rustc_type_ir/
relate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
use std::iter;

use derive_where::derive_where;
use rustc_ast_ir::Mutability;
use tracing::{instrument, trace};

use crate::error::{ExpectedFound, TypeError};
use crate::fold::TypeFoldable;
use crate::inherent::*;
use crate::{self as ty, Interner};

pub mod combine;
pub mod solver_relating;

pub type RelateResult<I, T> = Result<T, TypeError<I>>;

/// Whether aliases should be related structurally or not. Used
/// to adjust the behavior of generalization and combine.
///
/// This should always be `No` unless in a few special-cases when
/// instantiating canonical responses and in the new solver. Each
/// such case should have a comment explaining why it is used.
#[derive(Debug, Copy, Clone)]
pub enum StructurallyRelateAliases {
    Yes,
    No,
}

/// Extra information about why we ended up with a particular variance.
/// This is only used to add more information to error messages, and
/// has no effect on soundness. While choosing the 'wrong' `VarianceDiagInfo`
/// may lead to confusing notes in error messages, it will never cause
/// a miscompilation or unsoundness.
///
/// When in doubt, use `VarianceDiagInfo::default()`
#[derive_where(Clone, Copy, PartialEq, Eq, Debug, Default; I: Interner)]
pub enum VarianceDiagInfo<I: Interner> {
    /// No additional information - this is the default.
    /// We will not add any additional information to error messages.
    #[derive_where(default)]
    None,
    /// We switched our variance because a generic argument occurs inside
    /// the invariant generic argument of another type.
    Invariant {
        /// The generic type containing the generic parameter
        /// that changes the variance (e.g. `*mut T`, `MyStruct<T>`)
        ty: I::Ty,
        /// The index of the generic parameter being used
        /// (e.g. `0` for `*mut T`, `1` for `MyStruct<'CovariantParam, 'InvariantParam>`)
        param_index: u32,
    },
}

impl<I: Interner> VarianceDiagInfo<I> {
    /// Mirrors `Variance::xform` - used to 'combine' the existing
    /// and new `VarianceDiagInfo`s when our variance changes.
    pub fn xform(self, other: VarianceDiagInfo<I>) -> VarianceDiagInfo<I> {
        // For now, just use the first `VarianceDiagInfo::Invariant` that we see
        match self {
            VarianceDiagInfo::None => other,
            VarianceDiagInfo::Invariant { .. } => self,
        }
    }
}

pub trait TypeRelation<I: Interner>: Sized {
    fn cx(&self) -> I;

    /// Generic relation routine suitable for most anything.
    fn relate<T: Relate<I>>(&mut self, a: T, b: T) -> RelateResult<I, T> {
        Relate::relate(self, a, b)
    }

    /// Relate the two args for the given item. The default
    /// is to look up the variance for the item and proceed
    /// accordingly.
    #[instrument(skip(self), level = "trace")]
    fn relate_item_args(
        &mut self,
        item_def_id: I::DefId,
        a_arg: I::GenericArgs,
        b_arg: I::GenericArgs,
    ) -> RelateResult<I, I::GenericArgs> {
        let cx = self.cx();
        let opt_variances = cx.variances_of(item_def_id);
        relate_args_with_variances(self, item_def_id, opt_variances, a_arg, b_arg, true)
    }

    /// Switch variance for the purpose of relating `a` and `b`.
    fn relate_with_variance<T: Relate<I>>(
        &mut self,
        variance: ty::Variance,
        info: VarianceDiagInfo<I>,
        a: T,
        b: T,
    ) -> RelateResult<I, T>;

    // Overridable relations. You shouldn't typically call these
    // directly, instead call `relate()`, which in turn calls
    // these. This is both more uniform but also allows us to add
    // additional hooks for other types in the future if needed
    // without making older code, which called `relate`, obsolete.

    fn tys(&mut self, a: I::Ty, b: I::Ty) -> RelateResult<I, I::Ty>;

    fn regions(&mut self, a: I::Region, b: I::Region) -> RelateResult<I, I::Region>;

    fn consts(&mut self, a: I::Const, b: I::Const) -> RelateResult<I, I::Const>;

    fn binders<T>(
        &mut self,
        a: ty::Binder<I, T>,
        b: ty::Binder<I, T>,
    ) -> RelateResult<I, ty::Binder<I, T>>
    where
        T: Relate<I>;
}

pub trait Relate<I: Interner>: TypeFoldable<I> + PartialEq + Copy {
    fn relate<R: TypeRelation<I>>(relation: &mut R, a: Self, b: Self) -> RelateResult<I, Self>;
}

///////////////////////////////////////////////////////////////////////////
// Relate impls

#[inline]
pub fn relate_args_invariantly<I: Interner, R: TypeRelation<I>>(
    relation: &mut R,
    a_arg: I::GenericArgs,
    b_arg: I::GenericArgs,
) -> RelateResult<I, I::GenericArgs> {
    relation.cx().mk_args_from_iter(iter::zip(a_arg.iter(), b_arg.iter()).map(|(a, b)| {
        relation.relate_with_variance(ty::Invariant, VarianceDiagInfo::default(), a, b)
    }))
}

pub fn relate_args_with_variances<I: Interner, R: TypeRelation<I>>(
    relation: &mut R,
    ty_def_id: I::DefId,
    variances: I::VariancesOf,
    a_arg: I::GenericArgs,
    b_arg: I::GenericArgs,
    fetch_ty_for_diag: bool,
) -> RelateResult<I, I::GenericArgs> {
    let cx = relation.cx();

    let mut cached_ty = None;
    let params = iter::zip(a_arg.iter(), b_arg.iter()).enumerate().map(|(i, (a, b))| {
        let variance = variances.get(i).unwrap();
        let variance_info = if variance == ty::Invariant && fetch_ty_for_diag {
            let ty = *cached_ty.get_or_insert_with(|| cx.type_of(ty_def_id).instantiate(cx, a_arg));
            VarianceDiagInfo::Invariant { ty, param_index: i.try_into().unwrap() }
        } else {
            VarianceDiagInfo::default()
        };
        relation.relate_with_variance(variance, variance_info, a, b)
    });

    cx.mk_args_from_iter(params)
}

impl<I: Interner> Relate<I> for ty::FnSig<I> {
    fn relate<R: TypeRelation<I>>(
        relation: &mut R,
        a: ty::FnSig<I>,
        b: ty::FnSig<I>,
    ) -> RelateResult<I, ty::FnSig<I>> {
        let cx = relation.cx();

        if a.c_variadic != b.c_variadic {
            return Err(TypeError::VariadicMismatch({
                let a = a.c_variadic;
                let b = b.c_variadic;
                ExpectedFound::new(true, a, b)
            }));
        }
        let safety = relation.relate(a.safety, b.safety)?;
        let abi = relation.relate(a.abi, b.abi)?;

        let a_inputs = a.inputs();
        let b_inputs = b.inputs();

        if a_inputs.len() != b_inputs.len() {
            return Err(TypeError::ArgCount);
        }

        let inputs_and_output = iter::zip(a_inputs.iter(), b_inputs.iter())
            .map(|(a, b)| ((a, b), false))
            .chain(iter::once(((a.output(), b.output()), true)))
            .map(|((a, b), is_output)| {
                if is_output {
                    relation.relate(a, b)
                } else {
                    relation.relate_with_variance(
                        ty::Contravariant,
                        VarianceDiagInfo::default(),
                        a,
                        b,
                    )
                }
            })
            .enumerate()
            .map(|(i, r)| match r {
                Err(TypeError::Sorts(exp_found) | TypeError::ArgumentSorts(exp_found, _)) => {
                    Err(TypeError::ArgumentSorts(exp_found, i))
                }
                Err(TypeError::Mutability | TypeError::ArgumentMutability(_)) => {
                    Err(TypeError::ArgumentMutability(i))
                }
                r => r,
            });
        Ok(ty::FnSig {
            inputs_and_output: cx.mk_type_list_from_iter(inputs_and_output)?,
            c_variadic: a.c_variadic,
            safety,
            abi,
        })
    }
}

impl<I: Interner> Relate<I> for ty::BoundConstness {
    fn relate<R: TypeRelation<I>>(
        _relation: &mut R,
        a: ty::BoundConstness,
        b: ty::BoundConstness,
    ) -> RelateResult<I, ty::BoundConstness> {
        if a != b {
            Err(TypeError::ConstnessMismatch(ExpectedFound::new(true, a, b)))
        } else {
            Ok(a)
        }
    }
}

impl<I: Interner> Relate<I> for ty::AliasTy<I> {
    fn relate<R: TypeRelation<I>>(
        relation: &mut R,
        a: ty::AliasTy<I>,
        b: ty::AliasTy<I>,
    ) -> RelateResult<I, ty::AliasTy<I>> {
        if a.def_id != b.def_id {
            Err(TypeError::ProjectionMismatched({
                let a = a.def_id;
                let b = b.def_id;
                ExpectedFound::new(true, a, b)
            }))
        } else {
            let args = match a.kind(relation.cx()) {
                ty::Opaque => relate_args_with_variances(
                    relation,
                    a.def_id,
                    relation.cx().variances_of(a.def_id),
                    a.args,
                    b.args,
                    false, // do not fetch `type_of(a_def_id)`, as it will cause a cycle
                )?,
                ty::Projection if relation.cx().is_impl_trait_in_trait(a.def_id) => {
                    relate_args_with_variances(
                        relation,
                        a.def_id,
                        relation.cx().variances_of(a.def_id),
                        a.args,
                        b.args,
                        false, // do not fetch `type_of(a_def_id)`, as it will cause a cycle
                    )?
                }
                ty::Projection | ty::Weak | ty::Inherent => {
                    relate_args_invariantly(relation, a.args, b.args)?
                }
            };
            Ok(ty::AliasTy::new_from_args(relation.cx(), a.def_id, args))
        }
    }
}

impl<I: Interner> Relate<I> for ty::AliasTerm<I> {
    fn relate<R: TypeRelation<I>>(
        relation: &mut R,
        a: ty::AliasTerm<I>,
        b: ty::AliasTerm<I>,
    ) -> RelateResult<I, ty::AliasTerm<I>> {
        if a.def_id != b.def_id {
            Err(TypeError::ProjectionMismatched({
                let a = a.def_id;
                let b = b.def_id;
                ExpectedFound::new(true, a, b)
            }))
        } else {
            let args = match a.kind(relation.cx()) {
                ty::AliasTermKind::OpaqueTy => relate_args_with_variances(
                    relation,
                    a.def_id,
                    relation.cx().variances_of(a.def_id),
                    a.args,
                    b.args,
                    false, // do not fetch `type_of(a_def_id)`, as it will cause a cycle
                )?,
                ty::AliasTermKind::ProjectionTy
                | ty::AliasTermKind::WeakTy
                | ty::AliasTermKind::InherentTy
                | ty::AliasTermKind::UnevaluatedConst
                | ty::AliasTermKind::ProjectionConst => {
                    relate_args_invariantly(relation, a.args, b.args)?
                }
            };
            Ok(ty::AliasTerm::new_from_args(relation.cx(), a.def_id, args))
        }
    }
}

impl<I: Interner> Relate<I> for ty::ExistentialProjection<I> {
    fn relate<R: TypeRelation<I>>(
        relation: &mut R,
        a: ty::ExistentialProjection<I>,
        b: ty::ExistentialProjection<I>,
    ) -> RelateResult<I, ty::ExistentialProjection<I>> {
        if a.def_id != b.def_id {
            Err(TypeError::ProjectionMismatched({
                let a = a.def_id;
                let b = b.def_id;
                ExpectedFound::new(true, a, b)
            }))
        } else {
            let term = relation.relate_with_variance(
                ty::Invariant,
                VarianceDiagInfo::default(),
                a.term,
                b.term,
            )?;
            let args = relation.relate_with_variance(
                ty::Invariant,
                VarianceDiagInfo::default(),
                a.args,
                b.args,
            )?;
            Ok(ty::ExistentialProjection { def_id: a.def_id, args, term })
        }
    }
}

impl<I: Interner> Relate<I> for ty::TraitRef<I> {
    fn relate<R: TypeRelation<I>>(
        relation: &mut R,
        a: ty::TraitRef<I>,
        b: ty::TraitRef<I>,
    ) -> RelateResult<I, ty::TraitRef<I>> {
        // Different traits cannot be related.
        if a.def_id != b.def_id {
            Err(TypeError::Traits({
                let a = a.def_id;
                let b = b.def_id;
                ExpectedFound::new(true, a, b)
            }))
        } else {
            let args = relate_args_invariantly(relation, a.args, b.args)?;
            Ok(ty::TraitRef::new_from_args(relation.cx(), a.def_id, args))
        }
    }
}

impl<I: Interner> Relate<I> for ty::ExistentialTraitRef<I> {
    fn relate<R: TypeRelation<I>>(
        relation: &mut R,
        a: ty::ExistentialTraitRef<I>,
        b: ty::ExistentialTraitRef<I>,
    ) -> RelateResult<I, ty::ExistentialTraitRef<I>> {
        // Different traits cannot be related.
        if a.def_id != b.def_id {
            Err(TypeError::Traits({
                let a = a.def_id;
                let b = b.def_id;
                ExpectedFound::new(true, a, b)
            }))
        } else {
            let args = relate_args_invariantly(relation, a.args, b.args)?;
            Ok(ty::ExistentialTraitRef { def_id: a.def_id, args })
        }
    }
}

/// Relates `a` and `b` structurally, calling the relation for all nested values.
/// Any semantic equality, e.g. of projections, and inference variables have to be
/// handled by the caller.
#[instrument(level = "trace", skip(relation), ret)]
pub fn structurally_relate_tys<I: Interner, R: TypeRelation<I>>(
    relation: &mut R,
    a: I::Ty,
    b: I::Ty,
) -> RelateResult<I, I::Ty> {
    let cx = relation.cx();
    match (a.kind(), b.kind()) {
        (ty::Infer(_), _) | (_, ty::Infer(_)) => {
            // The caller should handle these cases!
            panic!("var types encountered in structurally_relate_tys")
        }

        (ty::Bound(..), _) | (_, ty::Bound(..)) => {
            panic!("bound types encountered in structurally_relate_tys")
        }

        (ty::Error(guar), _) | (_, ty::Error(guar)) => Ok(Ty::new_error(cx, guar)),

        (ty::Never, _)
        | (ty::Char, _)
        | (ty::Bool, _)
        | (ty::Int(_), _)
        | (ty::Uint(_), _)
        | (ty::Float(_), _)
        | (ty::Str, _)
            if a == b =>
        {
            Ok(a)
        }

        (ty::Param(a_p), ty::Param(b_p)) if a_p.index() == b_p.index() => {
            // FIXME: Put this back
            //debug_assert_eq!(a_p.name(), b_p.name(), "param types with same index differ in name");
            Ok(a)
        }

        (ty::Placeholder(p1), ty::Placeholder(p2)) if p1 == p2 => Ok(a),

        (ty::Adt(a_def, a_args), ty::Adt(b_def, b_args)) if a_def == b_def => {
            let args = relation.relate_item_args(a_def.def_id(), a_args, b_args)?;
            Ok(Ty::new_adt(cx, a_def, args))
        }

        (ty::Foreign(a_id), ty::Foreign(b_id)) if a_id == b_id => Ok(Ty::new_foreign(cx, a_id)),

        (ty::Dynamic(a_obj, a_region, a_repr), ty::Dynamic(b_obj, b_region, b_repr))
            if a_repr == b_repr =>
        {
            Ok(Ty::new_dynamic(
                cx,
                relation.relate(a_obj, b_obj)?,
                relation.relate(a_region, b_region)?,
                a_repr,
            ))
        }

        (ty::Coroutine(a_id, a_args), ty::Coroutine(b_id, b_args)) if a_id == b_id => {
            // All Coroutine types with the same id represent
            // the (anonymous) type of the same coroutine expression. So
            // all of their regions should be equated.
            let args = relate_args_invariantly(relation, a_args, b_args)?;
            Ok(Ty::new_coroutine(cx, a_id, args))
        }

        (ty::CoroutineWitness(a_id, a_args), ty::CoroutineWitness(b_id, b_args))
            if a_id == b_id =>
        {
            // All CoroutineWitness types with the same id represent
            // the (anonymous) type of the same coroutine expression. So
            // all of their regions should be equated.
            let args = relate_args_invariantly(relation, a_args, b_args)?;
            Ok(Ty::new_coroutine_witness(cx, a_id, args))
        }

        (ty::Closure(a_id, a_args), ty::Closure(b_id, b_args)) if a_id == b_id => {
            // All Closure types with the same id represent
            // the (anonymous) type of the same closure expression. So
            // all of their regions should be equated.
            let args = relate_args_invariantly(relation, a_args, b_args)?;
            Ok(Ty::new_closure(cx, a_id, args))
        }

        (ty::CoroutineClosure(a_id, a_args), ty::CoroutineClosure(b_id, b_args))
            if a_id == b_id =>
        {
            let args = relate_args_invariantly(relation, a_args, b_args)?;
            Ok(Ty::new_coroutine_closure(cx, a_id, args))
        }

        (ty::RawPtr(a_ty, a_mutbl), ty::RawPtr(b_ty, b_mutbl)) => {
            if a_mutbl != b_mutbl {
                return Err(TypeError::Mutability);
            }

            let (variance, info) = match a_mutbl {
                Mutability::Not => (ty::Covariant, VarianceDiagInfo::None),
                Mutability::Mut => {
                    (ty::Invariant, VarianceDiagInfo::Invariant { ty: a, param_index: 0 })
                }
            };

            let ty = relation.relate_with_variance(variance, info, a_ty, b_ty)?;

            Ok(Ty::new_ptr(cx, ty, a_mutbl))
        }

        (ty::Ref(a_r, a_ty, a_mutbl), ty::Ref(b_r, b_ty, b_mutbl)) => {
            if a_mutbl != b_mutbl {
                return Err(TypeError::Mutability);
            }

            let (variance, info) = match a_mutbl {
                Mutability::Not => (ty::Covariant, VarianceDiagInfo::None),
                Mutability::Mut => {
                    (ty::Invariant, VarianceDiagInfo::Invariant { ty: a, param_index: 0 })
                }
            };

            let r = relation.relate(a_r, b_r)?;
            let ty = relation.relate_with_variance(variance, info, a_ty, b_ty)?;

            Ok(Ty::new_ref(cx, r, ty, a_mutbl))
        }

        (ty::Array(a_t, sz_a), ty::Array(b_t, sz_b)) => {
            let t = relation.relate(a_t, b_t)?;
            match relation.relate(sz_a, sz_b) {
                Ok(sz) => Ok(Ty::new_array_with_const_len(cx, t, sz)),
                Err(err) => {
                    // Check whether the lengths are both concrete/known values,
                    // but are unequal, for better diagnostics.
                    let sz_a = sz_a.try_to_target_usize(cx);
                    let sz_b = sz_b.try_to_target_usize(cx);

                    match (sz_a, sz_b) {
                        (Some(sz_a_val), Some(sz_b_val)) if sz_a_val != sz_b_val => Err(
                            TypeError::FixedArraySize(ExpectedFound::new(true, sz_a_val, sz_b_val)),
                        ),
                        _ => Err(err),
                    }
                }
            }
        }

        (ty::Slice(a_t), ty::Slice(b_t)) => {
            let t = relation.relate(a_t, b_t)?;
            Ok(Ty::new_slice(cx, t))
        }

        (ty::Tuple(as_), ty::Tuple(bs)) => {
            if as_.len() == bs.len() {
                Ok(Ty::new_tup_from_iter(
                    cx,
                    iter::zip(as_.iter(), bs.iter()).map(|(a, b)| relation.relate(a, b)),
                )?)
            } else if !(as_.is_empty() || bs.is_empty()) {
                Err(TypeError::TupleSize(ExpectedFound::new(true, as_.len(), bs.len())))
            } else {
                Err(TypeError::Sorts(ExpectedFound::new(true, a, b)))
            }
        }

        (ty::FnDef(a_def_id, a_args), ty::FnDef(b_def_id, b_args)) if a_def_id == b_def_id => {
            let args = relation.relate_item_args(a_def_id, a_args, b_args)?;
            Ok(Ty::new_fn_def(cx, a_def_id, args))
        }

        (ty::FnPtr(a_sig_tys, a_hdr), ty::FnPtr(b_sig_tys, b_hdr)) => {
            let fty = relation.relate(a_sig_tys.with(a_hdr), b_sig_tys.with(b_hdr))?;
            Ok(Ty::new_fn_ptr(cx, fty))
        }

        // Alias tend to mostly already be handled downstream due to normalization.
        (ty::Alias(a_kind, a_data), ty::Alias(b_kind, b_data)) => {
            let alias_ty = relation.relate(a_data, b_data)?;
            assert_eq!(a_kind, b_kind);
            Ok(Ty::new_alias(cx, a_kind, alias_ty))
        }

        (ty::Pat(a_ty, a_pat), ty::Pat(b_ty, b_pat)) => {
            let ty = relation.relate(a_ty, b_ty)?;
            let pat = relation.relate(a_pat, b_pat)?;
            Ok(Ty::new_pat(cx, ty, pat))
        }

        _ => Err(TypeError::Sorts(ExpectedFound::new(true, a, b))),
    }
}

/// Relates `a` and `b` structurally, calling the relation for all nested values.
/// Any semantic equality, e.g. of unevaluated consts, and inference variables have
/// to be handled by the caller.
///
/// FIXME: This is not totally structural, which probably should be fixed.
/// See the HACKs below.
pub fn structurally_relate_consts<I: Interner, R: TypeRelation<I>>(
    relation: &mut R,
    mut a: I::Const,
    mut b: I::Const,
) -> RelateResult<I, I::Const> {
    trace!(
        "structurally_relate_consts::<{}>(a = {:?}, b = {:?})",
        std::any::type_name::<R>(),
        a,
        b
    );
    let cx = relation.cx();

    if cx.features().generic_const_exprs() {
        a = cx.expand_abstract_consts(a);
        b = cx.expand_abstract_consts(b);
    }

    trace!(
        "structurally_relate_consts::<{}>(normed_a = {:?}, normed_b = {:?})",
        std::any::type_name::<R>(),
        a,
        b
    );

    // Currently, the values that can be unified are primitive types,
    // and those that derive both `PartialEq` and `Eq`, corresponding
    // to structural-match types.
    let is_match = match (a.kind(), b.kind()) {
        (ty::ConstKind::Infer(_), _) | (_, ty::ConstKind::Infer(_)) => {
            // The caller should handle these cases!
            panic!("var types encountered in structurally_relate_consts: {:?} {:?}", a, b)
        }

        (ty::ConstKind::Error(_), _) => return Ok(a),
        (_, ty::ConstKind::Error(_)) => return Ok(b),

        (ty::ConstKind::Param(a_p), ty::ConstKind::Param(b_p)) if a_p.index() == b_p.index() => {
            // FIXME: Put this back
            // debug_assert_eq!(a_p.name, b_p.name, "param types with same index differ in name");
            true
        }
        (ty::ConstKind::Placeholder(p1), ty::ConstKind::Placeholder(p2)) => p1 == p2,
        (ty::ConstKind::Value(_, a_val), ty::ConstKind::Value(_, b_val)) => a_val == b_val,

        // While this is slightly incorrect, it shouldn't matter for `min_const_generics`
        // and is the better alternative to waiting until `generic_const_exprs` can
        // be stabilized.
        (ty::ConstKind::Unevaluated(au), ty::ConstKind::Unevaluated(bu)) if au.def == bu.def => {
            if cfg!(debug_assertions) {
                let a_ty = cx.type_of(au.def).instantiate(cx, au.args);
                let b_ty = cx.type_of(bu.def).instantiate(cx, bu.args);
                assert_eq!(a_ty, b_ty);
            }

            let args = relation.relate_with_variance(
                ty::Invariant,
                VarianceDiagInfo::default(),
                au.args,
                bu.args,
            )?;
            return Ok(Const::new_unevaluated(cx, ty::UnevaluatedConst { def: au.def, args }));
        }
        (ty::ConstKind::Expr(ae), ty::ConstKind::Expr(be)) => {
            let expr = relation.relate(ae, be)?;
            return Ok(Const::new_expr(cx, expr));
        }
        _ => false,
    };
    if is_match { Ok(a) } else { Err(TypeError::ConstMismatch(ExpectedFound::new(true, a, b))) }
}

impl<I: Interner, T: Relate<I>> Relate<I> for ty::Binder<I, T> {
    fn relate<R: TypeRelation<I>>(
        relation: &mut R,
        a: ty::Binder<I, T>,
        b: ty::Binder<I, T>,
    ) -> RelateResult<I, ty::Binder<I, T>> {
        relation.binders(a, b)
    }
}

impl<I: Interner> Relate<I> for ty::PredicatePolarity {
    fn relate<R: TypeRelation<I>>(
        _relation: &mut R,
        a: ty::PredicatePolarity,
        b: ty::PredicatePolarity,
    ) -> RelateResult<I, ty::PredicatePolarity> {
        if a != b {
            Err(TypeError::PolarityMismatch(ExpectedFound::new(true, a, b)))
        } else {
            Ok(a)
        }
    }
}

impl<I: Interner> Relate<I> for ty::TraitPredicate<I> {
    fn relate<R: TypeRelation<I>>(
        relation: &mut R,
        a: ty::TraitPredicate<I>,
        b: ty::TraitPredicate<I>,
    ) -> RelateResult<I, ty::TraitPredicate<I>> {
        Ok(ty::TraitPredicate {
            trait_ref: relation.relate(a.trait_ref, b.trait_ref)?,
            polarity: relation.relate(a.polarity, b.polarity)?,
        })
    }
}