rustc_trait_selection/traits/fulfill.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
use std::marker::PhantomData;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::obligation_forest::{
Error, ForestObligation, ObligationForest, ObligationProcessor, Outcome, ProcessResult,
};
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_infer::traits::{
FromSolverError, PolyTraitObligation, ProjectionCacheKey, SelectionError, TraitEngine,
};
use rustc_middle::bug;
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::ty::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::{self, Binder, Const, GenericArgsRef, TypeVisitableExt};
use tracing::{debug, debug_span, instrument};
use super::project::{self, ProjectAndUnifyResult};
use super::select::SelectionContext;
use super::{
EvaluationResult, FulfillmentError, FulfillmentErrorCode, PredicateObligation,
ScrubbedTraitError, Unimplemented, const_evaluatable, wf,
};
use crate::error_reporting::InferCtxtErrorExt;
use crate::infer::{InferCtxt, TyOrConstInferVar};
use crate::traits::normalize::normalize_with_depth_to;
use crate::traits::project::{PolyProjectionObligation, ProjectionCacheKeyExt as _};
use crate::traits::query::evaluate_obligation::InferCtxtExt;
impl<'tcx> ForestObligation for PendingPredicateObligation<'tcx> {
/// Note that we include both the `ParamEnv` and the `Predicate`,
/// as the `ParamEnv` can influence whether fulfillment succeeds
/// or fails.
type CacheKey = ty::ParamEnvAnd<'tcx, ty::Predicate<'tcx>>;
fn as_cache_key(&self) -> Self::CacheKey {
self.obligation.param_env.and(self.obligation.predicate)
}
}
/// The fulfillment context is used to drive trait resolution. It
/// consists of a list of obligations that must be (eventually)
/// satisfied. The job is to track which are satisfied, which yielded
/// errors, and which are still pending. At any point, users can call
/// `select_where_possible`, and the fulfillment context will try to do
/// selection, retaining only those obligations that remain
/// ambiguous. This may be helpful in pushing type inference
/// along. Once all type inference constraints have been generated, the
/// method `select_all_or_error` can be used to report any remaining
/// ambiguous cases as errors.
pub struct FulfillmentContext<'tcx, E: 'tcx> {
/// A list of all obligations that have been registered with this
/// fulfillment context.
predicates: ObligationForest<PendingPredicateObligation<'tcx>>,
/// The snapshot in which this context was created. Using the context
/// outside of this snapshot leads to subtle bugs if the snapshot
/// gets rolled back. Because of this we explicitly check that we only
/// use the context in exactly this snapshot.
usable_in_snapshot: usize,
_errors: PhantomData<E>,
}
#[derive(Clone, Debug)]
pub struct PendingPredicateObligation<'tcx> {
pub obligation: PredicateObligation<'tcx>,
// This is far more often read than modified, meaning that we
// should mostly optimize for reading speed, while modifying is not as relevant.
//
// For whatever reason using a boxed slice is slower than using a `Vec` here.
pub stalled_on: Vec<TyOrConstInferVar>,
}
// `PendingPredicateObligation` is used a lot. Make sure it doesn't unintentionally get bigger.
#[cfg(target_pointer_width = "64")]
rustc_data_structures::static_assert_size!(PendingPredicateObligation<'_>, 72);
impl<'tcx, E> FulfillmentContext<'tcx, E>
where
E: FromSolverError<'tcx, OldSolverError<'tcx>>,
{
/// Creates a new fulfillment context.
pub(super) fn new(infcx: &InferCtxt<'tcx>) -> FulfillmentContext<'tcx, E> {
assert!(
!infcx.next_trait_solver(),
"old trait solver fulfillment context created when \
infcx is set up for new trait solver"
);
FulfillmentContext {
predicates: ObligationForest::new(),
usable_in_snapshot: infcx.num_open_snapshots(),
_errors: PhantomData,
}
}
/// Attempts to select obligations using `selcx`.
fn select(&mut self, selcx: SelectionContext<'_, 'tcx>) -> Vec<E> {
let span = debug_span!("select", obligation_forest_size = ?self.predicates.len());
let _enter = span.enter();
let infcx = selcx.infcx;
// Process pending obligations.
let outcome: Outcome<_, _> =
self.predicates.process_obligations(&mut FulfillProcessor { selcx });
// FIXME: if we kept the original cache key, we could mark projection
// obligations as complete for the projection cache here.
let errors: Vec<E> = outcome
.errors
.into_iter()
.map(|err| E::from_solver_error(infcx, OldSolverError(err)))
.collect();
debug!(
"select({} predicates remaining, {} errors) done",
self.predicates.len(),
errors.len()
);
errors
}
}
impl<'tcx, E> TraitEngine<'tcx, E> for FulfillmentContext<'tcx, E>
where
E: FromSolverError<'tcx, OldSolverError<'tcx>>,
{
#[inline]
fn register_predicate_obligation(
&mut self,
infcx: &InferCtxt<'tcx>,
mut obligation: PredicateObligation<'tcx>,
) {
assert_eq!(self.usable_in_snapshot, infcx.num_open_snapshots());
// this helps to reduce duplicate errors, as well as making
// debug output much nicer to read and so on.
debug_assert!(!obligation.param_env.has_non_region_infer());
obligation.predicate = infcx.resolve_vars_if_possible(obligation.predicate);
debug!(?obligation, "register_predicate_obligation");
self.predicates
.register_obligation(PendingPredicateObligation { obligation, stalled_on: vec![] });
}
fn collect_remaining_errors(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<E> {
self.predicates
.to_errors(FulfillmentErrorCode::Ambiguity { overflow: None })
.into_iter()
.map(|err| E::from_solver_error(infcx, OldSolverError(err)))
.collect()
}
fn select_where_possible(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<E> {
let selcx = SelectionContext::new(infcx);
self.select(selcx)
}
fn drain_unstalled_obligations(
&mut self,
infcx: &InferCtxt<'tcx>,
) -> Vec<PredicateObligation<'tcx>> {
let mut processor = DrainProcessor { removed_predicates: Vec::new(), infcx };
let outcome: Outcome<_, _> = self.predicates.process_obligations(&mut processor);
assert!(outcome.errors.is_empty());
return processor.removed_predicates;
struct DrainProcessor<'a, 'tcx> {
infcx: &'a InferCtxt<'tcx>,
removed_predicates: Vec<PredicateObligation<'tcx>>,
}
impl<'tcx> ObligationProcessor for DrainProcessor<'_, 'tcx> {
type Obligation = PendingPredicateObligation<'tcx>;
type Error = !;
type OUT = Outcome<Self::Obligation, Self::Error>;
fn needs_process_obligation(&self, pending_obligation: &Self::Obligation) -> bool {
pending_obligation
.stalled_on
.iter()
.any(|&var| self.infcx.ty_or_const_infer_var_changed(var))
}
fn process_obligation(
&mut self,
pending_obligation: &mut PendingPredicateObligation<'tcx>,
) -> ProcessResult<PendingPredicateObligation<'tcx>, !> {
assert!(self.needs_process_obligation(pending_obligation));
self.removed_predicates.push(pending_obligation.obligation.clone());
ProcessResult::Changed(vec![])
}
fn process_backedge<'c, I>(
&mut self,
cycle: I,
_marker: PhantomData<&'c PendingPredicateObligation<'tcx>>,
) -> Result<(), !>
where
I: Clone + Iterator<Item = &'c PendingPredicateObligation<'tcx>>,
{
self.removed_predicates.extend(cycle.map(|c| c.obligation.clone()));
Ok(())
}
}
}
fn pending_obligations(&self) -> Vec<PredicateObligation<'tcx>> {
self.predicates.map_pending_obligations(|o| o.obligation.clone())
}
}
struct FulfillProcessor<'a, 'tcx> {
selcx: SelectionContext<'a, 'tcx>,
}
fn mk_pending(os: Vec<PredicateObligation<'_>>) -> Vec<PendingPredicateObligation<'_>> {
os.into_iter()
.map(|o| PendingPredicateObligation { obligation: o, stalled_on: vec![] })
.collect()
}
impl<'a, 'tcx> ObligationProcessor for FulfillProcessor<'a, 'tcx> {
type Obligation = PendingPredicateObligation<'tcx>;
type Error = FulfillmentErrorCode<'tcx>;
type OUT = Outcome<Self::Obligation, Self::Error>;
/// Compared to `needs_process_obligation` this and its callees
/// contain some optimizations that come at the price of false negatives.
///
/// They
/// - reduce branching by covering only the most common case
/// - take a read-only view of the unification tables which allows skipping undo_log
/// construction.
/// - bail out on value-cache misses in ena to avoid pointer chasing
/// - hoist RefCell locking out of the loop
#[inline]
fn skippable_obligations<'b>(
&'b self,
it: impl Iterator<Item = &'b Self::Obligation>,
) -> usize {
let is_unchanged = self.selcx.infcx.is_ty_infer_var_definitely_unchanged();
it.take_while(|o| match o.stalled_on.as_slice() {
[o] => is_unchanged(*o),
_ => false,
})
.count()
}
/// Identifies whether a predicate obligation needs processing.
///
/// This is always inlined because it has a single callsite and it is
/// called *very* frequently. Be careful modifying this code! Several
/// compile-time benchmarks are very sensitive to even small changes.
#[inline(always)]
fn needs_process_obligation(&self, pending_obligation: &Self::Obligation) -> bool {
// If we were stalled on some unresolved variables, first check whether
// any of them have been resolved; if not, don't bother doing more work
// yet.
let stalled_on = &pending_obligation.stalled_on;
match stalled_on.len() {
// This case is the hottest most of the time, being hit up to 99%
// of the time. `keccak` and `cranelift-codegen-0.82.1` are
// benchmarks that particularly stress this path.
1 => self.selcx.infcx.ty_or_const_infer_var_changed(stalled_on[0]),
// In this case we haven't changed, but wish to make a change. Note
// that this is a special case, and is not equivalent to the `_`
// case below, which would return `false` for an empty `stalled_on`
// vector.
//
// This case is usually hit only 1% of the time or less, though it
// reaches 20% in `wasmparser-0.101.0`.
0 => true,
// This case is usually hit only 1% of the time or less, though it
// reaches 95% in `mime-0.3.16`, 64% in `wast-54.0.0`, and 12% in
// `inflate-0.4.5`.
//
// The obvious way of writing this, with a call to `any()` and no
// closure, is currently slower than this version.
_ => (|| {
for &infer_var in stalled_on {
if self.selcx.infcx.ty_or_const_infer_var_changed(infer_var) {
return true;
}
}
false
})(),
}
}
/// Processes a predicate obligation and returns either:
/// - `Changed(v)` if the predicate is true, presuming that `v` are also true
/// - `Unchanged` if we don't have enough info to be sure
/// - `Error(e)` if the predicate does not hold
///
/// This is called much less often than `needs_process_obligation`, so we
/// never inline it.
#[inline(never)]
#[instrument(level = "debug", skip(self, pending_obligation))]
fn process_obligation(
&mut self,
pending_obligation: &mut PendingPredicateObligation<'tcx>,
) -> ProcessResult<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>> {
pending_obligation.stalled_on.truncate(0);
let obligation = &mut pending_obligation.obligation;
debug!(?obligation, "pre-resolve");
if obligation.predicate.has_non_region_infer() {
obligation.predicate = self.selcx.infcx.resolve_vars_if_possible(obligation.predicate);
}
let obligation = &pending_obligation.obligation;
let infcx = self.selcx.infcx;
if obligation.predicate.has_aliases() {
let mut obligations = Vec::new();
let predicate = normalize_with_depth_to(
&mut self.selcx,
obligation.param_env,
obligation.cause.clone(),
obligation.recursion_depth + 1,
obligation.predicate,
&mut obligations,
);
if predicate != obligation.predicate {
obligations.push(obligation.with(infcx.tcx, predicate));
return ProcessResult::Changed(mk_pending(obligations));
}
}
let binder = obligation.predicate.kind();
match binder.no_bound_vars() {
None => match binder.skip_binder() {
// Evaluation will discard candidates using the leak check.
// This means we need to pass it the bound version of our
// predicate.
ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_ref)) => {
let trait_obligation = obligation.with(infcx.tcx, binder.rebind(trait_ref));
self.process_trait_obligation(
obligation,
trait_obligation,
&mut pending_obligation.stalled_on,
)
}
ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
let project_obligation = obligation.with(infcx.tcx, binder.rebind(data));
self.process_projection_obligation(
obligation,
project_obligation,
&mut pending_obligation.stalled_on,
)
}
ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(_))
| ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(_))
| ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(..))
| ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(_))
| ty::PredicateKind::DynCompatible(_)
| ty::PredicateKind::Subtype(_)
| ty::PredicateKind::Coerce(_)
| ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
| ty::PredicateKind::ConstEquate(..) => {
let pred = ty::Binder::dummy(infcx.enter_forall_and_leak_universe(binder));
ProcessResult::Changed(mk_pending(vec![obligation.with(infcx.tcx, pred)]))
}
ty::PredicateKind::Ambiguous => ProcessResult::Unchanged,
ty::PredicateKind::NormalizesTo(..) => {
bug!("NormalizesTo is only used by the new solver")
}
ty::PredicateKind::AliasRelate(..) => {
bug!("AliasRelate is only used by the new solver")
}
},
Some(pred) => match pred {
ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
let trait_obligation = obligation.with(infcx.tcx, Binder::dummy(data));
self.process_trait_obligation(
obligation,
trait_obligation,
&mut pending_obligation.stalled_on,
)
}
ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(data)) => {
if infcx.considering_regions {
infcx.region_outlives_predicate(&obligation.cause, Binder::dummy(data));
}
ProcessResult::Changed(vec![])
}
ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(
t_a,
r_b,
))) => {
if infcx.considering_regions {
infcx.register_region_obligation_with_cause(t_a, r_b, &obligation.cause);
}
ProcessResult::Changed(vec![])
}
ty::PredicateKind::Clause(ty::ClauseKind::Projection(ref data)) => {
let project_obligation = obligation.with(infcx.tcx, Binder::dummy(*data));
self.process_projection_obligation(
obligation,
project_obligation,
&mut pending_obligation.stalled_on,
)
}
ty::PredicateKind::DynCompatible(trait_def_id) => {
if !self.selcx.tcx().is_dyn_compatible(trait_def_id) {
ProcessResult::Error(FulfillmentErrorCode::Select(Unimplemented))
} else {
ProcessResult::Changed(vec![])
}
}
ty::PredicateKind::Ambiguous => ProcessResult::Unchanged,
ty::PredicateKind::NormalizesTo(..) => {
bug!("NormalizesTo is only used by the new solver")
}
ty::PredicateKind::AliasRelate(..) => {
bug!("AliasRelate is only used by the new solver")
}
// Compute `ConstArgHasType` above the overflow check below.
// This is because this is not ever a useful obligation to report
// as the cause of an overflow.
ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
let ct = infcx.shallow_resolve_const(ct);
let ct_ty = match ct.kind() {
ty::ConstKind::Infer(var) => {
let var = match var {
ty::InferConst::Var(vid) => TyOrConstInferVar::Const(vid),
ty::InferConst::EffectVar(vid) => TyOrConstInferVar::Effect(vid),
ty::InferConst::Fresh(_) => {
bug!("encountered fresh const in fulfill")
}
};
pending_obligation.stalled_on.clear();
pending_obligation.stalled_on.extend([var]);
return ProcessResult::Unchanged;
}
ty::ConstKind::Error(_) => return ProcessResult::Changed(vec![]),
ty::ConstKind::Value(ty, _) => ty,
ty::ConstKind::Unevaluated(uv) => {
infcx.tcx.type_of(uv.def).instantiate(infcx.tcx, uv.args)
}
// FIXME(generic_const_exprs): we should construct an alias like
// `<lhs_ty as Add<rhs_ty>>::Output` when this is an `Expr` representing
// `lhs + rhs`.
ty::ConstKind::Expr(_) => {
return ProcessResult::Changed(mk_pending(vec![]));
}
ty::ConstKind::Placeholder(_) => {
bug!("placeholder const {:?} in old solver", ct)
}
ty::ConstKind::Bound(_, _) => bug!("escaping bound vars in {:?}", ct),
ty::ConstKind::Param(param_ct) => {
param_ct.find_ty_from_env(obligation.param_env)
}
};
match infcx.at(&obligation.cause, obligation.param_env).eq(
// Only really exercised by generic_const_exprs
DefineOpaqueTypes::Yes,
ct_ty,
ty,
) {
Ok(inf_ok) => ProcessResult::Changed(mk_pending(inf_ok.into_obligations())),
Err(_) => ProcessResult::Error(FulfillmentErrorCode::Select(
SelectionError::ConstArgHasWrongType { ct, ct_ty, expected_ty: ty },
)),
}
}
// General case overflow check. Allow `process_trait_obligation`
// and `process_projection_obligation` to handle checking for
// the recursion limit themselves. Also don't check some
// predicate kinds that don't give further obligations.
_ if !self
.selcx
.tcx()
.recursion_limit()
.value_within_limit(obligation.recursion_depth) =>
{
self.selcx.infcx.err_ctxt().report_overflow_obligation(&obligation, false);
}
ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
match wf::obligations(
self.selcx.infcx,
obligation.param_env,
obligation.cause.body_id,
obligation.recursion_depth + 1,
arg,
obligation.cause.span,
) {
None => {
pending_obligation.stalled_on =
vec![TyOrConstInferVar::maybe_from_generic_arg(arg).unwrap()];
ProcessResult::Unchanged
}
Some(os) => ProcessResult::Changed(mk_pending(os)),
}
}
ty::PredicateKind::Subtype(subtype) => {
match self.selcx.infcx.subtype_predicate(
&obligation.cause,
obligation.param_env,
Binder::dummy(subtype),
) {
Err((a, b)) => {
// None means that both are unresolved.
pending_obligation.stalled_on =
vec![TyOrConstInferVar::Ty(a), TyOrConstInferVar::Ty(b)];
ProcessResult::Unchanged
}
Ok(Ok(mut ok)) => {
for subobligation in &mut ok.obligations {
subobligation.set_depth_from_parent(obligation.recursion_depth);
}
ProcessResult::Changed(mk_pending(ok.obligations))
}
Ok(Err(err)) => {
let expected_found =
ExpectedFound::new(subtype.a_is_expected, subtype.a, subtype.b);
ProcessResult::Error(FulfillmentErrorCode::Subtype(expected_found, err))
}
}
}
ty::PredicateKind::Coerce(coerce) => {
match self.selcx.infcx.coerce_predicate(
&obligation.cause,
obligation.param_env,
Binder::dummy(coerce),
) {
Err((a, b)) => {
// None means that both are unresolved.
pending_obligation.stalled_on =
vec![TyOrConstInferVar::Ty(a), TyOrConstInferVar::Ty(b)];
ProcessResult::Unchanged
}
Ok(Ok(ok)) => ProcessResult::Changed(mk_pending(ok.obligations)),
Ok(Err(err)) => {
let expected_found = ExpectedFound::new(false, coerce.a, coerce.b);
ProcessResult::Error(FulfillmentErrorCode::Subtype(expected_found, err))
}
}
}
ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
match const_evaluatable::is_const_evaluatable(
self.selcx.infcx,
uv,
obligation.param_env,
obligation.cause.span,
) {
Ok(()) => ProcessResult::Changed(vec![]),
Err(NotConstEvaluatable::MentionsInfer) => {
pending_obligation.stalled_on.clear();
pending_obligation.stalled_on.extend(
uv.walk().filter_map(TyOrConstInferVar::maybe_from_generic_arg),
);
ProcessResult::Unchanged
}
Err(
e @ NotConstEvaluatable::MentionsParam
| e @ NotConstEvaluatable::Error(_),
) => ProcessResult::Error(FulfillmentErrorCode::Select(
SelectionError::NotConstEvaluatable(e),
)),
}
}
ty::PredicateKind::ConstEquate(c1, c2) => {
let tcx = self.selcx.tcx();
assert!(
tcx.features().generic_const_exprs,
"`ConstEquate` without a feature gate: {c1:?} {c2:?}",
);
// FIXME: we probably should only try to unify abstract constants
// if the constants depend on generic parameters.
//
// Let's just see where this breaks :shrug:
{
let c1 = tcx.expand_abstract_consts(c1);
let c2 = tcx.expand_abstract_consts(c2);
debug!("equating consts:\nc1= {:?}\nc2= {:?}", c1, c2);
use rustc_hir::def::DefKind;
use ty::Unevaluated;
match (c1.kind(), c2.kind()) {
(Unevaluated(a), Unevaluated(b))
if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
{
if let Ok(new_obligations) = infcx
.at(&obligation.cause, obligation.param_env)
// Can define opaque types as this is only reachable with
// `generic_const_exprs`
.eq(
DefineOpaqueTypes::Yes,
ty::AliasTerm::from(a),
ty::AliasTerm::from(b),
)
{
return ProcessResult::Changed(mk_pending(
new_obligations.into_obligations(),
));
}
}
(_, Unevaluated(_)) | (Unevaluated(_), _) => (),
(_, _) => {
if let Ok(new_obligations) = infcx
.at(&obligation.cause, obligation.param_env)
// Can define opaque types as this is only reachable with
// `generic_const_exprs`
.eq(DefineOpaqueTypes::Yes, c1, c2)
{
return ProcessResult::Changed(mk_pending(
new_obligations.into_obligations(),
));
}
}
}
}
let stalled_on = &mut pending_obligation.stalled_on;
let mut evaluate = |c: Const<'tcx>| {
if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
match self.selcx.infcx.try_const_eval_resolve(
obligation.param_env,
unevaluated,
obligation.cause.span,
) {
Ok(val) => Ok(val),
Err(e) => {
match e {
ErrorHandled::TooGeneric(..) => {
stalled_on.extend(unevaluated.args.iter().filter_map(
TyOrConstInferVar::maybe_from_generic_arg,
));
}
_ => {}
}
Err(e)
}
}
} else {
Ok(c)
}
};
match (evaluate(c1), evaluate(c2)) {
(Ok(c1), Ok(c2)) => {
match self.selcx.infcx.at(&obligation.cause, obligation.param_env).eq(
// Can define opaque types as this is only reachable with
// `generic_const_exprs`
DefineOpaqueTypes::Yes,
c1,
c2,
) {
Ok(inf_ok) => {
ProcessResult::Changed(mk_pending(inf_ok.into_obligations()))
}
Err(err) => {
ProcessResult::Error(FulfillmentErrorCode::ConstEquate(
ExpectedFound::new(true, c1, c2),
err,
))
}
}
}
(Err(ErrorHandled::Reported(reported, _)), _)
| (_, Err(ErrorHandled::Reported(reported, _))) => ProcessResult::Error(
FulfillmentErrorCode::Select(SelectionError::NotConstEvaluatable(
NotConstEvaluatable::Error(reported.into()),
)),
),
(Err(ErrorHandled::TooGeneric(_)), _)
| (_, Err(ErrorHandled::TooGeneric(_))) => {
if c1.has_non_region_infer() || c2.has_non_region_infer() {
ProcessResult::Unchanged
} else {
// Two different constants using generic parameters ~> error.
let expected_found = ExpectedFound::new(true, c1, c2);
ProcessResult::Error(FulfillmentErrorCode::ConstEquate(
expected_found,
TypeError::ConstMismatch(expected_found),
))
}
}
}
}
},
}
}
#[inline(never)]
fn process_backedge<'c, I>(
&mut self,
cycle: I,
_marker: PhantomData<&'c PendingPredicateObligation<'tcx>>,
) -> Result<(), FulfillmentErrorCode<'tcx>>
where
I: Clone + Iterator<Item = &'c PendingPredicateObligation<'tcx>>,
{
if self.selcx.coinductive_match(cycle.clone().map(|s| s.obligation.predicate)) {
debug!("process_child_obligations: coinductive match");
Ok(())
} else {
let cycle: Vec<_> = cycle.map(|c| c.obligation.clone()).collect();
Err(FulfillmentErrorCode::Cycle(cycle))
}
}
}
impl<'a, 'tcx> FulfillProcessor<'a, 'tcx> {
#[instrument(level = "debug", skip(self, obligation, stalled_on))]
fn process_trait_obligation(
&mut self,
obligation: &PredicateObligation<'tcx>,
trait_obligation: PolyTraitObligation<'tcx>,
stalled_on: &mut Vec<TyOrConstInferVar>,
) -> ProcessResult<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>> {
let infcx = self.selcx.infcx;
if obligation.predicate.is_global() && !self.selcx.is_intercrate() {
// no type variables present, can use evaluation for better caching.
// FIXME: consider caching errors too.
if infcx.predicate_must_hold_considering_regions(obligation) {
debug!(
"selecting trait at depth {} evaluated to holds",
obligation.recursion_depth
);
return ProcessResult::Changed(vec![]);
}
}
match self.selcx.poly_select(&trait_obligation) {
Ok(Some(impl_source)) => {
debug!("selecting trait at depth {} yielded Ok(Some)", obligation.recursion_depth);
ProcessResult::Changed(mk_pending(impl_source.nested_obligations()))
}
Ok(None) => {
debug!("selecting trait at depth {} yielded Ok(None)", obligation.recursion_depth);
// This is a bit subtle: for the most part, the
// only reason we can fail to make progress on
// trait selection is because we don't have enough
// information about the types in the trait.
stalled_on.clear();
stalled_on.extend(args_infer_vars(
&self.selcx,
trait_obligation.predicate.map_bound(|pred| pred.trait_ref.args),
));
debug!(
"process_predicate: pending obligation {:?} now stalled on {:?}",
infcx.resolve_vars_if_possible(obligation.clone()),
stalled_on
);
ProcessResult::Unchanged
}
Err(selection_err) => {
debug!("selecting trait at depth {} yielded Err", obligation.recursion_depth);
ProcessResult::Error(FulfillmentErrorCode::Select(selection_err))
}
}
}
fn process_projection_obligation(
&mut self,
obligation: &PredicateObligation<'tcx>,
project_obligation: PolyProjectionObligation<'tcx>,
stalled_on: &mut Vec<TyOrConstInferVar>,
) -> ProcessResult<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>> {
let tcx = self.selcx.tcx();
if obligation.predicate.is_global() && !self.selcx.is_intercrate() {
// no type variables present, can use evaluation for better caching.
// FIXME: consider caching errors too.
if self.selcx.infcx.predicate_must_hold_considering_regions(obligation) {
if let Some(key) = ProjectionCacheKey::from_poly_projection_obligation(
&mut self.selcx,
&project_obligation,
) {
// If `predicate_must_hold_considering_regions` succeeds, then we've
// evaluated all sub-obligations. We can therefore mark the 'root'
// obligation as complete, and skip evaluating sub-obligations.
self.selcx
.infcx
.inner
.borrow_mut()
.projection_cache()
.complete(key, EvaluationResult::EvaluatedToOk);
}
return ProcessResult::Changed(vec![]);
} else {
debug!("Does NOT hold: {:?}", obligation);
}
}
match project::poly_project_and_unify_term(&mut self.selcx, &project_obligation) {
ProjectAndUnifyResult::Holds(os) => ProcessResult::Changed(mk_pending(os)),
ProjectAndUnifyResult::FailedNormalization => {
stalled_on.clear();
stalled_on.extend(args_infer_vars(
&self.selcx,
project_obligation.predicate.map_bound(|pred| pred.projection_term.args),
));
ProcessResult::Unchanged
}
// Let the caller handle the recursion
ProjectAndUnifyResult::Recursive => ProcessResult::Changed(mk_pending(vec![
project_obligation.with(tcx, project_obligation.predicate),
])),
ProjectAndUnifyResult::MismatchedProjectionTypes(e) => {
ProcessResult::Error(FulfillmentErrorCode::Project(e))
}
}
}
}
/// Returns the set of inference variables contained in `args`.
fn args_infer_vars<'a, 'tcx>(
selcx: &SelectionContext<'a, 'tcx>,
args: ty::Binder<'tcx, GenericArgsRef<'tcx>>,
) -> impl Iterator<Item = TyOrConstInferVar> + Captures<'tcx> {
selcx
.infcx
.resolve_vars_if_possible(args)
.skip_binder() // ok because this check doesn't care about regions
.iter()
.filter(|arg| arg.has_non_region_infer())
.flat_map(|arg| {
let mut walker = arg.walk();
while let Some(c) = walker.next() {
if !c.has_non_region_infer() {
walker.visited.remove(&c);
walker.skip_current_subtree();
}
}
walker.visited.into_iter()
})
.filter_map(TyOrConstInferVar::maybe_from_generic_arg)
}
#[derive(Debug)]
pub struct OldSolverError<'tcx>(
Error<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>>,
);
impl<'tcx> FromSolverError<'tcx, OldSolverError<'tcx>> for FulfillmentError<'tcx> {
fn from_solver_error(_infcx: &InferCtxt<'tcx>, error: OldSolverError<'tcx>) -> Self {
let mut iter = error.0.backtrace.into_iter();
let obligation = iter.next().unwrap().obligation;
// The root obligation is the last item in the backtrace - if there's only
// one item, then it's the same as the main obligation
let root_obligation = iter.next_back().map_or_else(|| obligation.clone(), |e| e.obligation);
FulfillmentError::new(obligation, error.0.error, root_obligation)
}
}
impl<'tcx> FromSolverError<'tcx, OldSolverError<'tcx>> for ScrubbedTraitError<'tcx> {
fn from_solver_error(_infcx: &InferCtxt<'tcx>, error: OldSolverError<'tcx>) -> Self {
match error.0.error {
FulfillmentErrorCode::Select(_)
| FulfillmentErrorCode::Project(_)
| FulfillmentErrorCode::Subtype(_, _)
| FulfillmentErrorCode::ConstEquate(_, _) => ScrubbedTraitError::TrueError,
FulfillmentErrorCode::Ambiguity { overflow: _ } => ScrubbedTraitError::Ambiguity,
FulfillmentErrorCode::Cycle(cycle) => ScrubbedTraitError::Cycle(cycle),
}
}
}