rustc_hir_analysis/hir_ty_lowering/
bounds.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
use std::ops::ControlFlow;

use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_errors::codes::*;
use rustc_errors::struct_span_code_err;
use rustc_hir as hir;
use rustc_hir::HirId;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId};
use rustc_middle::bug;
use rustc_middle::ty::{self as ty, IsSuggestable, Ty, TyCtxt};
use rustc_span::symbol::Ident;
use rustc_span::{ErrorGuaranteed, Span, Symbol, sym};
use rustc_trait_selection::traits;
use rustc_type_ir::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor};
use smallvec::SmallVec;
use tracing::{debug, instrument};

use super::errors::GenericsArgsErrExtend;
use crate::bounds::Bounds;
use crate::errors;
use crate::hir_ty_lowering::{
    AssocItemQSelf, HirTyLowerer, OnlySelfBounds, PredicateFilter, RegionInferReason,
};

impl<'tcx> dyn HirTyLowerer<'tcx> + '_ {
    /// Add a `Sized` bound to the `bounds` if appropriate.
    ///
    /// Doesn't add the bound if the HIR bounds contain any of `Sized`, `?Sized` or `!Sized`.
    pub(crate) fn add_sized_bound(
        &self,
        bounds: &mut Bounds<'tcx>,
        self_ty: Ty<'tcx>,
        hir_bounds: &'tcx [hir::GenericBound<'tcx>],
        self_ty_where_predicates: Option<(LocalDefId, &'tcx [hir::WherePredicate<'tcx>])>,
        span: Span,
    ) {
        let tcx = self.tcx();
        let sized_def_id = tcx.lang_items().sized_trait();
        let mut seen_negative_sized_bound = false;
        let mut seen_positive_sized_bound = false;

        // Try to find an unbound in bounds.
        let mut unbounds: SmallVec<[_; 1]> = SmallVec::new();
        let mut search_bounds = |hir_bounds: &'tcx [hir::GenericBound<'tcx>]| {
            for hir_bound in hir_bounds {
                let hir::GenericBound::Trait(ptr, modifier) = hir_bound else {
                    continue;
                };
                match modifier {
                    hir::TraitBoundModifier::Maybe => unbounds.push(ptr),
                    hir::TraitBoundModifier::Negative => {
                        if let Some(sized_def_id) = sized_def_id
                            && ptr.trait_ref.path.res == Res::Def(DefKind::Trait, sized_def_id)
                        {
                            seen_negative_sized_bound = true;
                        }
                    }
                    hir::TraitBoundModifier::None => {
                        if let Some(sized_def_id) = sized_def_id
                            && ptr.trait_ref.path.res == Res::Def(DefKind::Trait, sized_def_id)
                        {
                            seen_positive_sized_bound = true;
                        }
                    }
                    _ => {}
                }
            }
        };
        search_bounds(hir_bounds);
        if let Some((self_ty, where_clause)) = self_ty_where_predicates {
            for clause in where_clause {
                if let hir::WherePredicate::BoundPredicate(pred) = clause
                    && pred.is_param_bound(self_ty.to_def_id())
                {
                    search_bounds(pred.bounds);
                }
            }
        }

        let mut unique_bounds = FxIndexSet::default();
        let mut seen_repeat = false;
        for unbound in &unbounds {
            if let Res::Def(DefKind::Trait, unbound_def_id) = unbound.trait_ref.path.res {
                seen_repeat |= !unique_bounds.insert(unbound_def_id);
            }
        }
        if unbounds.len() > 1 {
            let err = errors::MultipleRelaxedDefaultBounds {
                spans: unbounds.iter().map(|ptr| ptr.span).collect(),
            };
            if seen_repeat {
                self.dcx().emit_err(err);
            } else if !tcx.features().more_maybe_bounds {
                self.tcx().sess.create_feature_err(err, sym::more_maybe_bounds).emit();
            };
        }

        let mut seen_sized_unbound = false;
        for unbound in unbounds {
            if let Some(sized_def_id) = sized_def_id
                && unbound.trait_ref.path.res == Res::Def(DefKind::Trait, sized_def_id)
            {
                seen_sized_unbound = true;
                continue;
            }
            // There was a `?Trait` bound, but it was not `?Sized`; warn.
            self.dcx().span_warn(
                unbound.span,
                "relaxing a default bound only does something for `?Sized`; \
                all other traits are not bound by default",
            );
        }

        if seen_sized_unbound || seen_negative_sized_bound || seen_positive_sized_bound {
            // There was in fact a `?Sized`, `!Sized` or explicit `Sized` bound;
            // we don't need to do anything.
        } else if sized_def_id.is_some() {
            // There was no `?Sized`, `!Sized` or explicit `Sized` bound;
            // add `Sized` if it's available.
            bounds.push_sized(tcx, self_ty, span);
        }
    }

    /// Lower HIR bounds into `bounds` given the self type `param_ty` and the overarching late-bound vars if any.
    ///
    /// ### Examples
    ///
    /// ```ignore (illustrative)
    /// fn foo<T>() where for<'a> T: Trait<'a> + Copy {}
    /// //                ^^^^^^^ ^  ^^^^^^^^^^^^^^^^ `hir_bounds`, in HIR form
    /// //                |       |
    /// //                |       `param_ty`, in ty form
    /// //                `bound_vars`, in ty form
    ///
    /// fn bar<T>() where T: for<'a> Trait<'a> + Copy {} // no overarching `bound_vars` here!
    /// //                ^  ^^^^^^^^^^^^^^^^^^^^^^^^ `hir_bounds`, in HIR form
    /// //                |
    /// //                `param_ty`, in ty form
    /// ```
    ///
    /// ### A Note on Binders
    ///
    /// There is an implied binder around `param_ty` and `hir_bounds`.
    /// See `lower_poly_trait_ref` for more details.
    #[instrument(level = "debug", skip(self, hir_bounds, bounds))]
    pub(crate) fn lower_poly_bounds<'hir, I: Iterator<Item = &'hir hir::GenericBound<'tcx>>>(
        &self,
        param_ty: Ty<'tcx>,
        hir_bounds: I,
        bounds: &mut Bounds<'tcx>,
        bound_vars: &'tcx ty::List<ty::BoundVariableKind>,
        only_self_bounds: OnlySelfBounds,
    ) where
        'tcx: 'hir,
    {
        for hir_bound in hir_bounds {
            match hir_bound {
                hir::GenericBound::Trait(poly_trait_ref, modifier) => {
                    let (constness, polarity) = match modifier {
                        hir::TraitBoundModifier::Const => {
                            (ty::BoundConstness::Const, ty::PredicatePolarity::Positive)
                        }
                        hir::TraitBoundModifier::MaybeConst => {
                            (ty::BoundConstness::ConstIfConst, ty::PredicatePolarity::Positive)
                        }
                        hir::TraitBoundModifier::None => {
                            (ty::BoundConstness::NotConst, ty::PredicatePolarity::Positive)
                        }
                        hir::TraitBoundModifier::Negative => {
                            (ty::BoundConstness::NotConst, ty::PredicatePolarity::Negative)
                        }
                        hir::TraitBoundModifier::Maybe => continue,
                    };
                    let _ = self.lower_poly_trait_ref(
                        &poly_trait_ref.trait_ref,
                        poly_trait_ref.span,
                        constness,
                        polarity,
                        param_ty,
                        bounds,
                        only_self_bounds,
                    );
                }
                hir::GenericBound::Outlives(lifetime) => {
                    let region = self.lower_lifetime(lifetime, RegionInferReason::OutlivesBound);
                    bounds.push_region_bound(
                        self.tcx(),
                        ty::Binder::bind_with_vars(
                            ty::OutlivesPredicate(param_ty, region),
                            bound_vars,
                        ),
                        lifetime.ident.span,
                    );
                }
                hir::GenericBound::Use(..) => {
                    // We don't actually lower `use` into the type layer.
                }
            }
        }
    }

    /// Lower HIR bounds into `bounds` given the self type `param_ty` and *no* overarching late-bound vars.
    ///
    /// ### Example
    ///
    /// ```ignore (illustrative)
    /// fn foo<T: Bar + Baz>() { }
    /// //     ^  ^^^^^^^^^ hir_bounds
    /// //     param_ty
    /// ```
    pub(crate) fn lower_mono_bounds(
        &self,
        param_ty: Ty<'tcx>,
        hir_bounds: &[hir::GenericBound<'tcx>],
        filter: PredicateFilter,
    ) -> Bounds<'tcx> {
        let mut bounds = Bounds::default();

        let only_self_bounds = match filter {
            PredicateFilter::All | PredicateFilter::SelfAndAssociatedTypeBounds => {
                OnlySelfBounds(false)
            }
            PredicateFilter::SelfOnly | PredicateFilter::SelfThatDefines(_) => OnlySelfBounds(true),
        };

        self.lower_poly_bounds(
            param_ty,
            hir_bounds.iter().filter(|bound| match filter {
                PredicateFilter::All
                | PredicateFilter::SelfOnly
                | PredicateFilter::SelfAndAssociatedTypeBounds => true,
                PredicateFilter::SelfThatDefines(assoc_name) => {
                    if let Some(trait_ref) = bound.trait_ref()
                        && let Some(trait_did) = trait_ref.trait_def_id()
                        && self.tcx().trait_may_define_assoc_item(trait_did, assoc_name)
                    {
                        true
                    } else {
                        false
                    }
                }
            }),
            &mut bounds,
            ty::List::empty(),
            only_self_bounds,
        );
        debug!(?bounds);

        bounds
    }

    /// Lower an associated item constraint from the HIR into `bounds`.
    ///
    /// ### A Note on Binders
    ///
    /// Given something like `T: for<'a> Iterator<Item = &'a u32>`,
    /// the `trait_ref` here will be `for<'a> T: Iterator`.
    /// The `constraint` data however is from *inside* the binder
    /// (e.g., `&'a u32`) and hence may reference bound regions.
    #[instrument(level = "debug", skip(self, bounds, duplicates, path_span))]
    pub(super) fn lower_assoc_item_constraint(
        &self,
        hir_ref_id: hir::HirId,
        trait_ref: ty::PolyTraitRef<'tcx>,
        constraint: &hir::AssocItemConstraint<'tcx>,
        bounds: &mut Bounds<'tcx>,
        duplicates: &mut FxIndexMap<DefId, Span>,
        path_span: Span,
        only_self_bounds: OnlySelfBounds,
    ) -> Result<(), ErrorGuaranteed> {
        let tcx = self.tcx();

        let assoc_kind = if constraint.gen_args.parenthesized
            == hir::GenericArgsParentheses::ReturnTypeNotation
        {
            ty::AssocKind::Fn
        } else if let hir::AssocItemConstraintKind::Equality { term: hir::Term::Const(_) } =
            constraint.kind
        {
            ty::AssocKind::Const
        } else {
            ty::AssocKind::Type
        };

        // Given something like `U: Trait<T = X>`, we want to produce a predicate like
        // `<U as Trait>::T = X`.
        // This is somewhat subtle in the event that `T` is defined in a supertrait of `Trait`,
        // because in that case we need to upcast. I.e., we want to produce
        // `<B as SuperTrait<i32>>::T == X` for `B: SubTrait<T = X>` where
        //
        //     trait SubTrait: SuperTrait<i32> {}
        //     trait SuperTrait<A> { type T; }
        let candidate = if self.probe_trait_that_defines_assoc_item(
            trait_ref.def_id(),
            assoc_kind,
            constraint.ident,
        ) {
            // Simple case: The assoc item is defined in the current trait.
            trait_ref
        } else {
            // Otherwise, we have to walk through the supertraits to find
            // one that does define it.
            self.probe_single_bound_for_assoc_item(
                || traits::supertraits(tcx, trait_ref),
                AssocItemQSelf::Trait(trait_ref.def_id()),
                assoc_kind,
                constraint.ident,
                path_span,
                Some(constraint),
            )?
        };

        let assoc_item = self
            .probe_assoc_item(
                constraint.ident,
                assoc_kind,
                hir_ref_id,
                constraint.span,
                candidate.def_id(),
            )
            .expect("failed to find associated item");

        duplicates
            .entry(assoc_item.def_id)
            .and_modify(|prev_span| {
                self.dcx().emit_err(errors::ValueOfAssociatedStructAlreadySpecified {
                    span: constraint.span,
                    prev_span: *prev_span,
                    item_name: constraint.ident,
                    def_path: tcx.def_path_str(assoc_item.container_id(tcx)),
                });
            })
            .or_insert(constraint.span);

        let projection_term = if let ty::AssocKind::Fn = assoc_kind {
            let bound_vars = tcx.late_bound_vars(constraint.hir_id);
            ty::Binder::bind_with_vars(
                self.lower_return_type_notation_ty(candidate, assoc_item.def_id, path_span)?.into(),
                bound_vars,
            )
        } else {
            // Create the generic arguments for the associated type or constant by joining the
            // parent arguments (the arguments of the trait) and the own arguments (the ones of
            // the associated item itself) and construct an alias type using them.
            let alias_term = candidate.map_bound(|trait_ref| {
                let item_segment = hir::PathSegment {
                    ident: constraint.ident,
                    hir_id: constraint.hir_id,
                    res: Res::Err,
                    args: Some(constraint.gen_args),
                    infer_args: false,
                };

                let alias_args = self.lower_generic_args_of_assoc_item(
                    path_span,
                    assoc_item.def_id,
                    &item_segment,
                    trait_ref.args,
                );
                debug!(?alias_args);

                ty::AliasTerm::new_from_args(tcx, assoc_item.def_id, alias_args)
            });

            // Provide the resolved type of the associated constant to `type_of(AnonConst)`.
            if let Some(const_arg) = constraint.ct() {
                if let hir::ConstArgKind::Anon(anon_const) = const_arg.kind {
                    let ty = alias_term
                        .map_bound(|alias| tcx.type_of(alias.def_id).instantiate(tcx, alias.args));
                    let ty = check_assoc_const_binding_type(
                        self,
                        constraint.ident,
                        ty,
                        constraint.hir_id,
                    );
                    tcx.feed_anon_const_type(anon_const.def_id, ty::EarlyBinder::bind(ty));
                }
            }

            alias_term
        };

        match constraint.kind {
            hir::AssocItemConstraintKind::Equality { .. } if let ty::AssocKind::Fn = assoc_kind => {
                return Err(self.dcx().emit_err(crate::errors::ReturnTypeNotationEqualityBound {
                    span: constraint.span,
                }));
            }
            // Lower an equality constraint like `Item = u32` as found in HIR bound `T: Iterator<Item = u32>`
            // to a projection predicate: `<T as Iterator>::Item = u32`.
            hir::AssocItemConstraintKind::Equality { term } => {
                let term = match term {
                    hir::Term::Ty(ty) => self.lower_ty(ty).into(),
                    hir::Term::Const(ct) => {
                        ty::Const::from_const_arg(tcx, ct, ty::FeedConstTy::No).into()
                    }
                };

                // Find any late-bound regions declared in `ty` that are not
                // declared in the trait-ref or assoc_item. These are not well-formed.
                //
                // Example:
                //
                //     for<'a> <T as Iterator>::Item = &'a str // <-- 'a is bad
                //     for<'a> <T as FnMut<(&'a u32,)>>::Output = &'a str // <-- 'a is ok
                let late_bound_in_projection_ty =
                    tcx.collect_constrained_late_bound_regions(projection_term);
                let late_bound_in_term =
                    tcx.collect_referenced_late_bound_regions(trait_ref.rebind(term));
                debug!(?late_bound_in_projection_ty);
                debug!(?late_bound_in_term);

                // FIXME: point at the type params that don't have appropriate lifetimes:
                // struct S1<F: for<'a> Fn(&i32, &i32) -> &'a i32>(F);
                //                         ----  ----     ^^^^^^^
                // NOTE(associated_const_equality): This error should be impossible to trigger
                //                                  with associated const equality constraints.
                self.validate_late_bound_regions(
                    late_bound_in_projection_ty,
                    late_bound_in_term,
                    |br_name| {
                        struct_span_code_err!(
                            self.dcx(),
                            constraint.span,
                            E0582,
                            "binding for associated type `{}` references {}, \
                             which does not appear in the trait input types",
                            constraint.ident,
                            br_name
                        )
                    },
                );

                bounds.push_projection_bound(
                    tcx,
                    projection_term.map_bound(|projection_term| ty::ProjectionPredicate {
                        projection_term,
                        term,
                    }),
                    constraint.span,
                );
            }
            // Lower a constraint like `Item: Debug` as found in HIR bound `T: Iterator<Item: Debug>`
            // to a bound involving a projection: `<T as Iterator>::Item: Debug`.
            hir::AssocItemConstraintKind::Bound { bounds: hir_bounds } => {
                // NOTE: If `only_self_bounds` is true, do NOT expand this associated type bound into
                // a trait predicate, since we only want to add predicates for the `Self` type.
                if !only_self_bounds.0 {
                    let projection_ty = projection_term
                        .map_bound(|projection_term| projection_term.expect_ty(self.tcx()));
                    // Calling `skip_binder` is okay, because `lower_bounds` expects the `param_ty`
                    // parameter to have a skipped binder.
                    let param_ty = Ty::new_alias(tcx, ty::Projection, projection_ty.skip_binder());
                    self.lower_poly_bounds(
                        param_ty,
                        hir_bounds.iter(),
                        bounds,
                        projection_ty.bound_vars(),
                        only_self_bounds,
                    );
                }
            }
        }
        Ok(())
    }

    /// Lower a type, possibly specially handling the type if it's a return type notation
    /// which we otherwise deny in other positions.
    pub fn lower_ty_maybe_return_type_notation(&self, hir_ty: &hir::Ty<'tcx>) -> Ty<'tcx> {
        let hir::TyKind::Path(qpath) = hir_ty.kind else {
            return self.lower_ty(hir_ty);
        };

        let tcx = self.tcx();
        match qpath {
            hir::QPath::Resolved(opt_self_ty, path)
                if let [mod_segments @ .., trait_segment, item_segment] = &path.segments[..]
                    && item_segment.args.is_some_and(|args| {
                        matches!(
                            args.parenthesized,
                            hir::GenericArgsParentheses::ReturnTypeNotation
                        )
                    }) =>
            {
                // We don't allow generics on the module segments.
                let _ =
                    self.prohibit_generic_args(mod_segments.iter(), GenericsArgsErrExtend::None);

                let item_def_id = match path.res {
                    Res::Def(DefKind::AssocFn, item_def_id) => item_def_id,
                    Res::Err => {
                        return Ty::new_error_with_message(
                            tcx,
                            hir_ty.span,
                            "failed to resolve RTN",
                        );
                    }
                    _ => bug!("only expected method resolution for fully qualified RTN"),
                };
                let trait_def_id = tcx.parent(item_def_id);

                // Good error for `where Trait::method(..): Send`.
                let Some(self_ty) = opt_self_ty else {
                    return self.error_missing_qpath_self_ty(
                        trait_def_id,
                        hir_ty.span,
                        item_segment,
                    );
                };
                let self_ty = self.lower_ty(self_ty);

                let trait_ref = self.lower_mono_trait_ref(
                    hir_ty.span,
                    trait_def_id,
                    self_ty,
                    trait_segment,
                    false,
                    ty::BoundConstness::NotConst,
                );

                // SUBTLE: As noted at the end of `try_append_return_type_notation_params`
                // in `resolve_bound_vars`, we stash the explicit bound vars of the where
                // clause onto the item segment of the RTN type. This allows us to know
                // how many bound vars are *not* coming from the signature of the function
                // from lowering RTN itself.
                //
                // For example, in `where for<'a> <T as Trait<'a>>::method(..): Other`,
                // the `late_bound_vars` of the where clause predicate (i.e. this HIR ty's
                // parent) will include `'a` AND all the early- and late-bound vars of the
                // method. But when lowering the RTN type, we just want the list of vars
                // we used to resolve the trait ref. We explicitly stored those back onto
                // the item segment, since there's no other good place to put them.
                let candidate =
                    ty::Binder::bind_with_vars(trait_ref, tcx.late_bound_vars(item_segment.hir_id));

                match self.lower_return_type_notation_ty(candidate, item_def_id, hir_ty.span) {
                    Ok(ty) => Ty::new_alias(tcx, ty::Projection, ty),
                    Err(guar) => Ty::new_error(tcx, guar),
                }
            }
            hir::QPath::TypeRelative(qself, item_segment)
                if item_segment.args.is_some_and(|args| {
                    matches!(args.parenthesized, hir::GenericArgsParentheses::ReturnTypeNotation)
                }) =>
            {
                match self
                    .resolve_type_relative_return_type_notation(
                        qself,
                        item_segment,
                        hir_ty.hir_id,
                        hir_ty.span,
                    )
                    .and_then(|(candidate, item_def_id)| {
                        self.lower_return_type_notation_ty(candidate, item_def_id, hir_ty.span)
                    }) {
                    Ok(ty) => Ty::new_alias(tcx, ty::Projection, ty),
                    Err(guar) => Ty::new_error(tcx, guar),
                }
            }
            _ => self.lower_ty(hir_ty),
        }
    }

    /// Perform type-dependent lookup for a *method* for return type notation.
    /// This generally mirrors `<dyn HirTyLowerer>::lower_assoc_path`.
    fn resolve_type_relative_return_type_notation(
        &self,
        qself: &'tcx hir::Ty<'tcx>,
        item_segment: &'tcx hir::PathSegment<'tcx>,
        qpath_hir_id: HirId,
        span: Span,
    ) -> Result<(ty::PolyTraitRef<'tcx>, DefId), ErrorGuaranteed> {
        let tcx = self.tcx();
        let qself_ty = self.lower_ty(qself);
        let assoc_ident = item_segment.ident;
        let qself_res = if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = &qself.kind {
            path.res
        } else {
            Res::Err
        };

        let bound = match (qself_ty.kind(), qself_res) {
            (_, Res::SelfTyAlias { alias_to: impl_def_id, is_trait_impl: true, .. }) => {
                // `Self` in an impl of a trait -- we have a concrete self type and a
                // trait reference.
                let Some(trait_ref) = tcx.impl_trait_ref(impl_def_id) else {
                    // A cycle error occurred, most likely.
                    self.dcx().span_bug(span, "expected cycle error");
                };

                self.probe_single_bound_for_assoc_item(
                    || {
                        traits::supertraits(
                            tcx,
                            ty::Binder::dummy(trait_ref.instantiate_identity()),
                        )
                    },
                    AssocItemQSelf::SelfTyAlias,
                    ty::AssocKind::Fn,
                    assoc_ident,
                    span,
                    None,
                )?
            }
            (
                &ty::Param(_),
                Res::SelfTyParam { trait_: param_did } | Res::Def(DefKind::TyParam, param_did),
            ) => self.probe_single_ty_param_bound_for_assoc_item(
                param_did.expect_local(),
                qself.span,
                ty::AssocKind::Fn,
                assoc_ident,
                span,
            )?,
            _ => {
                if let Err(reported) = qself_ty.error_reported() {
                    return Err(reported);
                } else {
                    // FIXME(return_type_notation): Provide some structured suggestion here.
                    let err = struct_span_code_err!(
                        self.dcx(),
                        span,
                        E0223,
                        "ambiguous associated function"
                    );
                    return Err(err.emit());
                }
            }
        };

        // Don't let `T::method` resolve to some `for<'a> <T as Tr<'a>>::method`,
        // which may happen via a higher-ranked where clause or supertrait.
        // This is the same restrictions as associated types; even though we could
        // support it, it just makes things a lot more difficult to support in
        // `resolve_bound_vars`, since we'd need to introduce those as elided
        // bound vars on the where clause too.
        if bound.has_bound_vars() {
            return Err(self.tcx().dcx().emit_err(
                errors::AssociatedItemTraitUninferredGenericParams {
                    span,
                    inferred_sugg: Some(span.with_hi(item_segment.ident.span.lo())),
                    bound: format!("{}::", tcx.anonymize_bound_vars(bound).skip_binder(),),
                    mpart_sugg: None,
                    what: "function",
                },
            ));
        }

        let trait_def_id = bound.def_id();
        let assoc_ty = self
            .probe_assoc_item(assoc_ident, ty::AssocKind::Fn, qpath_hir_id, span, trait_def_id)
            .expect("failed to find associated type");

        Ok((bound, assoc_ty.def_id))
    }

    /// Do the common parts of lowering an RTN type. This involves extending the
    /// candidate binder to include all of the early- and late-bound vars that are
    /// defined on the function itself, and constructing a projection to the RPITIT
    /// return type of that function.
    fn lower_return_type_notation_ty(
        &self,
        candidate: ty::PolyTraitRef<'tcx>,
        item_def_id: DefId,
        path_span: Span,
    ) -> Result<ty::AliasTy<'tcx>, ErrorGuaranteed> {
        let tcx = self.tcx();
        let mut emitted_bad_param_err = None;
        // If we have an method return type bound, then we need to instantiate
        // the method's early bound params with suitable late-bound params.
        let mut num_bound_vars = candidate.bound_vars().len();
        let args = candidate.skip_binder().args.extend_to(tcx, item_def_id, |param, _| {
            let arg = match param.kind {
                ty::GenericParamDefKind::Lifetime => {
                    ty::Region::new_bound(tcx, ty::INNERMOST, ty::BoundRegion {
                        var: ty::BoundVar::from_usize(num_bound_vars),
                        kind: ty::BoundRegionKind::BrNamed(param.def_id, param.name),
                    })
                    .into()
                }
                ty::GenericParamDefKind::Type { .. } => {
                    let guar = *emitted_bad_param_err.get_or_insert_with(|| {
                        self.dcx().emit_err(crate::errors::ReturnTypeNotationIllegalParam::Type {
                            span: path_span,
                            param_span: tcx.def_span(param.def_id),
                        })
                    });
                    Ty::new_error(tcx, guar).into()
                }
                ty::GenericParamDefKind::Const { .. } => {
                    let guar = *emitted_bad_param_err.get_or_insert_with(|| {
                        self.dcx().emit_err(crate::errors::ReturnTypeNotationIllegalParam::Const {
                            span: path_span,
                            param_span: tcx.def_span(param.def_id),
                        })
                    });
                    ty::Const::new_error(tcx, guar).into()
                }
            };
            num_bound_vars += 1;
            arg
        });

        // Next, we need to check that the return-type notation is being used on
        // an RPITIT (return-position impl trait in trait) or AFIT (async fn in trait).
        let output = tcx.fn_sig(item_def_id).skip_binder().output();
        let output = if let ty::Alias(ty::Projection, alias_ty) = *output.skip_binder().kind()
            && tcx.is_impl_trait_in_trait(alias_ty.def_id)
        {
            alias_ty
        } else {
            return Err(self.dcx().emit_err(crate::errors::ReturnTypeNotationOnNonRpitit {
                span: path_span,
                ty: tcx.liberate_late_bound_regions(item_def_id, output),
                fn_span: tcx.hir().span_if_local(item_def_id),
                note: (),
            }));
        };

        // Finally, move the fn return type's bound vars over to account for the early bound
        // params (and trait ref's late bound params). This logic is very similar to
        // `rustc_middle::ty::predicate::Clause::instantiate_supertrait`
        // and it's no coincidence why.
        let shifted_output = tcx.shift_bound_var_indices(num_bound_vars, output);
        Ok(ty::EarlyBinder::bind(shifted_output).instantiate(tcx, args))
    }
}

/// Detect and reject early-bound & escaping late-bound generic params in the type of assoc const bindings.
///
/// FIXME(const_generics): This is a temporary and semi-artificial restriction until the
/// arrival of *generic const generics*[^1].
///
/// It might actually be possible that we can already support early-bound generic params
/// in such types if we just lifted some more checks in other places, too, for example
/// inside [`ty::Const::from_anon_const`]. However, even if that were the case, we should
/// probably gate this behind another feature flag.
///
/// [^1]: <https://github.com/rust-lang/project-const-generics/issues/28>.
fn check_assoc_const_binding_type<'tcx>(
    cx: &dyn HirTyLowerer<'tcx>,
    assoc_const: Ident,
    ty: ty::Binder<'tcx, Ty<'tcx>>,
    hir_id: hir::HirId,
) -> Ty<'tcx> {
    // We can't perform the checks for early-bound params during name resolution unlike E0770
    // because this information depends on *type* resolution.
    // We can't perform these checks in `resolve_bound_vars` either for the same reason.
    // Consider the trait ref `for<'a> Trait<'a, C = { &0 }>`. We need to know the fully
    // resolved type of `Trait::C` in order to know if it references `'a` or not.

    let ty = ty.skip_binder();
    if !ty.has_param() && !ty.has_escaping_bound_vars() {
        return ty;
    }

    let mut collector = GenericParamAndBoundVarCollector {
        cx,
        params: Default::default(),
        vars: Default::default(),
        depth: ty::INNERMOST,
    };
    let mut guar = ty.visit_with(&mut collector).break_value();

    let tcx = cx.tcx();
    let ty_note = ty
        .make_suggestable(tcx, false, None)
        .map(|ty| crate::errors::TyOfAssocConstBindingNote { assoc_const, ty });

    let enclosing_item_owner_id = tcx
        .hir()
        .parent_owner_iter(hir_id)
        .find_map(|(owner_id, parent)| parent.generics().map(|_| owner_id))
        .unwrap();
    let generics = tcx.generics_of(enclosing_item_owner_id);
    for index in collector.params {
        let param = generics.param_at(index as _, tcx);
        let is_self_param = param.name == rustc_span::symbol::kw::SelfUpper;
        guar.get_or_insert(cx.dcx().emit_err(crate::errors::ParamInTyOfAssocConstBinding {
            span: assoc_const.span,
            assoc_const,
            param_name: param.name,
            param_def_kind: tcx.def_descr(param.def_id),
            param_category: if is_self_param {
                "self"
            } else if param.kind.is_synthetic() {
                "synthetic"
            } else {
                "normal"
            },
            param_defined_here_label:
                (!is_self_param).then(|| tcx.def_ident_span(param.def_id).unwrap()),
            ty_note,
        }));
    }
    for (var_def_id, var_name) in collector.vars {
        guar.get_or_insert(cx.dcx().emit_err(
            crate::errors::EscapingBoundVarInTyOfAssocConstBinding {
                span: assoc_const.span,
                assoc_const,
                var_name,
                var_def_kind: tcx.def_descr(var_def_id),
                var_defined_here_label: tcx.def_ident_span(var_def_id).unwrap(),
                ty_note,
            },
        ));
    }

    let guar = guar.unwrap_or_else(|| bug!("failed to find gen params or bound vars in ty"));
    Ty::new_error(tcx, guar)
}

struct GenericParamAndBoundVarCollector<'a, 'tcx> {
    cx: &'a dyn HirTyLowerer<'tcx>,
    params: FxIndexSet<u32>,
    vars: FxIndexSet<(DefId, Symbol)>,
    depth: ty::DebruijnIndex,
}

impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for GenericParamAndBoundVarCollector<'_, 'tcx> {
    type Result = ControlFlow<ErrorGuaranteed>;

    fn visit_binder<T: TypeVisitable<TyCtxt<'tcx>>>(
        &mut self,
        binder: &ty::Binder<'tcx, T>,
    ) -> Self::Result {
        self.depth.shift_in(1);
        let result = binder.super_visit_with(self);
        self.depth.shift_out(1);
        result
    }

    fn visit_ty(&mut self, ty: Ty<'tcx>) -> Self::Result {
        match ty.kind() {
            ty::Param(param) => {
                self.params.insert(param.index);
            }
            ty::Bound(db, bt) if *db >= self.depth => {
                self.vars.insert(match bt.kind {
                    ty::BoundTyKind::Param(def_id, name) => (def_id, name),
                    ty::BoundTyKind::Anon => {
                        let reported = self
                            .cx
                            .dcx()
                            .delayed_bug(format!("unexpected anon bound ty: {:?}", bt.var));
                        return ControlFlow::Break(reported);
                    }
                });
            }
            _ if ty.has_param() || ty.has_bound_vars() => return ty.super_visit_with(self),
            _ => {}
        }
        ControlFlow::Continue(())
    }

    fn visit_region(&mut self, re: ty::Region<'tcx>) -> Self::Result {
        match re.kind() {
            ty::ReEarlyParam(param) => {
                self.params.insert(param.index);
            }
            ty::ReBound(db, br) if db >= self.depth => {
                self.vars.insert(match br.kind {
                    ty::BrNamed(def_id, name) => (def_id, name),
                    ty::BrAnon | ty::BrEnv => {
                        let guar = self
                            .cx
                            .dcx()
                            .delayed_bug(format!("unexpected bound region kind: {:?}", br.kind));
                        return ControlFlow::Break(guar);
                    }
                });
            }
            _ => {}
        }
        ControlFlow::Continue(())
    }

    fn visit_const(&mut self, ct: ty::Const<'tcx>) -> Self::Result {
        match ct.kind() {
            ty::ConstKind::Param(param) => {
                self.params.insert(param.index);
            }
            ty::ConstKind::Bound(db, ty::BoundVar { .. }) if db >= self.depth => {
                let guar = self.cx.dcx().delayed_bug("unexpected escaping late-bound const var");
                return ControlFlow::Break(guar);
            }
            _ if ct.has_param() || ct.has_bound_vars() => return ct.super_visit_with(self),
            _ => {}
        }
        ControlFlow::Continue(())
    }
}