert!(!uppercase_g.is_ascii_lowercase()); assert!(a.is_ascii_lowercase()); assert!(g.is_ascii_lowercase()); assert!(!zero.is_ascii_lowercase()); assert!(!percent.is_ascii_lowercase()); assert!(!space.is_ascii_lowercase()); assert!(!lf.is_ascii_lowercase()); assert!(!esc.is_ascii_lowercase());Run

`pub const fn is_ascii_alphanumeric(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII alphanumeric character:

- U+0041 'A' ..= U+005A 'Z', or
- U+0061 'a' ..= U+007A 'z', or
- U+0030 '0' ..= U+0039 '9'.

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_alphanumeric()); assert!(uppercase_g.is_ascii_alphanumeric()); assert!(a.is_ascii_alphanumeric()); assert!(g.is_ascii_alphanumeric()); assert!(zero.is_ascii_alphanumeric()); assert!(!percent.is_ascii_alphanumeric()); assert!(!space.is_ascii_alphanumeric()); assert!(!lf.is_ascii_alphanumeric()); assert!(!esc.is_ascii_alphanumeric());Run

`pub const fn is_ascii_digit(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII decimal digit: U+0030 '0' ..= U+0039 '9'.

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_digit()); assert!(!uppercase_g.is_ascii_digit()); assert!(!a.is_ascii_digit()); assert!(!g.is_ascii_digit()); assert!(zero.is_ascii_digit()); assert!(!percent.is_ascii_digit()); assert!(!space.is_ascii_digit()); assert!(!lf.is_ascii_digit()); assert!(!esc.is_ascii_digit());Run

`pub const fn is_ascii_hexdigit(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII hexadecimal digit:

- U+0030 '0' ..= U+0039 '9', or
- U+0041 'A' ..= U+0046 'F', or
- U+0061 'a' ..= U+0066 'f'.

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_hexdigit()); assert!(!uppercase_g.is_ascii_hexdigit()); assert!(a.is_ascii_hexdigit()); assert!(!g.is_ascii_hexdigit()); assert!(zero.is_ascii_hexdigit()); assert!(!percent.is_ascii_hexdigit()); assert!(!space.is_ascii_hexdigit()); assert!(!lf.is_ascii_hexdigit()); assert!(!esc.is_ascii_hexdigit());Run

`pub const fn is_ascii_punctuation(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII punctuation character:

- U+0021 ..= U+002F
`! " # $ % & ' ( ) * + , - . /`

, or - U+003A ..= U+0040
`: ; < = > ? @`

, or - U+005B ..= U+0060
`[ \ ] ^ _ ``

, or - U+007B ..= U+007E
`{ | } ~`

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_punctuation()); assert!(!uppercase_g.is_ascii_punctuation()); assert!(!a.is_ascii_punctuation()); assert!(!g.is_ascii_punctuation()); assert!(!zero.is_ascii_punctuation()); assert!(percent.is_ascii_punctuation()); assert!(!space.is_ascii_punctuation()); assert!(!lf.is_ascii_punctuation()); assert!(!esc.is_ascii_punctuation());Run

`pub const fn is_ascii_graphic(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII graphic character: U+0021 '!' ..= U+007E '~'.

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(uppercase_a.is_ascii_graphic()); assert!(uppercase_g.is_ascii_graphic()); assert!(a.is_ascii_graphic()); assert!(g.is_ascii_graphic()); assert!(zero.is_ascii_graphic()); assert!(percent.is_ascii_graphic()); assert!(!space.is_ascii_graphic()); assert!(!lf.is_ascii_graphic()); assert!(!esc.is_ascii_graphic());Run

`pub const fn is_ascii_whitespace(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII whitespace character: U+0020 SPACE, U+0009 HORIZONTAL TAB, U+000A LINE FEED, U+000C FORM FEED, or U+000D CARRIAGE RETURN.

Rust uses the WhatWG Infra Standard's definition of ASCII
whitespace. There are several other definitions in
wide use. For instance, the POSIX locale includes
U+000B VERTICAL TAB as well as all the above characters,
but—from the very same specification—the default rule for
"field splitting" in the Bourne shell considers *only*
SPACE, HORIZONTAL TAB, and LINE FEED as whitespace.

If you are writing a program that will process an existing file format, check what that format's definition of whitespace is before using this function.

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_whitespace()); assert!(!uppercase_g.is_ascii_whitespace()); assert!(!a.is_ascii_whitespace()); assert!(!g.is_ascii_whitespace()); assert!(!zero.is_ascii_whitespace()); assert!(!percent.is_ascii_whitespace()); assert!(space.is_ascii_whitespace()); assert!(lf.is_ascii_whitespace()); assert!(!esc.is_ascii_whitespace());Run

`pub const fn is_ascii_control(&self) -> bool`

1.24.0[src]

Checks if the value is an ASCII control character: U+0000 NUL ..= U+001F UNIT SEPARATOR, or U+007F DELETE. Note that most ASCII whitespace characters are control characters, but SPACE is not.

# Examples

let uppercase_a = b'A'; let uppercase_g = b'G'; let a = b'a'; let g = b'g'; let zero = b'0'; let percent = b'%'; let space = b' '; let lf = b'\n'; let esc = 0x1b_u8; assert!(!uppercase_a.is_ascii_control()); assert!(!uppercase_g.is_ascii_control()); assert!(!a.is_ascii_control()); assert!(!g.is_ascii_control()); assert!(!zero.is_ascii_control()); assert!(!percent.is_ascii_control()); assert!(!space.is_ascii_control()); assert!(lf.is_ascii_control()); assert!(esc.is_ascii_control());Run

## Trait Implementations

`impl<'_> Add<&'_ u8> for u8`

[src]

`type Output = <u8 as Add<u8>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &u8) -> <u8 as Add<u8>>::Output`

[src]

`impl<'_, '_> Add<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as Add<u8>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: &u8) -> <u8 as Add<u8>>::Output`

[src]

`impl Add<u8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `+`

operator.

`fn add(self, other: u8) -> u8`

[src]

`impl<'a> Add<u8> for &'a u8`

[src]

`type Output = <u8 as Add<u8>>::Output`

The resulting type after applying the `+`

operator.

`fn add(self, other: u8) -> <u8 as Add<u8>>::Output`

[src]

`impl<'_> AddAssign<&'_ u8> for u8`

1.22.0[src]

`fn add_assign(&mut self, other: &u8)`

[src]

`impl AddAssign<u8> for u8`

1.8.0[src]

`fn add_assign(&mut self, other: u8)`

[src]

`impl AsciiExt for u8`

[src]

`type Owned = u8`

use inherent methods instead

Container type for copied ASCII characters.

`fn is_ascii(&self) -> bool`

[src]

`fn to_ascii_uppercase(&self) -> Self::Owned`

[src]

`fn to_ascii_lowercase(&self) -> Self::Owned`

[src]

`fn eq_ignore_ascii_case(&self, o: &Self) -> bool`

[src]

`fn make_ascii_uppercase(&mut self)`

[src]

`fn make_ascii_lowercase(&mut self)`

[src]

`impl Binary for u8`

[src]

`impl<'_> BitAnd<&'_ u8> for u8`

[src]

`type Output = <u8 as BitAnd<u8>>::Output`

The resulting type after applying the `&`

operator.

`fn bitand(self, other: &u8) -> <u8 as BitAnd<u8>>::Output`

[src]

`impl<'_, '_> BitAnd<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as BitAnd<u8>>::Output`

The resulting type after applying the `&`

operator.

`fn bitand(self, other: &u8) -> <u8 as BitAnd<u8>>::Output`

[src]

`impl<'a> BitAnd<u8> for &'a u8`

[src]

`type Output = <u8 as BitAnd<u8>>::Output`

The resulting type after applying the `&`

operator.

`fn bitand(self, other: u8) -> <u8 as BitAnd<u8>>::Output`

[src]

`impl BitAnd<u8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `&`

operator.

`fn bitand(self, rhs: u8) -> u8`

[src]

`impl<'_> BitAndAssign<&'_ u8> for u8`

1.22.0[src]

`fn bitand_assign(&mut self, other: &u8)`

[src]

`impl BitAndAssign<u8> for u8`

1.8.0[src]

`fn bitand_assign(&mut self, other: u8)`

[src]

`impl<'_, '_> BitOr<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as BitOr<u8>>::Output`

The resulting type after applying the `|`

operator.

`fn bitor(self, other: &u8) -> <u8 as BitOr<u8>>::Output`

[src]

`impl<'_> BitOr<&'_ u8> for u8`

[src]

`type Output = <u8 as BitOr<u8>>::Output`

The resulting type after applying the `|`

operator.

`fn bitor(self, other: &u8) -> <u8 as BitOr<u8>>::Output`

[src]

`impl BitOr<NonZeroU8> for u8`

1.45.0[src]

`type Output = NonZeroU8`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: NonZeroU8) -> <u8 as BitOr<NonZeroU8>>::Output`

[src]

`impl<'a> BitOr<u8> for &'a u8`

[src]

`type Output = <u8 as BitOr<u8>>::Output`

The resulting type after applying the `|`

operator.

`fn bitor(self, other: u8) -> <u8 as BitOr<u8>>::Output`

[src]

`impl BitOr<u8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `|`

operator.

`fn bitor(self, rhs: u8) -> u8`

[src]

`impl<'_> BitOrAssign<&'_ u8> for u8`

1.22.0[src]

`fn bitor_assign(&mut self, other: &u8)`

[src]

`impl BitOrAssign<u8> for u8`

1.8.0[src]

`fn bitor_assign(&mut self, other: u8)`

[src]

`impl<'_, '_> BitXor<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as BitXor<u8>>::Output`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: &u8) -> <u8 as BitXor<u8>>::Output`

[src]

`impl<'_> BitXor<&'_ u8> for u8`

[src]

`type Output = <u8 as BitXor<u8>>::Output`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: &u8) -> <u8 as BitXor<u8>>::Output`

[src]

`impl BitXor<u8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: u8) -> u8`

[src]

`impl<'a> BitXor<u8> for &'a u8`

[src]

`type Output = <u8 as BitXor<u8>>::Output`

The resulting type after applying the `^`

operator.

`fn bitxor(self, other: u8) -> <u8 as BitXor<u8>>::Output`

[src]

`impl<'_> BitXorAssign<&'_ u8> for u8`

1.22.0[src]

`fn bitxor_assign(&mut self, other: &u8)`

[src]

`impl BitXorAssign<u8> for u8`

1.8.0[src]

`fn bitxor_assign(&mut self, other: u8)`

[src]

`impl Clone for u8`

[src]

`impl Copy for u8`

[src]

`impl Debug for u8`

[src]

`impl Default for u8`

[src]

`impl Display for u8`

[src]

`impl<'_> Div<&'_ u8> for u8`

[src]

`type Output = <u8 as Div<u8>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &u8) -> <u8 as Div<u8>>::Output`

[src]

`impl<'_, '_> Div<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as Div<u8>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: &u8) -> <u8 as Div<u8>>::Output`

[src]

`impl Div<u8> for u8`

[src]

This operation rounds towards zero, truncating any fractional part of the exact result.

`type Output = u8`

The resulting type after applying the `/`

operator.

`fn div(self, other: u8) -> u8`

[src]

`impl<'a> Div<u8> for &'a u8`

[src]

`type Output = <u8 as Div<u8>>::Output`

The resulting type after applying the `/`

operator.

`fn div(self, other: u8) -> <u8 as Div<u8>>::Output`

[src]

`impl<'_> DivAssign<&'_ u8> for u8`

1.22.0[src]

`fn div_assign(&mut self, other: &u8)`

[src]

`impl DivAssign<u8> for u8`

1.8.0[src]

`fn div_assign(&mut self, other: u8)`

[src]

`impl Eq for u8`

[src]

`impl From<NonZeroU8> for u8`

1.31.0[src]

`impl From<bool> for u8`

1.28.0[src]

Converts a `bool`

to a `u8`

. The resulting value is `0`

for `false`

and `1`

for `true`

values.

# Examples

assert_eq!(u8::from(true), 1); assert_eq!(u8::from(false), 0);Run

`impl FromStr for u8`

[src]

`type Err = ParseIntError`

The associated error which can be returned from parsing.

`fn from_str(src: &str) -> Result<u8, ParseIntError>`

[src]

`impl Hash for u8`

[src]

`fn hash<H>(&self, state: &mut H) where`

H: Hasher,

[src]

H: Hasher,

`fn hash_slice<H>(data: &[u8], state: &mut H) where`

H: Hasher,

[src]

H: Hasher,

`impl LowerExp for u8`

1.42.0[src]

`impl LowerHex for u8`

[src]

`impl<'_> Mul<&'_ u8> for u8`

[src]

`type Output = <u8 as Mul<u8>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &u8) -> <u8 as Mul<u8>>::Output`

[src]

`impl<'_, '_> Mul<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as Mul<u8>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: &u8) -> <u8 as Mul<u8>>::Output`

[src]

`impl Mul<u8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `*`

operator.

`fn mul(self, other: u8) -> u8`

[src]

`impl<'a> Mul<u8> for &'a u8`

[src]

`type Output = <u8 as Mul<u8>>::Output`

The resulting type after applying the `*`

operator.

`fn mul(self, other: u8) -> <u8 as Mul<u8>>::Output`

[src]

`impl<'_> MulAssign<&'_ u8> for u8`

1.22.0[src]

`fn mul_assign(&mut self, other: &u8)`

[src]

`impl MulAssign<u8> for u8`

1.8.0[src]

`fn mul_assign(&mut self, other: u8)`

[src]

`impl Not for u8`

[src]

`impl<'_> Not for &'_ u8`

[src]

`type Output = <u8 as Not>::Output`

The resulting type after applying the `!`

operator.

`fn not(self) -> <u8 as Not>::Output`

[src]

`impl Octal for u8`

[src]

`impl Ord for u8`

[src]

`fn cmp(&self, other: &u8) -> Ordering`

[src]

`#[must_use]fn max(self, other: Self) -> Self`

1.21.0[src]

`#[must_use]fn min(self, other: Self) -> Self`

1.21.0[src]

`#[must_use]fn clamp(self, min: Self, max: Self) -> Self`

[src]

`impl PartialEq<u8> for u8`

[src]

`impl PartialOrd<u8> for u8`

[src]

`fn partial_cmp(&self, other: &u8) -> Option<Ordering>`

[src]

`fn lt(&self, other: &u8) -> bool`

[src]

`fn le(&self, other: &u8) -> bool`

[src]

`fn ge(&self, other: &u8) -> bool`

[src]

`fn gt(&self, other: &u8) -> bool`

[src]

`impl<'a> Product<&'a u8> for u8`

1.12.0[src]

`impl Product<u8> for u8`

1.12.0[src]

`impl<'_> Rem<&'_ u8> for u8`

[src]

`type Output = <u8 as Rem<u8>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &u8) -> <u8 as Rem<u8>>::Output`

[src]

`impl<'_, '_> Rem<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as Rem<u8>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: &u8) -> <u8 as Rem<u8>>::Output`

[src]

`impl Rem<u8> for u8`

[src]

This operation satisfies `n % d == n - (n / d) * d`

. The
result has the same sign as the left operand.

`type Output = u8`

The resulting type after applying the `%`

operator.

`fn rem(self, other: u8) -> u8`

[src]

`impl<'a> Rem<u8> for &'a u8`

[src]

`type Output = <u8 as Rem<u8>>::Output`

The resulting type after applying the `%`

operator.

`fn rem(self, other: u8) -> <u8 as Rem<u8>>::Output`

[src]

`impl<'_> RemAssign<&'_ u8> for u8`

1.22.0[src]

`fn rem_assign(&mut self, other: &u8)`

[src]

`impl RemAssign<u8> for u8`

1.8.0[src]

`fn rem_assign(&mut self, other: u8)`

[src]

`impl<'_> Shl<&'_ i128> for u8`

[src]

`type Output = <u8 as Shl<i128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i128) -> <u8 as Shl<i128>>::Output`

[src]

`impl<'_, '_> Shl<&'_ i128> for &'_ u8`

[src]

`type Output = <u8 as Shl<i128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i128) -> <u8 as Shl<i128>>::Output`

[src]

`impl<'_, '_> Shl<&'_ i16> for &'_ u8`

[src]

`type Output = <u8 as Shl<i16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i16) -> <u8 as Shl<i16>>::Output`

[src]

`impl<'_> Shl<&'_ i16> for u8`

[src]

`type Output = <u8 as Shl<i16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i16) -> <u8 as Shl<i16>>::Output`

[src]

`impl<'_> Shl<&'_ i32> for u8`

[src]

`type Output = <u8 as Shl<i32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i32) -> <u8 as Shl<i32>>::Output`

[src]

`impl<'_, '_> Shl<&'_ i32> for &'_ u8`

[src]

`type Output = <u8 as Shl<i32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i32) -> <u8 as Shl<i32>>::Output`

[src]

`impl<'_, '_> Shl<&'_ i64> for &'_ u8`

[src]

`type Output = <u8 as Shl<i64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i64) -> <u8 as Shl<i64>>::Output`

[src]

`impl<'_> Shl<&'_ i64> for u8`

[src]

`type Output = <u8 as Shl<i64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i64) -> <u8 as Shl<i64>>::Output`

[src]

`impl<'_> Shl<&'_ i8> for u8`

[src]

`type Output = <u8 as Shl<i8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i8) -> <u8 as Shl<i8>>::Output`

[src]

`impl<'_, '_> Shl<&'_ i8> for &'_ u8`

[src]

`type Output = <u8 as Shl<i8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &i8) -> <u8 as Shl<i8>>::Output`

[src]

`impl<'_> Shl<&'_ isize> for u8`

[src]

`type Output = <u8 as Shl<isize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &isize) -> <u8 as Shl<isize>>::Output`

[src]

`impl<'_, '_> Shl<&'_ isize> for &'_ u8`

[src]

`type Output = <u8 as Shl<isize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &isize) -> <u8 as Shl<isize>>::Output`

[src]

`impl<'_, '_> Shl<&'_ u128> for &'_ u8`

[src]

`type Output = <u8 as Shl<u128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u128) -> <u8 as Shl<u128>>::Output`

[src]

`impl<'_> Shl<&'_ u128> for u8`

[src]

`type Output = <u8 as Shl<u128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u128) -> <u8 as Shl<u128>>::Output`

[src]

`impl<'_, '_> Shl<&'_ u16> for &'_ u8`

[src]

`type Output = <u8 as Shl<u16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u16) -> <u8 as Shl<u16>>::Output`

[src]

`impl<'_> Shl<&'_ u16> for u8`

[src]

`type Output = <u8 as Shl<u16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u16) -> <u8 as Shl<u16>>::Output`

[src]

`impl<'_> Shl<&'_ u32> for u8`

[src]

`type Output = <u8 as Shl<u32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u32) -> <u8 as Shl<u32>>::Output`

[src]

`impl<'_, '_> Shl<&'_ u32> for &'_ u8`

[src]

`type Output = <u8 as Shl<u32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u32) -> <u8 as Shl<u32>>::Output`

[src]

`impl<'_, '_> Shl<&'_ u64> for &'_ u8`

[src]

`type Output = <u8 as Shl<u64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u64) -> <u8 as Shl<u64>>::Output`

[src]

`impl<'_> Shl<&'_ u64> for u8`

[src]

`type Output = <u8 as Shl<u64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u64) -> <u8 as Shl<u64>>::Output`

[src]

`impl<'_, '_> Shl<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as Shl<u8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u8) -> <u8 as Shl<u8>>::Output`

[src]

`impl<'_> Shl<&'_ u8> for u8`

[src]

`type Output = <u8 as Shl<u8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &u8) -> <u8 as Shl<u8>>::Output`

[src]

`impl<'_> Shl<&'_ usize> for u8`

[src]

`type Output = <u8 as Shl<usize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &usize) -> <u8 as Shl<usize>>::Output`

[src]

`impl<'_, '_> Shl<&'_ usize> for &'_ u8`

[src]

`type Output = <u8 as Shl<usize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: &usize) -> <u8 as Shl<usize>>::Output`

[src]

`impl<'a> Shl<i128> for &'a u8`

[src]

`type Output = <u8 as Shl<i128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i128) -> <u8 as Shl<i128>>::Output`

[src]

`impl Shl<i128> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i128) -> u8`

[src]

`impl Shl<i16> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i16) -> u8`

[src]

`impl<'a> Shl<i16> for &'a u8`

[src]

`type Output = <u8 as Shl<i16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i16) -> <u8 as Shl<i16>>::Output`

[src]

`impl Shl<i32> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i32) -> u8`

[src]

`impl<'a> Shl<i32> for &'a u8`

[src]

`type Output = <u8 as Shl<i32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i32) -> <u8 as Shl<i32>>::Output`

[src]

`impl Shl<i64> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i64) -> u8`

[src]

`impl<'a> Shl<i64> for &'a u8`

[src]

`type Output = <u8 as Shl<i64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i64) -> <u8 as Shl<i64>>::Output`

[src]

`impl Shl<i8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i8) -> u8`

[src]

`impl<'a> Shl<i8> for &'a u8`

[src]

`type Output = <u8 as Shl<i8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: i8) -> <u8 as Shl<i8>>::Output`

[src]

`impl<'a> Shl<isize> for &'a u8`

[src]

`type Output = <u8 as Shl<isize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: isize) -> <u8 as Shl<isize>>::Output`

[src]

`impl Shl<isize> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: isize) -> u8`

[src]

`impl Shl<u128> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u128) -> u8`

[src]

`impl<'a> Shl<u128> for &'a u8`

[src]

`type Output = <u8 as Shl<u128>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u128) -> <u8 as Shl<u128>>::Output`

[src]

`impl Shl<u16> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u16) -> u8`

[src]

`impl<'a> Shl<u16> for &'a u8`

[src]

`type Output = <u8 as Shl<u16>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u16) -> <u8 as Shl<u16>>::Output`

[src]

`impl Shl<u32> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u32) -> u8`

[src]

`impl<'a> Shl<u32> for &'a u8`

[src]

`type Output = <u8 as Shl<u32>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u32) -> <u8 as Shl<u32>>::Output`

[src]

`impl<'a> Shl<u64> for &'a u8`

[src]

`type Output = <u8 as Shl<u64>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u64) -> <u8 as Shl<u64>>::Output`

[src]

`impl Shl<u64> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u64) -> u8`

[src]

`impl<'a> Shl<u8> for &'a u8`

[src]

`type Output = <u8 as Shl<u8>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u8) -> <u8 as Shl<u8>>::Output`

[src]

`impl Shl<u8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: u8) -> u8`

[src]

`impl<'a> Shl<usize> for &'a u8`

[src]

`type Output = <u8 as Shl<usize>>::Output`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: usize) -> <u8 as Shl<usize>>::Output`

[src]

`impl Shl<usize> for u8`

[src]

`type Output = u8`

The resulting type after applying the `<<`

operator.

`fn shl(self, other: usize) -> u8`

[src]

`impl<'_> ShlAssign<&'_ i128> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &i128)`

[src]

`impl<'_> ShlAssign<&'_ i16> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &i16)`

[src]

`impl<'_> ShlAssign<&'_ i32> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &i32)`

[src]

`impl<'_> ShlAssign<&'_ i64> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &i64)`

[src]

`impl<'_> ShlAssign<&'_ i8> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &i8)`

[src]

`impl<'_> ShlAssign<&'_ isize> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &isize)`

[src]

`impl<'_> ShlAssign<&'_ u128> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &u128)`

[src]

`impl<'_> ShlAssign<&'_ u16> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &u16)`

[src]

`impl<'_> ShlAssign<&'_ u32> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &u32)`

[src]

`impl<'_> ShlAssign<&'_ u64> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &u64)`

[src]

`impl<'_> ShlAssign<&'_ u8> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &u8)`

[src]

`impl<'_> ShlAssign<&'_ usize> for u8`

1.22.0[src]

`fn shl_assign(&mut self, other: &usize)`

[src]

`impl ShlAssign<i128> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: i128)`

[src]

`impl ShlAssign<i16> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: i16)`

[src]

`impl ShlAssign<i32> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: i32)`

[src]

`impl ShlAssign<i64> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: i64)`

[src]

`impl ShlAssign<i8> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: i8)`

[src]

`impl ShlAssign<isize> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: isize)`

[src]

`impl ShlAssign<u128> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: u128)`

[src]

`impl ShlAssign<u16> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: u16)`

[src]

`impl ShlAssign<u32> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: u32)`

[src]

`impl ShlAssign<u64> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: u64)`

[src]

`impl ShlAssign<u8> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: u8)`

[src]

`impl ShlAssign<usize> for u8`

1.8.0[src]

`fn shl_assign(&mut self, other: usize)`

[src]

`impl<'_, '_> Shr<&'_ i128> for &'_ u8`

[src]

`type Output = <u8 as Shr<i128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i128) -> <u8 as Shr<i128>>::Output`

[src]

`impl<'_> Shr<&'_ i128> for u8`

[src]

`type Output = <u8 as Shr<i128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i128) -> <u8 as Shr<i128>>::Output`

[src]

`impl<'_, '_> Shr<&'_ i16> for &'_ u8`

[src]

`type Output = <u8 as Shr<i16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i16) -> <u8 as Shr<i16>>::Output`

[src]

`impl<'_> Shr<&'_ i16> for u8`

[src]

`type Output = <u8 as Shr<i16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i16) -> <u8 as Shr<i16>>::Output`

[src]

`impl<'_> Shr<&'_ i32> for u8`

[src]

`type Output = <u8 as Shr<i32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i32) -> <u8 as Shr<i32>>::Output`

[src]

`impl<'_, '_> Shr<&'_ i32> for &'_ u8`

[src]

`type Output = <u8 as Shr<i32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i32) -> <u8 as Shr<i32>>::Output`

[src]

`impl<'_, '_> Shr<&'_ i64> for &'_ u8`

[src]

`type Output = <u8 as Shr<i64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i64) -> <u8 as Shr<i64>>::Output`

[src]

`impl<'_> Shr<&'_ i64> for u8`

[src]

`type Output = <u8 as Shr<i64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i64) -> <u8 as Shr<i64>>::Output`

[src]

`impl<'_, '_> Shr<&'_ i8> for &'_ u8`

[src]

`type Output = <u8 as Shr<i8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i8) -> <u8 as Shr<i8>>::Output`

[src]

`impl<'_> Shr<&'_ i8> for u8`

[src]

`type Output = <u8 as Shr<i8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &i8) -> <u8 as Shr<i8>>::Output`

[src]

`impl<'_> Shr<&'_ isize> for u8`

[src]

`type Output = <u8 as Shr<isize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &isize) -> <u8 as Shr<isize>>::Output`

[src]

`impl<'_, '_> Shr<&'_ isize> for &'_ u8`

[src]

`type Output = <u8 as Shr<isize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &isize) -> <u8 as Shr<isize>>::Output`

[src]

`impl<'_> Shr<&'_ u128> for u8`

[src]

`type Output = <u8 as Shr<u128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u128) -> <u8 as Shr<u128>>::Output`

[src]

`impl<'_, '_> Shr<&'_ u128> for &'_ u8`

[src]

`type Output = <u8 as Shr<u128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u128) -> <u8 as Shr<u128>>::Output`

[src]

`impl<'_, '_> Shr<&'_ u16> for &'_ u8`

[src]

`type Output = <u8 as Shr<u16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u16) -> <u8 as Shr<u16>>::Output`

[src]

`impl<'_> Shr<&'_ u16> for u8`

[src]

`type Output = <u8 as Shr<u16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u16) -> <u8 as Shr<u16>>::Output`

[src]

`impl<'_, '_> Shr<&'_ u32> for &'_ u8`

[src]

`type Output = <u8 as Shr<u32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u32) -> <u8 as Shr<u32>>::Output`

[src]

`impl<'_> Shr<&'_ u32> for u8`

[src]

`type Output = <u8 as Shr<u32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u32) -> <u8 as Shr<u32>>::Output`

[src]

`impl<'_> Shr<&'_ u64> for u8`

[src]

`type Output = <u8 as Shr<u64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u64) -> <u8 as Shr<u64>>::Output`

[src]

`impl<'_, '_> Shr<&'_ u64> for &'_ u8`

[src]

`type Output = <u8 as Shr<u64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u64) -> <u8 as Shr<u64>>::Output`

[src]

`impl<'_> Shr<&'_ u8> for u8`

[src]

`type Output = <u8 as Shr<u8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u8) -> <u8 as Shr<u8>>::Output`

[src]

`impl<'_, '_> Shr<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as Shr<u8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &u8) -> <u8 as Shr<u8>>::Output`

[src]

`impl<'_> Shr<&'_ usize> for u8`

[src]

`type Output = <u8 as Shr<usize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &usize) -> <u8 as Shr<usize>>::Output`

[src]

`impl<'_, '_> Shr<&'_ usize> for &'_ u8`

[src]

`type Output = <u8 as Shr<usize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: &usize) -> <u8 as Shr<usize>>::Output`

[src]

`impl Shr<i128> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i128) -> u8`

[src]

`impl<'a> Shr<i128> for &'a u8`

[src]

`type Output = <u8 as Shr<i128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i128) -> <u8 as Shr<i128>>::Output`

[src]

`impl Shr<i16> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i16) -> u8`

[src]

`impl<'a> Shr<i16> for &'a u8`

[src]

`type Output = <u8 as Shr<i16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i16) -> <u8 as Shr<i16>>::Output`

[src]

`impl Shr<i32> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i32) -> u8`

[src]

`impl<'a> Shr<i32> for &'a u8`

[src]

`type Output = <u8 as Shr<i32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i32) -> <u8 as Shr<i32>>::Output`

[src]

`impl Shr<i64> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i64) -> u8`

[src]

`impl<'a> Shr<i64> for &'a u8`

[src]

`type Output = <u8 as Shr<i64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i64) -> <u8 as Shr<i64>>::Output`

[src]

`impl Shr<i8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i8) -> u8`

[src]

`impl<'a> Shr<i8> for &'a u8`

[src]

`type Output = <u8 as Shr<i8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: i8) -> <u8 as Shr<i8>>::Output`

[src]

`impl Shr<isize> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: isize) -> u8`

[src]

`impl<'a> Shr<isize> for &'a u8`

[src]

`type Output = <u8 as Shr<isize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: isize) -> <u8 as Shr<isize>>::Output`

[src]

`impl<'a> Shr<u128> for &'a u8`

[src]

`type Output = <u8 as Shr<u128>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u128) -> <u8 as Shr<u128>>::Output`

[src]

`impl Shr<u128> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u128) -> u8`

[src]

`impl<'a> Shr<u16> for &'a u8`

[src]

`type Output = <u8 as Shr<u16>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u16) -> <u8 as Shr<u16>>::Output`

[src]

`impl Shr<u16> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u16) -> u8`

[src]

`impl<'a> Shr<u32> for &'a u8`

[src]

`type Output = <u8 as Shr<u32>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u32) -> <u8 as Shr<u32>>::Output`

[src]

`impl Shr<u32> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u32) -> u8`

[src]

`impl<'a> Shr<u64> for &'a u8`

[src]

`type Output = <u8 as Shr<u64>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u64) -> <u8 as Shr<u64>>::Output`

[src]

`impl Shr<u64> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u64) -> u8`

[src]

`impl<'a> Shr<u8> for &'a u8`

[src]

`type Output = <u8 as Shr<u8>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u8) -> <u8 as Shr<u8>>::Output`

[src]

`impl Shr<u8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: u8) -> u8`

[src]

`impl Shr<usize> for u8`

[src]

`type Output = u8`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: usize) -> u8`

[src]

`impl<'a> Shr<usize> for &'a u8`

[src]

`type Output = <u8 as Shr<usize>>::Output`

The resulting type after applying the `>>`

operator.

`fn shr(self, other: usize) -> <u8 as Shr<usize>>::Output`

[src]

`impl<'_> ShrAssign<&'_ i128> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &i128)`

[src]

`impl<'_> ShrAssign<&'_ i16> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &i16)`

[src]

`impl<'_> ShrAssign<&'_ i32> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &i32)`

[src]

`impl<'_> ShrAssign<&'_ i64> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &i64)`

[src]

`impl<'_> ShrAssign<&'_ i8> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &i8)`

[src]

`impl<'_> ShrAssign<&'_ isize> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &isize)`

[src]

`impl<'_> ShrAssign<&'_ u128> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &u128)`

[src]

`impl<'_> ShrAssign<&'_ u16> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &u16)`

[src]

`impl<'_> ShrAssign<&'_ u32> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &u32)`

[src]

`impl<'_> ShrAssign<&'_ u64> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &u64)`

[src]

`impl<'_> ShrAssign<&'_ u8> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &u8)`

[src]

`impl<'_> ShrAssign<&'_ usize> for u8`

1.22.0[src]

`fn shr_assign(&mut self, other: &usize)`

[src]

`impl ShrAssign<i128> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: i128)`

[src]

`impl ShrAssign<i16> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: i16)`

[src]

`impl ShrAssign<i32> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: i32)`

[src]

`impl ShrAssign<i64> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: i64)`

[src]

`impl ShrAssign<i8> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: i8)`

[src]

`impl ShrAssign<isize> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: isize)`

[src]

`impl ShrAssign<u128> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: u128)`

[src]

`impl ShrAssign<u16> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: u16)`

[src]

`impl ShrAssign<u32> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: u32)`

[src]

`impl ShrAssign<u64> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: u64)`

[src]

`impl ShrAssign<u8> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: u8)`

[src]

`impl ShrAssign<usize> for u8`

1.8.0[src]

`fn shr_assign(&mut self, other: usize)`

[src]

`impl Step for u8`

[src]

`unsafe fn forward_unchecked(start: u8, n: usize) -> u8`

[src]

`unsafe fn backward_unchecked(start: u8, n: usize) -> u8`

[src]

`fn forward(start: u8, n: usize) -> u8`

[src]

`fn backward(start: u8, n: usize) -> u8`

[src]

`fn steps_between(start: &u8, end: &u8) -> Option<usize>`

[src]

`fn forward_checked(start: u8, n: usize) -> Option<u8>`

[src]

`fn backward_checked(start: u8, n: usize) -> Option<u8>`

[src]

`impl<'_, '_> Sub<&'_ u8> for &'_ u8`

[src]

`type Output = <u8 as Sub<u8>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &u8) -> <u8 as Sub<u8>>::Output`

[src]

`impl<'_> Sub<&'_ u8> for u8`

[src]

`type Output = <u8 as Sub<u8>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: &u8) -> <u8 as Sub<u8>>::Output`

[src]

`impl<'a> Sub<u8> for &'a u8`

[src]

`type Output = <u8 as Sub<u8>>::Output`

The resulting type after applying the `-`

operator.

`fn sub(self, other: u8) -> <u8 as Sub<u8>>::Output`

[src]

`impl Sub<u8> for u8`

[src]

`type Output = u8`

The resulting type after applying the `-`

operator.

`fn sub(self, other: u8) -> u8`

[src]

`impl<'_> SubAssign<&'_ u8> for u8`

1.22.0[src]

`fn sub_assign(&mut self, other: &u8)`

[src]

`impl SubAssign<u8> for u8`

1.8.0[src]

`fn sub_assign(&mut self, other: u8)`

[src]

`impl<'a> Sum<&'a u8> for u8`

1.12.0[src]

`impl Sum<u8> for u8`

1.12.0[src]

`impl TryFrom<i128> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: i128) -> Result<u8, <u8 as TryFrom<i128>>::Error>`

[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

`impl TryFrom<i16> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: i16) -> Result<u8, <u8 as TryFrom<i16>>::Error>`

[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

`impl TryFrom<i32> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: i32) -> Result<u8, <u8 as TryFrom<i32>>::Error>`

[src]

Try to create the target number type from a source number type. This returns an error if the source value is outside of the range of the target type.

`impl TryFrom<i64> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: i64) -> Result<u8, <u8 as TryFrom<i64>>::Error>`

[src]

`impl TryFrom<i8> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: i8) -> Result<u8, <u8 as TryFrom<i8>>::Error>`

[src]

`impl TryFrom<isize> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: isize) -> Result<u8, <u8 as TryFrom<isize>>::Error>`

[src]

`impl TryFrom<u128> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: u128) -> Result<u8, <u8 as TryFrom<u128>>::Error>`

[src]

`impl TryFrom<u16> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: u16) -> Result<u8, <u8 as TryFrom<u16>>::Error>`

[src]

`impl TryFrom<u32> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: u32) -> Result<u8, <u8 as TryFrom<u32>>::Error>`

[src]

`impl TryFrom<u64> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: u64) -> Result<u8, <u8 as TryFrom<u64>>::Error>`

[src]

`impl TryFrom<usize> for u8`

1.34.0[src]

`type Error = TryFromIntError`

The type returned in the event of a conversion error.

`fn try_from(u: usize) -> Result<u8, <u8 as TryFrom<usize>>::Error>`

[src]

`impl UpperExp for u8`

1.42.0[src]

`impl UpperHex for u8`

[src]

## Auto Trait Implementations

## Blanket Implementations

`impl<T> Any for T where`

T: 'static + ?Sized,

[src]

T: 'static + ?Sized,

`impl<T> Borrow<T> for T where`

T: ?Sized,

[src]

T: ?Sized,

`fn borrow(&self) -> &Tⓘ`### Notable traits for &'_ mut F

`impl<'_, F> Future for &'_ mut F where`

F: Unpin + Future + ?Sized, type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where

I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized, '_> Read for &'_ mut Rimpl<W: Write + ?Sized, '_> Write for &'_ mut W

[src]

### Notable traits for &'_ mut F

`impl<'_, F> Future for &'_ mut F where`

F: Unpin + Future + ?Sized, type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where

I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized, '_> Read for &'_ mut Rimpl<W: Write + ?Sized, '_> Write for &'_ mut W

`impl<T> BorrowMut<T> for T where`

T: ?Sized,

[src]

T: ?Sized,

`fn borrow_mut(&mut self) -> &mut Tⓘ`### Notable traits for &'_ mut F

`impl<'_, F> Future for &'_ mut F where`

F: Unpin + Future + ?Sized, type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where

I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized, '_> Read for &'_ mut Rimpl<W: Write + ?Sized, '_> Write for &'_ mut W

[src]

### Notable traits for &'_ mut F

`impl<'_, F> Future for &'_ mut F where`

F: Unpin + Future + ?Sized, type Output = <F as Future>::Output;impl<'_, I> Iterator for &'_ mut I where

I: Iterator + ?Sized, type Item = <I as Iterator>::Item;impl<R: Read + ?Sized, '_> Read for &'_ mut Rimpl<W: Write + ?Sized, '_> Write for &'_ mut W

`impl<T> From<T> for T`

[src]

`impl<T, U> Into<U> for T where`

U: From<T>,

[src]

U: From<T>,

`impl<T> ToOwned for T where`

T: Clone,

[src]

T: Clone,

`type Owned = T`

The resulting type after obtaining ownership.

`fn to_owned(&self) -> T`

[src]

`fn clone_into(&self, target: &mut T)`

[src]

`impl<T> ToString for T where`

T: Display + ?Sized,

[src]

T: Display + ?Sized,

`impl<T, U> TryFrom<U> for T where`

U: Into<T>,

[src]

U: Into<T>,

`type Error = Infallible`

The type returned in the event of a conversion error.

`fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>`

[src]

`impl<T, U> TryInto<U> for T where`

U: TryFrom<T>,

[src]

U: TryFrom<T>,