rustc_mir_transform/coverage/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
pub(super) mod query;

mod counters;
mod graph;
mod mappings;
mod spans;
#[cfg(test)]
mod tests;
mod unexpand;

use rustc_hir as hir;
use rustc_hir::intravisit::{Visitor, walk_expr};
use rustc_middle::hir::map::Map;
use rustc_middle::hir::nested_filter;
use rustc_middle::mir::coverage::{
    CoverageKind, DecisionInfo, FunctionCoverageInfo, Mapping, MappingKind, SourceRegion,
};
use rustc_middle::mir::{
    self, BasicBlock, BasicBlockData, SourceInfo, Statement, StatementKind, Terminator,
    TerminatorKind,
};
use rustc_middle::ty::TyCtxt;
use rustc_span::def_id::LocalDefId;
use rustc_span::source_map::SourceMap;
use rustc_span::{BytePos, Pos, RelativeBytePos, Span, Symbol};
use tracing::{debug, debug_span, instrument, trace};

use crate::coverage::counters::{CounterIncrementSite, CoverageCounters};
use crate::coverage::graph::CoverageGraph;
use crate::coverage::mappings::ExtractedMappings;

/// Inserts `StatementKind::Coverage` statements that either instrument the binary with injected
/// counters, via intrinsic `llvm.instrprof.increment`, and/or inject metadata used during codegen
/// to construct the coverage map.
pub(super) struct InstrumentCoverage;

impl<'tcx> crate::MirPass<'tcx> for InstrumentCoverage {
    fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
        sess.instrument_coverage()
    }

    fn run_pass(&self, tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) {
        let mir_source = mir_body.source;

        // This pass runs after MIR promotion, but before promoted MIR starts to
        // be transformed, so it should never see promoted MIR.
        assert!(mir_source.promoted.is_none());

        let def_id = mir_source.def_id().expect_local();

        if !tcx.is_eligible_for_coverage(def_id) {
            trace!("InstrumentCoverage skipped for {def_id:?} (not eligible)");
            return;
        }

        // An otherwise-eligible function is still skipped if its start block
        // is known to be unreachable.
        match mir_body.basic_blocks[mir::START_BLOCK].terminator().kind {
            TerminatorKind::Unreachable => {
                trace!("InstrumentCoverage skipped for unreachable `START_BLOCK`");
                return;
            }
            _ => {}
        }

        instrument_function_for_coverage(tcx, mir_body);
    }
}

fn instrument_function_for_coverage<'tcx>(tcx: TyCtxt<'tcx>, mir_body: &mut mir::Body<'tcx>) {
    let def_id = mir_body.source.def_id();
    let _span = debug_span!("instrument_function_for_coverage", ?def_id).entered();

    let hir_info = extract_hir_info(tcx, def_id.expect_local());
    let basic_coverage_blocks = CoverageGraph::from_mir(mir_body);

    ////////////////////////////////////////////////////
    // Extract coverage spans and other mapping info from MIR.
    let extracted_mappings = mappings::extract_all_mapping_info_from_mir(
        tcx,
        mir_body,
        &hir_info,
        &basic_coverage_blocks,
    );

    ////////////////////////////////////////////////////
    // Create an optimized mix of `Counter`s and `Expression`s for the `CoverageGraph`. Ensure
    // every coverage span has a `Counter` or `Expression` assigned to its `BasicCoverageBlock`
    // and all `Expression` dependencies (operands) are also generated, for any other
    // `BasicCoverageBlock`s not already associated with a coverage span.
    let bcbs_with_counter_mappings = extracted_mappings.all_bcbs_with_counter_mappings();
    if bcbs_with_counter_mappings.is_empty() {
        // No relevant spans were found in MIR, so skip instrumenting this function.
        return;
    }

    let coverage_counters =
        CoverageCounters::make_bcb_counters(&basic_coverage_blocks, &bcbs_with_counter_mappings);

    let mappings = create_mappings(tcx, &hir_info, &extracted_mappings, &coverage_counters);
    if mappings.is_empty() {
        // No spans could be converted into valid mappings, so skip this function.
        debug!("no spans could be converted into valid mappings; skipping");
        return;
    }

    inject_coverage_statements(
        mir_body,
        &basic_coverage_blocks,
        &extracted_mappings,
        &coverage_counters,
    );

    inject_mcdc_statements(mir_body, &basic_coverage_blocks, &extracted_mappings);

    let mcdc_num_condition_bitmaps = extracted_mappings
        .mcdc_mappings
        .iter()
        .map(|&(mappings::MCDCDecision { decision_depth, .. }, _)| decision_depth)
        .max()
        .map_or(0, |max| usize::from(max) + 1);

    mir_body.function_coverage_info = Some(Box::new(FunctionCoverageInfo {
        function_source_hash: hir_info.function_source_hash,
        num_counters: coverage_counters.num_counters(),
        mcdc_bitmap_bits: extracted_mappings.mcdc_bitmap_bits,
        expressions: coverage_counters.into_expressions(),
        mappings,
        mcdc_num_condition_bitmaps,
    }));
}

/// For each coverage span extracted from MIR, create a corresponding
/// mapping.
///
/// Precondition: All BCBs corresponding to those spans have been given
/// coverage counters.
fn create_mappings<'tcx>(
    tcx: TyCtxt<'tcx>,
    hir_info: &ExtractedHirInfo,
    extracted_mappings: &ExtractedMappings,
    coverage_counters: &CoverageCounters,
) -> Vec<Mapping> {
    let source_map = tcx.sess.source_map();
    let body_span = hir_info.body_span;

    let source_file = source_map.lookup_source_file(body_span.lo());

    use rustc_session::RemapFileNameExt;
    use rustc_session::config::RemapPathScopeComponents;
    let file_name = Symbol::intern(
        &source_file.name.for_scope(tcx.sess, RemapPathScopeComponents::MACRO).to_string_lossy(),
    );

    let term_for_bcb =
        |bcb| coverage_counters.term_for_bcb(bcb).expect("all BCBs with spans were given counters");
    let region_for_span = |span: Span| make_source_region(source_map, file_name, span, body_span);

    // Fully destructure the mappings struct to make sure we don't miss any kinds.
    let ExtractedMappings {
        num_bcbs: _,
        code_mappings,
        branch_pairs,
        mcdc_bitmap_bits: _,
        mcdc_degraded_branches,
        mcdc_mappings,
    } = extracted_mappings;
    let mut mappings = Vec::new();

    mappings.extend(code_mappings.iter().filter_map(
        // Ordinary code mappings are the simplest kind.
        |&mappings::CodeMapping { span, bcb }| {
            let source_region = region_for_span(span)?;
            let kind = MappingKind::Code(term_for_bcb(bcb));
            Some(Mapping { kind, source_region })
        },
    ));

    mappings.extend(branch_pairs.iter().filter_map(
        |&mappings::BranchPair { span, true_bcb, false_bcb }| {
            let true_term = term_for_bcb(true_bcb);
            let false_term = term_for_bcb(false_bcb);
            let kind = MappingKind::Branch { true_term, false_term };
            let source_region = region_for_span(span)?;
            Some(Mapping { kind, source_region })
        },
    ));

    let term_for_bcb =
        |bcb| coverage_counters.term_for_bcb(bcb).expect("all BCBs with spans were given counters");

    // MCDC branch mappings are appended with their decisions in case decisions were ignored.
    mappings.extend(mcdc_degraded_branches.iter().filter_map(
        |&mappings::MCDCBranch {
             span,
             true_bcb,
             false_bcb,
             condition_info: _,
             true_index: _,
             false_index: _,
         }| {
            let source_region = region_for_span(span)?;
            let true_term = term_for_bcb(true_bcb);
            let false_term = term_for_bcb(false_bcb);
            Some(Mapping { kind: MappingKind::Branch { true_term, false_term }, source_region })
        },
    ));

    for (decision, branches) in mcdc_mappings {
        let num_conditions = branches.len() as u16;
        let conditions = branches
            .into_iter()
            .filter_map(
                |&mappings::MCDCBranch {
                     span,
                     true_bcb,
                     false_bcb,
                     condition_info,
                     true_index: _,
                     false_index: _,
                 }| {
                    let source_region = region_for_span(span)?;
                    let true_term = term_for_bcb(true_bcb);
                    let false_term = term_for_bcb(false_bcb);
                    Some(Mapping {
                        kind: MappingKind::MCDCBranch {
                            true_term,
                            false_term,
                            mcdc_params: condition_info,
                        },
                        source_region,
                    })
                },
            )
            .collect::<Vec<_>>();

        if conditions.len() == num_conditions as usize
            && let Some(source_region) = region_for_span(decision.span)
        {
            // LLVM requires end index for counter mapping regions.
            let kind = MappingKind::MCDCDecision(DecisionInfo {
                bitmap_idx: (decision.bitmap_idx + decision.num_test_vectors) as u32,
                num_conditions,
            });
            mappings.extend(
                std::iter::once(Mapping { kind, source_region }).chain(conditions.into_iter()),
            );
        } else {
            mappings.extend(conditions.into_iter().map(|mapping| {
                let MappingKind::MCDCBranch { true_term, false_term, mcdc_params: _ } =
                    mapping.kind
                else {
                    unreachable!("all mappings here are MCDCBranch as shown above");
                };
                Mapping {
                    kind: MappingKind::Branch { true_term, false_term },
                    source_region: mapping.source_region,
                }
            }))
        }
    }

    mappings
}

/// For each BCB node or BCB edge that has an associated coverage counter,
/// inject any necessary coverage statements into MIR.
fn inject_coverage_statements<'tcx>(
    mir_body: &mut mir::Body<'tcx>,
    basic_coverage_blocks: &CoverageGraph,
    extracted_mappings: &ExtractedMappings,
    coverage_counters: &CoverageCounters,
) {
    // Inject counter-increment statements into MIR.
    for (id, counter_increment_site) in coverage_counters.counter_increment_sites() {
        // Determine the block to inject a counter-increment statement into.
        // For BCB nodes this is just their first block, but for edges we need
        // to create a new block between the two BCBs, and inject into that.
        let target_bb = match *counter_increment_site {
            CounterIncrementSite::Node { bcb } => basic_coverage_blocks[bcb].leader_bb(),
            CounterIncrementSite::Edge { from_bcb, to_bcb } => {
                // Create a new block between the last block of `from_bcb` and
                // the first block of `to_bcb`.
                let from_bb = basic_coverage_blocks[from_bcb].last_bb();
                let to_bb = basic_coverage_blocks[to_bcb].leader_bb();

                let new_bb = inject_edge_counter_basic_block(mir_body, from_bb, to_bb);
                debug!(
                    "Edge {from_bcb:?} (last {from_bb:?}) -> {to_bcb:?} (leader {to_bb:?}) \
                    requires a new MIR BasicBlock {new_bb:?} for counter increment {id:?}",
                );
                new_bb
            }
        };

        inject_statement(mir_body, CoverageKind::CounterIncrement { id }, target_bb);
    }

    // For each counter expression that is directly associated with at least one
    // span, we inject an "expression-used" statement, so that coverage codegen
    // can check whether the injected statement survived MIR optimization.
    // (BCB edges can't have spans, so we only need to process BCB nodes here.)
    //
    // We only do this for ordinary `Code` mappings, because branch and MC/DC
    // mappings might have expressions that don't correspond to any single
    // point in the control-flow graph.
    //
    // See the code in `rustc_codegen_llvm::coverageinfo::map_data` that deals
    // with "expressions seen" and "zero terms".
    let eligible_bcbs = extracted_mappings.bcbs_with_ordinary_code_mappings();
    for (bcb, expression_id) in coverage_counters
        .bcb_nodes_with_coverage_expressions()
        .filter(|&(bcb, _)| eligible_bcbs.contains(bcb))
    {
        inject_statement(
            mir_body,
            CoverageKind::ExpressionUsed { id: expression_id },
            basic_coverage_blocks[bcb].leader_bb(),
        );
    }
}

/// For each conditions inject statements to update condition bitmap after it has been evaluated.
/// For each decision inject statements to update test vector bitmap after it has been evaluated.
fn inject_mcdc_statements<'tcx>(
    mir_body: &mut mir::Body<'tcx>,
    basic_coverage_blocks: &CoverageGraph,
    extracted_mappings: &ExtractedMappings,
) {
    for (decision, conditions) in &extracted_mappings.mcdc_mappings {
        // Inject test vector update first because `inject_statement` always insert new statement at head.
        for &end in &decision.end_bcbs {
            let end_bb = basic_coverage_blocks[end].leader_bb();
            inject_statement(
                mir_body,
                CoverageKind::TestVectorBitmapUpdate {
                    bitmap_idx: decision.bitmap_idx as u32,
                    decision_depth: decision.decision_depth,
                },
                end_bb,
            );
        }

        for &mappings::MCDCBranch {
            span: _,
            true_bcb,
            false_bcb,
            condition_info: _,
            true_index,
            false_index,
        } in conditions
        {
            for (index, bcb) in [(false_index, false_bcb), (true_index, true_bcb)] {
                let bb = basic_coverage_blocks[bcb].leader_bb();
                inject_statement(
                    mir_body,
                    CoverageKind::CondBitmapUpdate {
                        index: index as u32,
                        decision_depth: decision.decision_depth,
                    },
                    bb,
                );
            }
        }
    }
}

/// Given two basic blocks that have a control-flow edge between them, creates
/// and returns a new block that sits between those blocks.
fn inject_edge_counter_basic_block(
    mir_body: &mut mir::Body<'_>,
    from_bb: BasicBlock,
    to_bb: BasicBlock,
) -> BasicBlock {
    let span = mir_body[from_bb].terminator().source_info.span.shrink_to_hi();
    let new_bb = mir_body.basic_blocks_mut().push(BasicBlockData {
        statements: vec![], // counter will be injected here
        terminator: Some(Terminator {
            source_info: SourceInfo::outermost(span),
            kind: TerminatorKind::Goto { target: to_bb },
        }),
        is_cleanup: false,
    });
    let edge_ref = mir_body[from_bb]
        .terminator_mut()
        .successors_mut()
        .find(|successor| **successor == to_bb)
        .expect("from_bb should have a successor for to_bb");
    *edge_ref = new_bb;
    new_bb
}

fn inject_statement(mir_body: &mut mir::Body<'_>, counter_kind: CoverageKind, bb: BasicBlock) {
    debug!("  injecting statement {counter_kind:?} for {bb:?}");
    let data = &mut mir_body[bb];
    let source_info = data.terminator().source_info;
    let statement = Statement { source_info, kind: StatementKind::Coverage(counter_kind) };
    data.statements.insert(0, statement);
}

/// Convert the Span into its file name, start line and column, and end line and column.
///
/// Line numbers and column numbers are 1-based. Unlike most column numbers emitted by
/// the compiler, these column numbers are denoted in **bytes**, because that's what
/// LLVM's `llvm-cov` tool expects to see in coverage maps.
///
/// Returns `None` if the conversion failed for some reason. This shouldn't happen,
/// but it's hard to rule out entirely (especially in the presence of complex macros
/// or other expansions), and if it does happen then skipping a span or function is
/// better than an ICE or `llvm-cov` failure that the user might have no way to avoid.
#[instrument(level = "debug", skip(source_map))]
fn make_source_region(
    source_map: &SourceMap,
    file_name: Symbol,
    span: Span,
    body_span: Span,
) -> Option<SourceRegion> {
    let lo = span.lo();
    let hi = span.hi();

    let file = source_map.lookup_source_file(lo);
    if !file.contains(hi) {
        debug!(?span, ?file, ?lo, ?hi, "span crosses multiple files; skipping");
        return None;
    }

    // Column numbers need to be in bytes, so we can't use the more convenient
    // `SourceMap` methods for looking up file coordinates.
    let rpos_and_line_and_byte_column = |pos: BytePos| -> Option<(RelativeBytePos, usize, usize)> {
        let rpos = file.relative_position(pos);
        let line_index = file.lookup_line(rpos)?;
        let line_start = file.lines()[line_index];
        // Line numbers and column numbers are 1-based, so add 1 to each.
        Some((rpos, line_index + 1, (rpos - line_start).to_usize() + 1))
    };

    let (lo_rpos, mut start_line, mut start_col) = rpos_and_line_and_byte_column(lo)?;
    let (hi_rpos, mut end_line, mut end_col) = rpos_and_line_and_byte_column(hi)?;

    // If the span is empty, try to expand it horizontally by one character's
    // worth of bytes, so that it is more visible in `llvm-cov` reports.
    // We do this after resolving line/column numbers, so that empty spans at the
    // end of a line get an extra column instead of wrapping to the next line.
    if span.is_empty()
        && body_span.contains(span)
        && let Some(src) = &file.src
    {
        // Prefer to expand the end position, if it won't go outside the body span.
        if hi < body_span.hi() {
            let hi_rpos = hi_rpos.to_usize();
            let nudge_bytes = src.ceil_char_boundary(hi_rpos + 1) - hi_rpos;
            end_col += nudge_bytes;
        } else if lo > body_span.lo() {
            let lo_rpos = lo_rpos.to_usize();
            let nudge_bytes = lo_rpos - src.floor_char_boundary(lo_rpos - 1);
            // Subtract the nudge, but don't go below column 1.
            start_col = start_col.saturating_sub(nudge_bytes).max(1);
        }
        // If neither nudge could be applied, stick with the empty span coordinates.
    }

    // Apply an offset so that code in doctests has correct line numbers.
    // FIXME(#79417): Currently we have no way to offset doctest _columns_.
    start_line = source_map.doctest_offset_line(&file.name, start_line);
    end_line = source_map.doctest_offset_line(&file.name, end_line);

    check_source_region(SourceRegion {
        file_name,
        start_line: start_line as u32,
        start_col: start_col as u32,
        end_line: end_line as u32,
        end_col: end_col as u32,
    })
}

/// If `llvm-cov` sees a source region that is improperly ordered (end < start),
/// it will immediately exit with a fatal error. To prevent that from happening,
/// discard regions that are improperly ordered, or might be interpreted in a
/// way that makes them improperly ordered.
fn check_source_region(source_region: SourceRegion) -> Option<SourceRegion> {
    let SourceRegion { file_name: _, start_line, start_col, end_line, end_col } = source_region;

    // Line/column coordinates are supposed to be 1-based. If we ever emit
    // coordinates of 0, `llvm-cov` might misinterpret them.
    let all_nonzero = [start_line, start_col, end_line, end_col].into_iter().all(|x| x != 0);
    // Coverage mappings use the high bit of `end_col` to indicate that a
    // region is actually a "gap" region, so make sure it's unset.
    let end_col_has_high_bit_unset = (end_col & (1 << 31)) == 0;
    // If a region is improperly ordered (end < start), `llvm-cov` will exit
    // with a fatal error, which is inconvenient for users and hard to debug.
    let is_ordered = (start_line, start_col) <= (end_line, end_col);

    if all_nonzero && end_col_has_high_bit_unset && is_ordered {
        Some(source_region)
    } else {
        debug!(
            ?source_region,
            ?all_nonzero,
            ?end_col_has_high_bit_unset,
            ?is_ordered,
            "Skipping source region that would be misinterpreted or rejected by LLVM"
        );
        // If this happens in a debug build, ICE to make it easier to notice.
        debug_assert!(false, "Improper source region: {source_region:?}");
        None
    }
}

/// Function information extracted from HIR by the coverage instrumentor.
#[derive(Debug)]
struct ExtractedHirInfo {
    function_source_hash: u64,
    is_async_fn: bool,
    /// The span of the function's signature, extended to the start of `body_span`.
    /// Must have the same context and filename as the body span.
    fn_sig_span_extended: Option<Span>,
    body_span: Span,
    /// "Holes" are regions within the body span that should not be included in
    /// coverage spans for this function (e.g. closures and nested items).
    hole_spans: Vec<Span>,
}

fn extract_hir_info<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> ExtractedHirInfo {
    // FIXME(#79625): Consider improving MIR to provide the information needed, to avoid going back
    // to HIR for it.

    let hir_node = tcx.hir_node_by_def_id(def_id);
    let fn_body_id = hir_node.body_id().expect("HIR node is a function with body");
    let hir_body = tcx.hir().body(fn_body_id);

    let maybe_fn_sig = hir_node.fn_sig();
    let is_async_fn = maybe_fn_sig.is_some_and(|fn_sig| fn_sig.header.is_async());

    let mut body_span = hir_body.value.span;

    use hir::{Closure, Expr, ExprKind, Node};
    // Unexpand a closure's body span back to the context of its declaration.
    // This helps with closure bodies that consist of just a single bang-macro,
    // and also with closure bodies produced by async desugaring.
    if let Node::Expr(&Expr { kind: ExprKind::Closure(&Closure { fn_decl_span, .. }), .. }) =
        hir_node
    {
        body_span = body_span.find_ancestor_in_same_ctxt(fn_decl_span).unwrap_or(body_span);
    }

    // The actual signature span is only used if it has the same context and
    // filename as the body, and precedes the body.
    let fn_sig_span_extended = maybe_fn_sig
        .map(|fn_sig| fn_sig.span)
        .filter(|&fn_sig_span| {
            let source_map = tcx.sess.source_map();
            let file_idx = |span: Span| source_map.lookup_source_file_idx(span.lo());

            fn_sig_span.eq_ctxt(body_span)
                && fn_sig_span.hi() <= body_span.lo()
                && file_idx(fn_sig_span) == file_idx(body_span)
        })
        // If so, extend it to the start of the body span.
        .map(|fn_sig_span| fn_sig_span.with_hi(body_span.lo()));

    let function_source_hash = hash_mir_source(tcx, hir_body);

    let hole_spans = extract_hole_spans_from_hir(tcx, body_span, hir_body);

    ExtractedHirInfo {
        function_source_hash,
        is_async_fn,
        fn_sig_span_extended,
        body_span,
        hole_spans,
    }
}

fn hash_mir_source<'tcx>(tcx: TyCtxt<'tcx>, hir_body: &'tcx hir::Body<'tcx>) -> u64 {
    // FIXME(cjgillot) Stop hashing HIR manually here.
    let owner = hir_body.id().hir_id.owner;
    tcx.hir_owner_nodes(owner).opt_hash_including_bodies.unwrap().to_smaller_hash().as_u64()
}

fn extract_hole_spans_from_hir<'tcx>(
    tcx: TyCtxt<'tcx>,
    body_span: Span, // Usually `hir_body.value.span`, but not always
    hir_body: &hir::Body<'tcx>,
) -> Vec<Span> {
    struct HolesVisitor<'hir, F> {
        hir: Map<'hir>,
        visit_hole_span: F,
    }

    impl<'hir, F: FnMut(Span)> Visitor<'hir> for HolesVisitor<'hir, F> {
        /// - We need `NestedFilter::INTRA = true` so that `visit_item` will be called.
        /// - Bodies of nested items don't actually get visited, because of the
        ///   `visit_item` override.
        /// - For nested bodies that are not part of an item, we do want to visit any
        ///   items contained within them.
        type NestedFilter = nested_filter::All;

        fn nested_visit_map(&mut self) -> Self::Map {
            self.hir
        }

        fn visit_item(&mut self, item: &'hir hir::Item<'hir>) {
            (self.visit_hole_span)(item.span);
            // Having visited this item, we don't care about its children,
            // so don't call `walk_item`.
        }

        // We override `visit_expr` instead of the more specific expression
        // visitors, so that we have direct access to the expression span.
        fn visit_expr(&mut self, expr: &'hir hir::Expr<'hir>) {
            match expr.kind {
                hir::ExprKind::Closure(_) | hir::ExprKind::ConstBlock(_) => {
                    (self.visit_hole_span)(expr.span);
                    // Having visited this expression, we don't care about its
                    // children, so don't call `walk_expr`.
                }

                // For other expressions, recursively visit as normal.
                _ => walk_expr(self, expr),
            }
        }
    }

    let mut hole_spans = vec![];
    let mut visitor = HolesVisitor {
        hir: tcx.hir(),
        visit_hole_span: |hole_span| {
            // Discard any holes that aren't directly visible within the body span.
            if body_span.contains(hole_span) && body_span.eq_ctxt(hole_span) {
                hole_spans.push(hole_span);
            }
        },
    };

    visitor.visit_body(hir_body);
    hole_spans
}