rustc_hir_typeck/method/
probe.rs

1use std::cell::{Cell, RefCell};
2use std::cmp::max;
3use std::ops::Deref;
4
5use rustc_data_structures::fx::FxHashSet;
6use rustc_data_structures::sso::SsoHashSet;
7use rustc_errors::Applicability;
8use rustc_hir as hir;
9use rustc_hir::HirId;
10use rustc_hir::def::DefKind;
11use rustc_hir_analysis::autoderef::{self, Autoderef};
12use rustc_infer::infer::canonical::{Canonical, OriginalQueryValues, QueryResponse};
13use rustc_infer::infer::{self, DefineOpaqueTypes, InferOk, TyCtxtInferExt};
14use rustc_infer::traits::ObligationCauseCode;
15use rustc_middle::middle::stability;
16use rustc_middle::query::Providers;
17use rustc_middle::ty::fast_reject::{TreatParams, simplify_type};
18use rustc_middle::ty::{
19    self, AssocItem, AssocItemContainer, GenericArgs, GenericArgsRef, GenericParamDefKind,
20    ParamEnvAnd, Ty, TyCtxt, TypeVisitableExt, Upcast,
21};
22use rustc_middle::{bug, span_bug};
23use rustc_session::lint;
24use rustc_span::def_id::{DefId, LocalDefId};
25use rustc_span::edit_distance::{
26    edit_distance_with_substrings, find_best_match_for_name_with_substrings,
27};
28use rustc_span::{DUMMY_SP, Ident, Span, Symbol, sym};
29use rustc_trait_selection::error_reporting::infer::need_type_info::TypeAnnotationNeeded;
30use rustc_trait_selection::infer::InferCtxtExt as _;
31use rustc_trait_selection::traits::query::CanonicalTyGoal;
32use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
33use rustc_trait_selection::traits::query::method_autoderef::{
34    CandidateStep, MethodAutoderefBadTy, MethodAutoderefStepsResult,
35};
36use rustc_trait_selection::traits::{self, ObligationCause, ObligationCtxt};
37use rustc_type_ir::elaborate::supertrait_def_ids;
38use smallvec::{SmallVec, smallvec};
39use tracing::{debug, instrument};
40
41use self::CandidateKind::*;
42pub(crate) use self::PickKind::*;
43use super::{CandidateSource, MethodError, NoMatchData, suggest};
44use crate::FnCtxt;
45
46/// Boolean flag used to indicate if this search is for a suggestion
47/// or not. If true, we can allow ambiguity and so forth.
48#[derive(Clone, Copy, Debug)]
49pub(crate) struct IsSuggestion(pub bool);
50
51pub(crate) struct ProbeContext<'a, 'tcx> {
52    fcx: &'a FnCtxt<'a, 'tcx>,
53    span: Span,
54    mode: Mode,
55    method_name: Option<Ident>,
56    return_type: Option<Ty<'tcx>>,
57
58    /// This is the OriginalQueryValues for the steps queries
59    /// that are answered in steps.
60    orig_steps_var_values: &'a OriginalQueryValues<'tcx>,
61    steps: &'tcx [CandidateStep<'tcx>],
62
63    inherent_candidates: Vec<Candidate<'tcx>>,
64    extension_candidates: Vec<Candidate<'tcx>>,
65    impl_dups: FxHashSet<DefId>,
66
67    /// When probing for names, include names that are close to the
68    /// requested name (by edit distance)
69    allow_similar_names: bool,
70
71    /// List of potential private candidates. Will be trimmed to ones that
72    /// actually apply and then the result inserted into `private_candidate`
73    private_candidates: Vec<Candidate<'tcx>>,
74
75    /// Some(candidate) if there is a private candidate
76    private_candidate: Cell<Option<(DefKind, DefId)>>,
77
78    /// Collects near misses when the candidate functions are missing a `self` keyword and is only
79    /// used for error reporting
80    static_candidates: RefCell<Vec<CandidateSource>>,
81
82    scope_expr_id: HirId,
83
84    /// Is this probe being done for a diagnostic? This will skip some error reporting
85    /// machinery, since we don't particularly care about, for example, similarly named
86    /// candidates if we're *reporting* similarly named candidates.
87    is_suggestion: IsSuggestion,
88}
89
90impl<'a, 'tcx> Deref for ProbeContext<'a, 'tcx> {
91    type Target = FnCtxt<'a, 'tcx>;
92    fn deref(&self) -> &Self::Target {
93        self.fcx
94    }
95}
96
97#[derive(Debug, Clone)]
98pub(crate) struct Candidate<'tcx> {
99    pub(crate) item: ty::AssocItem,
100    pub(crate) kind: CandidateKind<'tcx>,
101    pub(crate) import_ids: SmallVec<[LocalDefId; 1]>,
102}
103
104#[derive(Debug, Clone)]
105pub(crate) enum CandidateKind<'tcx> {
106    InherentImplCandidate { impl_def_id: DefId, receiver_steps: usize },
107    ObjectCandidate(ty::PolyTraitRef<'tcx>),
108    TraitCandidate(ty::PolyTraitRef<'tcx>),
109    WhereClauseCandidate(ty::PolyTraitRef<'tcx>),
110}
111
112#[derive(Debug, PartialEq, Eq, Copy, Clone)]
113enum ProbeResult {
114    NoMatch,
115    BadReturnType,
116    Match,
117}
118
119/// When adjusting a receiver we often want to do one of
120///
121/// - Add a `&` (or `&mut`), converting the receiver from `T` to `&T` (or `&mut T`)
122/// - If the receiver has type `*mut T`, convert it to `*const T`
123///
124/// This type tells us which one to do.
125///
126/// Note that in principle we could do both at the same time. For example, when the receiver has
127/// type `T`, we could autoref it to `&T`, then convert to `*const T`. Or, when it has type `*mut
128/// T`, we could convert it to `*const T`, then autoref to `&*const T`. However, currently we do
129/// (at most) one of these. Either the receiver has type `T` and we convert it to `&T` (or with
130/// `mut`), or it has type `*mut T` and we convert it to `*const T`.
131#[derive(Debug, PartialEq, Copy, Clone)]
132pub(crate) enum AutorefOrPtrAdjustment {
133    /// Receiver has type `T`, add `&` or `&mut` (if `T` is `mut`), and maybe also "unsize" it.
134    /// Unsizing is used to convert a `[T; N]` to `[T]`, which only makes sense when autorefing.
135    Autoref {
136        mutbl: hir::Mutability,
137
138        /// Indicates that the source expression should be "unsized" to a target type.
139        /// This is special-cased for just arrays unsizing to slices.
140        unsize: bool,
141    },
142    /// Receiver has type `*mut T`, convert to `*const T`
143    ToConstPtr,
144
145    /// Reborrow a `Pin<&mut T>` or `Pin<&T>`.
146    ReborrowPin(hir::Mutability),
147}
148
149impl AutorefOrPtrAdjustment {
150    fn get_unsize(&self) -> bool {
151        match self {
152            AutorefOrPtrAdjustment::Autoref { mutbl: _, unsize } => *unsize,
153            AutorefOrPtrAdjustment::ToConstPtr => false,
154            AutorefOrPtrAdjustment::ReborrowPin(_) => false,
155        }
156    }
157}
158
159/// Extra information required only for error reporting.
160#[derive(Debug)]
161struct PickDiagHints<'a, 'tcx> {
162    /// Unstable candidates alongside the stable ones.
163    unstable_candidates: Option<Vec<(Candidate<'tcx>, Symbol)>>,
164
165    /// Collects near misses when trait bounds for type parameters are unsatisfied and is only used
166    /// for error reporting
167    unsatisfied_predicates: &'a mut Vec<(
168        ty::Predicate<'tcx>,
169        Option<ty::Predicate<'tcx>>,
170        Option<ObligationCause<'tcx>>,
171    )>,
172}
173
174/// Criteria to apply when searching for a given Pick. This is used during
175/// the search for potentially shadowed methods to ensure we don't search
176/// more candidates than strictly necessary.
177#[derive(Debug)]
178struct PickConstraintsForShadowed {
179    autoderefs: usize,
180    receiver_steps: Option<usize>,
181    def_id: DefId,
182}
183
184impl PickConstraintsForShadowed {
185    fn may_shadow_based_on_autoderefs(&self, autoderefs: usize) -> bool {
186        autoderefs == self.autoderefs
187    }
188
189    fn candidate_may_shadow(&self, candidate: &Candidate<'_>) -> bool {
190        // An item never shadows itself
191        candidate.item.def_id != self.def_id
192            // and we're only concerned about inherent impls doing the shadowing.
193            // Shadowing can only occur if the shadowed is further along
194            // the Receiver dereferencing chain than the shadowed.
195            && match candidate.kind {
196                CandidateKind::InherentImplCandidate { receiver_steps, .. } => match self.receiver_steps {
197                    Some(shadowed_receiver_steps) => receiver_steps > shadowed_receiver_steps,
198                    _ => false
199                },
200                _ => false
201            }
202    }
203}
204
205#[derive(Debug, Clone)]
206pub(crate) struct Pick<'tcx> {
207    pub item: ty::AssocItem,
208    pub kind: PickKind<'tcx>,
209    pub import_ids: SmallVec<[LocalDefId; 1]>,
210
211    /// Indicates that the source expression should be autoderef'd N times
212    /// ```ignore (not-rust)
213    /// A = expr | *expr | **expr | ...
214    /// ```
215    pub autoderefs: usize,
216
217    /// Indicates that we want to add an autoref (and maybe also unsize it), or if the receiver is
218    /// `*mut T`, convert it to `*const T`.
219    pub autoref_or_ptr_adjustment: Option<AutorefOrPtrAdjustment>,
220    pub self_ty: Ty<'tcx>,
221
222    /// Unstable candidates alongside the stable ones.
223    unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
224
225    /// Number of jumps along the `Receiver::Target` chain we followed
226    /// to identify this method. Used only for deshadowing errors.
227    /// Only applies for inherent impls.
228    pub receiver_steps: Option<usize>,
229
230    /// Candidates that were shadowed by supertraits.
231    pub shadowed_candidates: Vec<ty::AssocItem>,
232}
233
234#[derive(Clone, Debug, PartialEq, Eq)]
235pub(crate) enum PickKind<'tcx> {
236    InherentImplPick,
237    ObjectPick,
238    TraitPick,
239    WhereClausePick(
240        // Trait
241        ty::PolyTraitRef<'tcx>,
242    ),
243}
244
245pub(crate) type PickResult<'tcx> = Result<Pick<'tcx>, MethodError<'tcx>>;
246
247#[derive(PartialEq, Eq, Copy, Clone, Debug)]
248pub(crate) enum Mode {
249    // An expression of the form `receiver.method_name(...)`.
250    // Autoderefs are performed on `receiver`, lookup is done based on the
251    // `self` argument of the method, and static methods aren't considered.
252    MethodCall,
253    // An expression of the form `Type::item` or `<T>::item`.
254    // No autoderefs are performed, lookup is done based on the type each
255    // implementation is for, and static methods are included.
256    Path,
257}
258
259#[derive(PartialEq, Eq, Copy, Clone, Debug)]
260pub(crate) enum ProbeScope {
261    // Single candidate coming from pre-resolved delegation method.
262    Single(DefId),
263
264    // Assemble candidates coming only from traits in scope.
265    TraitsInScope,
266
267    // Assemble candidates coming from all traits.
268    AllTraits,
269}
270
271impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
272    /// This is used to offer suggestions to users. It returns methods
273    /// that could have been called which have the desired return
274    /// type. Some effort is made to rule out methods that, if called,
275    /// would result in an error (basically, the same criteria we
276    /// would use to decide if a method is a plausible fit for
277    /// ambiguity purposes).
278    #[instrument(level = "debug", skip(self, candidate_filter))]
279    pub(crate) fn probe_for_return_type_for_diagnostic(
280        &self,
281        span: Span,
282        mode: Mode,
283        return_type: Ty<'tcx>,
284        self_ty: Ty<'tcx>,
285        scope_expr_id: HirId,
286        candidate_filter: impl Fn(&ty::AssocItem) -> bool,
287    ) -> Vec<ty::AssocItem> {
288        let method_names = self
289            .probe_op(
290                span,
291                mode,
292                None,
293                Some(return_type),
294                IsSuggestion(true),
295                self_ty,
296                scope_expr_id,
297                ProbeScope::AllTraits,
298                |probe_cx| Ok(probe_cx.candidate_method_names(candidate_filter)),
299            )
300            .unwrap_or_default();
301        method_names
302            .iter()
303            .flat_map(|&method_name| {
304                self.probe_op(
305                    span,
306                    mode,
307                    Some(method_name),
308                    Some(return_type),
309                    IsSuggestion(true),
310                    self_ty,
311                    scope_expr_id,
312                    ProbeScope::AllTraits,
313                    |probe_cx| probe_cx.pick(),
314                )
315                .ok()
316                .map(|pick| pick.item)
317            })
318            .collect()
319    }
320
321    #[instrument(level = "debug", skip(self))]
322    pub(crate) fn probe_for_name(
323        &self,
324        mode: Mode,
325        item_name: Ident,
326        return_type: Option<Ty<'tcx>>,
327        is_suggestion: IsSuggestion,
328        self_ty: Ty<'tcx>,
329        scope_expr_id: HirId,
330        scope: ProbeScope,
331    ) -> PickResult<'tcx> {
332        self.probe_op(
333            item_name.span,
334            mode,
335            Some(item_name),
336            return_type,
337            is_suggestion,
338            self_ty,
339            scope_expr_id,
340            scope,
341            |probe_cx| probe_cx.pick(),
342        )
343    }
344
345    #[instrument(level = "debug", skip(self))]
346    pub(crate) fn probe_for_name_many(
347        &self,
348        mode: Mode,
349        item_name: Ident,
350        return_type: Option<Ty<'tcx>>,
351        is_suggestion: IsSuggestion,
352        self_ty: Ty<'tcx>,
353        scope_expr_id: HirId,
354        scope: ProbeScope,
355    ) -> Result<Vec<Candidate<'tcx>>, MethodError<'tcx>> {
356        self.probe_op(
357            item_name.span,
358            mode,
359            Some(item_name),
360            return_type,
361            is_suggestion,
362            self_ty,
363            scope_expr_id,
364            scope,
365            |probe_cx| {
366                Ok(probe_cx
367                    .inherent_candidates
368                    .into_iter()
369                    .chain(probe_cx.extension_candidates)
370                    .collect())
371            },
372        )
373    }
374
375    pub(crate) fn probe_op<OP, R>(
376        &'a self,
377        span: Span,
378        mode: Mode,
379        method_name: Option<Ident>,
380        return_type: Option<Ty<'tcx>>,
381        is_suggestion: IsSuggestion,
382        self_ty: Ty<'tcx>,
383        scope_expr_id: HirId,
384        scope: ProbeScope,
385        op: OP,
386    ) -> Result<R, MethodError<'tcx>>
387    where
388        OP: FnOnce(ProbeContext<'_, 'tcx>) -> Result<R, MethodError<'tcx>>,
389    {
390        let mut orig_values = OriginalQueryValues::default();
391        let query_input = self.canonicalize_query(
392            ParamEnvAnd { param_env: self.param_env, value: self_ty },
393            &mut orig_values,
394        );
395
396        let steps = match mode {
397            Mode::MethodCall => self.tcx.method_autoderef_steps(query_input),
398            Mode::Path => self.probe(|_| {
399                // Mode::Path - the deref steps is "trivial". This turns
400                // our CanonicalQuery into a "trivial" QueryResponse. This
401                // is a bit inefficient, but I don't think that writing
402                // special handling for this "trivial case" is a good idea.
403
404                let infcx = &self.infcx;
405                let (ParamEnvAnd { param_env: _, value: self_ty }, canonical_inference_vars) =
406                    infcx.instantiate_canonical(span, &query_input.canonical);
407                debug!(?self_ty, ?query_input, "probe_op: Mode::Path");
408                MethodAutoderefStepsResult {
409                    steps: infcx.tcx.arena.alloc_from_iter([CandidateStep {
410                        self_ty: self.make_query_response_ignoring_pending_obligations(
411                            canonical_inference_vars,
412                            self_ty,
413                        ),
414                        autoderefs: 0,
415                        from_unsafe_deref: false,
416                        unsize: false,
417                        reachable_via_deref: true,
418                    }]),
419                    opt_bad_ty: None,
420                    reached_recursion_limit: false,
421                }
422            }),
423        };
424
425        // If our autoderef loop had reached the recursion limit,
426        // report an overflow error, but continue going on with
427        // the truncated autoderef list.
428        if steps.reached_recursion_limit && !is_suggestion.0 {
429            self.probe(|_| {
430                let ty = &steps
431                    .steps
432                    .last()
433                    .unwrap_or_else(|| span_bug!(span, "reached the recursion limit in 0 steps?"))
434                    .self_ty;
435                let ty = self
436                    .probe_instantiate_query_response(span, &orig_values, ty)
437                    .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
438                autoderef::report_autoderef_recursion_limit_error(self.tcx, span, ty.value);
439            });
440        }
441
442        // If we encountered an `_` type or an error type during autoderef, this is
443        // ambiguous.
444        if let Some(bad_ty) = &steps.opt_bad_ty {
445            if is_suggestion.0 {
446                // Ambiguity was encountered during a suggestion. There's really
447                // not much use in suggesting methods in this case.
448                return Err(MethodError::NoMatch(NoMatchData {
449                    static_candidates: Vec::new(),
450                    unsatisfied_predicates: Vec::new(),
451                    out_of_scope_traits: Vec::new(),
452                    similar_candidate: None,
453                    mode,
454                }));
455            } else if bad_ty.reached_raw_pointer
456                && !self.tcx.features().arbitrary_self_types_pointers()
457                && !self.tcx.sess.at_least_rust_2018()
458            {
459                // this case used to be allowed by the compiler,
460                // so we do a future-compat lint here for the 2015 edition
461                // (see https://github.com/rust-lang/rust/issues/46906)
462                self.tcx.node_span_lint(
463                    lint::builtin::TYVAR_BEHIND_RAW_POINTER,
464                    scope_expr_id,
465                    span,
466                    |lint| {
467                        lint.primary_message("type annotations needed");
468                    },
469                );
470            } else {
471                // Ended up encountering a type variable when doing autoderef,
472                // but it may not be a type variable after processing obligations
473                // in our local `FnCtxt`, so don't call `structurally_resolve_type`.
474                let ty = &bad_ty.ty;
475                let ty = self
476                    .probe_instantiate_query_response(span, &orig_values, ty)
477                    .unwrap_or_else(|_| span_bug!(span, "instantiating {:?} failed?", ty));
478                let ty = self.resolve_vars_if_possible(ty.value);
479                let guar = match *ty.kind() {
480                    ty::Infer(ty::TyVar(_)) => {
481                        let raw_ptr_call = bad_ty.reached_raw_pointer
482                            && !self.tcx.features().arbitrary_self_types();
483                        let mut err = self.err_ctxt().emit_inference_failure_err(
484                            self.body_id,
485                            span,
486                            ty.into(),
487                            TypeAnnotationNeeded::E0282,
488                            !raw_ptr_call,
489                        );
490                        if raw_ptr_call {
491                            err.span_label(span, "cannot call a method on a raw pointer with an unknown pointee type");
492                        }
493                        err.emit()
494                    }
495                    ty::Error(guar) => guar,
496                    _ => bug!("unexpected bad final type in method autoderef"),
497                };
498                self.demand_eqtype(span, ty, Ty::new_error(self.tcx, guar));
499                return Err(MethodError::ErrorReported(guar));
500            }
501        }
502
503        debug!("ProbeContext: steps for self_ty={:?} are {:?}", self_ty, steps);
504
505        // this creates one big transaction so that all type variables etc
506        // that we create during the probe process are removed later
507        self.probe(|_| {
508            let mut probe_cx = ProbeContext::new(
509                self,
510                span,
511                mode,
512                method_name,
513                return_type,
514                &orig_values,
515                steps.steps,
516                scope_expr_id,
517                is_suggestion,
518            );
519
520            match scope {
521                ProbeScope::TraitsInScope => {
522                    probe_cx.assemble_inherent_candidates();
523                    probe_cx.assemble_extension_candidates_for_traits_in_scope();
524                }
525                ProbeScope::AllTraits => {
526                    probe_cx.assemble_inherent_candidates();
527                    probe_cx.assemble_extension_candidates_for_all_traits();
528                }
529                ProbeScope::Single(def_id) => {
530                    let item = self.tcx.associated_item(def_id);
531                    // FIXME(fn_delegation): Delegation to inherent methods is not yet supported.
532                    assert_eq!(item.container, AssocItemContainer::Trait);
533
534                    let trait_def_id = self.tcx.parent(def_id);
535                    let trait_span = self.tcx.def_span(trait_def_id);
536
537                    let trait_args = self.fresh_args_for_item(trait_span, trait_def_id);
538                    let trait_ref = ty::TraitRef::new_from_args(self.tcx, trait_def_id, trait_args);
539
540                    probe_cx.push_candidate(
541                        Candidate {
542                            item,
543                            kind: CandidateKind::TraitCandidate(ty::Binder::dummy(trait_ref)),
544                            import_ids: smallvec![],
545                        },
546                        false,
547                    );
548                }
549            };
550            op(probe_cx)
551        })
552    }
553}
554
555pub(crate) fn provide(providers: &mut Providers) {
556    providers.method_autoderef_steps = method_autoderef_steps;
557}
558
559fn method_autoderef_steps<'tcx>(
560    tcx: TyCtxt<'tcx>,
561    goal: CanonicalTyGoal<'tcx>,
562) -> MethodAutoderefStepsResult<'tcx> {
563    debug!("method_autoderef_steps({:?})", goal);
564
565    let (ref infcx, goal, inference_vars) = tcx.infer_ctxt().build_with_canonical(DUMMY_SP, &goal);
566    let ParamEnvAnd { param_env, value: self_ty } = goal;
567
568    // If arbitrary self types is not enabled, we follow the chain of
569    // `Deref<Target=T>`. If arbitrary self types is enabled, we instead
570    // follow the chain of `Receiver<Target=T>`, but we also record whether
571    // such types are reachable by following the (potentially shorter)
572    // chain of `Deref<Target=T>`. We will use the first list when finding
573    // potentially relevant function implementations (e.g. relevant impl blocks)
574    // but the second list when determining types that the receiver may be
575    // converted to, in order to find out which of those methods might actually
576    // be callable.
577    let mut autoderef_via_deref =
578        Autoderef::new(infcx, param_env, hir::def_id::CRATE_DEF_ID, DUMMY_SP, self_ty)
579            .include_raw_pointers()
580            .silence_errors();
581
582    let mut reached_raw_pointer = false;
583    let arbitrary_self_types_enabled =
584        tcx.features().arbitrary_self_types() || tcx.features().arbitrary_self_types_pointers();
585    let (mut steps, reached_recursion_limit): (Vec<_>, bool) = if arbitrary_self_types_enabled {
586        let reachable_via_deref =
587            autoderef_via_deref.by_ref().map(|_| true).chain(std::iter::repeat(false));
588
589        let mut autoderef_via_receiver =
590            Autoderef::new(infcx, param_env, hir::def_id::CRATE_DEF_ID, DUMMY_SP, self_ty)
591                .include_raw_pointers()
592                .use_receiver_trait()
593                .silence_errors();
594        let steps = autoderef_via_receiver
595            .by_ref()
596            .zip(reachable_via_deref)
597            .map(|((ty, d), reachable_via_deref)| {
598                let step = CandidateStep {
599                    self_ty: infcx
600                        .make_query_response_ignoring_pending_obligations(inference_vars, ty),
601                    autoderefs: d,
602                    from_unsafe_deref: reached_raw_pointer,
603                    unsize: false,
604                    reachable_via_deref,
605                };
606                if ty.is_raw_ptr() {
607                    // all the subsequent steps will be from_unsafe_deref
608                    reached_raw_pointer = true;
609                }
610                step
611            })
612            .collect();
613        (steps, autoderef_via_receiver.reached_recursion_limit())
614    } else {
615        let steps = autoderef_via_deref
616            .by_ref()
617            .map(|(ty, d)| {
618                let step = CandidateStep {
619                    self_ty: infcx
620                        .make_query_response_ignoring_pending_obligations(inference_vars, ty),
621                    autoderefs: d,
622                    from_unsafe_deref: reached_raw_pointer,
623                    unsize: false,
624                    reachable_via_deref: true,
625                };
626                if ty.is_raw_ptr() {
627                    // all the subsequent steps will be from_unsafe_deref
628                    reached_raw_pointer = true;
629                }
630                step
631            })
632            .collect();
633        (steps, autoderef_via_deref.reached_recursion_limit())
634    };
635    let final_ty = autoderef_via_deref.final_ty(true);
636    let opt_bad_ty = match final_ty.kind() {
637        ty::Infer(ty::TyVar(_)) | ty::Error(_) => Some(MethodAutoderefBadTy {
638            reached_raw_pointer,
639            ty: infcx.make_query_response_ignoring_pending_obligations(inference_vars, final_ty),
640        }),
641        ty::Array(elem_ty, _) => {
642            let autoderefs = steps.iter().filter(|s| s.reachable_via_deref).count() - 1;
643            steps.push(CandidateStep {
644                self_ty: infcx.make_query_response_ignoring_pending_obligations(
645                    inference_vars,
646                    Ty::new_slice(infcx.tcx, *elem_ty),
647                ),
648                autoderefs,
649                // this could be from an unsafe deref if we had
650                // a *mut/const [T; N]
651                from_unsafe_deref: reached_raw_pointer,
652                unsize: true,
653                reachable_via_deref: true, // this is always the final type from
654                                           // autoderef_via_deref
655            });
656
657            None
658        }
659        _ => None,
660    };
661
662    debug!("method_autoderef_steps: steps={:?} opt_bad_ty={:?}", steps, opt_bad_ty);
663
664    MethodAutoderefStepsResult {
665        steps: tcx.arena.alloc_from_iter(steps),
666        opt_bad_ty: opt_bad_ty.map(|ty| &*tcx.arena.alloc(ty)),
667        reached_recursion_limit,
668    }
669}
670
671impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
672    fn new(
673        fcx: &'a FnCtxt<'a, 'tcx>,
674        span: Span,
675        mode: Mode,
676        method_name: Option<Ident>,
677        return_type: Option<Ty<'tcx>>,
678        orig_steps_var_values: &'a OriginalQueryValues<'tcx>,
679        steps: &'tcx [CandidateStep<'tcx>],
680        scope_expr_id: HirId,
681        is_suggestion: IsSuggestion,
682    ) -> ProbeContext<'a, 'tcx> {
683        ProbeContext {
684            fcx,
685            span,
686            mode,
687            method_name,
688            return_type,
689            inherent_candidates: Vec::new(),
690            extension_candidates: Vec::new(),
691            impl_dups: FxHashSet::default(),
692            orig_steps_var_values,
693            steps,
694            allow_similar_names: false,
695            private_candidates: Vec::new(),
696            private_candidate: Cell::new(None),
697            static_candidates: RefCell::new(Vec::new()),
698            scope_expr_id,
699            is_suggestion,
700        }
701    }
702
703    fn reset(&mut self) {
704        self.inherent_candidates.clear();
705        self.extension_candidates.clear();
706        self.impl_dups.clear();
707        self.private_candidates.clear();
708        self.private_candidate.set(None);
709        self.static_candidates.borrow_mut().clear();
710    }
711
712    /// When we're looking up a method by path (UFCS), we relate the receiver
713    /// types invariantly. When we are looking up a method by the `.` operator,
714    /// we relate them covariantly.
715    fn variance(&self) -> ty::Variance {
716        match self.mode {
717            Mode::MethodCall => ty::Covariant,
718            Mode::Path => ty::Invariant,
719        }
720    }
721
722    ///////////////////////////////////////////////////////////////////////////
723    // CANDIDATE ASSEMBLY
724
725    fn push_candidate(&mut self, candidate: Candidate<'tcx>, is_inherent: bool) {
726        let is_accessible = if let Some(name) = self.method_name {
727            let item = candidate.item;
728            let hir_id = self.tcx.local_def_id_to_hir_id(self.body_id);
729            let def_scope =
730                self.tcx.adjust_ident_and_get_scope(name, item.container_id(self.tcx), hir_id).1;
731            item.visibility(self.tcx).is_accessible_from(def_scope, self.tcx)
732        } else {
733            true
734        };
735        if is_accessible {
736            if is_inherent {
737                self.inherent_candidates.push(candidate);
738            } else {
739                self.extension_candidates.push(candidate);
740            }
741        } else {
742            self.private_candidates.push(candidate);
743        }
744    }
745
746    fn assemble_inherent_candidates(&mut self) {
747        for step in self.steps.iter() {
748            self.assemble_probe(&step.self_ty, step.autoderefs);
749        }
750    }
751
752    #[instrument(level = "debug", skip(self))]
753    fn assemble_probe(
754        &mut self,
755        self_ty: &Canonical<'tcx, QueryResponse<'tcx, Ty<'tcx>>>,
756        receiver_steps: usize,
757    ) {
758        let raw_self_ty = self_ty.value.value;
759        match *raw_self_ty.kind() {
760            ty::Dynamic(data, ..) if let Some(p) = data.principal() => {
761                // Subtle: we can't use `instantiate_query_response` here: using it will
762                // commit to all of the type equalities assumed by inference going through
763                // autoderef (see the `method-probe-no-guessing` test).
764                //
765                // However, in this code, it is OK if we end up with an object type that is
766                // "more general" than the object type that we are evaluating. For *every*
767                // object type `MY_OBJECT`, a function call that goes through a trait-ref
768                // of the form `<MY_OBJECT as SuperTraitOf(MY_OBJECT)>::func` is a valid
769                // `ObjectCandidate`, and it should be discoverable "exactly" through one
770                // of the iterations in the autoderef loop, so there is no problem with it
771                // being discoverable in another one of these iterations.
772                //
773                // Using `instantiate_canonical` on our
774                // `Canonical<QueryResponse<Ty<'tcx>>>` and then *throwing away* the
775                // `CanonicalVarValues` will exactly give us such a generalization - it
776                // will still match the original object type, but it won't pollute our
777                // type variables in any form, so just do that!
778                let (QueryResponse { value: generalized_self_ty, .. }, _ignored_var_values) =
779                    self.fcx.instantiate_canonical(self.span, self_ty);
780
781                self.assemble_inherent_candidates_from_object(generalized_self_ty);
782                self.assemble_inherent_impl_candidates_for_type(p.def_id(), receiver_steps);
783                if self.tcx.has_attr(p.def_id(), sym::rustc_has_incoherent_inherent_impls) {
784                    self.assemble_inherent_candidates_for_incoherent_ty(
785                        raw_self_ty,
786                        receiver_steps,
787                    );
788                }
789            }
790            ty::Adt(def, _) => {
791                let def_id = def.did();
792                self.assemble_inherent_impl_candidates_for_type(def_id, receiver_steps);
793                if self.tcx.has_attr(def_id, sym::rustc_has_incoherent_inherent_impls) {
794                    self.assemble_inherent_candidates_for_incoherent_ty(
795                        raw_self_ty,
796                        receiver_steps,
797                    );
798                }
799            }
800            ty::Foreign(did) => {
801                self.assemble_inherent_impl_candidates_for_type(did, receiver_steps);
802                if self.tcx.has_attr(did, sym::rustc_has_incoherent_inherent_impls) {
803                    self.assemble_inherent_candidates_for_incoherent_ty(
804                        raw_self_ty,
805                        receiver_steps,
806                    );
807                }
808            }
809            ty::Param(p) => {
810                self.assemble_inherent_candidates_from_param(p);
811            }
812            ty::Bool
813            | ty::Char
814            | ty::Int(_)
815            | ty::Uint(_)
816            | ty::Float(_)
817            | ty::Str
818            | ty::Array(..)
819            | ty::Slice(_)
820            | ty::RawPtr(_, _)
821            | ty::Ref(..)
822            | ty::Never
823            | ty::Tuple(..) => {
824                self.assemble_inherent_candidates_for_incoherent_ty(raw_self_ty, receiver_steps)
825            }
826            _ => {}
827        }
828    }
829
830    fn assemble_inherent_candidates_for_incoherent_ty(
831        &mut self,
832        self_ty: Ty<'tcx>,
833        receiver_steps: usize,
834    ) {
835        let Some(simp) = simplify_type(self.tcx, self_ty, TreatParams::InstantiateWithInfer) else {
836            bug!("unexpected incoherent type: {:?}", self_ty)
837        };
838        for &impl_def_id in self.tcx.incoherent_impls(simp).into_iter() {
839            self.assemble_inherent_impl_probe(impl_def_id, receiver_steps);
840        }
841    }
842
843    fn assemble_inherent_impl_candidates_for_type(&mut self, def_id: DefId, receiver_steps: usize) {
844        let impl_def_ids = self.tcx.at(self.span).inherent_impls(def_id).into_iter();
845        for &impl_def_id in impl_def_ids {
846            self.assemble_inherent_impl_probe(impl_def_id, receiver_steps);
847        }
848    }
849
850    #[instrument(level = "debug", skip(self))]
851    fn assemble_inherent_impl_probe(&mut self, impl_def_id: DefId, receiver_steps: usize) {
852        if !self.impl_dups.insert(impl_def_id) {
853            return; // already visited
854        }
855
856        for item in self.impl_or_trait_item(impl_def_id) {
857            if !self.has_applicable_self(&item) {
858                // No receiver declared. Not a candidate.
859                self.record_static_candidate(CandidateSource::Impl(impl_def_id));
860                continue;
861            }
862            self.push_candidate(
863                Candidate {
864                    item,
865                    kind: InherentImplCandidate { impl_def_id, receiver_steps },
866                    import_ids: smallvec![],
867                },
868                true,
869            );
870        }
871    }
872
873    #[instrument(level = "debug", skip(self))]
874    fn assemble_inherent_candidates_from_object(&mut self, self_ty: Ty<'tcx>) {
875        let principal = match self_ty.kind() {
876            ty::Dynamic(ref data, ..) => Some(data),
877            _ => None,
878        }
879        .and_then(|data| data.principal())
880        .unwrap_or_else(|| {
881            span_bug!(
882                self.span,
883                "non-object {:?} in assemble_inherent_candidates_from_object",
884                self_ty
885            )
886        });
887
888        // It is illegal to invoke a method on a trait instance that refers to
889        // the `Self` type. An [`DynCompatibilityViolation::SupertraitSelf`] error
890        // will be reported by `dyn_compatibility.rs` if the method refers to the
891        // `Self` type anywhere other than the receiver. Here, we use a
892        // instantiation that replaces `Self` with the object type itself. Hence,
893        // a `&self` method will wind up with an argument type like `&dyn Trait`.
894        let trait_ref = principal.with_self_ty(self.tcx, self_ty);
895        self.assemble_candidates_for_bounds(
896            traits::supertraits(self.tcx, trait_ref),
897            |this, new_trait_ref, item| {
898                this.push_candidate(
899                    Candidate {
900                        item,
901                        kind: ObjectCandidate(new_trait_ref),
902                        import_ids: smallvec![],
903                    },
904                    true,
905                );
906            },
907        );
908    }
909
910    #[instrument(level = "debug", skip(self))]
911    fn assemble_inherent_candidates_from_param(&mut self, param_ty: ty::ParamTy) {
912        let bounds = self.param_env.caller_bounds().iter().filter_map(|predicate| {
913            let bound_predicate = predicate.kind();
914            match bound_predicate.skip_binder() {
915                ty::ClauseKind::Trait(trait_predicate) => {
916                    match *trait_predicate.trait_ref.self_ty().kind() {
917                        ty::Param(p) if p == param_ty => {
918                            Some(bound_predicate.rebind(trait_predicate.trait_ref))
919                        }
920                        _ => None,
921                    }
922                }
923                ty::ClauseKind::RegionOutlives(_)
924                | ty::ClauseKind::TypeOutlives(_)
925                | ty::ClauseKind::Projection(_)
926                | ty::ClauseKind::ConstArgHasType(_, _)
927                | ty::ClauseKind::WellFormed(_)
928                | ty::ClauseKind::ConstEvaluatable(_)
929                | ty::ClauseKind::HostEffect(..) => None,
930            }
931        });
932
933        self.assemble_candidates_for_bounds(bounds, |this, poly_trait_ref, item| {
934            this.push_candidate(
935                Candidate {
936                    item,
937                    kind: WhereClauseCandidate(poly_trait_ref),
938                    import_ids: smallvec![],
939                },
940                true,
941            );
942        });
943    }
944
945    // Do a search through a list of bounds, using a callback to actually
946    // create the candidates.
947    fn assemble_candidates_for_bounds<F>(
948        &mut self,
949        bounds: impl Iterator<Item = ty::PolyTraitRef<'tcx>>,
950        mut mk_cand: F,
951    ) where
952        F: for<'b> FnMut(&mut ProbeContext<'b, 'tcx>, ty::PolyTraitRef<'tcx>, ty::AssocItem),
953    {
954        for bound_trait_ref in bounds {
955            debug!("elaborate_bounds(bound_trait_ref={:?})", bound_trait_ref);
956            for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
957                if !self.has_applicable_self(&item) {
958                    self.record_static_candidate(CandidateSource::Trait(bound_trait_ref.def_id()));
959                } else {
960                    mk_cand(self, bound_trait_ref, item);
961                }
962            }
963        }
964    }
965
966    #[instrument(level = "debug", skip(self))]
967    fn assemble_extension_candidates_for_traits_in_scope(&mut self) {
968        let mut duplicates = FxHashSet::default();
969        let opt_applicable_traits = self.tcx.in_scope_traits(self.scope_expr_id);
970        if let Some(applicable_traits) = opt_applicable_traits {
971            for trait_candidate in applicable_traits.iter() {
972                let trait_did = trait_candidate.def_id;
973                if duplicates.insert(trait_did) {
974                    self.assemble_extension_candidates_for_trait(
975                        &trait_candidate.import_ids,
976                        trait_did,
977                    );
978                }
979            }
980        }
981    }
982
983    #[instrument(level = "debug", skip(self))]
984    fn assemble_extension_candidates_for_all_traits(&mut self) {
985        let mut duplicates = FxHashSet::default();
986        for trait_info in suggest::all_traits(self.tcx) {
987            if duplicates.insert(trait_info.def_id) {
988                self.assemble_extension_candidates_for_trait(&smallvec![], trait_info.def_id);
989            }
990        }
991    }
992
993    fn matches_return_type(&self, method: ty::AssocItem, expected: Ty<'tcx>) -> bool {
994        match method.kind {
995            ty::AssocKind::Fn => self.probe(|_| {
996                let args = self.fresh_args_for_item(self.span, method.def_id);
997                let fty = self.tcx.fn_sig(method.def_id).instantiate(self.tcx, args);
998                let fty = self.instantiate_binder_with_fresh_vars(self.span, infer::FnCall, fty);
999                self.can_eq(self.param_env, fty.output(), expected)
1000            }),
1001            _ => false,
1002        }
1003    }
1004
1005    #[instrument(level = "debug", skip(self))]
1006    fn assemble_extension_candidates_for_trait(
1007        &mut self,
1008        import_ids: &SmallVec<[LocalDefId; 1]>,
1009        trait_def_id: DefId,
1010    ) {
1011        let trait_args = self.fresh_args_for_item(self.span, trait_def_id);
1012        let trait_ref = ty::TraitRef::new_from_args(self.tcx, trait_def_id, trait_args);
1013
1014        if self.tcx.is_trait_alias(trait_def_id) {
1015            // For trait aliases, recursively assume all explicitly named traits are relevant
1016            for (bound_trait_pred, _) in
1017                traits::expand_trait_aliases(self.tcx, [(trait_ref.upcast(self.tcx), self.span)]).0
1018            {
1019                assert_eq!(bound_trait_pred.polarity(), ty::PredicatePolarity::Positive);
1020                let bound_trait_ref = bound_trait_pred.map_bound(|pred| pred.trait_ref);
1021                for item in self.impl_or_trait_item(bound_trait_ref.def_id()) {
1022                    if !self.has_applicable_self(&item) {
1023                        self.record_static_candidate(CandidateSource::Trait(
1024                            bound_trait_ref.def_id(),
1025                        ));
1026                    } else {
1027                        self.push_candidate(
1028                            Candidate {
1029                                item,
1030                                import_ids: import_ids.clone(),
1031                                kind: TraitCandidate(bound_trait_ref),
1032                            },
1033                            false,
1034                        );
1035                    }
1036                }
1037            }
1038        } else {
1039            debug_assert!(self.tcx.is_trait(trait_def_id));
1040            if self.tcx.trait_is_auto(trait_def_id) {
1041                return;
1042            }
1043            for item in self.impl_or_trait_item(trait_def_id) {
1044                // Check whether `trait_def_id` defines a method with suitable name.
1045                if !self.has_applicable_self(&item) {
1046                    debug!("method has inapplicable self");
1047                    self.record_static_candidate(CandidateSource::Trait(trait_def_id));
1048                    continue;
1049                }
1050                self.push_candidate(
1051                    Candidate {
1052                        item,
1053                        import_ids: import_ids.clone(),
1054                        kind: TraitCandidate(ty::Binder::dummy(trait_ref)),
1055                    },
1056                    false,
1057                );
1058            }
1059        }
1060    }
1061
1062    fn candidate_method_names(
1063        &self,
1064        candidate_filter: impl Fn(&ty::AssocItem) -> bool,
1065    ) -> Vec<Ident> {
1066        let mut set = FxHashSet::default();
1067        let mut names: Vec<_> = self
1068            .inherent_candidates
1069            .iter()
1070            .chain(&self.extension_candidates)
1071            .filter(|candidate| candidate_filter(&candidate.item))
1072            .filter(|candidate| {
1073                if let Some(return_ty) = self.return_type {
1074                    self.matches_return_type(candidate.item, return_ty)
1075                } else {
1076                    true
1077                }
1078            })
1079            // ensure that we don't suggest unstable methods
1080            .filter(|candidate| {
1081                // note that `DUMMY_SP` is ok here because it is only used for
1082                // suggestions and macro stuff which isn't applicable here.
1083                !matches!(
1084                    self.tcx.eval_stability(candidate.item.def_id, None, DUMMY_SP, None),
1085                    stability::EvalResult::Deny { .. }
1086                )
1087            })
1088            .map(|candidate| candidate.item.ident(self.tcx))
1089            .filter(|&name| set.insert(name))
1090            .collect();
1091
1092        // Sort them by the name so we have a stable result.
1093        names.sort_by(|a, b| a.as_str().cmp(b.as_str()));
1094        names
1095    }
1096
1097    ///////////////////////////////////////////////////////////////////////////
1098    // THE ACTUAL SEARCH
1099
1100    #[instrument(level = "debug", skip(self))]
1101    fn pick(mut self) -> PickResult<'tcx> {
1102        assert!(self.method_name.is_some());
1103
1104        let mut unsatisfied_predicates = Vec::new();
1105
1106        if let Some(r) = self.pick_core(&mut unsatisfied_predicates) {
1107            return r;
1108        }
1109
1110        // If it's a `lookup_probe_for_diagnostic`, then quit early. No need to
1111        // probe for other candidates.
1112        if self.is_suggestion.0 {
1113            return Err(MethodError::NoMatch(NoMatchData {
1114                static_candidates: vec![],
1115                unsatisfied_predicates: vec![],
1116                out_of_scope_traits: vec![],
1117                similar_candidate: None,
1118                mode: self.mode,
1119            }));
1120        }
1121
1122        debug!("pick: actual search failed, assemble diagnostics");
1123
1124        let static_candidates = std::mem::take(self.static_candidates.get_mut());
1125        let private_candidate = self.private_candidate.take();
1126
1127        // things failed, so lets look at all traits, for diagnostic purposes now:
1128        self.reset();
1129
1130        let span = self.span;
1131        let tcx = self.tcx;
1132
1133        self.assemble_extension_candidates_for_all_traits();
1134
1135        let out_of_scope_traits = match self.pick_core(&mut Vec::new()) {
1136            Some(Ok(p)) => vec![p.item.container_id(self.tcx)],
1137            Some(Err(MethodError::Ambiguity(v))) => v
1138                .into_iter()
1139                .map(|source| match source {
1140                    CandidateSource::Trait(id) => id,
1141                    CandidateSource::Impl(impl_id) => match tcx.trait_id_of_impl(impl_id) {
1142                        Some(id) => id,
1143                        None => span_bug!(span, "found inherent method when looking at traits"),
1144                    },
1145                })
1146                .collect(),
1147            Some(Err(MethodError::NoMatch(NoMatchData {
1148                out_of_scope_traits: others, ..
1149            }))) => {
1150                assert!(others.is_empty());
1151                vec![]
1152            }
1153            _ => vec![],
1154        };
1155
1156        if let Some((kind, def_id)) = private_candidate {
1157            return Err(MethodError::PrivateMatch(kind, def_id, out_of_scope_traits));
1158        }
1159        let similar_candidate = self.probe_for_similar_candidate()?;
1160
1161        Err(MethodError::NoMatch(NoMatchData {
1162            static_candidates,
1163            unsatisfied_predicates,
1164            out_of_scope_traits,
1165            similar_candidate,
1166            mode: self.mode,
1167        }))
1168    }
1169
1170    fn pick_core(
1171        &self,
1172        unsatisfied_predicates: &mut Vec<(
1173            ty::Predicate<'tcx>,
1174            Option<ty::Predicate<'tcx>>,
1175            Option<ObligationCause<'tcx>>,
1176        )>,
1177    ) -> Option<PickResult<'tcx>> {
1178        // Pick stable methods only first, and consider unstable candidates if not found.
1179        self.pick_all_method(&mut PickDiagHints {
1180            // This first cycle, maintain a list of unstable candidates which
1181            // we encounter. This will end up in the Pick for diagnostics.
1182            unstable_candidates: Some(Vec::new()),
1183            // Contribute to the list of unsatisfied predicates which may
1184            // also be used for diagnostics.
1185            unsatisfied_predicates,
1186        })
1187        .or_else(|| {
1188            self.pick_all_method(&mut PickDiagHints {
1189                // On the second search, don't provide a special list of unstable
1190                // candidates. This indicates to the picking code that it should
1191                // in fact include such unstable candidates in the actual
1192                // search.
1193                unstable_candidates: None,
1194                // And there's no need to duplicate ourselves in the
1195                // unsatisifed predicates list. Provide a throwaway list.
1196                unsatisfied_predicates: &mut Vec::new(),
1197            })
1198        })
1199    }
1200
1201    fn pick_all_method<'b>(
1202        &self,
1203        pick_diag_hints: &mut PickDiagHints<'b, 'tcx>,
1204    ) -> Option<PickResult<'tcx>> {
1205        let track_unstable_candidates = pick_diag_hints.unstable_candidates.is_some();
1206        self.steps
1207            .iter()
1208            // At this point we're considering the types to which the receiver can be converted,
1209            // so we want to follow the `Deref` chain not the `Receiver` chain. Filter out
1210            // steps which can only be reached by following the (longer) `Receiver` chain.
1211            .filter(|step| step.reachable_via_deref)
1212            .filter(|step| {
1213                debug!("pick_all_method: step={:?}", step);
1214                // skip types that are from a type error or that would require dereferencing
1215                // a raw pointer
1216                !step.self_ty.references_error() && !step.from_unsafe_deref
1217            })
1218            .find_map(|step| {
1219                let InferOk { value: self_ty, obligations: _ } = self
1220                    .fcx
1221                    .probe_instantiate_query_response(
1222                        self.span,
1223                        self.orig_steps_var_values,
1224                        &step.self_ty,
1225                    )
1226                    .unwrap_or_else(|_| {
1227                        span_bug!(self.span, "{:?} was applicable but now isn't?", step.self_ty)
1228                    });
1229
1230                let by_value_pick = self.pick_by_value_method(step, self_ty, pick_diag_hints);
1231
1232                // Check for shadowing of a by-reference method by a by-value method (see comments on check_for_shadowing)
1233                if let Some(by_value_pick) = by_value_pick {
1234                    if let Ok(by_value_pick) = by_value_pick.as_ref() {
1235                        if by_value_pick.kind == PickKind::InherentImplPick {
1236                            for mutbl in [hir::Mutability::Not, hir::Mutability::Mut] {
1237                                if let Err(e) = self.check_for_shadowed_autorefd_method(
1238                                    by_value_pick,
1239                                    step,
1240                                    self_ty,
1241                                    mutbl,
1242                                    track_unstable_candidates,
1243                                ) {
1244                                    return Some(Err(e));
1245                                }
1246                            }
1247                        }
1248                    }
1249                    return Some(by_value_pick);
1250                }
1251
1252                let autoref_pick = self.pick_autorefd_method(
1253                    step,
1254                    self_ty,
1255                    hir::Mutability::Not,
1256                    pick_diag_hints,
1257                    None,
1258                );
1259                // Check for shadowing of a by-mut-ref method by a by-reference method (see comments on check_for_shadowing)
1260                if let Some(autoref_pick) = autoref_pick {
1261                    if let Ok(autoref_pick) = autoref_pick.as_ref() {
1262                        // Check we're not shadowing others
1263                        if autoref_pick.kind == PickKind::InherentImplPick {
1264                            if let Err(e) = self.check_for_shadowed_autorefd_method(
1265                                autoref_pick,
1266                                step,
1267                                self_ty,
1268                                hir::Mutability::Mut,
1269                                track_unstable_candidates,
1270                            ) {
1271                                return Some(Err(e));
1272                            }
1273                        }
1274                    }
1275                    return Some(autoref_pick);
1276                }
1277
1278                // Note that no shadowing errors are produced from here on,
1279                // as we consider const ptr methods.
1280                // We allow new methods that take *mut T to shadow
1281                // methods which took *const T, so there is no entry in
1282                // this list for the results of `pick_const_ptr_method`.
1283                // The reason is that the standard pointer cast method
1284                // (on a mutable pointer) always already shadows the
1285                // cast method (on a const pointer). So, if we added
1286                // `pick_const_ptr_method` to this method, the anti-
1287                // shadowing algorithm would always complain about
1288                // the conflict between *const::cast and *mut::cast.
1289                // In practice therefore this does constrain us:
1290                // we cannot add new
1291                //   self: *mut Self
1292                // methods to types such as NonNull or anything else
1293                // which implements Receiver, because this might in future
1294                // shadow existing methods taking
1295                //   self: *const NonNull<Self>
1296                // in the pointee. In practice, methods taking raw pointers
1297                // are rare, and it seems that it should be easily possible
1298                // to avoid such compatibility breaks.
1299                // We also don't check for reborrowed pin methods which
1300                // may be shadowed; these also seem unlikely to occur.
1301                self.pick_autorefd_method(
1302                    step,
1303                    self_ty,
1304                    hir::Mutability::Mut,
1305                    pick_diag_hints,
1306                    None,
1307                )
1308                .or_else(|| self.pick_const_ptr_method(step, self_ty, pick_diag_hints))
1309                .or_else(|| self.pick_reborrow_pin_method(step, self_ty, pick_diag_hints))
1310            })
1311    }
1312
1313    /// Check for cases where arbitrary self types allows shadowing
1314    /// of methods that might be a compatibility break. Specifically,
1315    /// we have something like:
1316    /// ```ignore (illustrative)
1317    /// struct A;
1318    /// impl A {
1319    ///   fn foo(self: &NonNull<A>) {}
1320    ///      // note this is by reference
1321    /// }
1322    /// ```
1323    /// then we've come along and added this method to `NonNull`:
1324    /// ```ignore (illustrative)
1325    ///   fn foo(self)  // note this is by value
1326    /// ```
1327    /// Report an error in this case.
1328    fn check_for_shadowed_autorefd_method(
1329        &self,
1330        possible_shadower: &Pick<'tcx>,
1331        step: &CandidateStep<'tcx>,
1332        self_ty: Ty<'tcx>,
1333        mutbl: hir::Mutability,
1334        track_unstable_candidates: bool,
1335    ) -> Result<(), MethodError<'tcx>> {
1336        // The errors emitted by this function are part of
1337        // the arbitrary self types work, and should not impact
1338        // other users.
1339        if !self.tcx.features().arbitrary_self_types()
1340            && !self.tcx.features().arbitrary_self_types_pointers()
1341        {
1342            return Ok(());
1343        }
1344
1345        // We don't want to remember any of the diagnostic hints from this
1346        // shadow search, but we do need to provide Some/None for the
1347        // unstable_candidates in order to reflect the behavior of the
1348        // main search.
1349        let mut pick_diag_hints = PickDiagHints {
1350            unstable_candidates: if track_unstable_candidates { Some(Vec::new()) } else { None },
1351            unsatisfied_predicates: &mut Vec::new(),
1352        };
1353        // Set criteria for how we find methods possibly shadowed by 'possible_shadower'
1354        let pick_constraints = PickConstraintsForShadowed {
1355            // It's the same `self` type...
1356            autoderefs: possible_shadower.autoderefs,
1357            // ... but the method was found in an impl block determined
1358            // by searching further along the Receiver chain than the other,
1359            // showing that it's a smart pointer type causing the problem...
1360            receiver_steps: possible_shadower.receiver_steps,
1361            // ... and they don't end up pointing to the same item in the
1362            // first place (could happen with things like blanket impls for T)
1363            def_id: possible_shadower.item.def_id,
1364        };
1365        // A note on the autoderefs above. Within pick_by_value_method, an extra
1366        // autoderef may be applied in order to reborrow a reference with
1367        // a different lifetime. That seems as though it would break the
1368        // logic of these constraints, since the number of autoderefs could
1369        // no longer be used to identify the fundamental type of the receiver.
1370        // However, this extra autoderef is applied only to by-value calls
1371        // where the receiver is already a reference. So this situation would
1372        // only occur in cases where the shadowing looks like this:
1373        // ```
1374        // struct A;
1375        // impl A {
1376        //   fn foo(self: &&NonNull<A>) {}
1377        //      // note this is by DOUBLE reference
1378        // }
1379        // ```
1380        // then we've come along and added this method to `NonNull`:
1381        // ```
1382        //   fn foo(&self)  // note this is by single reference
1383        // ```
1384        // and the call is:
1385        // ```
1386        // let bar = NonNull<Foo>;
1387        // let bar = &foo;
1388        // bar.foo();
1389        // ```
1390        // In these circumstances, the logic is wrong, and we wouldn't spot
1391        // the shadowing, because the autoderef-based maths wouldn't line up.
1392        // This is a niche case and we can live without generating an error
1393        // in the case of such shadowing.
1394        let potentially_shadowed_pick = self.pick_autorefd_method(
1395            step,
1396            self_ty,
1397            mutbl,
1398            &mut pick_diag_hints,
1399            Some(&pick_constraints),
1400        );
1401        // Look for actual pairs of shadower/shadowed which are
1402        // the sort of shadowing case we want to avoid. Specifically...
1403        if let Some(Ok(possible_shadowed)) = potentially_shadowed_pick.as_ref() {
1404            let sources = [possible_shadower, possible_shadowed]
1405                .into_iter()
1406                .map(|p| self.candidate_source_from_pick(p))
1407                .collect();
1408            return Err(MethodError::Ambiguity(sources));
1409        }
1410        Ok(())
1411    }
1412
1413    /// For each type `T` in the step list, this attempts to find a method where
1414    /// the (transformed) self type is exactly `T`. We do however do one
1415    /// transformation on the adjustment: if we are passing a region pointer in,
1416    /// we will potentially *reborrow* it to a shorter lifetime. This allows us
1417    /// to transparently pass `&mut` pointers, in particular, without consuming
1418    /// them for their entire lifetime.
1419    fn pick_by_value_method(
1420        &self,
1421        step: &CandidateStep<'tcx>,
1422        self_ty: Ty<'tcx>,
1423        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1424    ) -> Option<PickResult<'tcx>> {
1425        if step.unsize {
1426            return None;
1427        }
1428
1429        self.pick_method(self_ty, pick_diag_hints, None).map(|r| {
1430            r.map(|mut pick| {
1431                pick.autoderefs = step.autoderefs;
1432
1433                match *step.self_ty.value.value.kind() {
1434                    // Insert a `&*` or `&mut *` if this is a reference type:
1435                    ty::Ref(_, _, mutbl) => {
1436                        pick.autoderefs += 1;
1437                        pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::Autoref {
1438                            mutbl,
1439                            unsize: pick.autoref_or_ptr_adjustment.is_some_and(|a| a.get_unsize()),
1440                        })
1441                    }
1442
1443                    ty::Adt(def, args)
1444                        if self.tcx.features().pin_ergonomics()
1445                            && self.tcx.is_lang_item(def.did(), hir::LangItem::Pin) =>
1446                    {
1447                        // make sure this is a pinned reference (and not a `Pin<Box>` or something)
1448                        if let ty::Ref(_, _, mutbl) = args[0].expect_ty().kind() {
1449                            pick.autoref_or_ptr_adjustment =
1450                                Some(AutorefOrPtrAdjustment::ReborrowPin(*mutbl));
1451                        }
1452                    }
1453
1454                    _ => (),
1455                }
1456
1457                pick
1458            })
1459        })
1460    }
1461
1462    fn pick_autorefd_method(
1463        &self,
1464        step: &CandidateStep<'tcx>,
1465        self_ty: Ty<'tcx>,
1466        mutbl: hir::Mutability,
1467        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1468        pick_constraints: Option<&PickConstraintsForShadowed>,
1469    ) -> Option<PickResult<'tcx>> {
1470        let tcx = self.tcx;
1471
1472        if let Some(pick_constraints) = pick_constraints {
1473            if !pick_constraints.may_shadow_based_on_autoderefs(step.autoderefs) {
1474                return None;
1475            }
1476        }
1477
1478        // In general, during probing we erase regions.
1479        let region = tcx.lifetimes.re_erased;
1480
1481        let autoref_ty = Ty::new_ref(tcx, region, self_ty, mutbl);
1482        self.pick_method(autoref_ty, pick_diag_hints, pick_constraints).map(|r| {
1483            r.map(|mut pick| {
1484                pick.autoderefs = step.autoderefs;
1485                pick.autoref_or_ptr_adjustment =
1486                    Some(AutorefOrPtrAdjustment::Autoref { mutbl, unsize: step.unsize });
1487                pick
1488            })
1489        })
1490    }
1491
1492    /// Looks for applicable methods if we reborrow a `Pin<&mut T>` as a `Pin<&T>`.
1493    #[instrument(level = "debug", skip(self, step, pick_diag_hints))]
1494    fn pick_reborrow_pin_method(
1495        &self,
1496        step: &CandidateStep<'tcx>,
1497        self_ty: Ty<'tcx>,
1498        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1499    ) -> Option<PickResult<'tcx>> {
1500        if !self.tcx.features().pin_ergonomics() {
1501            return None;
1502        }
1503
1504        // make sure self is a Pin<&mut T>
1505        let inner_ty = match self_ty.kind() {
1506            ty::Adt(def, args) if self.tcx.is_lang_item(def.did(), hir::LangItem::Pin) => {
1507                match args[0].expect_ty().kind() {
1508                    ty::Ref(_, ty, hir::Mutability::Mut) => *ty,
1509                    _ => {
1510                        return None;
1511                    }
1512                }
1513            }
1514            _ => return None,
1515        };
1516
1517        let region = self.tcx.lifetimes.re_erased;
1518        let autopin_ty = Ty::new_pinned_ref(self.tcx, region, inner_ty, hir::Mutability::Not);
1519        self.pick_method(autopin_ty, pick_diag_hints, None).map(|r| {
1520            r.map(|mut pick| {
1521                pick.autoderefs = step.autoderefs;
1522                pick.autoref_or_ptr_adjustment =
1523                    Some(AutorefOrPtrAdjustment::ReborrowPin(hir::Mutability::Not));
1524                pick
1525            })
1526        })
1527    }
1528
1529    /// If `self_ty` is `*mut T` then this picks `*const T` methods. The reason why we have a
1530    /// special case for this is because going from `*mut T` to `*const T` with autoderefs and
1531    /// autorefs would require dereferencing the pointer, which is not safe.
1532    fn pick_const_ptr_method(
1533        &self,
1534        step: &CandidateStep<'tcx>,
1535        self_ty: Ty<'tcx>,
1536        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1537    ) -> Option<PickResult<'tcx>> {
1538        // Don't convert an unsized reference to ptr
1539        if step.unsize {
1540            return None;
1541        }
1542
1543        let &ty::RawPtr(ty, hir::Mutability::Mut) = self_ty.kind() else {
1544            return None;
1545        };
1546
1547        let const_ptr_ty = Ty::new_imm_ptr(self.tcx, ty);
1548        self.pick_method(const_ptr_ty, pick_diag_hints, None).map(|r| {
1549            r.map(|mut pick| {
1550                pick.autoderefs = step.autoderefs;
1551                pick.autoref_or_ptr_adjustment = Some(AutorefOrPtrAdjustment::ToConstPtr);
1552                pick
1553            })
1554        })
1555    }
1556
1557    fn pick_method(
1558        &self,
1559        self_ty: Ty<'tcx>,
1560        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1561        pick_constraints: Option<&PickConstraintsForShadowed>,
1562    ) -> Option<PickResult<'tcx>> {
1563        debug!("pick_method(self_ty={})", self.ty_to_string(self_ty));
1564
1565        for (kind, candidates) in
1566            [("inherent", &self.inherent_candidates), ("extension", &self.extension_candidates)]
1567        {
1568            debug!("searching {} candidates", kind);
1569            let res =
1570                self.consider_candidates(self_ty, candidates, pick_diag_hints, pick_constraints);
1571            if let Some(pick) = res {
1572                return Some(pick);
1573            }
1574        }
1575
1576        if self.private_candidate.get().is_none() {
1577            if let Some(Ok(pick)) = self.consider_candidates(
1578                self_ty,
1579                &self.private_candidates,
1580                &mut PickDiagHints {
1581                    unstable_candidates: None,
1582                    unsatisfied_predicates: &mut vec![],
1583                },
1584                None,
1585            ) {
1586                self.private_candidate.set(Some((pick.item.kind.as_def_kind(), pick.item.def_id)));
1587            }
1588        }
1589        None
1590    }
1591
1592    fn consider_candidates(
1593        &self,
1594        self_ty: Ty<'tcx>,
1595        candidates: &[Candidate<'tcx>],
1596        pick_diag_hints: &mut PickDiagHints<'_, 'tcx>,
1597        pick_constraints: Option<&PickConstraintsForShadowed>,
1598    ) -> Option<PickResult<'tcx>> {
1599        let mut applicable_candidates: Vec<_> = candidates
1600            .iter()
1601            .filter(|candidate| {
1602                pick_constraints
1603                    .map(|pick_constraints| pick_constraints.candidate_may_shadow(&candidate))
1604                    .unwrap_or(true)
1605            })
1606            .map(|probe| {
1607                (
1608                    probe,
1609                    self.consider_probe(
1610                        self_ty,
1611                        probe,
1612                        &mut pick_diag_hints.unsatisfied_predicates,
1613                    ),
1614                )
1615            })
1616            .filter(|&(_, status)| status != ProbeResult::NoMatch)
1617            .collect();
1618
1619        debug!("applicable_candidates: {:?}", applicable_candidates);
1620
1621        if applicable_candidates.len() > 1 {
1622            if let Some(pick) =
1623                self.collapse_candidates_to_trait_pick(self_ty, &applicable_candidates)
1624            {
1625                return Some(Ok(pick));
1626            }
1627        }
1628
1629        if let Some(uc) = &mut pick_diag_hints.unstable_candidates {
1630            applicable_candidates.retain(|&(candidate, _)| {
1631                if let stability::EvalResult::Deny { feature, .. } =
1632                    self.tcx.eval_stability(candidate.item.def_id, None, self.span, None)
1633                {
1634                    uc.push((candidate.clone(), feature));
1635                    return false;
1636                }
1637                true
1638            });
1639        }
1640
1641        if applicable_candidates.len() > 1 {
1642            // We collapse to a subtrait pick *after* filtering unstable candidates
1643            // to make sure we don't prefer a unstable subtrait method over a stable
1644            // supertrait method.
1645            if self.tcx.features().supertrait_item_shadowing() {
1646                if let Some(pick) =
1647                    self.collapse_candidates_to_subtrait_pick(self_ty, &applicable_candidates)
1648                {
1649                    return Some(Ok(pick));
1650                }
1651            }
1652
1653            let sources = candidates.iter().map(|p| self.candidate_source(p, self_ty)).collect();
1654            return Some(Err(MethodError::Ambiguity(sources)));
1655        }
1656
1657        applicable_candidates.pop().map(|(probe, status)| match status {
1658            ProbeResult::Match => Ok(probe.to_unadjusted_pick(
1659                self_ty,
1660                pick_diag_hints.unstable_candidates.clone().unwrap_or_default(),
1661            )),
1662            ProbeResult::NoMatch | ProbeResult::BadReturnType => Err(MethodError::BadReturnType),
1663        })
1664    }
1665}
1666
1667impl<'tcx> Pick<'tcx> {
1668    /// In case there were unstable name collisions, emit them as a lint.
1669    /// Checks whether two picks do not refer to the same trait item for the same `Self` type.
1670    /// Only useful for comparisons of picks in order to improve diagnostics.
1671    /// Do not use for type checking.
1672    pub(crate) fn differs_from(&self, other: &Self) -> bool {
1673        let Self {
1674            item:
1675                AssocItem {
1676                    def_id,
1677                    name: _,
1678                    kind: _,
1679                    container: _,
1680                    trait_item_def_id: _,
1681                    fn_has_self_parameter: _,
1682                    opt_rpitit_info: _,
1683                },
1684            kind: _,
1685            import_ids: _,
1686            autoderefs: _,
1687            autoref_or_ptr_adjustment: _,
1688            self_ty,
1689            unstable_candidates: _,
1690            receiver_steps: _,
1691            shadowed_candidates: _,
1692        } = *self;
1693        self_ty != other.self_ty || def_id != other.item.def_id
1694    }
1695
1696    /// In case there were unstable name collisions, emit them as a lint.
1697    pub(crate) fn maybe_emit_unstable_name_collision_hint(
1698        &self,
1699        tcx: TyCtxt<'tcx>,
1700        span: Span,
1701        scope_expr_id: HirId,
1702    ) {
1703        if self.unstable_candidates.is_empty() {
1704            return;
1705        }
1706        let def_kind = self.item.kind.as_def_kind();
1707        tcx.node_span_lint(lint::builtin::UNSTABLE_NAME_COLLISIONS, scope_expr_id, span, |lint| {
1708            lint.primary_message(format!(
1709                "{} {} with this name may be added to the standard library in the future",
1710                tcx.def_kind_descr_article(def_kind, self.item.def_id),
1711                tcx.def_kind_descr(def_kind, self.item.def_id),
1712            ));
1713
1714            match (self.item.kind, self.item.container) {
1715                (ty::AssocKind::Fn, _) => {
1716                    // FIXME: This should be a `span_suggestion` instead of `help`
1717                    // However `self.span` only
1718                    // highlights the method name, so we can't use it. Also consider reusing
1719                    // the code from `report_method_error()`.
1720                    lint.help(format!(
1721                        "call with fully qualified syntax `{}(...)` to keep using the current \
1722                             method",
1723                        tcx.def_path_str(self.item.def_id),
1724                    ));
1725                }
1726                (ty::AssocKind::Const, ty::AssocItemContainer::Trait) => {
1727                    let def_id = self.item.container_id(tcx);
1728                    lint.span_suggestion(
1729                        span,
1730                        "use the fully qualified path to the associated const",
1731                        format!(
1732                            "<{} as {}>::{}",
1733                            self.self_ty,
1734                            tcx.def_path_str(def_id),
1735                            self.item.name
1736                        ),
1737                        Applicability::MachineApplicable,
1738                    );
1739                }
1740                _ => {}
1741            }
1742            tcx.disabled_nightly_features(
1743                lint,
1744                Some(scope_expr_id),
1745                self.unstable_candidates.iter().map(|(candidate, feature)| {
1746                    (format!(" `{}`", tcx.def_path_str(candidate.item.def_id)), *feature)
1747                }),
1748            );
1749        });
1750    }
1751}
1752
1753impl<'a, 'tcx> ProbeContext<'a, 'tcx> {
1754    fn select_trait_candidate(
1755        &self,
1756        trait_ref: ty::TraitRef<'tcx>,
1757    ) -> traits::SelectionResult<'tcx, traits::Selection<'tcx>> {
1758        let obligation =
1759            traits::Obligation::new(self.tcx, self.misc(self.span), self.param_env, trait_ref);
1760        traits::SelectionContext::new(self).select(&obligation)
1761    }
1762
1763    /// Used for ambiguous method call error reporting. Uses probing that throws away the result internally,
1764    /// so do not use to make a decision that may lead to a successful compilation.
1765    fn candidate_source(&self, candidate: &Candidate<'tcx>, self_ty: Ty<'tcx>) -> CandidateSource {
1766        match candidate.kind {
1767            InherentImplCandidate { .. } => {
1768                CandidateSource::Impl(candidate.item.container_id(self.tcx))
1769            }
1770            ObjectCandidate(_) | WhereClauseCandidate(_) => {
1771                CandidateSource::Trait(candidate.item.container_id(self.tcx))
1772            }
1773            TraitCandidate(trait_ref) => self.probe(|_| {
1774                let trait_ref =
1775                    self.instantiate_binder_with_fresh_vars(self.span, infer::FnCall, trait_ref);
1776                let (xform_self_ty, _) =
1777                    self.xform_self_ty(candidate.item, trait_ref.self_ty(), trait_ref.args);
1778                // Guide the trait selection to show impls that have methods whose type matches
1779                // up with the `self` parameter of the method.
1780                let _ = self.at(&ObligationCause::dummy(), self.param_env).sup(
1781                    DefineOpaqueTypes::Yes,
1782                    xform_self_ty,
1783                    self_ty,
1784                );
1785                match self.select_trait_candidate(trait_ref) {
1786                    Ok(Some(traits::ImplSource::UserDefined(ref impl_data))) => {
1787                        // If only a single impl matches, make the error message point
1788                        // to that impl.
1789                        CandidateSource::Impl(impl_data.impl_def_id)
1790                    }
1791                    _ => CandidateSource::Trait(candidate.item.container_id(self.tcx)),
1792                }
1793            }),
1794        }
1795    }
1796
1797    fn candidate_source_from_pick(&self, pick: &Pick<'tcx>) -> CandidateSource {
1798        match pick.kind {
1799            InherentImplPick => CandidateSource::Impl(pick.item.container_id(self.tcx)),
1800            ObjectPick | WhereClausePick(_) | TraitPick => {
1801                CandidateSource::Trait(pick.item.container_id(self.tcx))
1802            }
1803        }
1804    }
1805
1806    #[instrument(level = "trace", skip(self, possibly_unsatisfied_predicates), ret)]
1807    fn consider_probe(
1808        &self,
1809        self_ty: Ty<'tcx>,
1810        probe: &Candidate<'tcx>,
1811        possibly_unsatisfied_predicates: &mut Vec<(
1812            ty::Predicate<'tcx>,
1813            Option<ty::Predicate<'tcx>>,
1814            Option<ObligationCause<'tcx>>,
1815        )>,
1816    ) -> ProbeResult {
1817        debug!("consider_probe: self_ty={:?} probe={:?}", self_ty, probe);
1818
1819        self.probe(|snapshot| {
1820            let outer_universe = self.universe();
1821
1822            let mut result = ProbeResult::Match;
1823            let cause = &self.misc(self.span);
1824            let ocx = ObligationCtxt::new_with_diagnostics(self);
1825
1826            let mut trait_predicate = None;
1827            let (mut xform_self_ty, mut xform_ret_ty);
1828
1829            match probe.kind {
1830                InherentImplCandidate { impl_def_id, .. } => {
1831                    let impl_args = self.fresh_args_for_item(self.span, impl_def_id);
1832                    let impl_ty = self.tcx.type_of(impl_def_id).instantiate(self.tcx, impl_args);
1833                    (xform_self_ty, xform_ret_ty) =
1834                        self.xform_self_ty(probe.item, impl_ty, impl_args);
1835                    xform_self_ty = ocx.normalize(cause, self.param_env, xform_self_ty);
1836                    match ocx.relate(cause, self.param_env, self.variance(), self_ty, xform_self_ty)
1837                    {
1838                        Ok(()) => {}
1839                        Err(err) => {
1840                            debug!("--> cannot relate self-types {:?}", err);
1841                            return ProbeResult::NoMatch;
1842                        }
1843                    }
1844                    // FIXME: Weirdly, we normalize the ret ty in this candidate, but no other candidates.
1845                    xform_ret_ty = ocx.normalize(cause, self.param_env, xform_ret_ty);
1846                    // Check whether the impl imposes obligations we have to worry about.
1847                    let impl_def_id = probe.item.container_id(self.tcx);
1848                    let impl_bounds =
1849                        self.tcx.predicates_of(impl_def_id).instantiate(self.tcx, impl_args);
1850                    let impl_bounds = ocx.normalize(cause, self.param_env, impl_bounds);
1851                    // Convert the bounds into obligations.
1852                    ocx.register_obligations(traits::predicates_for_generics(
1853                        |idx, span| {
1854                            let code = ObligationCauseCode::WhereClauseInExpr(
1855                                impl_def_id,
1856                                span,
1857                                self.scope_expr_id,
1858                                idx,
1859                            );
1860                            self.cause(self.span, code)
1861                        },
1862                        self.param_env,
1863                        impl_bounds,
1864                    ));
1865                }
1866                TraitCandidate(poly_trait_ref) => {
1867                    // Some trait methods are excluded for arrays before 2021.
1868                    // (`array.into_iter()` wants a slice iterator for compatibility.)
1869                    if let Some(method_name) = self.method_name {
1870                        if self_ty.is_array() && !method_name.span.at_least_rust_2021() {
1871                            let trait_def = self.tcx.trait_def(poly_trait_ref.def_id());
1872                            if trait_def.skip_array_during_method_dispatch {
1873                                return ProbeResult::NoMatch;
1874                            }
1875                        }
1876
1877                        // Some trait methods are excluded for boxed slices before 2024.
1878                        // (`boxed_slice.into_iter()` wants a slice iterator for compatibility.)
1879                        if self_ty.boxed_ty().is_some_and(Ty::is_slice)
1880                            && !method_name.span.at_least_rust_2024()
1881                        {
1882                            let trait_def = self.tcx.trait_def(poly_trait_ref.def_id());
1883                            if trait_def.skip_boxed_slice_during_method_dispatch {
1884                                return ProbeResult::NoMatch;
1885                            }
1886                        }
1887                    }
1888
1889                    let trait_ref = self.instantiate_binder_with_fresh_vars(
1890                        self.span,
1891                        infer::FnCall,
1892                        poly_trait_ref,
1893                    );
1894                    let trait_ref = ocx.normalize(cause, self.param_env, trait_ref);
1895                    (xform_self_ty, xform_ret_ty) =
1896                        self.xform_self_ty(probe.item, trait_ref.self_ty(), trait_ref.args);
1897                    xform_self_ty = ocx.normalize(cause, self.param_env, xform_self_ty);
1898                    match self_ty.kind() {
1899                        // HACK: opaque types will match anything for which their bounds hold.
1900                        // Thus we need to prevent them from trying to match the `&_` autoref
1901                        // candidates that get created for `&self` trait methods.
1902                        ty::Alias(ty::Opaque, alias_ty)
1903                            if !self.next_trait_solver()
1904                                && self.infcx.can_define_opaque_ty(alias_ty.def_id)
1905                                && !xform_self_ty.is_ty_var() =>
1906                        {
1907                            return ProbeResult::NoMatch;
1908                        }
1909                        _ => match ocx.relate(
1910                            cause,
1911                            self.param_env,
1912                            self.variance(),
1913                            self_ty,
1914                            xform_self_ty,
1915                        ) {
1916                            Ok(()) => {}
1917                            Err(err) => {
1918                                debug!("--> cannot relate self-types {:?}", err);
1919                                return ProbeResult::NoMatch;
1920                            }
1921                        },
1922                    }
1923                    let obligation = traits::Obligation::new(
1924                        self.tcx,
1925                        cause.clone(),
1926                        self.param_env,
1927                        ty::Binder::dummy(trait_ref),
1928                    );
1929
1930                    // FIXME(-Znext-solver): We only need this hack to deal with fatal
1931                    // overflow in the old solver.
1932                    if self.infcx.next_trait_solver() || self.infcx.predicate_may_hold(&obligation)
1933                    {
1934                        ocx.register_obligation(obligation);
1935                    } else {
1936                        result = ProbeResult::NoMatch;
1937                        if let Ok(Some(candidate)) = self.select_trait_candidate(trait_ref) {
1938                            for nested_obligation in candidate.nested_obligations() {
1939                                if !self.infcx.predicate_may_hold(&nested_obligation) {
1940                                    possibly_unsatisfied_predicates.push((
1941                                        self.resolve_vars_if_possible(nested_obligation.predicate),
1942                                        Some(self.resolve_vars_if_possible(obligation.predicate)),
1943                                        Some(nested_obligation.cause),
1944                                    ));
1945                                }
1946                            }
1947                        }
1948                    }
1949
1950                    trait_predicate = Some(trait_ref.upcast(self.tcx));
1951                }
1952                ObjectCandidate(poly_trait_ref) | WhereClauseCandidate(poly_trait_ref) => {
1953                    let trait_ref = self.instantiate_binder_with_fresh_vars(
1954                        self.span,
1955                        infer::FnCall,
1956                        poly_trait_ref,
1957                    );
1958                    (xform_self_ty, xform_ret_ty) =
1959                        self.xform_self_ty(probe.item, trait_ref.self_ty(), trait_ref.args);
1960                    xform_self_ty = ocx.normalize(cause, self.param_env, xform_self_ty);
1961                    match ocx.relate(cause, self.param_env, self.variance(), self_ty, xform_self_ty)
1962                    {
1963                        Ok(()) => {}
1964                        Err(err) => {
1965                            debug!("--> cannot relate self-types {:?}", err);
1966                            return ProbeResult::NoMatch;
1967                        }
1968                    }
1969                }
1970            }
1971
1972            // FIXME(-Znext-solver): See the linked issue below.
1973            // <https://github.com/rust-lang/trait-system-refactor-initiative/issues/134>
1974            //
1975            // In the new solver, check the well-formedness of the return type.
1976            // This emulates, in a way, the predicates that fall out of
1977            // normalizing the return type in the old solver.
1978            //
1979            // We alternatively could check the predicates of the method itself hold,
1980            // but we intentionally do not do this in the old solver b/c of cycles,
1981            // and doing it in the new solver would be stronger. This should be fixed
1982            // in the future, since it likely leads to much better method winnowing.
1983            if let Some(xform_ret_ty) = xform_ret_ty
1984                && self.infcx.next_trait_solver()
1985            {
1986                ocx.register_obligation(traits::Obligation::new(
1987                    self.tcx,
1988                    cause.clone(),
1989                    self.param_env,
1990                    ty::ClauseKind::WellFormed(xform_ret_ty.into()),
1991                ));
1992            }
1993
1994            // Evaluate those obligations to see if they might possibly hold.
1995            for error in ocx.select_where_possible() {
1996                result = ProbeResult::NoMatch;
1997                let nested_predicate = self.resolve_vars_if_possible(error.obligation.predicate);
1998                if let Some(trait_predicate) = trait_predicate
1999                    && nested_predicate == self.resolve_vars_if_possible(trait_predicate)
2000                {
2001                    // Don't report possibly unsatisfied predicates if the root
2002                    // trait obligation from a `TraitCandidate` is unsatisfied.
2003                    // That just means the candidate doesn't hold.
2004                } else {
2005                    possibly_unsatisfied_predicates.push((
2006                        nested_predicate,
2007                        Some(self.resolve_vars_if_possible(error.root_obligation.predicate))
2008                            .filter(|root_predicate| *root_predicate != nested_predicate),
2009                        Some(error.obligation.cause),
2010                    ));
2011                }
2012            }
2013
2014            if let ProbeResult::Match = result
2015                && let Some(return_ty) = self.return_type
2016                && let Some(mut xform_ret_ty) = xform_ret_ty
2017            {
2018                // `xform_ret_ty` has only been normalized for `InherentImplCandidate`.
2019                // We don't normalize the other candidates for perf/backwards-compat reasons...
2020                // but `self.return_type` is only set on the diagnostic-path, so we
2021                // should be okay doing it here.
2022                if !matches!(probe.kind, InherentImplCandidate { .. }) {
2023                    xform_ret_ty = ocx.normalize(&cause, self.param_env, xform_ret_ty);
2024                }
2025
2026                debug!("comparing return_ty {:?} with xform ret ty {:?}", return_ty, xform_ret_ty);
2027                match ocx.relate(cause, self.param_env, self.variance(), xform_ret_ty, return_ty) {
2028                    Ok(()) => {}
2029                    Err(_) => {
2030                        result = ProbeResult::BadReturnType;
2031                    }
2032                }
2033
2034                // Evaluate those obligations to see if they might possibly hold.
2035                for error in ocx.select_where_possible() {
2036                    result = ProbeResult::NoMatch;
2037                    possibly_unsatisfied_predicates.push((
2038                        error.obligation.predicate,
2039                        Some(error.root_obligation.predicate)
2040                            .filter(|predicate| *predicate != error.obligation.predicate),
2041                        Some(error.root_obligation.cause),
2042                    ));
2043                }
2044            }
2045
2046            // Previously, method probe used `evaluate_predicate` to determine if a predicate
2047            // was impossible to satisfy. This did a leak check, so we must also do a leak
2048            // check here to prevent backwards-incompatible ambiguity being introduced. See
2049            // `tests/ui/methods/leak-check-disquality.rs` for a simple example of when this
2050            // may happen.
2051            if let Err(_) = self.leak_check(outer_universe, Some(snapshot)) {
2052                result = ProbeResult::NoMatch;
2053            }
2054
2055            result
2056        })
2057    }
2058
2059    /// Sometimes we get in a situation where we have multiple probes that are all impls of the
2060    /// same trait, but we don't know which impl to use. In this case, since in all cases the
2061    /// external interface of the method can be determined from the trait, it's ok not to decide.
2062    /// We can basically just collapse all of the probes for various impls into one where-clause
2063    /// probe. This will result in a pending obligation so when more type-info is available we can
2064    /// make the final decision.
2065    ///
2066    /// Example (`tests/ui/method-two-trait-defer-resolution-1.rs`):
2067    ///
2068    /// ```ignore (illustrative)
2069    /// trait Foo { ... }
2070    /// impl Foo for Vec<i32> { ... }
2071    /// impl Foo for Vec<usize> { ... }
2072    /// ```
2073    ///
2074    /// Now imagine the receiver is `Vec<_>`. It doesn't really matter at this time which impl we
2075    /// use, so it's ok to just commit to "using the method from the trait Foo".
2076    fn collapse_candidates_to_trait_pick(
2077        &self,
2078        self_ty: Ty<'tcx>,
2079        probes: &[(&Candidate<'tcx>, ProbeResult)],
2080    ) -> Option<Pick<'tcx>> {
2081        // Do all probes correspond to the same trait?
2082        let container = probes[0].0.item.trait_container(self.tcx)?;
2083        for (p, _) in &probes[1..] {
2084            let p_container = p.item.trait_container(self.tcx)?;
2085            if p_container != container {
2086                return None;
2087            }
2088        }
2089
2090        // FIXME: check the return type here somehow.
2091        // If so, just use this trait and call it a day.
2092        Some(Pick {
2093            item: probes[0].0.item,
2094            kind: TraitPick,
2095            import_ids: probes[0].0.import_ids.clone(),
2096            autoderefs: 0,
2097            autoref_or_ptr_adjustment: None,
2098            self_ty,
2099            unstable_candidates: vec![],
2100            receiver_steps: None,
2101            shadowed_candidates: vec![],
2102        })
2103    }
2104
2105    /// Much like `collapse_candidates_to_trait_pick`, this method allows us to collapse
2106    /// multiple conflicting picks if there is one pick whose trait container is a subtrait
2107    /// of the trait containers of all of the other picks.
2108    ///
2109    /// This implements RFC #3624.
2110    fn collapse_candidates_to_subtrait_pick(
2111        &self,
2112        self_ty: Ty<'tcx>,
2113        probes: &[(&Candidate<'tcx>, ProbeResult)],
2114    ) -> Option<Pick<'tcx>> {
2115        let mut child_candidate = probes[0].0;
2116        let mut child_trait = child_candidate.item.trait_container(self.tcx)?;
2117        let mut supertraits: SsoHashSet<_> = supertrait_def_ids(self.tcx, child_trait).collect();
2118
2119        let mut remaining_candidates: Vec<_> = probes[1..].iter().map(|&(p, _)| p).collect();
2120        while !remaining_candidates.is_empty() {
2121            let mut made_progress = false;
2122            let mut next_round = vec![];
2123
2124            for remaining_candidate in remaining_candidates {
2125                let remaining_trait = remaining_candidate.item.trait_container(self.tcx)?;
2126                if supertraits.contains(&remaining_trait) {
2127                    made_progress = true;
2128                    continue;
2129                }
2130
2131                // This pick is not a supertrait of the `child_pick`.
2132                // Check if it's a subtrait of the `child_pick`, instead.
2133                // If it is, then it must have been a subtrait of every
2134                // other pick we've eliminated at this point. It will
2135                // take over at this point.
2136                let remaining_trait_supertraits: SsoHashSet<_> =
2137                    supertrait_def_ids(self.tcx, remaining_trait).collect();
2138                if remaining_trait_supertraits.contains(&child_trait) {
2139                    child_candidate = remaining_candidate;
2140                    child_trait = remaining_trait;
2141                    supertraits = remaining_trait_supertraits;
2142                    made_progress = true;
2143                    continue;
2144                }
2145
2146                // `child_pick` is not a supertrait of this pick.
2147                // Don't bail here, since we may be comparing two supertraits
2148                // of a common subtrait. These two supertraits won't be related
2149                // at all, but we will pick them up next round when we find their
2150                // child as we continue iterating in this round.
2151                next_round.push(remaining_candidate);
2152            }
2153
2154            if made_progress {
2155                // If we've made progress, iterate again.
2156                remaining_candidates = next_round;
2157            } else {
2158                // Otherwise, we must have at least two candidates which
2159                // are not related to each other at all.
2160                return None;
2161            }
2162        }
2163
2164        Some(Pick {
2165            item: child_candidate.item,
2166            kind: TraitPick,
2167            import_ids: child_candidate.import_ids.clone(),
2168            autoderefs: 0,
2169            autoref_or_ptr_adjustment: None,
2170            self_ty,
2171            unstable_candidates: vec![],
2172            shadowed_candidates: probes
2173                .iter()
2174                .map(|(c, _)| c.item)
2175                .filter(|item| item.def_id != child_candidate.item.def_id)
2176                .collect(),
2177            receiver_steps: None,
2178        })
2179    }
2180
2181    /// Similarly to `probe_for_return_type`, this method attempts to find the best matching
2182    /// candidate method where the method name may have been misspelled. Similarly to other
2183    /// edit distance based suggestions, we provide at most one such suggestion.
2184    #[instrument(level = "debug", skip(self))]
2185    pub(crate) fn probe_for_similar_candidate(
2186        &mut self,
2187    ) -> Result<Option<ty::AssocItem>, MethodError<'tcx>> {
2188        debug!("probing for method names similar to {:?}", self.method_name);
2189
2190        self.probe(|_| {
2191            let mut pcx = ProbeContext::new(
2192                self.fcx,
2193                self.span,
2194                self.mode,
2195                self.method_name,
2196                self.return_type,
2197                self.orig_steps_var_values,
2198                self.steps,
2199                self.scope_expr_id,
2200                IsSuggestion(true),
2201            );
2202            pcx.allow_similar_names = true;
2203            pcx.assemble_inherent_candidates();
2204            pcx.assemble_extension_candidates_for_all_traits();
2205
2206            let method_names = pcx.candidate_method_names(|_| true);
2207            pcx.allow_similar_names = false;
2208            let applicable_close_candidates: Vec<ty::AssocItem> = method_names
2209                .iter()
2210                .filter_map(|&method_name| {
2211                    pcx.reset();
2212                    pcx.method_name = Some(method_name);
2213                    pcx.assemble_inherent_candidates();
2214                    pcx.assemble_extension_candidates_for_all_traits();
2215                    pcx.pick_core(&mut Vec::new()).and_then(|pick| pick.ok()).map(|pick| pick.item)
2216                })
2217                .collect();
2218
2219            if applicable_close_candidates.is_empty() {
2220                Ok(None)
2221            } else {
2222                let best_name = {
2223                    let names = applicable_close_candidates
2224                        .iter()
2225                        .map(|cand| cand.name)
2226                        .collect::<Vec<Symbol>>();
2227                    find_best_match_for_name_with_substrings(
2228                        &names,
2229                        self.method_name.unwrap().name,
2230                        None,
2231                    )
2232                }
2233                .or_else(|| {
2234                    applicable_close_candidates
2235                        .iter()
2236                        .find(|cand| self.matches_by_doc_alias(cand.def_id))
2237                        .map(|cand| cand.name)
2238                });
2239                Ok(best_name.and_then(|best_name| {
2240                    applicable_close_candidates.into_iter().find(|method| method.name == best_name)
2241                }))
2242            }
2243        })
2244    }
2245
2246    ///////////////////////////////////////////////////////////////////////////
2247    // MISCELLANY
2248    fn has_applicable_self(&self, item: &ty::AssocItem) -> bool {
2249        // "Fast track" -- check for usage of sugar when in method call
2250        // mode.
2251        //
2252        // In Path mode (i.e., resolving a value like `T::next`), consider any
2253        // associated value (i.e., methods, constants) but not types.
2254        match self.mode {
2255            Mode::MethodCall => item.fn_has_self_parameter,
2256            Mode::Path => match item.kind {
2257                ty::AssocKind::Type => false,
2258                ty::AssocKind::Fn | ty::AssocKind::Const => true,
2259            },
2260        }
2261        // FIXME -- check for types that deref to `Self`,
2262        // like `Rc<Self>` and so on.
2263        //
2264        // Note also that the current code will break if this type
2265        // includes any of the type parameters defined on the method
2266        // -- but this could be overcome.
2267    }
2268
2269    fn record_static_candidate(&self, source: CandidateSource) {
2270        self.static_candidates.borrow_mut().push(source);
2271    }
2272
2273    #[instrument(level = "debug", skip(self))]
2274    fn xform_self_ty(
2275        &self,
2276        item: ty::AssocItem,
2277        impl_ty: Ty<'tcx>,
2278        args: GenericArgsRef<'tcx>,
2279    ) -> (Ty<'tcx>, Option<Ty<'tcx>>) {
2280        if item.kind == ty::AssocKind::Fn && self.mode == Mode::MethodCall {
2281            let sig = self.xform_method_sig(item.def_id, args);
2282            (sig.inputs()[0], Some(sig.output()))
2283        } else {
2284            (impl_ty, None)
2285        }
2286    }
2287
2288    #[instrument(level = "debug", skip(self))]
2289    fn xform_method_sig(&self, method: DefId, args: GenericArgsRef<'tcx>) -> ty::FnSig<'tcx> {
2290        let fn_sig = self.tcx.fn_sig(method);
2291        debug!(?fn_sig);
2292
2293        assert!(!args.has_escaping_bound_vars());
2294
2295        // It is possible for type parameters or early-bound lifetimes
2296        // to appear in the signature of `self`. The generic parameters
2297        // we are given do not include type/lifetime parameters for the
2298        // method yet. So create fresh variables here for those too,
2299        // if there are any.
2300        let generics = self.tcx.generics_of(method);
2301        assert_eq!(args.len(), generics.parent_count);
2302
2303        let xform_fn_sig = if generics.is_own_empty() {
2304            fn_sig.instantiate(self.tcx, args)
2305        } else {
2306            let args = GenericArgs::for_item(self.tcx, method, |param, _| {
2307                let i = param.index as usize;
2308                if i < args.len() {
2309                    args[i]
2310                } else {
2311                    match param.kind {
2312                        GenericParamDefKind::Lifetime => {
2313                            // In general, during probe we erase regions.
2314                            self.tcx.lifetimes.re_erased.into()
2315                        }
2316                        GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => {
2317                            self.var_for_def(self.span, param)
2318                        }
2319                    }
2320                }
2321            });
2322            fn_sig.instantiate(self.tcx, args)
2323        };
2324
2325        self.tcx.instantiate_bound_regions_with_erased(xform_fn_sig)
2326    }
2327
2328    /// Determine if the given associated item type is relevant in the current context.
2329    fn is_relevant_kind_for_mode(&self, kind: ty::AssocKind) -> bool {
2330        match (self.mode, kind) {
2331            (Mode::MethodCall, ty::AssocKind::Fn) => true,
2332            (Mode::Path, ty::AssocKind::Const | ty::AssocKind::Fn) => true,
2333            _ => false,
2334        }
2335    }
2336
2337    /// Determine if the associated item with the given DefId matches
2338    /// the desired name via a doc alias.
2339    fn matches_by_doc_alias(&self, def_id: DefId) -> bool {
2340        let Some(method) = self.method_name else {
2341            return false;
2342        };
2343        let Some(local_def_id) = def_id.as_local() else {
2344            return false;
2345        };
2346        let hir_id = self.fcx.tcx.local_def_id_to_hir_id(local_def_id);
2347        let attrs = self.fcx.tcx.hir().attrs(hir_id);
2348        for attr in attrs {
2349            if sym::doc == attr.name_or_empty() {
2350            } else if sym::rustc_confusables == attr.name_or_empty() {
2351                let Some(confusables) = attr.meta_item_list() else {
2352                    continue;
2353                };
2354                // #[rustc_confusables("foo", "bar"))]
2355                for n in confusables {
2356                    if let Some(lit) = n.lit()
2357                        && method.name == lit.symbol
2358                    {
2359                        return true;
2360                    }
2361                }
2362                continue;
2363            } else {
2364                continue;
2365            };
2366            let Some(values) = attr.meta_item_list() else {
2367                continue;
2368            };
2369            for v in values {
2370                if v.name_or_empty() != sym::alias {
2371                    continue;
2372                }
2373                if let Some(nested) = v.meta_item_list() {
2374                    // #[doc(alias("foo", "bar"))]
2375                    for n in nested {
2376                        if let Some(lit) = n.lit()
2377                            && method.name == lit.symbol
2378                        {
2379                            return true;
2380                        }
2381                    }
2382                } else if let Some(meta) = v.meta_item()
2383                    && let Some(lit) = meta.name_value_literal()
2384                    && method.name == lit.symbol
2385                {
2386                    // #[doc(alias = "foo")]
2387                    return true;
2388                }
2389            }
2390        }
2391        false
2392    }
2393
2394    /// Finds the method with the appropriate name (or return type, as the case may be). If
2395    /// `allow_similar_names` is set, find methods with close-matching names.
2396    // The length of the returned iterator is nearly always 0 or 1 and this
2397    // method is fairly hot.
2398    fn impl_or_trait_item(&self, def_id: DefId) -> SmallVec<[ty::AssocItem; 1]> {
2399        if let Some(name) = self.method_name {
2400            if self.allow_similar_names {
2401                let max_dist = max(name.as_str().len(), 3) / 3;
2402                self.tcx
2403                    .associated_items(def_id)
2404                    .in_definition_order()
2405                    .filter(|x| {
2406                        if !self.is_relevant_kind_for_mode(x.kind) {
2407                            return false;
2408                        }
2409                        if self.matches_by_doc_alias(x.def_id) {
2410                            return true;
2411                        }
2412                        match edit_distance_with_substrings(
2413                            name.as_str(),
2414                            x.name.as_str(),
2415                            max_dist,
2416                        ) {
2417                            Some(d) => d > 0,
2418                            None => false,
2419                        }
2420                    })
2421                    .copied()
2422                    .collect()
2423            } else {
2424                self.fcx
2425                    .associated_value(def_id, name)
2426                    .filter(|x| self.is_relevant_kind_for_mode(x.kind))
2427                    .map_or_else(SmallVec::new, |x| SmallVec::from_buf([x]))
2428            }
2429        } else {
2430            self.tcx
2431                .associated_items(def_id)
2432                .in_definition_order()
2433                .filter(|x| self.is_relevant_kind_for_mode(x.kind))
2434                .copied()
2435                .collect()
2436        }
2437    }
2438}
2439
2440impl<'tcx> Candidate<'tcx> {
2441    fn to_unadjusted_pick(
2442        &self,
2443        self_ty: Ty<'tcx>,
2444        unstable_candidates: Vec<(Candidate<'tcx>, Symbol)>,
2445    ) -> Pick<'tcx> {
2446        Pick {
2447            item: self.item,
2448            kind: match self.kind {
2449                InherentImplCandidate { .. } => InherentImplPick,
2450                ObjectCandidate(_) => ObjectPick,
2451                TraitCandidate(_) => TraitPick,
2452                WhereClauseCandidate(trait_ref) => {
2453                    // Only trait derived from where-clauses should
2454                    // appear here, so they should not contain any
2455                    // inference variables or other artifacts. This
2456                    // means they are safe to put into the
2457                    // `WhereClausePick`.
2458                    assert!(
2459                        !trait_ref.skip_binder().args.has_infer()
2460                            && !trait_ref.skip_binder().args.has_placeholders()
2461                    );
2462
2463                    WhereClausePick(trait_ref)
2464                }
2465            },
2466            import_ids: self.import_ids.clone(),
2467            autoderefs: 0,
2468            autoref_or_ptr_adjustment: None,
2469            self_ty,
2470            unstable_candidates,
2471            receiver_steps: match self.kind {
2472                InherentImplCandidate { receiver_steps, .. } => Some(receiver_steps),
2473                _ => None,
2474            },
2475            shadowed_candidates: vec![],
2476        }
2477    }
2478}