rustc_abi/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
// tidy-alphabetical-start
#![cfg_attr(feature = "nightly", allow(internal_features))]
#![cfg_attr(feature = "nightly", doc(rust_logo))]
#![cfg_attr(feature = "nightly", feature(assert_matches))]
#![cfg_attr(feature = "nightly", feature(rustc_attrs))]
#![cfg_attr(feature = "nightly", feature(rustdoc_internals))]
#![cfg_attr(feature = "nightly", feature(step_trait))]
#![warn(unreachable_pub)]
// tidy-alphabetical-end

use std::fmt;
#[cfg(feature = "nightly")]
use std::iter::Step;
use std::num::{NonZeroUsize, ParseIntError};
use std::ops::{Add, AddAssign, Mul, RangeInclusive, Sub};
use std::str::FromStr;

use bitflags::bitflags;
#[cfg(feature = "nightly")]
use rustc_data_structures::stable_hasher::StableOrd;
use rustc_index::{Idx, IndexSlice, IndexVec};
#[cfg(feature = "nightly")]
use rustc_macros::HashStable_Generic;
#[cfg(feature = "nightly")]
use rustc_macros::{Decodable_Generic, Encodable_Generic};

mod callconv;
mod layout;
#[cfg(test)]
mod tests;

#[cfg(feature = "nightly")]
mod extern_abi;

pub use callconv::{Heterogeneous, HomogeneousAggregate, Reg, RegKind};
#[cfg(feature = "nightly")]
pub use extern_abi::{
    AbiDisabled, AbiUnsupported, ExternAbi, all_names, enabled_names, is_enabled, is_stable, lookup,
};
#[cfg(feature = "nightly")]
pub use layout::{FIRST_VARIANT, FieldIdx, Layout, TyAbiInterface, TyAndLayout, VariantIdx};
pub use layout::{LayoutCalculator, LayoutCalculatorError};

/// Requirements for a `StableHashingContext` to be used in this crate.
/// This is a hack to allow using the `HashStable_Generic` derive macro
/// instead of implementing everything in `rustc_middle`.
#[cfg(feature = "nightly")]
pub trait HashStableContext {}

#[derive(Clone, Copy, PartialEq, Eq, Default)]
#[cfg_attr(feature = "nightly", derive(Encodable_Generic, Decodable_Generic, HashStable_Generic))]
pub struct ReprFlags(u8);

bitflags! {
    impl ReprFlags: u8 {
        const IS_C               = 1 << 0;
        const IS_SIMD            = 1 << 1;
        const IS_TRANSPARENT     = 1 << 2;
        // Internal only for now. If true, don't reorder fields.
        // On its own it does not prevent ABI optimizations.
        const IS_LINEAR          = 1 << 3;
        // If true, the type's crate has opted into layout randomization.
        // Other flags can still inhibit reordering and thus randomization.
        // The seed stored in `ReprOptions.field_shuffle_seed`.
        const RANDOMIZE_LAYOUT   = 1 << 4;
        // Any of these flags being set prevent field reordering optimisation.
        const FIELD_ORDER_UNOPTIMIZABLE   = ReprFlags::IS_C.bits()
                                 | ReprFlags::IS_SIMD.bits()
                                 | ReprFlags::IS_LINEAR.bits();
        const ABI_UNOPTIMIZABLE = ReprFlags::IS_C.bits() | ReprFlags::IS_SIMD.bits();
    }
}

// This is the same as `rustc_data_structures::external_bitflags_debug` but without the
// `rustc_data_structures` to make it build on stable.
impl std::fmt::Debug for ReprFlags {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        bitflags::parser::to_writer(self, f)
    }
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "nightly", derive(Encodable_Generic, Decodable_Generic, HashStable_Generic))]
pub enum IntegerType {
    /// Pointer-sized integer type, i.e. `isize` and `usize`. The field shows signedness, e.g.
    /// `Pointer(true)` means `isize`.
    Pointer(bool),
    /// Fixed-sized integer type, e.g. `i8`, `u32`, `i128`. The bool field shows signedness, e.g.
    /// `Fixed(I8, false)` means `u8`.
    Fixed(Integer, bool),
}

impl IntegerType {
    pub fn is_signed(&self) -> bool {
        match self {
            IntegerType::Pointer(b) => *b,
            IntegerType::Fixed(_, b) => *b,
        }
    }
}

/// Represents the repr options provided by the user.
#[derive(Copy, Clone, Debug, Eq, PartialEq, Default)]
#[cfg_attr(feature = "nightly", derive(Encodable_Generic, Decodable_Generic, HashStable_Generic))]
pub struct ReprOptions {
    pub int: Option<IntegerType>,
    pub align: Option<Align>,
    pub pack: Option<Align>,
    pub flags: ReprFlags,
    /// The seed to be used for randomizing a type's layout
    ///
    /// Note: This could technically be a `u128` which would
    /// be the "most accurate" hash as it'd encompass the item and crate
    /// hash without loss, but it does pay the price of being larger.
    /// Everything's a tradeoff, a 64-bit seed should be sufficient for our
    /// purposes (primarily `-Z randomize-layout`)
    pub field_shuffle_seed: u64,
}

impl ReprOptions {
    #[inline]
    pub fn simd(&self) -> bool {
        self.flags.contains(ReprFlags::IS_SIMD)
    }

    #[inline]
    pub fn c(&self) -> bool {
        self.flags.contains(ReprFlags::IS_C)
    }

    #[inline]
    pub fn packed(&self) -> bool {
        self.pack.is_some()
    }

    #[inline]
    pub fn transparent(&self) -> bool {
        self.flags.contains(ReprFlags::IS_TRANSPARENT)
    }

    #[inline]
    pub fn linear(&self) -> bool {
        self.flags.contains(ReprFlags::IS_LINEAR)
    }

    /// Returns the discriminant type, given these `repr` options.
    /// This must only be called on enums!
    pub fn discr_type(&self) -> IntegerType {
        self.int.unwrap_or(IntegerType::Pointer(true))
    }

    /// Returns `true` if this `#[repr()]` should inhabit "smart enum
    /// layout" optimizations, such as representing `Foo<&T>` as a
    /// single pointer.
    pub fn inhibit_enum_layout_opt(&self) -> bool {
        self.c() || self.int.is_some()
    }

    pub fn inhibit_newtype_abi_optimization(&self) -> bool {
        self.flags.intersects(ReprFlags::ABI_UNOPTIMIZABLE)
    }

    /// Returns `true` if this `#[repr()]` guarantees a fixed field order,
    /// e.g. `repr(C)` or `repr(<int>)`.
    pub fn inhibit_struct_field_reordering(&self) -> bool {
        self.flags.intersects(ReprFlags::FIELD_ORDER_UNOPTIMIZABLE) || self.int.is_some()
    }

    /// Returns `true` if this type is valid for reordering and `-Z randomize-layout`
    /// was enabled for its declaration crate.
    pub fn can_randomize_type_layout(&self) -> bool {
        !self.inhibit_struct_field_reordering() && self.flags.contains(ReprFlags::RANDOMIZE_LAYOUT)
    }

    /// Returns `true` if this `#[repr()]` should inhibit union ABI optimisations.
    pub fn inhibits_union_abi_opt(&self) -> bool {
        self.c()
    }
}

/// Parsed [Data layout](https://llvm.org/docs/LangRef.html#data-layout)
/// for a target, which contains everything needed to compute layouts.
#[derive(Debug, PartialEq, Eq)]
pub struct TargetDataLayout {
    pub endian: Endian,
    pub i1_align: AbiAndPrefAlign,
    pub i8_align: AbiAndPrefAlign,
    pub i16_align: AbiAndPrefAlign,
    pub i32_align: AbiAndPrefAlign,
    pub i64_align: AbiAndPrefAlign,
    pub i128_align: AbiAndPrefAlign,
    pub f16_align: AbiAndPrefAlign,
    pub f32_align: AbiAndPrefAlign,
    pub f64_align: AbiAndPrefAlign,
    pub f128_align: AbiAndPrefAlign,
    pub pointer_size: Size,
    pub pointer_align: AbiAndPrefAlign,
    pub aggregate_align: AbiAndPrefAlign,

    /// Alignments for vector types.
    pub vector_align: Vec<(Size, AbiAndPrefAlign)>,

    pub instruction_address_space: AddressSpace,

    /// Minimum size of #[repr(C)] enums (default c_int::BITS, usually 32)
    /// Note: This isn't in LLVM's data layout string, it is `short_enum`
    /// so the only valid spec for LLVM is c_int::BITS or 8
    pub c_enum_min_size: Integer,
}

impl Default for TargetDataLayout {
    /// Creates an instance of `TargetDataLayout`.
    fn default() -> TargetDataLayout {
        let align = |bits| Align::from_bits(bits).unwrap();
        TargetDataLayout {
            endian: Endian::Big,
            i1_align: AbiAndPrefAlign::new(align(8)),
            i8_align: AbiAndPrefAlign::new(align(8)),
            i16_align: AbiAndPrefAlign::new(align(16)),
            i32_align: AbiAndPrefAlign::new(align(32)),
            i64_align: AbiAndPrefAlign { abi: align(32), pref: align(64) },
            i128_align: AbiAndPrefAlign { abi: align(32), pref: align(64) },
            f16_align: AbiAndPrefAlign::new(align(16)),
            f32_align: AbiAndPrefAlign::new(align(32)),
            f64_align: AbiAndPrefAlign::new(align(64)),
            f128_align: AbiAndPrefAlign::new(align(128)),
            pointer_size: Size::from_bits(64),
            pointer_align: AbiAndPrefAlign::new(align(64)),
            aggregate_align: AbiAndPrefAlign { abi: align(0), pref: align(64) },
            vector_align: vec![
                (Size::from_bits(64), AbiAndPrefAlign::new(align(64))),
                (Size::from_bits(128), AbiAndPrefAlign::new(align(128))),
            ],
            instruction_address_space: AddressSpace::DATA,
            c_enum_min_size: Integer::I32,
        }
    }
}

pub enum TargetDataLayoutErrors<'a> {
    InvalidAddressSpace { addr_space: &'a str, cause: &'a str, err: ParseIntError },
    InvalidBits { kind: &'a str, bit: &'a str, cause: &'a str, err: ParseIntError },
    MissingAlignment { cause: &'a str },
    InvalidAlignment { cause: &'a str, err: AlignFromBytesError },
    InconsistentTargetArchitecture { dl: &'a str, target: &'a str },
    InconsistentTargetPointerWidth { pointer_size: u64, target: u32 },
    InvalidBitsSize { err: String },
}

impl TargetDataLayout {
    /// Parse data layout from an
    /// [llvm data layout string](https://llvm.org/docs/LangRef.html#data-layout)
    ///
    /// This function doesn't fill `c_enum_min_size` and it will always be `I32` since it can not be
    /// determined from llvm string.
    pub fn parse_from_llvm_datalayout_string<'a>(
        input: &'a str,
    ) -> Result<TargetDataLayout, TargetDataLayoutErrors<'a>> {
        // Parse an address space index from a string.
        let parse_address_space = |s: &'a str, cause: &'a str| {
            s.parse::<u32>().map(AddressSpace).map_err(|err| {
                TargetDataLayoutErrors::InvalidAddressSpace { addr_space: s, cause, err }
            })
        };

        // Parse a bit count from a string.
        let parse_bits = |s: &'a str, kind: &'a str, cause: &'a str| {
            s.parse::<u64>().map_err(|err| TargetDataLayoutErrors::InvalidBits {
                kind,
                bit: s,
                cause,
                err,
            })
        };

        // Parse a size string.
        let parse_size =
            |s: &'a str, cause: &'a str| parse_bits(s, "size", cause).map(Size::from_bits);

        // Parse an alignment string.
        let parse_align = |s: &[&'a str], cause: &'a str| {
            if s.is_empty() {
                return Err(TargetDataLayoutErrors::MissingAlignment { cause });
            }
            let align_from_bits = |bits| {
                Align::from_bits(bits)
                    .map_err(|err| TargetDataLayoutErrors::InvalidAlignment { cause, err })
            };
            let abi = parse_bits(s[0], "alignment", cause)?;
            let pref = s.get(1).map_or(Ok(abi), |pref| parse_bits(pref, "alignment", cause))?;
            Ok(AbiAndPrefAlign { abi: align_from_bits(abi)?, pref: align_from_bits(pref)? })
        };

        let mut dl = TargetDataLayout::default();
        let mut i128_align_src = 64;
        for spec in input.split('-') {
            let spec_parts = spec.split(':').collect::<Vec<_>>();

            match &*spec_parts {
                ["e"] => dl.endian = Endian::Little,
                ["E"] => dl.endian = Endian::Big,
                [p] if p.starts_with('P') => {
                    dl.instruction_address_space = parse_address_space(&p[1..], "P")?
                }
                ["a", ref a @ ..] => dl.aggregate_align = parse_align(a, "a")?,
                ["f16", ref a @ ..] => dl.f16_align = parse_align(a, "f16")?,
                ["f32", ref a @ ..] => dl.f32_align = parse_align(a, "f32")?,
                ["f64", ref a @ ..] => dl.f64_align = parse_align(a, "f64")?,
                ["f128", ref a @ ..] => dl.f128_align = parse_align(a, "f128")?,
                // FIXME(erikdesjardins): we should be parsing nonzero address spaces
                // this will require replacing TargetDataLayout::{pointer_size,pointer_align}
                // with e.g. `fn pointer_size_in(AddressSpace)`
                [p @ "p", s, ref a @ ..] | [p @ "p0", s, ref a @ ..] => {
                    dl.pointer_size = parse_size(s, p)?;
                    dl.pointer_align = parse_align(a, p)?;
                }
                [s, ref a @ ..] if s.starts_with('i') => {
                    let Ok(bits) = s[1..].parse::<u64>() else {
                        parse_size(&s[1..], "i")?; // For the user error.
                        continue;
                    };
                    let a = parse_align(a, s)?;
                    match bits {
                        1 => dl.i1_align = a,
                        8 => dl.i8_align = a,
                        16 => dl.i16_align = a,
                        32 => dl.i32_align = a,
                        64 => dl.i64_align = a,
                        _ => {}
                    }
                    if bits >= i128_align_src && bits <= 128 {
                        // Default alignment for i128 is decided by taking the alignment of
                        // largest-sized i{64..=128}.
                        i128_align_src = bits;
                        dl.i128_align = a;
                    }
                }
                [s, ref a @ ..] if s.starts_with('v') => {
                    let v_size = parse_size(&s[1..], "v")?;
                    let a = parse_align(a, s)?;
                    if let Some(v) = dl.vector_align.iter_mut().find(|v| v.0 == v_size) {
                        v.1 = a;
                        continue;
                    }
                    // No existing entry, add a new one.
                    dl.vector_align.push((v_size, a));
                }
                _ => {} // Ignore everything else.
            }
        }
        Ok(dl)
    }

    /// Returns **exclusive** upper bound on object size in bytes.
    ///
    /// The theoretical maximum object size is defined as the maximum positive `isize` value.
    /// This ensures that the `offset` semantics remain well-defined by allowing it to correctly
    /// index every address within an object along with one byte past the end, along with allowing
    /// `isize` to store the difference between any two pointers into an object.
    ///
    /// LLVM uses a 64-bit integer to represent object size in *bits*, but we care only for bytes,
    /// so we adopt such a more-constrained size bound due to its technical limitations.
    #[inline]
    pub fn obj_size_bound(&self) -> u64 {
        match self.pointer_size.bits() {
            16 => 1 << 15,
            32 => 1 << 31,
            64 => 1 << 61,
            bits => panic!("obj_size_bound: unknown pointer bit size {bits}"),
        }
    }

    #[inline]
    pub fn ptr_sized_integer(&self) -> Integer {
        use Integer::*;
        match self.pointer_size.bits() {
            16 => I16,
            32 => I32,
            64 => I64,
            bits => panic!("ptr_sized_integer: unknown pointer bit size {bits}"),
        }
    }

    #[inline]
    pub fn vector_align(&self, vec_size: Size) -> AbiAndPrefAlign {
        for &(size, align) in &self.vector_align {
            if size == vec_size {
                return align;
            }
        }
        // Default to natural alignment, which is what LLVM does.
        // That is, use the size, rounded up to a power of 2.
        AbiAndPrefAlign::new(Align::from_bytes(vec_size.bytes().next_power_of_two()).unwrap())
    }
}

pub trait HasDataLayout {
    fn data_layout(&self) -> &TargetDataLayout;
}

impl HasDataLayout for TargetDataLayout {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        self
    }
}

// used by rust-analyzer
impl HasDataLayout for &TargetDataLayout {
    #[inline]
    fn data_layout(&self) -> &TargetDataLayout {
        (**self).data_layout()
    }
}

/// Endianness of the target, which must match cfg(target-endian).
#[derive(Copy, Clone, PartialEq, Eq)]
pub enum Endian {
    Little,
    Big,
}

impl Endian {
    pub fn as_str(&self) -> &'static str {
        match self {
            Self::Little => "little",
            Self::Big => "big",
        }
    }
}

impl fmt::Debug for Endian {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(self.as_str())
    }
}

impl FromStr for Endian {
    type Err = String;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        match s {
            "little" => Ok(Self::Little),
            "big" => Ok(Self::Big),
            _ => Err(format!(r#"unknown endian: "{s}""#)),
        }
    }
}

/// Size of a type in bytes.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(Encodable_Generic, Decodable_Generic, HashStable_Generic))]
pub struct Size {
    raw: u64,
}

#[cfg(feature = "nightly")]
impl StableOrd for Size {
    const CAN_USE_UNSTABLE_SORT: bool = true;

    // `Ord` is implemented as just comparing numerical values and numerical values
    // are not changed by (de-)serialization.
    const THIS_IMPLEMENTATION_HAS_BEEN_TRIPLE_CHECKED: () = ();
}

// This is debug-printed a lot in larger structs, don't waste too much space there
impl fmt::Debug for Size {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Size({} bytes)", self.bytes())
    }
}

impl Size {
    pub const ZERO: Size = Size { raw: 0 };

    /// Rounds `bits` up to the next-higher byte boundary, if `bits` is
    /// not a multiple of 8.
    pub fn from_bits(bits: impl TryInto<u64>) -> Size {
        let bits = bits.try_into().ok().unwrap();
        // Avoid potential overflow from `bits + 7`.
        Size { raw: bits / 8 + ((bits % 8) + 7) / 8 }
    }

    #[inline]
    pub fn from_bytes(bytes: impl TryInto<u64>) -> Size {
        let bytes: u64 = bytes.try_into().ok().unwrap();
        Size { raw: bytes }
    }

    #[inline]
    pub fn bytes(self) -> u64 {
        self.raw
    }

    #[inline]
    pub fn bytes_usize(self) -> usize {
        self.bytes().try_into().unwrap()
    }

    #[inline]
    pub fn bits(self) -> u64 {
        #[cold]
        fn overflow(bytes: u64) -> ! {
            panic!("Size::bits: {bytes} bytes in bits doesn't fit in u64")
        }

        self.bytes().checked_mul(8).unwrap_or_else(|| overflow(self.bytes()))
    }

    #[inline]
    pub fn bits_usize(self) -> usize {
        self.bits().try_into().unwrap()
    }

    #[inline]
    pub fn align_to(self, align: Align) -> Size {
        let mask = align.bytes() - 1;
        Size::from_bytes((self.bytes() + mask) & !mask)
    }

    #[inline]
    pub fn is_aligned(self, align: Align) -> bool {
        let mask = align.bytes() - 1;
        self.bytes() & mask == 0
    }

    #[inline]
    pub fn checked_add<C: HasDataLayout>(self, offset: Size, cx: &C) -> Option<Size> {
        let dl = cx.data_layout();

        let bytes = self.bytes().checked_add(offset.bytes())?;

        if bytes < dl.obj_size_bound() { Some(Size::from_bytes(bytes)) } else { None }
    }

    #[inline]
    pub fn checked_mul<C: HasDataLayout>(self, count: u64, cx: &C) -> Option<Size> {
        let dl = cx.data_layout();

        let bytes = self.bytes().checked_mul(count)?;
        if bytes < dl.obj_size_bound() { Some(Size::from_bytes(bytes)) } else { None }
    }

    /// Truncates `value` to `self` bits and then sign-extends it to 128 bits
    /// (i.e., if it is negative, fill with 1's on the left).
    #[inline]
    pub fn sign_extend(self, value: u128) -> i128 {
        let size = self.bits();
        if size == 0 {
            // Truncated until nothing is left.
            return 0;
        }
        // Sign-extend it.
        let shift = 128 - size;
        // Shift the unsigned value to the left, then shift back to the right as signed
        // (essentially fills with sign bit on the left).
        ((value << shift) as i128) >> shift
    }

    /// Truncates `value` to `self` bits.
    #[inline]
    pub fn truncate(self, value: u128) -> u128 {
        let size = self.bits();
        if size == 0 {
            // Truncated until nothing is left.
            return 0;
        }
        let shift = 128 - size;
        // Truncate (shift left to drop out leftover values, shift right to fill with zeroes).
        (value << shift) >> shift
    }

    #[inline]
    pub fn signed_int_min(&self) -> i128 {
        self.sign_extend(1_u128 << (self.bits() - 1))
    }

    #[inline]
    pub fn signed_int_max(&self) -> i128 {
        i128::MAX >> (128 - self.bits())
    }

    #[inline]
    pub fn unsigned_int_max(&self) -> u128 {
        u128::MAX >> (128 - self.bits())
    }
}

// Panicking addition, subtraction and multiplication for convenience.
// Avoid during layout computation, return `LayoutError` instead.

impl Add for Size {
    type Output = Size;
    #[inline]
    fn add(self, other: Size) -> Size {
        Size::from_bytes(self.bytes().checked_add(other.bytes()).unwrap_or_else(|| {
            panic!("Size::add: {} + {} doesn't fit in u64", self.bytes(), other.bytes())
        }))
    }
}

impl Sub for Size {
    type Output = Size;
    #[inline]
    fn sub(self, other: Size) -> Size {
        Size::from_bytes(self.bytes().checked_sub(other.bytes()).unwrap_or_else(|| {
            panic!("Size::sub: {} - {} would result in negative size", self.bytes(), other.bytes())
        }))
    }
}

impl Mul<Size> for u64 {
    type Output = Size;
    #[inline]
    fn mul(self, size: Size) -> Size {
        size * self
    }
}

impl Mul<u64> for Size {
    type Output = Size;
    #[inline]
    fn mul(self, count: u64) -> Size {
        match self.bytes().checked_mul(count) {
            Some(bytes) => Size::from_bytes(bytes),
            None => panic!("Size::mul: {} * {} doesn't fit in u64", self.bytes(), count),
        }
    }
}

impl AddAssign for Size {
    #[inline]
    fn add_assign(&mut self, other: Size) {
        *self = *self + other;
    }
}

#[cfg(feature = "nightly")]
impl Step for Size {
    #[inline]
    fn steps_between(start: &Self, end: &Self) -> (usize, Option<usize>) {
        u64::steps_between(&start.bytes(), &end.bytes())
    }

    #[inline]
    fn forward_checked(start: Self, count: usize) -> Option<Self> {
        u64::forward_checked(start.bytes(), count).map(Self::from_bytes)
    }

    #[inline]
    fn forward(start: Self, count: usize) -> Self {
        Self::from_bytes(u64::forward(start.bytes(), count))
    }

    #[inline]
    unsafe fn forward_unchecked(start: Self, count: usize) -> Self {
        Self::from_bytes(unsafe { u64::forward_unchecked(start.bytes(), count) })
    }

    #[inline]
    fn backward_checked(start: Self, count: usize) -> Option<Self> {
        u64::backward_checked(start.bytes(), count).map(Self::from_bytes)
    }

    #[inline]
    fn backward(start: Self, count: usize) -> Self {
        Self::from_bytes(u64::backward(start.bytes(), count))
    }

    #[inline]
    unsafe fn backward_unchecked(start: Self, count: usize) -> Self {
        Self::from_bytes(unsafe { u64::backward_unchecked(start.bytes(), count) })
    }
}

/// Alignment of a type in bytes (always a power of two).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(Encodable_Generic, Decodable_Generic, HashStable_Generic))]
pub struct Align {
    pow2: u8,
}

// This is debug-printed a lot in larger structs, don't waste too much space there
impl fmt::Debug for Align {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "Align({} bytes)", self.bytes())
    }
}

#[derive(Clone, Copy)]
pub enum AlignFromBytesError {
    NotPowerOfTwo(u64),
    TooLarge(u64),
}

impl AlignFromBytesError {
    pub fn diag_ident(self) -> &'static str {
        match self {
            Self::NotPowerOfTwo(_) => "not_power_of_two",
            Self::TooLarge(_) => "too_large",
        }
    }

    pub fn align(self) -> u64 {
        let (Self::NotPowerOfTwo(align) | Self::TooLarge(align)) = self;
        align
    }
}

impl fmt::Debug for AlignFromBytesError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(self, f)
    }
}

impl fmt::Display for AlignFromBytesError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            AlignFromBytesError::NotPowerOfTwo(align) => write!(f, "`{align}` is not a power of 2"),
            AlignFromBytesError::TooLarge(align) => write!(f, "`{align}` is too large"),
        }
    }
}

impl Align {
    pub const ONE: Align = Align { pow2: 0 };
    pub const EIGHT: Align = Align { pow2: 3 };
    // LLVM has a maximal supported alignment of 2^29, we inherit that.
    pub const MAX: Align = Align { pow2: 29 };

    #[inline]
    pub fn from_bits(bits: u64) -> Result<Align, AlignFromBytesError> {
        Align::from_bytes(Size::from_bits(bits).bytes())
    }

    #[inline]
    pub const fn from_bytes(align: u64) -> Result<Align, AlignFromBytesError> {
        // Treat an alignment of 0 bytes like 1-byte alignment.
        if align == 0 {
            return Ok(Align::ONE);
        }

        #[cold]
        const fn not_power_of_2(align: u64) -> AlignFromBytesError {
            AlignFromBytesError::NotPowerOfTwo(align)
        }

        #[cold]
        const fn too_large(align: u64) -> AlignFromBytesError {
            AlignFromBytesError::TooLarge(align)
        }

        let tz = align.trailing_zeros();
        if align != (1 << tz) {
            return Err(not_power_of_2(align));
        }

        let pow2 = tz as u8;
        if pow2 > Self::MAX.pow2 {
            return Err(too_large(align));
        }

        Ok(Align { pow2 })
    }

    #[inline]
    pub fn bytes(self) -> u64 {
        1 << self.pow2
    }

    #[inline]
    pub fn bytes_usize(self) -> usize {
        self.bytes().try_into().unwrap()
    }

    #[inline]
    pub fn bits(self) -> u64 {
        self.bytes() * 8
    }

    #[inline]
    pub fn bits_usize(self) -> usize {
        self.bits().try_into().unwrap()
    }

    /// Computes the best alignment possible for the given offset
    /// (the largest power of two that the offset is a multiple of).
    ///
    /// N.B., for an offset of `0`, this happens to return `2^64`.
    #[inline]
    pub fn max_for_offset(offset: Size) -> Align {
        Align { pow2: offset.bytes().trailing_zeros() as u8 }
    }

    /// Lower the alignment, if necessary, such that the given offset
    /// is aligned to it (the offset is a multiple of the alignment).
    #[inline]
    pub fn restrict_for_offset(self, offset: Size) -> Align {
        self.min(Align::max_for_offset(offset))
    }
}

/// A pair of alignments, ABI-mandated and preferred.
///
/// The "preferred" alignment is an LLVM concept that is virtually meaningless to Rust code:
/// it is not exposed semantically to programmers nor can they meaningfully affect it.
/// The only concern for us is that preferred alignment must not be less than the mandated alignment
/// and thus in practice the two values are almost always identical.
///
/// An example of a rare thing actually affected by preferred alignment is aligning of statics.
/// It is of effectively no consequence for layout in structs and on the stack.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub struct AbiAndPrefAlign {
    pub abi: Align,
    pub pref: Align,
}

impl AbiAndPrefAlign {
    #[inline]
    pub fn new(align: Align) -> AbiAndPrefAlign {
        AbiAndPrefAlign { abi: align, pref: align }
    }

    #[inline]
    pub fn min(self, other: AbiAndPrefAlign) -> AbiAndPrefAlign {
        AbiAndPrefAlign { abi: self.abi.min(other.abi), pref: self.pref.min(other.pref) }
    }

    #[inline]
    pub fn max(self, other: AbiAndPrefAlign) -> AbiAndPrefAlign {
        AbiAndPrefAlign { abi: self.abi.max(other.abi), pref: self.pref.max(other.pref) }
    }
}

/// Integers, also used for enum discriminants.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(Encodable_Generic, Decodable_Generic, HashStable_Generic))]
pub enum Integer {
    I8,
    I16,
    I32,
    I64,
    I128,
}

impl Integer {
    pub fn int_ty_str(self) -> &'static str {
        use Integer::*;
        match self {
            I8 => "i8",
            I16 => "i16",
            I32 => "i32",
            I64 => "i64",
            I128 => "i128",
        }
    }

    pub fn uint_ty_str(self) -> &'static str {
        use Integer::*;
        match self {
            I8 => "u8",
            I16 => "u16",
            I32 => "u32",
            I64 => "u64",
            I128 => "u128",
        }
    }

    #[inline]
    pub fn size(self) -> Size {
        use Integer::*;
        match self {
            I8 => Size::from_bytes(1),
            I16 => Size::from_bytes(2),
            I32 => Size::from_bytes(4),
            I64 => Size::from_bytes(8),
            I128 => Size::from_bytes(16),
        }
    }

    /// Gets the Integer type from an IntegerType.
    pub fn from_attr<C: HasDataLayout>(cx: &C, ity: IntegerType) -> Integer {
        let dl = cx.data_layout();

        match ity {
            IntegerType::Pointer(_) => dl.ptr_sized_integer(),
            IntegerType::Fixed(x, _) => x,
        }
    }

    pub fn align<C: HasDataLayout>(self, cx: &C) -> AbiAndPrefAlign {
        use Integer::*;
        let dl = cx.data_layout();

        match self {
            I8 => dl.i8_align,
            I16 => dl.i16_align,
            I32 => dl.i32_align,
            I64 => dl.i64_align,
            I128 => dl.i128_align,
        }
    }

    /// Returns the largest signed value that can be represented by this Integer.
    #[inline]
    pub fn signed_max(self) -> i128 {
        use Integer::*;
        match self {
            I8 => i8::MAX as i128,
            I16 => i16::MAX as i128,
            I32 => i32::MAX as i128,
            I64 => i64::MAX as i128,
            I128 => i128::MAX,
        }
    }

    /// Finds the smallest Integer type which can represent the signed value.
    #[inline]
    pub fn fit_signed(x: i128) -> Integer {
        use Integer::*;
        match x {
            -0x0000_0000_0000_0080..=0x0000_0000_0000_007f => I8,
            -0x0000_0000_0000_8000..=0x0000_0000_0000_7fff => I16,
            -0x0000_0000_8000_0000..=0x0000_0000_7fff_ffff => I32,
            -0x8000_0000_0000_0000..=0x7fff_ffff_ffff_ffff => I64,
            _ => I128,
        }
    }

    /// Finds the smallest Integer type which can represent the unsigned value.
    #[inline]
    pub fn fit_unsigned(x: u128) -> Integer {
        use Integer::*;
        match x {
            0..=0x0000_0000_0000_00ff => I8,
            0..=0x0000_0000_0000_ffff => I16,
            0..=0x0000_0000_ffff_ffff => I32,
            0..=0xffff_ffff_ffff_ffff => I64,
            _ => I128,
        }
    }

    /// Finds the smallest integer with the given alignment.
    pub fn for_align<C: HasDataLayout>(cx: &C, wanted: Align) -> Option<Integer> {
        use Integer::*;
        let dl = cx.data_layout();

        [I8, I16, I32, I64, I128].into_iter().find(|&candidate| {
            wanted == candidate.align(dl).abi && wanted.bytes() == candidate.size().bytes()
        })
    }

    /// Find the largest integer with the given alignment or less.
    pub fn approximate_align<C: HasDataLayout>(cx: &C, wanted: Align) -> Integer {
        use Integer::*;
        let dl = cx.data_layout();

        // FIXME(eddyb) maybe include I128 in the future, when it works everywhere.
        for candidate in [I64, I32, I16] {
            if wanted >= candidate.align(dl).abi && wanted.bytes() >= candidate.size().bytes() {
                return candidate;
            }
        }
        I8
    }

    // FIXME(eddyb) consolidate this and other methods that find the appropriate
    // `Integer` given some requirements.
    #[inline]
    pub fn from_size(size: Size) -> Result<Self, String> {
        match size.bits() {
            8 => Ok(Integer::I8),
            16 => Ok(Integer::I16),
            32 => Ok(Integer::I32),
            64 => Ok(Integer::I64),
            128 => Ok(Integer::I128),
            _ => Err(format!("rust does not support integers with {} bits", size.bits())),
        }
    }
}

/// Floating-point types.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub enum Float {
    F16,
    F32,
    F64,
    F128,
}

impl Float {
    pub fn size(self) -> Size {
        use Float::*;

        match self {
            F16 => Size::from_bits(16),
            F32 => Size::from_bits(32),
            F64 => Size::from_bits(64),
            F128 => Size::from_bits(128),
        }
    }

    pub fn align<C: HasDataLayout>(self, cx: &C) -> AbiAndPrefAlign {
        use Float::*;
        let dl = cx.data_layout();

        match self {
            F16 => dl.f16_align,
            F32 => dl.f32_align,
            F64 => dl.f64_align,
            F128 => dl.f128_align,
        }
    }
}

/// Fundamental unit of memory access and layout.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub enum Primitive {
    /// The `bool` is the signedness of the `Integer` type.
    ///
    /// One would think we would not care about such details this low down,
    /// but some ABIs are described in terms of C types and ISAs where the
    /// integer arithmetic is done on {sign,zero}-extended registers, e.g.
    /// a negative integer passed by zero-extension will appear positive in
    /// the callee, and most operations on it will produce the wrong values.
    Int(Integer, bool),
    Float(Float),
    Pointer(AddressSpace),
}

impl Primitive {
    pub fn size<C: HasDataLayout>(self, cx: &C) -> Size {
        use Primitive::*;
        let dl = cx.data_layout();

        match self {
            Int(i, _) => i.size(),
            Float(f) => f.size(),
            // FIXME(erikdesjardins): ignoring address space is technically wrong, pointers in
            // different address spaces can have different sizes
            // (but TargetDataLayout doesn't currently parse that part of the DL string)
            Pointer(_) => dl.pointer_size,
        }
    }

    pub fn align<C: HasDataLayout>(self, cx: &C) -> AbiAndPrefAlign {
        use Primitive::*;
        let dl = cx.data_layout();

        match self {
            Int(i, _) => i.align(dl),
            Float(f) => f.align(dl),
            // FIXME(erikdesjardins): ignoring address space is technically wrong, pointers in
            // different address spaces can have different alignments
            // (but TargetDataLayout doesn't currently parse that part of the DL string)
            Pointer(_) => dl.pointer_align,
        }
    }
}

/// Inclusive wrap-around range of valid values, that is, if
/// start > end, it represents `start..=MAX`, followed by `0..=end`.
///
/// That is, for an i8 primitive, a range of `254..=2` means following
/// sequence:
///
///    254 (-2), 255 (-1), 0, 1, 2
///
/// This is intended specifically to mirror LLVM’s `!range` metadata semantics.
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub struct WrappingRange {
    pub start: u128,
    pub end: u128,
}

impl WrappingRange {
    pub fn full(size: Size) -> Self {
        Self { start: 0, end: size.unsigned_int_max() }
    }

    /// Returns `true` if `v` is contained in the range.
    #[inline(always)]
    pub fn contains(&self, v: u128) -> bool {
        if self.start <= self.end {
            self.start <= v && v <= self.end
        } else {
            self.start <= v || v <= self.end
        }
    }

    /// Returns `self` with replaced `start`
    #[inline(always)]
    fn with_start(mut self, start: u128) -> Self {
        self.start = start;
        self
    }

    /// Returns `self` with replaced `end`
    #[inline(always)]
    fn with_end(mut self, end: u128) -> Self {
        self.end = end;
        self
    }

    /// Returns `true` if `size` completely fills the range.
    #[inline]
    fn is_full_for(&self, size: Size) -> bool {
        let max_value = size.unsigned_int_max();
        debug_assert!(self.start <= max_value && self.end <= max_value);
        self.start == (self.end.wrapping_add(1) & max_value)
    }
}

impl fmt::Debug for WrappingRange {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.start > self.end {
            write!(fmt, "(..={}) | ({}..)", self.end, self.start)?;
        } else {
            write!(fmt, "{}..={}", self.start, self.end)?;
        }
        Ok(())
    }
}

/// Information about one scalar component of a Rust type.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub enum Scalar {
    Initialized {
        value: Primitive,

        // FIXME(eddyb) always use the shortest range, e.g., by finding
        // the largest space between two consecutive valid values and
        // taking everything else as the (shortest) valid range.
        valid_range: WrappingRange,
    },
    Union {
        /// Even for unions, we need to use the correct registers for the kind of
        /// values inside the union, so we keep the `Primitive` type around. We
        /// also use it to compute the size of the scalar.
        /// However, unions never have niches and even allow undef,
        /// so there is no `valid_range`.
        value: Primitive,
    },
}

impl Scalar {
    #[inline]
    pub fn is_bool(&self) -> bool {
        use Integer::*;
        matches!(self, Scalar::Initialized {
            value: Primitive::Int(I8, false),
            valid_range: WrappingRange { start: 0, end: 1 }
        })
    }

    /// Get the primitive representation of this type, ignoring the valid range and whether the
    /// value is allowed to be undefined (due to being a union).
    pub fn primitive(&self) -> Primitive {
        match *self {
            Scalar::Initialized { value, .. } | Scalar::Union { value } => value,
        }
    }

    pub fn align(self, cx: &impl HasDataLayout) -> AbiAndPrefAlign {
        self.primitive().align(cx)
    }

    pub fn size(self, cx: &impl HasDataLayout) -> Size {
        self.primitive().size(cx)
    }

    #[inline]
    pub fn to_union(&self) -> Self {
        Self::Union { value: self.primitive() }
    }

    #[inline]
    pub fn valid_range(&self, cx: &impl HasDataLayout) -> WrappingRange {
        match *self {
            Scalar::Initialized { valid_range, .. } => valid_range,
            Scalar::Union { value } => WrappingRange::full(value.size(cx)),
        }
    }

    #[inline]
    /// Allows the caller to mutate the valid range. This operation will panic if attempted on a
    /// union.
    pub fn valid_range_mut(&mut self) -> &mut WrappingRange {
        match self {
            Scalar::Initialized { valid_range, .. } => valid_range,
            Scalar::Union { .. } => panic!("cannot change the valid range of a union"),
        }
    }

    /// Returns `true` if all possible numbers are valid, i.e `valid_range` covers the whole
    /// layout.
    #[inline]
    pub fn is_always_valid<C: HasDataLayout>(&self, cx: &C) -> bool {
        match *self {
            Scalar::Initialized { valid_range, .. } => valid_range.is_full_for(self.size(cx)),
            Scalar::Union { .. } => true,
        }
    }

    /// Returns `true` if this type can be left uninit.
    #[inline]
    pub fn is_uninit_valid(&self) -> bool {
        match *self {
            Scalar::Initialized { .. } => false,
            Scalar::Union { .. } => true,
        }
    }
}

// NOTE: This struct is generic over the FieldIdx for rust-analyzer usage.
/// Describes how the fields of a type are located in memory.
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub enum FieldsShape<FieldIdx: Idx> {
    /// Scalar primitives and `!`, which never have fields.
    Primitive,

    /// All fields start at no offset. The `usize` is the field count.
    Union(NonZeroUsize),

    /// Array/vector-like placement, with all fields of identical types.
    Array { stride: Size, count: u64 },

    /// Struct-like placement, with precomputed offsets.
    ///
    /// Fields are guaranteed to not overlap, but note that gaps
    /// before, between and after all the fields are NOT always
    /// padding, and as such their contents may not be discarded.
    /// For example, enum variants leave a gap at the start,
    /// where the discriminant field in the enum layout goes.
    Arbitrary {
        /// Offsets for the first byte of each field,
        /// ordered to match the source definition order.
        /// This vector does not go in increasing order.
        // FIXME(eddyb) use small vector optimization for the common case.
        offsets: IndexVec<FieldIdx, Size>,

        /// Maps source order field indices to memory order indices,
        /// depending on how the fields were reordered (if at all).
        /// This is a permutation, with both the source order and the
        /// memory order using the same (0..n) index ranges.
        ///
        /// Note that during computation of `memory_index`, sometimes
        /// it is easier to operate on the inverse mapping (that is,
        /// from memory order to source order), and that is usually
        /// named `inverse_memory_index`.
        ///
        // FIXME(eddyb) build a better abstraction for permutations, if possible.
        // FIXME(camlorn) also consider small vector optimization here.
        memory_index: IndexVec<FieldIdx, u32>,
    },
}

impl<FieldIdx: Idx> FieldsShape<FieldIdx> {
    #[inline]
    pub fn count(&self) -> usize {
        match *self {
            FieldsShape::Primitive => 0,
            FieldsShape::Union(count) => count.get(),
            FieldsShape::Array { count, .. } => count.try_into().unwrap(),
            FieldsShape::Arbitrary { ref offsets, .. } => offsets.len(),
        }
    }

    #[inline]
    pub fn offset(&self, i: usize) -> Size {
        match *self {
            FieldsShape::Primitive => {
                unreachable!("FieldsShape::offset: `Primitive`s have no fields")
            }
            FieldsShape::Union(count) => {
                assert!(i < count.get(), "tried to access field {i} of union with {count} fields");
                Size::ZERO
            }
            FieldsShape::Array { stride, count } => {
                let i = u64::try_from(i).unwrap();
                assert!(i < count, "tried to access field {i} of array with {count} fields");
                stride * i
            }
            FieldsShape::Arbitrary { ref offsets, .. } => offsets[FieldIdx::new(i)],
        }
    }

    #[inline]
    pub fn memory_index(&self, i: usize) -> usize {
        match *self {
            FieldsShape::Primitive => {
                unreachable!("FieldsShape::memory_index: `Primitive`s have no fields")
            }
            FieldsShape::Union(_) | FieldsShape::Array { .. } => i,
            FieldsShape::Arbitrary { ref memory_index, .. } => {
                memory_index[FieldIdx::new(i)].try_into().unwrap()
            }
        }
    }

    /// Gets source indices of the fields by increasing offsets.
    #[inline]
    pub fn index_by_increasing_offset(&self) -> impl ExactSizeIterator<Item = usize> + '_ {
        let mut inverse_small = [0u8; 64];
        let mut inverse_big = IndexVec::new();
        let use_small = self.count() <= inverse_small.len();

        // We have to write this logic twice in order to keep the array small.
        if let FieldsShape::Arbitrary { ref memory_index, .. } = *self {
            if use_small {
                for (field_idx, &mem_idx) in memory_index.iter_enumerated() {
                    inverse_small[mem_idx as usize] = field_idx.index() as u8;
                }
            } else {
                inverse_big = memory_index.invert_bijective_mapping();
            }
        }

        // Primitives don't really have fields in the way that structs do,
        // but having this return an empty iterator for them is unhelpful
        // since that makes them look kinda like ZSTs, which they're not.
        let pseudofield_count = if let FieldsShape::Primitive = self { 1 } else { self.count() };

        (0..pseudofield_count).map(move |i| match *self {
            FieldsShape::Primitive | FieldsShape::Union(_) | FieldsShape::Array { .. } => i,
            FieldsShape::Arbitrary { .. } => {
                if use_small {
                    inverse_small[i] as usize
                } else {
                    inverse_big[i as u32].index()
                }
            }
        })
    }
}

/// An identifier that specifies the address space that some operation
/// should operate on. Special address spaces have an effect on code generation,
/// depending on the target and the address spaces it implements.
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub struct AddressSpace(pub u32);

impl AddressSpace {
    /// The default address space, corresponding to data space.
    pub const DATA: Self = AddressSpace(0);
}

/// The way we represent values to the backend
///
/// Previously this was conflated with the "ABI" a type is given, as in the platform-specific ABI.
/// In reality, this implies little about that, but is mostly used to describe the syntactic form
/// emitted for the backend, as most backends handle SSA values and blobs of memory differently.
/// The psABI may need consideration in doing so, but this enum does not constitute a promise for
/// how the value will be lowered to the calling convention, in itself.
///
/// Generally, a codegen backend will prefer to handle smaller values as a scalar or short vector,
/// and larger values will usually prefer to be represented as memory.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub enum BackendRepr {
    Uninhabited,
    Scalar(Scalar),
    ScalarPair(Scalar, Scalar),
    Vector {
        element: Scalar,
        count: u64,
    },
    // FIXME: I sometimes use memory, sometimes use an IR aggregate!
    Memory {
        /// If true, the size is exact, otherwise it's only a lower bound.
        sized: bool,
    },
}

impl BackendRepr {
    /// Returns `true` if the layout corresponds to an unsized type.
    #[inline]
    pub fn is_unsized(&self) -> bool {
        match *self {
            BackendRepr::Uninhabited
            | BackendRepr::Scalar(_)
            | BackendRepr::ScalarPair(..)
            | BackendRepr::Vector { .. } => false,
            BackendRepr::Memory { sized } => !sized,
        }
    }

    #[inline]
    pub fn is_sized(&self) -> bool {
        !self.is_unsized()
    }

    /// Returns `true` if this is a single signed integer scalar
    #[inline]
    pub fn is_signed(&self) -> bool {
        match self {
            BackendRepr::Scalar(scal) => match scal.primitive() {
                Primitive::Int(_, signed) => signed,
                _ => false,
            },
            _ => panic!("`is_signed` on non-scalar ABI {self:?}"),
        }
    }

    /// Returns `true` if this is an uninhabited type
    #[inline]
    pub fn is_uninhabited(&self) -> bool {
        matches!(*self, BackendRepr::Uninhabited)
    }

    /// Returns `true` if this is a scalar type
    #[inline]
    pub fn is_scalar(&self) -> bool {
        matches!(*self, BackendRepr::Scalar(_))
    }

    /// Returns `true` if this is a bool
    #[inline]
    pub fn is_bool(&self) -> bool {
        matches!(*self, BackendRepr::Scalar(s) if s.is_bool())
    }

    /// Returns the fixed alignment of this ABI, if any is mandated.
    pub fn inherent_align<C: HasDataLayout>(&self, cx: &C) -> Option<AbiAndPrefAlign> {
        Some(match *self {
            BackendRepr::Scalar(s) => s.align(cx),
            BackendRepr::ScalarPair(s1, s2) => s1.align(cx).max(s2.align(cx)),
            BackendRepr::Vector { element, count } => {
                cx.data_layout().vector_align(element.size(cx) * count)
            }
            BackendRepr::Uninhabited | BackendRepr::Memory { .. } => return None,
        })
    }

    /// Returns the fixed size of this ABI, if any is mandated.
    pub fn inherent_size<C: HasDataLayout>(&self, cx: &C) -> Option<Size> {
        Some(match *self {
            BackendRepr::Scalar(s) => {
                // No padding in scalars.
                s.size(cx)
            }
            BackendRepr::ScalarPair(s1, s2) => {
                // May have some padding between the pair.
                let field2_offset = s1.size(cx).align_to(s2.align(cx).abi);
                (field2_offset + s2.size(cx)).align_to(self.inherent_align(cx)?.abi)
            }
            BackendRepr::Vector { element, count } => {
                // No padding in vectors, except possibly for trailing padding
                // to make the size a multiple of align (e.g. for vectors of size 3).
                (element.size(cx) * count).align_to(self.inherent_align(cx)?.abi)
            }
            BackendRepr::Uninhabited | BackendRepr::Memory { .. } => return None,
        })
    }

    /// Discard validity range information and allow undef.
    pub fn to_union(&self) -> Self {
        match *self {
            BackendRepr::Scalar(s) => BackendRepr::Scalar(s.to_union()),
            BackendRepr::ScalarPair(s1, s2) => {
                BackendRepr::ScalarPair(s1.to_union(), s2.to_union())
            }
            BackendRepr::Vector { element, count } => {
                BackendRepr::Vector { element: element.to_union(), count }
            }
            BackendRepr::Uninhabited | BackendRepr::Memory { .. } => {
                BackendRepr::Memory { sized: true }
            }
        }
    }

    pub fn eq_up_to_validity(&self, other: &Self) -> bool {
        match (self, other) {
            // Scalar, Vector, ScalarPair have `Scalar` in them where we ignore validity ranges.
            // We do *not* ignore the sign since it matters for some ABIs (e.g. s390x).
            (BackendRepr::Scalar(l), BackendRepr::Scalar(r)) => l.primitive() == r.primitive(),
            (
                BackendRepr::Vector { element: element_l, count: count_l },
                BackendRepr::Vector { element: element_r, count: count_r },
            ) => element_l.primitive() == element_r.primitive() && count_l == count_r,
            (BackendRepr::ScalarPair(l1, l2), BackendRepr::ScalarPair(r1, r2)) => {
                l1.primitive() == r1.primitive() && l2.primitive() == r2.primitive()
            }
            // Everything else must be strictly identical.
            _ => self == other,
        }
    }
}

// NOTE: This struct is generic over the FieldIdx and VariantIdx for rust-analyzer usage.
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub enum Variants<FieldIdx: Idx, VariantIdx: Idx> {
    /// Single enum variants, structs/tuples, unions, and all non-ADTs.
    Single { index: VariantIdx },

    /// Enum-likes with more than one variant: each variant comes with
    /// a *discriminant* (usually the same as the variant index but the user can
    /// assign explicit discriminant values). That discriminant is encoded
    /// as a *tag* on the machine. The layout of each variant is
    /// a struct, and they all have space reserved for the tag.
    /// For enums, the tag is the sole field of the layout.
    Multiple {
        tag: Scalar,
        tag_encoding: TagEncoding<VariantIdx>,
        tag_field: usize,
        variants: IndexVec<VariantIdx, LayoutData<FieldIdx, VariantIdx>>,
    },
}

// NOTE: This struct is generic over the VariantIdx for rust-analyzer usage.
#[derive(PartialEq, Eq, Hash, Clone, Debug)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub enum TagEncoding<VariantIdx: Idx> {
    /// The tag directly stores the discriminant, but possibly with a smaller layout
    /// (so converting the tag to the discriminant can require sign extension).
    Direct,

    /// Niche (values invalid for a type) encoding the discriminant:
    /// Discriminant and variant index coincide.
    /// The variant `untagged_variant` contains a niche at an arbitrary
    /// offset (field `tag_field` of the enum), which for a variant with
    /// discriminant `d` is set to
    /// `(d - niche_variants.start).wrapping_add(niche_start)`.
    ///
    /// For example, `Option<(usize, &T)>`  is represented such that
    /// `None` has a null pointer for the second tuple field, and
    /// `Some` is the identity function (with a non-null reference).
    Niche {
        untagged_variant: VariantIdx,
        niche_variants: RangeInclusive<VariantIdx>,
        niche_start: u128,
    },
}

#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub struct Niche {
    pub offset: Size,
    pub value: Primitive,
    pub valid_range: WrappingRange,
}

impl Niche {
    pub fn from_scalar<C: HasDataLayout>(cx: &C, offset: Size, scalar: Scalar) -> Option<Self> {
        let Scalar::Initialized { value, valid_range } = scalar else { return None };
        let niche = Niche { offset, value, valid_range };
        if niche.available(cx) > 0 { Some(niche) } else { None }
    }

    pub fn available<C: HasDataLayout>(&self, cx: &C) -> u128 {
        let Self { value, valid_range: v, .. } = *self;
        let size = value.size(cx);
        assert!(size.bits() <= 128);
        let max_value = size.unsigned_int_max();

        // Find out how many values are outside the valid range.
        let niche = v.end.wrapping_add(1)..v.start;
        niche.end.wrapping_sub(niche.start) & max_value
    }

    pub fn reserve<C: HasDataLayout>(&self, cx: &C, count: u128) -> Option<(u128, Scalar)> {
        assert!(count > 0);

        let Self { value, valid_range: v, .. } = *self;
        let size = value.size(cx);
        assert!(size.bits() <= 128);
        let max_value = size.unsigned_int_max();

        let niche = v.end.wrapping_add(1)..v.start;
        let available = niche.end.wrapping_sub(niche.start) & max_value;
        if count > available {
            return None;
        }

        // Extend the range of valid values being reserved by moving either `v.start` or `v.end`
        // bound. Given an eventual `Option<T>`, we try to maximize the chance for `None` to occupy
        // the niche of zero. This is accomplished by preferring enums with 2 variants(`count==1`)
        // and always taking the shortest path to niche zero. Having `None` in niche zero can
        // enable some special optimizations.
        //
        // Bound selection criteria:
        // 1. Select closest to zero given wrapping semantics.
        // 2. Avoid moving past zero if possible.
        //
        // In practice this means that enums with `count > 1` are unlikely to claim niche zero,
        // since they have to fit perfectly. If niche zero is already reserved, the selection of
        // bounds are of little interest.
        let move_start = |v: WrappingRange| {
            let start = v.start.wrapping_sub(count) & max_value;
            Some((start, Scalar::Initialized { value, valid_range: v.with_start(start) }))
        };
        let move_end = |v: WrappingRange| {
            let start = v.end.wrapping_add(1) & max_value;
            let end = v.end.wrapping_add(count) & max_value;
            Some((start, Scalar::Initialized { value, valid_range: v.with_end(end) }))
        };
        let distance_end_zero = max_value - v.end;
        if v.start > v.end {
            // zero is unavailable because wrapping occurs
            move_end(v)
        } else if v.start <= distance_end_zero {
            if count <= v.start {
                move_start(v)
            } else {
                // moved past zero, use other bound
                move_end(v)
            }
        } else {
            let end = v.end.wrapping_add(count) & max_value;
            let overshot_zero = (1..=v.end).contains(&end);
            if overshot_zero {
                // moved past zero, use other bound
                move_start(v)
            } else {
                move_end(v)
            }
        }
    }
}

// NOTE: This struct is generic over the FieldIdx and VariantIdx for rust-analyzer usage.
#[derive(PartialEq, Eq, Hash, Clone)]
#[cfg_attr(feature = "nightly", derive(HashStable_Generic))]
pub struct LayoutData<FieldIdx: Idx, VariantIdx: Idx> {
    /// Says where the fields are located within the layout.
    pub fields: FieldsShape<FieldIdx>,

    /// Encodes information about multi-variant layouts.
    /// Even with `Multiple` variants, a layout still has its own fields! Those are then
    /// shared between all variants. One of them will be the discriminant,
    /// but e.g. coroutines can have more.
    ///
    /// To access all fields of this layout, both `fields` and the fields of the active variant
    /// must be taken into account.
    pub variants: Variants<FieldIdx, VariantIdx>,

    /// The `backend_repr` defines how this data will be represented to the codegen backend,
    /// and encodes value restrictions via `valid_range`.
    ///
    /// Note that this is entirely orthogonal to the recursive structure defined by
    /// `variants` and `fields`; for example, `ManuallyDrop<Result<isize, isize>>` has
    /// `IrForm::ScalarPair`! So, even with non-`Memory` `backend_repr`, `fields` and `variants`
    /// have to be taken into account to find all fields of this layout.
    pub backend_repr: BackendRepr,

    /// The leaf scalar with the largest number of invalid values
    /// (i.e. outside of its `valid_range`), if it exists.
    pub largest_niche: Option<Niche>,

    pub align: AbiAndPrefAlign,
    pub size: Size,

    /// The largest alignment explicitly requested with `repr(align)` on this type or any field.
    /// Only used on i686-windows, where the argument passing ABI is different when alignment is
    /// requested, even if the requested alignment is equal to the natural alignment.
    pub max_repr_align: Option<Align>,

    /// The alignment the type would have, ignoring any `repr(align)` but including `repr(packed)`.
    /// Only used on aarch64-linux, where the argument passing ABI ignores the requested alignment
    /// in some cases.
    pub unadjusted_abi_align: Align,
}

impl<FieldIdx: Idx, VariantIdx: Idx> LayoutData<FieldIdx, VariantIdx> {
    /// Returns `true` if this is an aggregate type (including a ScalarPair!)
    pub fn is_aggregate(&self) -> bool {
        match self.backend_repr {
            BackendRepr::Uninhabited | BackendRepr::Scalar(_) | BackendRepr::Vector { .. } => false,
            BackendRepr::ScalarPair(..) | BackendRepr::Memory { .. } => true,
        }
    }

    /// Returns `true` if this is an uninhabited type
    pub fn is_uninhabited(&self) -> bool {
        self.backend_repr.is_uninhabited()
    }

    pub fn scalar<C: HasDataLayout>(cx: &C, scalar: Scalar) -> Self {
        let largest_niche = Niche::from_scalar(cx, Size::ZERO, scalar);
        let size = scalar.size(cx);
        let align = scalar.align(cx);
        LayoutData {
            variants: Variants::Single { index: VariantIdx::new(0) },
            fields: FieldsShape::Primitive,
            backend_repr: BackendRepr::Scalar(scalar),
            largest_niche,
            size,
            align,
            max_repr_align: None,
            unadjusted_abi_align: align.abi,
        }
    }
}

impl<FieldIdx: Idx, VariantIdx: Idx> fmt::Debug for LayoutData<FieldIdx, VariantIdx>
where
    FieldsShape<FieldIdx>: fmt::Debug,
    Variants<FieldIdx, VariantIdx>: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // This is how `Layout` used to print before it become
        // `Interned<LayoutS>`. We print it like this to avoid having to update
        // expected output in a lot of tests.
        let LayoutData {
            size,
            align,
            backend_repr,
            fields,
            largest_niche,
            variants,
            max_repr_align,
            unadjusted_abi_align,
        } = self;
        f.debug_struct("Layout")
            .field("size", size)
            .field("align", align)
            .field("abi", backend_repr)
            .field("fields", fields)
            .field("largest_niche", largest_niche)
            .field("variants", variants)
            .field("max_repr_align", max_repr_align)
            .field("unadjusted_abi_align", unadjusted_abi_align)
            .finish()
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum PointerKind {
    /// Shared reference. `frozen` indicates the absence of any `UnsafeCell`.
    SharedRef { frozen: bool },
    /// Mutable reference. `unpin` indicates the absence of any pinned data.
    MutableRef { unpin: bool },
    /// Box. `unpin` indicates the absence of any pinned data. `global` indicates whether this box
    /// uses the global allocator or a custom one.
    Box { unpin: bool, global: bool },
}

/// Encodes extra information we have about a pointer.
/// Note that this information is advisory only, and backends are free to ignore it:
/// if the information is wrong, that can cause UB, but if the information is absent,
/// that must always be okay.
#[derive(Copy, Clone, Debug)]
pub struct PointeeInfo {
    /// If this is `None`, then this is a raw pointer, so size and alignment are not guaranteed to
    /// be reliable.
    pub safe: Option<PointerKind>,
    /// If `safe` is `Some`, then the pointer is either null or dereferenceable for this many bytes.
    /// On a function argument, "dereferenceable" here means "dereferenceable for the entire duration
    /// of this function call", i.e. it is UB for the memory that this pointer points to to be freed
    /// while this function is still running.
    /// The size can be zero if the pointer is not dereferenceable.
    pub size: Size,
    /// If `safe` is `Some`, then the pointer is aligned as indicated.
    pub align: Align,
}

impl<FieldIdx: Idx, VariantIdx: Idx> LayoutData<FieldIdx, VariantIdx> {
    /// Returns `true` if the layout corresponds to an unsized type.
    #[inline]
    pub fn is_unsized(&self) -> bool {
        self.backend_repr.is_unsized()
    }

    #[inline]
    pub fn is_sized(&self) -> bool {
        self.backend_repr.is_sized()
    }

    /// Returns `true` if the type is sized and a 1-ZST (meaning it has size 0 and alignment 1).
    pub fn is_1zst(&self) -> bool {
        self.is_sized() && self.size.bytes() == 0 && self.align.abi.bytes() == 1
    }

    /// Returns `true` if the type is a ZST and not unsized.
    ///
    /// Note that this does *not* imply that the type is irrelevant for layout! It can still have
    /// non-trivial alignment constraints. You probably want to use `is_1zst` instead.
    pub fn is_zst(&self) -> bool {
        match self.backend_repr {
            BackendRepr::Scalar(_) | BackendRepr::ScalarPair(..) | BackendRepr::Vector { .. } => {
                false
            }
            BackendRepr::Uninhabited => self.size.bytes() == 0,
            BackendRepr::Memory { sized } => sized && self.size.bytes() == 0,
        }
    }

    /// Checks if these two `Layout` are equal enough to be considered "the same for all function
    /// call ABIs". Note however that real ABIs depend on more details that are not reflected in the
    /// `Layout`; the `PassMode` need to be compared as well. Also note that we assume
    /// aggregates are passed via `PassMode::Indirect` or `PassMode::Cast`; more strict
    /// checks would otherwise be required.
    pub fn eq_abi(&self, other: &Self) -> bool {
        // The one thing that we are not capturing here is that for unsized types, the metadata must
        // also have the same ABI, and moreover that the same metadata leads to the same size. The
        // 2nd point is quite hard to check though.
        self.size == other.size
            && self.is_sized() == other.is_sized()
            && self.backend_repr.eq_up_to_validity(&other.backend_repr)
            && self.backend_repr.is_bool() == other.backend_repr.is_bool()
            && self.align.abi == other.align.abi
            && self.max_repr_align == other.max_repr_align
            && self.unadjusted_abi_align == other.unadjusted_abi_align
    }
}

#[derive(Copy, Clone, Debug)]
pub enum StructKind {
    /// A tuple, closure, or univariant which cannot be coerced to unsized.
    AlwaysSized,
    /// A univariant, the last field of which may be coerced to unsized.
    MaybeUnsized,
    /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag).
    Prefixed(Size, Align),
}