rustc_infer/infer/canonical/query_response.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
//! This module contains the code to instantiate a "query result", and
//! in particular to extract out the resulting region obligations and
//! encode them therein.
//!
//! For an overview of what canonicalization is and how it fits into
//! rustc, check out the [chapter in the rustc dev guide][c].
//!
//! [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html
use std::fmt::Debug;
use std::iter;
use rustc_data_structures::captures::Captures;
use rustc_index::{Idx, IndexVec};
use rustc_middle::arena::ArenaAllocatable;
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::{self, BoundVar, GenericArg, GenericArgKind, Ty, TyCtxt};
use rustc_middle::{bug, span_bug};
use tracing::{debug, instrument};
use crate::infer::canonical::instantiate::{CanonicalExt, instantiate_value};
use crate::infer::canonical::{
Canonical, CanonicalQueryResponse, CanonicalVarValues, Certainty, OriginalQueryValues,
QueryOutlivesConstraint, QueryRegionConstraints, QueryResponse,
};
use crate::infer::region_constraints::{Constraint, RegionConstraintData};
use crate::infer::{DefineOpaqueTypes, InferCtxt, InferOk, InferResult};
use crate::traits::query::NoSolution;
use crate::traits::{
Obligation, ObligationCause, PredicateObligation, ScrubbedTraitError, TraitEngine,
};
impl<'tcx> InferCtxt<'tcx> {
/// This method is meant to be invoked as the final step of a canonical query
/// implementation. It is given:
///
/// - the instantiated variables `inference_vars` created from the query key
/// - the result `answer` of the query
/// - a fulfillment context `fulfill_cx` that may contain various obligations which
/// have yet to be proven.
///
/// Given this, the function will process the obligations pending
/// in `fulfill_cx`:
///
/// - If all the obligations can be proven successfully, it will
/// package up any resulting region obligations (extracted from
/// `infcx`) along with the fully resolved value `answer` into a
/// query result (which is then itself canonicalized).
/// - If some obligations can be neither proven nor disproven, then
/// the same thing happens, but the resulting query is marked as ambiguous.
/// - Finally, if any of the obligations result in a hard error,
/// then `Err(NoSolution)` is returned.
#[instrument(skip(self, inference_vars, answer, fulfill_cx), level = "trace")]
pub fn make_canonicalized_query_response<T>(
&self,
inference_vars: CanonicalVarValues<'tcx>,
answer: T,
fulfill_cx: &mut dyn TraitEngine<'tcx, ScrubbedTraitError<'tcx>>,
) -> Result<CanonicalQueryResponse<'tcx, T>, NoSolution>
where
T: Debug + TypeFoldable<TyCtxt<'tcx>>,
Canonical<'tcx, QueryResponse<'tcx, T>>: ArenaAllocatable<'tcx>,
{
let query_response = self.make_query_response(inference_vars, answer, fulfill_cx)?;
debug!("query_response = {:#?}", query_response);
let canonical_result = self.canonicalize_response(query_response);
debug!("canonical_result = {:#?}", canonical_result);
Ok(self.tcx.arena.alloc(canonical_result))
}
/// A version of `make_canonicalized_query_response` that does
/// not pack in obligations, for contexts that want to drop
/// pending obligations instead of treating them as an ambiguity (e.g.
/// typeck "probing" contexts).
///
/// If you DO want to keep track of pending obligations (which
/// include all region obligations, so this includes all cases
/// that care about regions) with this function, you have to
/// do it yourself, by e.g., having them be a part of the answer.
pub fn make_query_response_ignoring_pending_obligations<T>(
&self,
inference_vars: CanonicalVarValues<'tcx>,
answer: T,
) -> Canonical<'tcx, QueryResponse<'tcx, T>>
where
T: Debug + TypeFoldable<TyCtxt<'tcx>>,
{
self.canonicalize_response(QueryResponse {
var_values: inference_vars,
region_constraints: QueryRegionConstraints::default(),
certainty: Certainty::Proven, // Ambiguities are OK!
opaque_types: vec![],
value: answer,
})
}
/// Helper for `make_canonicalized_query_response` that does
/// everything up until the final canonicalization.
#[instrument(skip(self, fulfill_cx), level = "debug")]
fn make_query_response<T>(
&self,
inference_vars: CanonicalVarValues<'tcx>,
answer: T,
fulfill_cx: &mut dyn TraitEngine<'tcx, ScrubbedTraitError<'tcx>>,
) -> Result<QueryResponse<'tcx, T>, NoSolution>
where
T: Debug + TypeFoldable<TyCtxt<'tcx>>,
{
let tcx = self.tcx;
// Select everything, returning errors.
let errors = fulfill_cx.select_all_or_error(self);
// True error!
if errors.iter().any(|e| e.is_true_error()) {
return Err(NoSolution);
}
let region_obligations = self.take_registered_region_obligations();
debug!(?region_obligations);
let region_constraints = self.with_region_constraints(|region_constraints| {
make_query_region_constraints(
tcx,
region_obligations
.iter()
.map(|r_o| (r_o.sup_type, r_o.sub_region, r_o.origin.to_constraint_category())),
region_constraints,
)
});
debug!(?region_constraints);
let certainty = if errors.is_empty() { Certainty::Proven } else { Certainty::Ambiguous };
let opaque_types = self.take_opaque_types_for_query_response();
Ok(QueryResponse {
var_values: inference_vars,
region_constraints,
certainty,
value: answer,
opaque_types,
})
}
/// Used by the new solver as that one takes the opaque types at the end of a probe
/// to deal with multiple candidates without having to recompute them.
pub fn clone_opaque_types_for_query_response(
&self,
) -> Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)> {
self.inner
.borrow()
.opaque_type_storage
.opaque_types
.iter()
.map(|(k, v)| (*k, v.hidden_type.ty))
.collect()
}
fn take_opaque_types_for_query_response(&self) -> Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)> {
self.take_opaque_types().into_iter().map(|(k, v)| (k, v.hidden_type.ty)).collect()
}
/// Given the (canonicalized) result to a canonical query,
/// instantiates the result so it can be used, plugging in the
/// values from the canonical query. (Note that the result may
/// have been ambiguous; you should check the certainty level of
/// the query before applying this function.)
///
/// To get a good understanding of what is happening here, check
/// out the [chapter in the rustc dev guide][c].
///
/// [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html#processing-the-canonicalized-query-result
pub fn instantiate_query_response_and_region_obligations<R>(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
original_values: &OriginalQueryValues<'tcx>,
query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
) -> InferResult<'tcx, R>
where
R: Debug + TypeFoldable<TyCtxt<'tcx>>,
{
let InferOk { value: result_args, mut obligations } =
self.query_response_instantiation(cause, param_env, original_values, query_response)?;
obligations.extend(self.query_outlives_constraints_into_obligations(
cause,
param_env,
&query_response.value.region_constraints.outlives,
&result_args,
));
let user_result: R =
query_response.instantiate_projected(self.tcx, &result_args, |q_r| q_r.value.clone());
Ok(InferOk { value: user_result, obligations })
}
/// An alternative to
/// `instantiate_query_response_and_region_obligations` that is more
/// efficient for NLL. NLL is a bit more advanced in the
/// "transition to chalk" than the rest of the compiler. During
/// the NLL type check, all of the "processing" of types and
/// things happens in queries -- the NLL checker itself is only
/// interested in the region obligations (`'a: 'b` or `T: 'b`)
/// that come out of these queries, which it wants to convert into
/// MIR-based constraints and solve. Therefore, it is most
/// convenient for the NLL Type Checker to **directly consume**
/// the `QueryOutlivesConstraint` values that arise from doing a
/// query. This is contrast to other parts of the compiler, which
/// would prefer for those `QueryOutlivesConstraint` to be converted
/// into the older infcx-style constraints (e.g., calls to
/// `sub_regions` or `register_region_obligation`).
///
/// Therefore, `instantiate_nll_query_response_and_region_obligations` performs the same
/// basic operations as `instantiate_query_response_and_region_obligations` but
/// it returns its result differently:
///
/// - It creates an instantiation `S` that maps from the original
/// query variables to the values computed in the query
/// result. If any errors arise, they are propagated back as an
/// `Err` result.
/// - In the case of a successful instantiation, we will append
/// `QueryOutlivesConstraint` values onto the
/// `output_query_region_constraints` vector for the solver to
/// use (if an error arises, some values may also be pushed, but
/// they should be ignored).
/// - It **can happen** (though it rarely does currently) that
/// equating types and things will give rise to subobligations
/// that must be processed. In this case, those subobligations
/// are propagated back in the return value.
/// - Finally, the query result (of type `R`) is propagated back,
/// after applying the instantiation `S`.
pub fn instantiate_nll_query_response_and_region_obligations<R>(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
original_values: &OriginalQueryValues<'tcx>,
query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
output_query_region_constraints: &mut QueryRegionConstraints<'tcx>,
) -> InferResult<'tcx, R>
where
R: Debug + TypeFoldable<TyCtxt<'tcx>>,
{
let InferOk { value: result_args, mut obligations } = self
.query_response_instantiation_guess(
cause,
param_env,
original_values,
query_response,
)?;
// Compute `QueryOutlivesConstraint` values that unify each of
// the original values `v_o` that was canonicalized into a
// variable...
let constraint_category = cause.to_constraint_category();
for (index, original_value) in original_values.var_values.iter().enumerate() {
// ...with the value `v_r` of that variable from the query.
let result_value = query_response.instantiate_projected(self.tcx, &result_args, |v| {
v.var_values[BoundVar::new(index)]
});
match (original_value.unpack(), result_value.unpack()) {
(GenericArgKind::Lifetime(re1), GenericArgKind::Lifetime(re2))
if re1.is_erased() && re2.is_erased() =>
{
// No action needed.
}
(GenericArgKind::Lifetime(v_o), GenericArgKind::Lifetime(v_r)) => {
// To make `v_o = v_r`, we emit `v_o: v_r` and `v_r: v_o`.
if v_o != v_r {
output_query_region_constraints
.outlives
.push((ty::OutlivesPredicate(v_o.into(), v_r), constraint_category));
output_query_region_constraints
.outlives
.push((ty::OutlivesPredicate(v_r.into(), v_o), constraint_category));
}
}
(GenericArgKind::Type(v1), GenericArgKind::Type(v2)) => {
obligations.extend(
self.at(&cause, param_env)
.eq(DefineOpaqueTypes::Yes, v1, v2)?
.into_obligations(),
);
}
(GenericArgKind::Const(v1), GenericArgKind::Const(v2)) => {
obligations.extend(
self.at(&cause, param_env)
.eq(DefineOpaqueTypes::Yes, v1, v2)?
.into_obligations(),
);
}
_ => {
bug!("kind mismatch, cannot unify {:?} and {:?}", original_value, result_value);
}
}
}
// ...also include the other query region constraints from the query.
output_query_region_constraints.outlives.extend(
query_response.value.region_constraints.outlives.iter().filter_map(|&r_c| {
let r_c = instantiate_value(self.tcx, &result_args, r_c);
// Screen out `'a: 'a` cases.
let ty::OutlivesPredicate(k1, r2) = r_c.0;
if k1 != r2.into() { Some(r_c) } else { None }
}),
);
// ...also include the query member constraints.
output_query_region_constraints.member_constraints.extend(
query_response
.value
.region_constraints
.member_constraints
.iter()
.map(|p_c| instantiate_value(self.tcx, &result_args, p_c.clone())),
);
let user_result: R =
query_response.instantiate_projected(self.tcx, &result_args, |q_r| q_r.value.clone());
Ok(InferOk { value: user_result, obligations })
}
/// Given the original values and the (canonicalized) result from
/// computing a query, returns an instantiation that can be applied
/// to the query result to convert the result back into the
/// original namespace.
///
/// The instantiation also comes accompanied with subobligations
/// that arose from unification; these might occur if (for
/// example) we are doing lazy normalization and the value
/// assigned to a type variable is unified with an unnormalized
/// projection.
fn query_response_instantiation<R>(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
original_values: &OriginalQueryValues<'tcx>,
query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
) -> InferResult<'tcx, CanonicalVarValues<'tcx>>
where
R: Debug + TypeFoldable<TyCtxt<'tcx>>,
{
debug!(
"query_response_instantiation(original_values={:#?}, query_response={:#?})",
original_values, query_response,
);
let mut value = self.query_response_instantiation_guess(
cause,
param_env,
original_values,
query_response,
)?;
value.obligations.extend(
self.unify_query_response_instantiation_guess(
cause,
param_env,
original_values,
&value.value,
query_response,
)?
.into_obligations(),
);
Ok(value)
}
/// Given the original values and the (canonicalized) result from
/// computing a query, returns a **guess** at an instantiation that
/// can be applied to the query result to convert the result back
/// into the original namespace. This is called a **guess**
/// because it uses a quick heuristic to find the values for each
/// canonical variable; if that quick heuristic fails, then we
/// will instantiate fresh inference variables for each canonical
/// variable instead. Therefore, the result of this method must be
/// properly unified
#[instrument(level = "debug", skip(self, param_env))]
fn query_response_instantiation_guess<R>(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
original_values: &OriginalQueryValues<'tcx>,
query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
) -> InferResult<'tcx, CanonicalVarValues<'tcx>>
where
R: Debug + TypeFoldable<TyCtxt<'tcx>>,
{
// For each new universe created in the query result that did
// not appear in the original query, create a local
// superuniverse.
let mut universe_map = original_values.universe_map.clone();
let num_universes_in_query = original_values.universe_map.len();
let num_universes_in_response = query_response.max_universe.as_usize() + 1;
for _ in num_universes_in_query..num_universes_in_response {
universe_map.push(self.create_next_universe());
}
assert!(!universe_map.is_empty()); // always have the root universe
assert_eq!(universe_map[ty::UniverseIndex::ROOT.as_usize()], ty::UniverseIndex::ROOT);
// Every canonical query result includes values for each of
// the inputs to the query. Therefore, we begin by unifying
// these values with the original inputs that were
// canonicalized.
let result_values = &query_response.value.var_values;
assert_eq!(original_values.var_values.len(), result_values.len());
// Quickly try to find initial values for the canonical
// variables in the result in terms of the query. We do this
// by iterating down the values that the query gave to each of
// the canonical inputs. If we find that one of those values
// is directly equal to one of the canonical variables in the
// result, then we can type the corresponding value from the
// input. See the example above.
let mut opt_values: IndexVec<BoundVar, Option<GenericArg<'tcx>>> =
IndexVec::from_elem_n(None, query_response.variables.len());
// In terms of our example above, we are iterating over pairs like:
// [(?A, Vec<?0>), ('static, '?1), (?B, ?0)]
for (original_value, result_value) in iter::zip(&original_values.var_values, result_values)
{
match result_value.unpack() {
GenericArgKind::Type(result_value) => {
// e.g., here `result_value` might be `?0` in the example above...
if let ty::Bound(debruijn, b) = *result_value.kind() {
// ...in which case we would set `canonical_vars[0]` to `Some(?U)`.
// We only allow a `ty::INNERMOST` index in generic parameters.
assert_eq!(debruijn, ty::INNERMOST);
opt_values[b.var] = Some(*original_value);
}
}
GenericArgKind::Lifetime(result_value) => {
// e.g., here `result_value` might be `'?1` in the example above...
if let ty::ReBound(debruijn, br) = *result_value {
// ... in which case we would set `canonical_vars[0]` to `Some('static)`.
// We only allow a `ty::INNERMOST` index in generic parameters.
assert_eq!(debruijn, ty::INNERMOST);
opt_values[br.var] = Some(*original_value);
}
}
GenericArgKind::Const(result_value) => {
if let ty::ConstKind::Bound(debruijn, b) = result_value.kind() {
// ...in which case we would set `canonical_vars[0]` to `Some(const X)`.
// We only allow a `ty::INNERMOST` index in generic parameters.
assert_eq!(debruijn, ty::INNERMOST);
opt_values[b] = Some(*original_value);
}
}
}
}
// Create result arguments: if we found a value for a
// given variable in the loop above, use that. Otherwise, use
// a fresh inference variable.
let result_args = CanonicalVarValues {
var_values: self.tcx.mk_args_from_iter(
query_response.variables.iter().enumerate().map(|(index, info)| {
if info.universe() != ty::UniverseIndex::ROOT {
// A variable from inside a binder of the query. While ideally these shouldn't
// exist at all, we have to deal with them for now.
self.instantiate_canonical_var(cause.span, info, |u| {
universe_map[u.as_usize()]
})
} else if info.is_existential() {
match opt_values[BoundVar::new(index)] {
Some(k) => k,
None => self.instantiate_canonical_var(cause.span, info, |u| {
universe_map[u.as_usize()]
}),
}
} else {
// For placeholders which were already part of the input, we simply map this
// universal bound variable back the placeholder of the input.
opt_values[BoundVar::new(index)].expect(
"expected placeholder to be unified with itself during response",
)
}
}),
),
};
let mut obligations = vec![];
// Carry all newly resolved opaque types to the caller's scope
for &(a, b) in &query_response.value.opaque_types {
let a = instantiate_value(self.tcx, &result_args, a);
let b = instantiate_value(self.tcx, &result_args, b);
debug!(?a, ?b, "constrain opaque type");
// We use equate here instead of, for example, just registering the
// opaque type's hidden value directly, because the hidden type may have been an inference
// variable that got constrained to the opaque type itself. In that case we want to equate
// the generic args of the opaque with the generic params of its hidden type version.
obligations.extend(
self.at(cause, param_env)
.eq(
DefineOpaqueTypes::Yes,
Ty::new_opaque(self.tcx, a.def_id.to_def_id(), a.args),
b,
)?
.obligations,
);
}
Ok(InferOk { value: result_args, obligations })
}
/// Given a "guess" at the values for the canonical variables in
/// the input, try to unify with the *actual* values found in the
/// query result. Often, but not always, this is a no-op, because
/// we already found the mapping in the "guessing" step.
///
/// See also: [`Self::query_response_instantiation_guess`]
fn unify_query_response_instantiation_guess<R>(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
original_values: &OriginalQueryValues<'tcx>,
result_args: &CanonicalVarValues<'tcx>,
query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
) -> InferResult<'tcx, ()>
where
R: Debug + TypeFoldable<TyCtxt<'tcx>>,
{
// A closure that yields the result value for the given
// canonical variable; this is taken from
// `query_response.var_values` after applying the instantiation
// by `result_args`.
let instantiated_query_response = |index: BoundVar| -> GenericArg<'tcx> {
query_response.instantiate_projected(self.tcx, result_args, |v| v.var_values[index])
};
// Unify the original value for each variable with the value
// taken from `query_response` (after applying `result_args`).
self.unify_canonical_vars(cause, param_env, original_values, instantiated_query_response)
}
/// Converts the region constraints resulting from a query into an
/// iterator of obligations.
fn query_outlives_constraints_into_obligations<'a>(
&'a self,
cause: &'a ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
uninstantiated_region_constraints: &'a [QueryOutlivesConstraint<'tcx>],
result_args: &'a CanonicalVarValues<'tcx>,
) -> impl Iterator<Item = PredicateObligation<'tcx>> + 'a + Captures<'tcx> {
uninstantiated_region_constraints.iter().map(move |&constraint| {
let predicate = instantiate_value(self.tcx, result_args, constraint);
self.query_outlives_constraint_to_obligation(predicate, cause.clone(), param_env)
})
}
pub fn query_outlives_constraint_to_obligation(
&self,
(predicate, _): QueryOutlivesConstraint<'tcx>,
cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> Obligation<'tcx, ty::Predicate<'tcx>> {
let ty::OutlivesPredicate(k1, r2) = predicate;
let atom = match k1.unpack() {
GenericArgKind::Lifetime(r1) => ty::PredicateKind::Clause(
ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(r1, r2)),
),
GenericArgKind::Type(t1) => ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
ty::OutlivesPredicate(t1, r2),
)),
GenericArgKind::Const(..) => {
// Consts cannot outlive one another, so we don't expect to
// encounter this branch.
span_bug!(cause.span, "unexpected const outlives {:?}", predicate);
}
};
let predicate = ty::Binder::dummy(atom);
Obligation::new(self.tcx, cause, param_env, predicate)
}
/// Given two sets of values for the same set of canonical variables, unify them.
/// The second set is produced lazily by supplying indices from the first set.
fn unify_canonical_vars(
&self,
cause: &ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
variables1: &OriginalQueryValues<'tcx>,
variables2: impl Fn(BoundVar) -> GenericArg<'tcx>,
) -> InferResult<'tcx, ()> {
let mut obligations = vec![];
for (index, value1) in variables1.var_values.iter().enumerate() {
let value2 = variables2(BoundVar::new(index));
match (value1.unpack(), value2.unpack()) {
(GenericArgKind::Type(v1), GenericArgKind::Type(v2)) => {
obligations.extend(
self.at(cause, param_env)
.eq(DefineOpaqueTypes::Yes, v1, v2)?
.into_obligations(),
);
}
(GenericArgKind::Lifetime(re1), GenericArgKind::Lifetime(re2))
if re1.is_erased() && re2.is_erased() =>
{
// no action needed
}
(GenericArgKind::Lifetime(v1), GenericArgKind::Lifetime(v2)) => {
obligations.extend(
self.at(cause, param_env)
.eq(DefineOpaqueTypes::Yes, v1, v2)?
.into_obligations(),
);
}
(GenericArgKind::Const(v1), GenericArgKind::Const(v2)) => {
let ok = self.at(cause, param_env).eq(DefineOpaqueTypes::Yes, v1, v2)?;
obligations.extend(ok.into_obligations());
}
_ => {
bug!("kind mismatch, cannot unify {:?} and {:?}", value1, value2,);
}
}
}
Ok(InferOk { value: (), obligations })
}
}
/// Given the region obligations and constraints scraped from the infcx,
/// creates query region constraints.
pub fn make_query_region_constraints<'tcx>(
tcx: TyCtxt<'tcx>,
outlives_obligations: impl Iterator<Item = (Ty<'tcx>, ty::Region<'tcx>, ConstraintCategory<'tcx>)>,
region_constraints: &RegionConstraintData<'tcx>,
) -> QueryRegionConstraints<'tcx> {
let RegionConstraintData { constraints, verifys, member_constraints } = region_constraints;
assert!(verifys.is_empty());
debug!(?constraints);
let outlives: Vec<_> = constraints
.iter()
.map(|(k, origin)| {
let constraint = match *k {
// Swap regions because we are going from sub (<=) to outlives
// (>=).
Constraint::VarSubVar(v1, v2) => ty::OutlivesPredicate(
ty::Region::new_var(tcx, v2).into(),
ty::Region::new_var(tcx, v1),
),
Constraint::VarSubReg(v1, r2) => {
ty::OutlivesPredicate(r2.into(), ty::Region::new_var(tcx, v1))
}
Constraint::RegSubVar(r1, v2) => {
ty::OutlivesPredicate(ty::Region::new_var(tcx, v2).into(), r1)
}
Constraint::RegSubReg(r1, r2) => ty::OutlivesPredicate(r2.into(), r1),
};
(constraint, origin.to_constraint_category())
})
.chain(outlives_obligations.map(|(ty, r, constraint_category)| {
(ty::OutlivesPredicate(ty.into(), r), constraint_category)
}))
.collect();
QueryRegionConstraints { outlives, member_constraints: member_constraints.clone() }
}