rustc_infer/infer/canonical/
query_response.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
//! This module contains the code to instantiate a "query result", and
//! in particular to extract out the resulting region obligations and
//! encode them therein.
//!
//! For an overview of what canonicalization is and how it fits into
//! rustc, check out the [chapter in the rustc dev guide][c].
//!
//! [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html

use std::fmt::Debug;
use std::iter;

use rustc_data_structures::captures::Captures;
use rustc_index::{Idx, IndexVec};
use rustc_middle::arena::ArenaAllocatable;
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::{self, BoundVar, GenericArg, GenericArgKind, Ty, TyCtxt};
use rustc_middle::{bug, span_bug};
use tracing::{debug, instrument};

use crate::infer::canonical::instantiate::{CanonicalExt, instantiate_value};
use crate::infer::canonical::{
    Canonical, CanonicalQueryResponse, CanonicalVarValues, Certainty, OriginalQueryValues,
    QueryOutlivesConstraint, QueryRegionConstraints, QueryResponse,
};
use crate::infer::region_constraints::{Constraint, RegionConstraintData};
use crate::infer::{DefineOpaqueTypes, InferCtxt, InferOk, InferResult};
use crate::traits::query::NoSolution;
use crate::traits::{
    Obligation, ObligationCause, PredicateObligation, ScrubbedTraitError, TraitEngine,
};

impl<'tcx> InferCtxt<'tcx> {
    /// This method is meant to be invoked as the final step of a canonical query
    /// implementation. It is given:
    ///
    /// - the instantiated variables `inference_vars` created from the query key
    /// - the result `answer` of the query
    /// - a fulfillment context `fulfill_cx` that may contain various obligations which
    ///   have yet to be proven.
    ///
    /// Given this, the function will process the obligations pending
    /// in `fulfill_cx`:
    ///
    /// - If all the obligations can be proven successfully, it will
    ///   package up any resulting region obligations (extracted from
    ///   `infcx`) along with the fully resolved value `answer` into a
    ///   query result (which is then itself canonicalized).
    /// - If some obligations can be neither proven nor disproven, then
    ///   the same thing happens, but the resulting query is marked as ambiguous.
    /// - Finally, if any of the obligations result in a hard error,
    ///   then `Err(NoSolution)` is returned.
    #[instrument(skip(self, inference_vars, answer, fulfill_cx), level = "trace")]
    pub fn make_canonicalized_query_response<T>(
        &self,
        inference_vars: CanonicalVarValues<'tcx>,
        answer: T,
        fulfill_cx: &mut dyn TraitEngine<'tcx, ScrubbedTraitError<'tcx>>,
    ) -> Result<CanonicalQueryResponse<'tcx, T>, NoSolution>
    where
        T: Debug + TypeFoldable<TyCtxt<'tcx>>,
        Canonical<'tcx, QueryResponse<'tcx, T>>: ArenaAllocatable<'tcx>,
    {
        let query_response = self.make_query_response(inference_vars, answer, fulfill_cx)?;
        debug!("query_response = {:#?}", query_response);
        let canonical_result = self.canonicalize_response(query_response);
        debug!("canonical_result = {:#?}", canonical_result);

        Ok(self.tcx.arena.alloc(canonical_result))
    }

    /// A version of `make_canonicalized_query_response` that does
    /// not pack in obligations, for contexts that want to drop
    /// pending obligations instead of treating them as an ambiguity (e.g.
    /// typeck "probing" contexts).
    ///
    /// If you DO want to keep track of pending obligations (which
    /// include all region obligations, so this includes all cases
    /// that care about regions) with this function, you have to
    /// do it yourself, by e.g., having them be a part of the answer.
    pub fn make_query_response_ignoring_pending_obligations<T>(
        &self,
        inference_vars: CanonicalVarValues<'tcx>,
        answer: T,
    ) -> Canonical<'tcx, QueryResponse<'tcx, T>>
    where
        T: Debug + TypeFoldable<TyCtxt<'tcx>>,
    {
        self.canonicalize_response(QueryResponse {
            var_values: inference_vars,
            region_constraints: QueryRegionConstraints::default(),
            certainty: Certainty::Proven, // Ambiguities are OK!
            opaque_types: vec![],
            value: answer,
        })
    }

    /// Helper for `make_canonicalized_query_response` that does
    /// everything up until the final canonicalization.
    #[instrument(skip(self, fulfill_cx), level = "debug")]
    fn make_query_response<T>(
        &self,
        inference_vars: CanonicalVarValues<'tcx>,
        answer: T,
        fulfill_cx: &mut dyn TraitEngine<'tcx, ScrubbedTraitError<'tcx>>,
    ) -> Result<QueryResponse<'tcx, T>, NoSolution>
    where
        T: Debug + TypeFoldable<TyCtxt<'tcx>>,
    {
        let tcx = self.tcx;

        // Select everything, returning errors.
        let errors = fulfill_cx.select_all_or_error(self);

        // True error!
        if errors.iter().any(|e| e.is_true_error()) {
            return Err(NoSolution);
        }

        let region_obligations = self.take_registered_region_obligations();
        debug!(?region_obligations);
        let region_constraints = self.with_region_constraints(|region_constraints| {
            make_query_region_constraints(
                tcx,
                region_obligations
                    .iter()
                    .map(|r_o| (r_o.sup_type, r_o.sub_region, r_o.origin.to_constraint_category())),
                region_constraints,
            )
        });
        debug!(?region_constraints);

        let certainty = if errors.is_empty() { Certainty::Proven } else { Certainty::Ambiguous };

        let opaque_types = self.take_opaque_types_for_query_response();

        Ok(QueryResponse {
            var_values: inference_vars,
            region_constraints,
            certainty,
            value: answer,
            opaque_types,
        })
    }

    /// Used by the new solver as that one takes the opaque types at the end of a probe
    /// to deal with multiple candidates without having to recompute them.
    pub fn clone_opaque_types_for_query_response(
        &self,
    ) -> Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)> {
        self.inner
            .borrow()
            .opaque_type_storage
            .opaque_types
            .iter()
            .map(|(k, v)| (*k, v.hidden_type.ty))
            .collect()
    }

    fn take_opaque_types_for_query_response(&self) -> Vec<(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)> {
        self.take_opaque_types().into_iter().map(|(k, v)| (k, v.hidden_type.ty)).collect()
    }

    /// Given the (canonicalized) result to a canonical query,
    /// instantiates the result so it can be used, plugging in the
    /// values from the canonical query. (Note that the result may
    /// have been ambiguous; you should check the certainty level of
    /// the query before applying this function.)
    ///
    /// To get a good understanding of what is happening here, check
    /// out the [chapter in the rustc dev guide][c].
    ///
    /// [c]: https://rust-lang.github.io/chalk/book/canonical_queries/canonicalization.html#processing-the-canonicalized-query-result
    pub fn instantiate_query_response_and_region_obligations<R>(
        &self,
        cause: &ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        original_values: &OriginalQueryValues<'tcx>,
        query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
    ) -> InferResult<'tcx, R>
    where
        R: Debug + TypeFoldable<TyCtxt<'tcx>>,
    {
        let InferOk { value: result_args, mut obligations } =
            self.query_response_instantiation(cause, param_env, original_values, query_response)?;

        obligations.extend(self.query_outlives_constraints_into_obligations(
            cause,
            param_env,
            &query_response.value.region_constraints.outlives,
            &result_args,
        ));

        let user_result: R =
            query_response.instantiate_projected(self.tcx, &result_args, |q_r| q_r.value.clone());

        Ok(InferOk { value: user_result, obligations })
    }

    /// An alternative to
    /// `instantiate_query_response_and_region_obligations` that is more
    /// efficient for NLL. NLL is a bit more advanced in the
    /// "transition to chalk" than the rest of the compiler. During
    /// the NLL type check, all of the "processing" of types and
    /// things happens in queries -- the NLL checker itself is only
    /// interested in the region obligations (`'a: 'b` or `T: 'b`)
    /// that come out of these queries, which it wants to convert into
    /// MIR-based constraints and solve. Therefore, it is most
    /// convenient for the NLL Type Checker to **directly consume**
    /// the `QueryOutlivesConstraint` values that arise from doing a
    /// query. This is contrast to other parts of the compiler, which
    /// would prefer for those `QueryOutlivesConstraint` to be converted
    /// into the older infcx-style constraints (e.g., calls to
    /// `sub_regions` or `register_region_obligation`).
    ///
    /// Therefore, `instantiate_nll_query_response_and_region_obligations` performs the same
    /// basic operations as `instantiate_query_response_and_region_obligations` but
    /// it returns its result differently:
    ///
    /// - It creates an instantiation `S` that maps from the original
    ///   query variables to the values computed in the query
    ///   result. If any errors arise, they are propagated back as an
    ///   `Err` result.
    /// - In the case of a successful instantiation, we will append
    ///   `QueryOutlivesConstraint` values onto the
    ///   `output_query_region_constraints` vector for the solver to
    ///   use (if an error arises, some values may also be pushed, but
    ///   they should be ignored).
    /// - It **can happen** (though it rarely does currently) that
    ///   equating types and things will give rise to subobligations
    ///   that must be processed. In this case, those subobligations
    ///   are propagated back in the return value.
    /// - Finally, the query result (of type `R`) is propagated back,
    ///   after applying the instantiation `S`.
    pub fn instantiate_nll_query_response_and_region_obligations<R>(
        &self,
        cause: &ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        original_values: &OriginalQueryValues<'tcx>,
        query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
        output_query_region_constraints: &mut QueryRegionConstraints<'tcx>,
    ) -> InferResult<'tcx, R>
    where
        R: Debug + TypeFoldable<TyCtxt<'tcx>>,
    {
        let InferOk { value: result_args, mut obligations } = self
            .query_response_instantiation_guess(
                cause,
                param_env,
                original_values,
                query_response,
            )?;

        // Compute `QueryOutlivesConstraint` values that unify each of
        // the original values `v_o` that was canonicalized into a
        // variable...

        let constraint_category = cause.to_constraint_category();

        for (index, original_value) in original_values.var_values.iter().enumerate() {
            // ...with the value `v_r` of that variable from the query.
            let result_value = query_response.instantiate_projected(self.tcx, &result_args, |v| {
                v.var_values[BoundVar::new(index)]
            });
            match (original_value.unpack(), result_value.unpack()) {
                (GenericArgKind::Lifetime(re1), GenericArgKind::Lifetime(re2))
                    if re1.is_erased() && re2.is_erased() =>
                {
                    // No action needed.
                }

                (GenericArgKind::Lifetime(v_o), GenericArgKind::Lifetime(v_r)) => {
                    // To make `v_o = v_r`, we emit `v_o: v_r` and `v_r: v_o`.
                    if v_o != v_r {
                        output_query_region_constraints
                            .outlives
                            .push((ty::OutlivesPredicate(v_o.into(), v_r), constraint_category));
                        output_query_region_constraints
                            .outlives
                            .push((ty::OutlivesPredicate(v_r.into(), v_o), constraint_category));
                    }
                }

                (GenericArgKind::Type(v1), GenericArgKind::Type(v2)) => {
                    obligations.extend(
                        self.at(&cause, param_env)
                            .eq(DefineOpaqueTypes::Yes, v1, v2)?
                            .into_obligations(),
                    );
                }

                (GenericArgKind::Const(v1), GenericArgKind::Const(v2)) => {
                    obligations.extend(
                        self.at(&cause, param_env)
                            .eq(DefineOpaqueTypes::Yes, v1, v2)?
                            .into_obligations(),
                    );
                }

                _ => {
                    bug!("kind mismatch, cannot unify {:?} and {:?}", original_value, result_value);
                }
            }
        }

        // ...also include the other query region constraints from the query.
        output_query_region_constraints.outlives.extend(
            query_response.value.region_constraints.outlives.iter().filter_map(|&r_c| {
                let r_c = instantiate_value(self.tcx, &result_args, r_c);

                // Screen out `'a: 'a` cases.
                let ty::OutlivesPredicate(k1, r2) = r_c.0;
                if k1 != r2.into() { Some(r_c) } else { None }
            }),
        );

        // ...also include the query member constraints.
        output_query_region_constraints.member_constraints.extend(
            query_response
                .value
                .region_constraints
                .member_constraints
                .iter()
                .map(|p_c| instantiate_value(self.tcx, &result_args, p_c.clone())),
        );

        let user_result: R =
            query_response.instantiate_projected(self.tcx, &result_args, |q_r| q_r.value.clone());

        Ok(InferOk { value: user_result, obligations })
    }

    /// Given the original values and the (canonicalized) result from
    /// computing a query, returns an instantiation that can be applied
    /// to the query result to convert the result back into the
    /// original namespace.
    ///
    /// The instantiation also comes accompanied with subobligations
    /// that arose from unification; these might occur if (for
    /// example) we are doing lazy normalization and the value
    /// assigned to a type variable is unified with an unnormalized
    /// projection.
    fn query_response_instantiation<R>(
        &self,
        cause: &ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        original_values: &OriginalQueryValues<'tcx>,
        query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
    ) -> InferResult<'tcx, CanonicalVarValues<'tcx>>
    where
        R: Debug + TypeFoldable<TyCtxt<'tcx>>,
    {
        debug!(
            "query_response_instantiation(original_values={:#?}, query_response={:#?})",
            original_values, query_response,
        );

        let mut value = self.query_response_instantiation_guess(
            cause,
            param_env,
            original_values,
            query_response,
        )?;

        value.obligations.extend(
            self.unify_query_response_instantiation_guess(
                cause,
                param_env,
                original_values,
                &value.value,
                query_response,
            )?
            .into_obligations(),
        );

        Ok(value)
    }

    /// Given the original values and the (canonicalized) result from
    /// computing a query, returns a **guess** at an instantiation that
    /// can be applied to the query result to convert the result back
    /// into the original namespace. This is called a **guess**
    /// because it uses a quick heuristic to find the values for each
    /// canonical variable; if that quick heuristic fails, then we
    /// will instantiate fresh inference variables for each canonical
    /// variable instead. Therefore, the result of this method must be
    /// properly unified
    #[instrument(level = "debug", skip(self, param_env))]
    fn query_response_instantiation_guess<R>(
        &self,
        cause: &ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        original_values: &OriginalQueryValues<'tcx>,
        query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
    ) -> InferResult<'tcx, CanonicalVarValues<'tcx>>
    where
        R: Debug + TypeFoldable<TyCtxt<'tcx>>,
    {
        // For each new universe created in the query result that did
        // not appear in the original query, create a local
        // superuniverse.
        let mut universe_map = original_values.universe_map.clone();
        let num_universes_in_query = original_values.universe_map.len();
        let num_universes_in_response = query_response.max_universe.as_usize() + 1;
        for _ in num_universes_in_query..num_universes_in_response {
            universe_map.push(self.create_next_universe());
        }
        assert!(!universe_map.is_empty()); // always have the root universe
        assert_eq!(universe_map[ty::UniverseIndex::ROOT.as_usize()], ty::UniverseIndex::ROOT);

        // Every canonical query result includes values for each of
        // the inputs to the query. Therefore, we begin by unifying
        // these values with the original inputs that were
        // canonicalized.
        let result_values = &query_response.value.var_values;
        assert_eq!(original_values.var_values.len(), result_values.len());

        // Quickly try to find initial values for the canonical
        // variables in the result in terms of the query. We do this
        // by iterating down the values that the query gave to each of
        // the canonical inputs. If we find that one of those values
        // is directly equal to one of the canonical variables in the
        // result, then we can type the corresponding value from the
        // input. See the example above.
        let mut opt_values: IndexVec<BoundVar, Option<GenericArg<'tcx>>> =
            IndexVec::from_elem_n(None, query_response.variables.len());

        // In terms of our example above, we are iterating over pairs like:
        // [(?A, Vec<?0>), ('static, '?1), (?B, ?0)]
        for (original_value, result_value) in iter::zip(&original_values.var_values, result_values)
        {
            match result_value.unpack() {
                GenericArgKind::Type(result_value) => {
                    // e.g., here `result_value` might be `?0` in the example above...
                    if let ty::Bound(debruijn, b) = *result_value.kind() {
                        // ...in which case we would set `canonical_vars[0]` to `Some(?U)`.

                        // We only allow a `ty::INNERMOST` index in generic parameters.
                        assert_eq!(debruijn, ty::INNERMOST);
                        opt_values[b.var] = Some(*original_value);
                    }
                }
                GenericArgKind::Lifetime(result_value) => {
                    // e.g., here `result_value` might be `'?1` in the example above...
                    if let ty::ReBound(debruijn, br) = *result_value {
                        // ... in which case we would set `canonical_vars[0]` to `Some('static)`.

                        // We only allow a `ty::INNERMOST` index in generic parameters.
                        assert_eq!(debruijn, ty::INNERMOST);
                        opt_values[br.var] = Some(*original_value);
                    }
                }
                GenericArgKind::Const(result_value) => {
                    if let ty::ConstKind::Bound(debruijn, b) = result_value.kind() {
                        // ...in which case we would set `canonical_vars[0]` to `Some(const X)`.

                        // We only allow a `ty::INNERMOST` index in generic parameters.
                        assert_eq!(debruijn, ty::INNERMOST);
                        opt_values[b] = Some(*original_value);
                    }
                }
            }
        }

        // Create result arguments: if we found a value for a
        // given variable in the loop above, use that. Otherwise, use
        // a fresh inference variable.
        let result_args = CanonicalVarValues {
            var_values: self.tcx.mk_args_from_iter(
                query_response.variables.iter().enumerate().map(|(index, info)| {
                    if info.universe() != ty::UniverseIndex::ROOT {
                        // A variable from inside a binder of the query. While ideally these shouldn't
                        // exist at all, we have to deal with them for now.
                        self.instantiate_canonical_var(cause.span, info, |u| {
                            universe_map[u.as_usize()]
                        })
                    } else if info.is_existential() {
                        match opt_values[BoundVar::new(index)] {
                            Some(k) => k,
                            None => self.instantiate_canonical_var(cause.span, info, |u| {
                                universe_map[u.as_usize()]
                            }),
                        }
                    } else {
                        // For placeholders which were already part of the input, we simply map this
                        // universal bound variable back the placeholder of the input.
                        opt_values[BoundVar::new(index)].expect(
                            "expected placeholder to be unified with itself during response",
                        )
                    }
                }),
            ),
        };

        let mut obligations = vec![];

        // Carry all newly resolved opaque types to the caller's scope
        for &(a, b) in &query_response.value.opaque_types {
            let a = instantiate_value(self.tcx, &result_args, a);
            let b = instantiate_value(self.tcx, &result_args, b);
            debug!(?a, ?b, "constrain opaque type");
            // We use equate here instead of, for example, just registering the
            // opaque type's hidden value directly, because the hidden type may have been an inference
            // variable that got constrained to the opaque type itself. In that case we want to equate
            // the generic args of the opaque with the generic params of its hidden type version.
            obligations.extend(
                self.at(cause, param_env)
                    .eq(
                        DefineOpaqueTypes::Yes,
                        Ty::new_opaque(self.tcx, a.def_id.to_def_id(), a.args),
                        b,
                    )?
                    .obligations,
            );
        }

        Ok(InferOk { value: result_args, obligations })
    }

    /// Given a "guess" at the values for the canonical variables in
    /// the input, try to unify with the *actual* values found in the
    /// query result. Often, but not always, this is a no-op, because
    /// we already found the mapping in the "guessing" step.
    ///
    /// See also: [`Self::query_response_instantiation_guess`]
    fn unify_query_response_instantiation_guess<R>(
        &self,
        cause: &ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        original_values: &OriginalQueryValues<'tcx>,
        result_args: &CanonicalVarValues<'tcx>,
        query_response: &Canonical<'tcx, QueryResponse<'tcx, R>>,
    ) -> InferResult<'tcx, ()>
    where
        R: Debug + TypeFoldable<TyCtxt<'tcx>>,
    {
        // A closure that yields the result value for the given
        // canonical variable; this is taken from
        // `query_response.var_values` after applying the instantiation
        // by `result_args`.
        let instantiated_query_response = |index: BoundVar| -> GenericArg<'tcx> {
            query_response.instantiate_projected(self.tcx, result_args, |v| v.var_values[index])
        };

        // Unify the original value for each variable with the value
        // taken from `query_response` (after applying `result_args`).
        self.unify_canonical_vars(cause, param_env, original_values, instantiated_query_response)
    }

    /// Converts the region constraints resulting from a query into an
    /// iterator of obligations.
    fn query_outlives_constraints_into_obligations<'a>(
        &'a self,
        cause: &'a ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        uninstantiated_region_constraints: &'a [QueryOutlivesConstraint<'tcx>],
        result_args: &'a CanonicalVarValues<'tcx>,
    ) -> impl Iterator<Item = PredicateObligation<'tcx>> + 'a + Captures<'tcx> {
        uninstantiated_region_constraints.iter().map(move |&constraint| {
            let predicate = instantiate_value(self.tcx, result_args, constraint);
            self.query_outlives_constraint_to_obligation(predicate, cause.clone(), param_env)
        })
    }

    pub fn query_outlives_constraint_to_obligation(
        &self,
        (predicate, _): QueryOutlivesConstraint<'tcx>,
        cause: ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
    ) -> Obligation<'tcx, ty::Predicate<'tcx>> {
        let ty::OutlivesPredicate(k1, r2) = predicate;

        let atom = match k1.unpack() {
            GenericArgKind::Lifetime(r1) => ty::PredicateKind::Clause(
                ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(r1, r2)),
            ),
            GenericArgKind::Type(t1) => ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
                ty::OutlivesPredicate(t1, r2),
            )),
            GenericArgKind::Const(..) => {
                // Consts cannot outlive one another, so we don't expect to
                // encounter this branch.
                span_bug!(cause.span, "unexpected const outlives {:?}", predicate);
            }
        };
        let predicate = ty::Binder::dummy(atom);

        Obligation::new(self.tcx, cause, param_env, predicate)
    }

    /// Given two sets of values for the same set of canonical variables, unify them.
    /// The second set is produced lazily by supplying indices from the first set.
    fn unify_canonical_vars(
        &self,
        cause: &ObligationCause<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        variables1: &OriginalQueryValues<'tcx>,
        variables2: impl Fn(BoundVar) -> GenericArg<'tcx>,
    ) -> InferResult<'tcx, ()> {
        let mut obligations = vec![];
        for (index, value1) in variables1.var_values.iter().enumerate() {
            let value2 = variables2(BoundVar::new(index));

            match (value1.unpack(), value2.unpack()) {
                (GenericArgKind::Type(v1), GenericArgKind::Type(v2)) => {
                    obligations.extend(
                        self.at(cause, param_env)
                            .eq(DefineOpaqueTypes::Yes, v1, v2)?
                            .into_obligations(),
                    );
                }
                (GenericArgKind::Lifetime(re1), GenericArgKind::Lifetime(re2))
                    if re1.is_erased() && re2.is_erased() =>
                {
                    // no action needed
                }
                (GenericArgKind::Lifetime(v1), GenericArgKind::Lifetime(v2)) => {
                    obligations.extend(
                        self.at(cause, param_env)
                            .eq(DefineOpaqueTypes::Yes, v1, v2)?
                            .into_obligations(),
                    );
                }
                (GenericArgKind::Const(v1), GenericArgKind::Const(v2)) => {
                    let ok = self.at(cause, param_env).eq(DefineOpaqueTypes::Yes, v1, v2)?;
                    obligations.extend(ok.into_obligations());
                }
                _ => {
                    bug!("kind mismatch, cannot unify {:?} and {:?}", value1, value2,);
                }
            }
        }
        Ok(InferOk { value: (), obligations })
    }
}

/// Given the region obligations and constraints scraped from the infcx,
/// creates query region constraints.
pub fn make_query_region_constraints<'tcx>(
    tcx: TyCtxt<'tcx>,
    outlives_obligations: impl Iterator<Item = (Ty<'tcx>, ty::Region<'tcx>, ConstraintCategory<'tcx>)>,
    region_constraints: &RegionConstraintData<'tcx>,
) -> QueryRegionConstraints<'tcx> {
    let RegionConstraintData { constraints, verifys, member_constraints } = region_constraints;

    assert!(verifys.is_empty());

    debug!(?constraints);

    let outlives: Vec<_> = constraints
        .iter()
        .map(|(k, origin)| {
            let constraint = match *k {
                // Swap regions because we are going from sub (<=) to outlives
                // (>=).
                Constraint::VarSubVar(v1, v2) => ty::OutlivesPredicate(
                    ty::Region::new_var(tcx, v2).into(),
                    ty::Region::new_var(tcx, v1),
                ),
                Constraint::VarSubReg(v1, r2) => {
                    ty::OutlivesPredicate(r2.into(), ty::Region::new_var(tcx, v1))
                }
                Constraint::RegSubVar(r1, v2) => {
                    ty::OutlivesPredicate(ty::Region::new_var(tcx, v2).into(), r1)
                }
                Constraint::RegSubReg(r1, r2) => ty::OutlivesPredicate(r2.into(), r1),
            };
            (constraint, origin.to_constraint_category())
        })
        .chain(outlives_obligations.map(|(ty, r, constraint_category)| {
            (ty::OutlivesPredicate(ty.into(), r), constraint_category)
        }))
        .collect();

    QueryRegionConstraints { outlives, member_constraints: member_constraints.clone() }
}