rustc_lint/opaque_hidden_inferred_bound.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
use rustc_hir as hir;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_macros::{LintDiagnostic, Subdiagnostic};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::print::{PrintTraitPredicateExt as _, TraitPredPrintModifiersAndPath};
use rustc_middle::ty::{self, Ty, TypeFoldable};
use rustc_session::{declare_lint, declare_lint_pass};
use rustc_span::Span;
use rustc_span::symbol::kw;
use rustc_trait_selection::traits::{self, ObligationCtxt};
use crate::{LateContext, LateLintPass, LintContext};
declare_lint! {
/// The `opaque_hidden_inferred_bound` lint detects cases in which nested
/// `impl Trait` in associated type bounds are not written generally enough
/// to satisfy the bounds of the associated type.
///
/// ### Explanation
///
/// This functionality was removed in #97346, but then rolled back in #99860
/// because it caused regressions.
///
/// We plan on reintroducing this as a hard error, but in the meantime,
/// this lint serves to warn and suggest fixes for any use-cases which rely
/// on this behavior.
///
/// ### Example
///
/// ```rust
/// #![feature(type_alias_impl_trait)]
///
/// trait Duh {}
///
/// impl Duh for i32 {}
///
/// trait Trait {
/// type Assoc: Duh;
/// }
///
/// impl<F: Duh> Trait for F {
/// type Assoc = F;
/// }
///
/// type Tait = impl Sized;
///
/// fn test() -> impl Trait<Assoc = Tait> {
/// 42
/// }
///
/// fn main() {}
/// ```
///
/// {{produces}}
///
/// In this example, `test` declares that the associated type `Assoc` for
/// `impl Trait` is `impl Sized`, which does not satisfy the bound `Duh`
/// on the associated type.
///
/// Although the hidden type, `i32` does satisfy this bound, we do not
/// consider the return type to be well-formed with this lint. It can be
/// fixed by changing `Tait = impl Sized` into `Tait = impl Sized + Duh`.
pub OPAQUE_HIDDEN_INFERRED_BOUND,
Warn,
"detects the use of nested `impl Trait` types in associated type bounds that are not general enough"
}
declare_lint_pass!(OpaqueHiddenInferredBound => [OPAQUE_HIDDEN_INFERRED_BOUND]);
impl<'tcx> LateLintPass<'tcx> for OpaqueHiddenInferredBound {
fn check_ty(&mut self, cx: &LateContext<'tcx>, ty: &'tcx hir::Ty<'tcx>) {
let hir::TyKind::OpaqueDef(opaque, _) = &ty.kind else {
return;
};
// If this is an RPITIT from a trait method with no body, then skip.
// That's because although we may have an opaque type on the function,
// it won't have a hidden type, so proving predicates about it is
// not really meaningful.
if let hir::OpaqueTyOrigin::FnReturn { parent: method_def_id, .. } = opaque.origin
&& let hir::Node::TraitItem(trait_item) = cx.tcx.hir_node_by_def_id(method_def_id)
&& !trait_item.defaultness.has_value()
{
return;
}
let def_id = opaque.def_id.to_def_id();
let infcx = &cx.tcx.infer_ctxt().build();
// For every projection predicate in the opaque type's explicit bounds,
// check that the type that we're assigning actually satisfies the bounds
// of the associated type.
for (pred, pred_span) in cx.tcx.explicit_item_bounds(def_id).iter_identity_copied() {
infcx.enter_forall(pred.kind(), |predicate| {
let ty::ClauseKind::Projection(proj) = predicate else {
return;
};
// Only check types, since those are the only things that may
// have opaques in them anyways.
let Some(proj_term) = proj.term.as_type() else { return };
// HACK: `impl Trait<Assoc = impl Trait2>` from an RPIT is "ok"...
if let ty::Alias(ty::Opaque, opaque_ty) = *proj_term.kind()
&& cx.tcx.parent(opaque_ty.def_id) == def_id
&& matches!(
opaque.origin,
hir::OpaqueTyOrigin::FnReturn { .. } | hir::OpaqueTyOrigin::AsyncFn { .. }
)
{
return;
}
// HACK: `async fn() -> Self` in traits is "ok"...
// This is not really that great, but it's similar to why the `-> Self`
// return type is well-formed in traits even when `Self` isn't sized.
if let ty::Param(param_ty) = *proj_term.kind()
&& param_ty.name == kw::SelfUpper
&& matches!(opaque.origin, hir::OpaqueTyOrigin::AsyncFn {
in_trait_or_impl: Some(hir::RpitContext::Trait),
..
})
{
return;
}
let proj_ty = Ty::new_projection_from_args(
cx.tcx,
proj.projection_term.def_id,
proj.projection_term.args,
);
// For every instance of the projection type in the bounds,
// replace them with the term we're assigning to the associated
// type in our opaque type.
let proj_replacer = &mut BottomUpFolder {
tcx: cx.tcx,
ty_op: |ty| if ty == proj_ty { proj_term } else { ty },
lt_op: |lt| lt,
ct_op: |ct| ct,
};
// For example, in `impl Trait<Assoc = impl Send>`, for all of the bounds on `Assoc`,
// e.g. `type Assoc: OtherTrait`, replace `<impl Trait as Trait>::Assoc: OtherTrait`
// with `impl Send: OtherTrait`.
for (assoc_pred, assoc_pred_span) in cx
.tcx
.explicit_item_bounds(proj.projection_term.def_id)
.iter_instantiated_copied(cx.tcx, proj.projection_term.args)
{
let assoc_pred = assoc_pred.fold_with(proj_replacer);
let ocx = ObligationCtxt::new(infcx);
let assoc_pred =
ocx.normalize(&traits::ObligationCause::dummy(), cx.param_env, assoc_pred);
if !ocx.select_all_or_error().is_empty() {
// Can't normalize for some reason...?
continue;
}
ocx.register_obligation(traits::Obligation::new(
cx.tcx,
traits::ObligationCause::dummy(),
cx.param_env,
assoc_pred,
));
// If that predicate doesn't hold modulo regions (but passed during type-check),
// then we must've taken advantage of the hack in `project_and_unify_types` where
// we replace opaques with inference vars. Emit a warning!
if !ocx.select_all_or_error().is_empty() {
// If it's a trait bound and an opaque that doesn't satisfy it,
// then we can emit a suggestion to add the bound.
let add_bound = match (proj_term.kind(), assoc_pred.kind().skip_binder()) {
(
ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }),
ty::ClauseKind::Trait(trait_pred),
) => Some(AddBound {
suggest_span: cx.tcx.def_span(*def_id).shrink_to_hi(),
trait_ref: trait_pred.print_modifiers_and_trait_path(),
}),
_ => None,
};
cx.emit_span_lint(
OPAQUE_HIDDEN_INFERRED_BOUND,
pred_span,
OpaqueHiddenInferredBoundLint {
ty: Ty::new_opaque(
cx.tcx,
def_id,
ty::GenericArgs::identity_for_item(cx.tcx, def_id),
),
proj_ty: proj_term,
assoc_pred_span,
add_bound,
},
);
}
}
});
}
}
}
#[derive(LintDiagnostic)]
#[diag(lint_opaque_hidden_inferred_bound)]
struct OpaqueHiddenInferredBoundLint<'tcx> {
ty: Ty<'tcx>,
proj_ty: Ty<'tcx>,
#[label(lint_specifically)]
assoc_pred_span: Span,
#[subdiagnostic]
add_bound: Option<AddBound<'tcx>>,
}
#[derive(Subdiagnostic)]
#[suggestion(
lint_opaque_hidden_inferred_bound_sugg,
style = "verbose",
applicability = "machine-applicable",
code = " + {trait_ref}"
)]
struct AddBound<'tcx> {
#[primary_span]
suggest_span: Span,
#[skip_arg]
trait_ref: TraitPredPrintModifiersAndPath<'tcx>,
}