rustc_hir_typeck/
coercion.rs

1//! # Type Coercion
2//!
3//! Under certain circumstances we will coerce from one type to another,
4//! for example by auto-borrowing. This occurs in situations where the
5//! compiler has a firm 'expected type' that was supplied from the user,
6//! and where the actual type is similar to that expected type in purpose
7//! but not in representation (so actual subtyping is inappropriate).
8//!
9//! ## Reborrowing
10//!
11//! Note that if we are expecting a reference, we will *reborrow*
12//! even if the argument provided was already a reference. This is
13//! useful for freezing mut things (that is, when the expected type is &T
14//! but you have &mut T) and also for avoiding the linearity
15//! of mut things (when the expected is &mut T and you have &mut T). See
16//! the various `tests/ui/coerce/*.rs` tests for
17//! examples of where this is useful.
18//!
19//! ## Subtle note
20//!
21//! When inferring the generic arguments of functions, the argument
22//! order is relevant, which can lead to the following edge case:
23//!
24//! ```ignore (illustrative)
25//! fn foo<T>(a: T, b: T) {
26//!     // ...
27//! }
28//!
29//! foo(&7i32, &mut 7i32);
30//! // This compiles, as we first infer `T` to be `&i32`,
31//! // and then coerce `&mut 7i32` to `&7i32`.
32//!
33//! foo(&mut 7i32, &7i32);
34//! // This does not compile, as we first infer `T` to be `&mut i32`
35//! // and are then unable to coerce `&7i32` to `&mut i32`.
36//! ```
37
38use std::ops::Deref;
39
40use rustc_abi::ExternAbi;
41use rustc_attr_parsing::InlineAttr;
42use rustc_errors::codes::*;
43use rustc_errors::{Applicability, Diag, struct_span_code_err};
44use rustc_hir as hir;
45use rustc_hir::def_id::{DefId, LocalDefId};
46use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer;
47use rustc_infer::infer::relate::RelateResult;
48use rustc_infer::infer::{Coercion, DefineOpaqueTypes, InferOk, InferResult};
49use rustc_infer::traits::{
50    IfExpressionCause, MatchExpressionArmCause, Obligation, PredicateObligation,
51    PredicateObligations,
52};
53use rustc_middle::span_bug;
54use rustc_middle::traits::BuiltinImplSource;
55use rustc_middle::ty::adjustment::{
56    Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability, PointerCoercion,
57};
58use rustc_middle::ty::error::TypeError;
59use rustc_middle::ty::visit::TypeVisitableExt;
60use rustc_middle::ty::{self, GenericArgsRef, Ty, TyCtxt};
61use rustc_session::parse::feature_err;
62use rustc_span::{BytePos, DUMMY_SP, DesugaringKind, Span, sym};
63use rustc_trait_selection::infer::InferCtxtExt as _;
64use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
65use rustc_trait_selection::traits::{
66    self, NormalizeExt, ObligationCause, ObligationCauseCode, ObligationCtxt,
67};
68use smallvec::{SmallVec, smallvec};
69use tracing::{debug, instrument};
70
71use crate::FnCtxt;
72use crate::errors::SuggestBoxingForReturnImplTrait;
73
74struct Coerce<'a, 'tcx> {
75    fcx: &'a FnCtxt<'a, 'tcx>,
76    cause: ObligationCause<'tcx>,
77    use_lub: bool,
78    /// Determines whether or not allow_two_phase_borrow is set on any
79    /// autoref adjustments we create while coercing. We don't want to
80    /// allow deref coercions to create two-phase borrows, at least initially,
81    /// but we do need two-phase borrows for function argument reborrows.
82    /// See #47489 and #48598
83    /// See docs on the "AllowTwoPhase" type for a more detailed discussion
84    allow_two_phase: AllowTwoPhase,
85    /// Whether we allow `NeverToAny` coercions. This is unsound if we're
86    /// coercing a place expression without it counting as a read in the MIR.
87    /// This is a side-effect of HIR not really having a great distinction
88    /// between places and values.
89    coerce_never: bool,
90}
91
92impl<'a, 'tcx> Deref for Coerce<'a, 'tcx> {
93    type Target = FnCtxt<'a, 'tcx>;
94    fn deref(&self) -> &Self::Target {
95        self.fcx
96    }
97}
98
99type CoerceResult<'tcx> = InferResult<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>;
100
101/// Coercing a mutable reference to an immutable works, while
102/// coercing `&T` to `&mut T` should be forbidden.
103fn coerce_mutbls<'tcx>(
104    from_mutbl: hir::Mutability,
105    to_mutbl: hir::Mutability,
106) -> RelateResult<'tcx, ()> {
107    if from_mutbl >= to_mutbl { Ok(()) } else { Err(TypeError::Mutability) }
108}
109
110/// Do not require any adjustments, i.e. coerce `x -> x`.
111fn identity(_: Ty<'_>) -> Vec<Adjustment<'_>> {
112    vec![]
113}
114
115fn simple<'tcx>(kind: Adjust) -> impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>> {
116    move |target| vec![Adjustment { kind, target }]
117}
118
119/// This always returns `Ok(...)`.
120fn success<'tcx>(
121    adj: Vec<Adjustment<'tcx>>,
122    target: Ty<'tcx>,
123    obligations: PredicateObligations<'tcx>,
124) -> CoerceResult<'tcx> {
125    Ok(InferOk { value: (adj, target), obligations })
126}
127
128impl<'f, 'tcx> Coerce<'f, 'tcx> {
129    fn new(
130        fcx: &'f FnCtxt<'f, 'tcx>,
131        cause: ObligationCause<'tcx>,
132        allow_two_phase: AllowTwoPhase,
133        coerce_never: bool,
134    ) -> Self {
135        Coerce { fcx, cause, allow_two_phase, use_lub: false, coerce_never }
136    }
137
138    fn unify(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
139        debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
140        self.commit_if_ok(|_| {
141            let at = self.at(&self.cause, self.fcx.param_env);
142
143            let res = if self.use_lub {
144                at.lub(b, a)
145            } else {
146                at.sup(DefineOpaqueTypes::Yes, b, a)
147                    .map(|InferOk { value: (), obligations }| InferOk { value: b, obligations })
148            };
149
150            // In the new solver, lazy norm may allow us to shallowly equate
151            // more types, but we emit possibly impossible-to-satisfy obligations.
152            // Filter these cases out to make sure our coercion is more accurate.
153            match res {
154                Ok(InferOk { value, obligations }) if self.next_trait_solver() => {
155                    let ocx = ObligationCtxt::new(self);
156                    ocx.register_obligations(obligations);
157                    if ocx.select_where_possible().is_empty() {
158                        Ok(InferOk { value, obligations: ocx.into_pending_obligations() })
159                    } else {
160                        Err(TypeError::Mismatch)
161                    }
162                }
163                res => res,
164            }
165        })
166    }
167
168    /// Unify two types (using sub or lub) and produce a specific coercion.
169    fn unify_and<F>(&self, a: Ty<'tcx>, b: Ty<'tcx>, f: F) -> CoerceResult<'tcx>
170    where
171        F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
172    {
173        self.unify(a, b)
174            .and_then(|InferOk { value: ty, obligations }| success(f(ty), ty, obligations))
175    }
176
177    #[instrument(skip(self))]
178    fn coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
179        // First, remove any resolved type variables (at the top level, at least):
180        let a = self.shallow_resolve(a);
181        let b = self.shallow_resolve(b);
182        debug!("Coerce.tys({:?} => {:?})", a, b);
183
184        // Coercing from `!` to any type is allowed:
185        if a.is_never() {
186            if self.coerce_never {
187                return success(simple(Adjust::NeverToAny)(b), b, PredicateObligations::new());
188            } else {
189                // Otherwise the only coercion we can do is unification.
190                return self.unify_and(a, b, identity);
191            }
192        }
193
194        // Coercing *from* an unresolved inference variable means that
195        // we have no information about the source type. This will always
196        // ultimately fall back to some form of subtyping.
197        if a.is_ty_var() {
198            return self.coerce_from_inference_variable(a, b, identity);
199        }
200
201        // Consider coercing the subtype to a DST
202        //
203        // NOTE: this is wrapped in a `commit_if_ok` because it creates
204        // a "spurious" type variable, and we don't want to have that
205        // type variable in memory if the coercion fails.
206        let unsize = self.commit_if_ok(|_| self.coerce_unsized(a, b));
207        match unsize {
208            Ok(_) => {
209                debug!("coerce: unsize successful");
210                return unsize;
211            }
212            Err(error) => {
213                debug!(?error, "coerce: unsize failed");
214            }
215        }
216
217        // Examine the supertype and consider type-specific coercions, such
218        // as auto-borrowing, coercing pointer mutability, a `dyn*` coercion,
219        // or pin-ergonomics.
220        match *b.kind() {
221            ty::RawPtr(_, b_mutbl) => {
222                return self.coerce_raw_ptr(a, b, b_mutbl);
223            }
224            ty::Ref(r_b, _, mutbl_b) => {
225                return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
226            }
227            ty::Dynamic(predicates, region, ty::DynStar) if self.tcx.features().dyn_star() => {
228                return self.coerce_dyn_star(a, b, predicates, region);
229            }
230            ty::Adt(pin, _)
231                if self.tcx.features().pin_ergonomics()
232                    && self.tcx.is_lang_item(pin.did(), hir::LangItem::Pin) =>
233            {
234                let pin_coerce = self.commit_if_ok(|_| self.coerce_pin_ref(a, b));
235                if pin_coerce.is_ok() {
236                    return pin_coerce;
237                }
238            }
239            _ => {}
240        }
241
242        match *a.kind() {
243            ty::FnDef(..) => {
244                // Function items are coercible to any closure
245                // type; function pointers are not (that would
246                // require double indirection).
247                // Additionally, we permit coercion of function
248                // items to drop the unsafe qualifier.
249                self.coerce_from_fn_item(a, b)
250            }
251            ty::FnPtr(a_sig_tys, a_hdr) => {
252                // We permit coercion of fn pointers to drop the
253                // unsafe qualifier.
254                self.coerce_from_fn_pointer(a, a_sig_tys.with(a_hdr), b)
255            }
256            ty::Closure(closure_def_id_a, args_a) => {
257                // Non-capturing closures are coercible to
258                // function pointers or unsafe function pointers.
259                // It cannot convert closures that require unsafe.
260                self.coerce_closure_to_fn(a, closure_def_id_a, args_a, b)
261            }
262            _ => {
263                // Otherwise, just use unification rules.
264                self.unify_and(a, b, identity)
265            }
266        }
267    }
268
269    /// Coercing *from* an inference variable. In this case, we have no information
270    /// about the source type, so we can't really do a true coercion and we always
271    /// fall back to subtyping (`unify_and`).
272    fn coerce_from_inference_variable(
273        &self,
274        a: Ty<'tcx>,
275        b: Ty<'tcx>,
276        make_adjustments: impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
277    ) -> CoerceResult<'tcx> {
278        debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
279        assert!(a.is_ty_var() && self.shallow_resolve(a) == a);
280        assert!(self.shallow_resolve(b) == b);
281
282        if b.is_ty_var() {
283            // Two unresolved type variables: create a `Coerce` predicate.
284            let target_ty = if self.use_lub { self.next_ty_var(self.cause.span) } else { b };
285
286            let mut obligations = PredicateObligations::with_capacity(2);
287            for &source_ty in &[a, b] {
288                if source_ty != target_ty {
289                    obligations.push(Obligation::new(
290                        self.tcx(),
291                        self.cause.clone(),
292                        self.param_env,
293                        ty::Binder::dummy(ty::PredicateKind::Coerce(ty::CoercePredicate {
294                            a: source_ty,
295                            b: target_ty,
296                        })),
297                    ));
298                }
299            }
300
301            debug!(
302                "coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
303                target_ty, obligations
304            );
305            let adjustments = make_adjustments(target_ty);
306            InferResult::Ok(InferOk { value: (adjustments, target_ty), obligations })
307        } else {
308            // One unresolved type variable: just apply subtyping, we may be able
309            // to do something useful.
310            self.unify_and(a, b, make_adjustments)
311        }
312    }
313
314    /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
315    /// To match `A` with `B`, autoderef will be performed,
316    /// calling `deref`/`deref_mut` where necessary.
317    fn coerce_borrowed_pointer(
318        &self,
319        a: Ty<'tcx>,
320        b: Ty<'tcx>,
321        r_b: ty::Region<'tcx>,
322        mutbl_b: hir::Mutability,
323    ) -> CoerceResult<'tcx> {
324        debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
325
326        // If we have a parameter of type `&M T_a` and the value
327        // provided is `expr`, we will be adding an implicit borrow,
328        // meaning that we convert `f(expr)` to `f(&M *expr)`. Therefore,
329        // to type check, we will construct the type that `&M*expr` would
330        // yield.
331
332        let (r_a, mt_a) = match *a.kind() {
333            ty::Ref(r_a, ty, mutbl) => {
334                let mt_a = ty::TypeAndMut { ty, mutbl };
335                coerce_mutbls(mt_a.mutbl, mutbl_b)?;
336                (r_a, mt_a)
337            }
338            _ => return self.unify_and(a, b, identity),
339        };
340
341        let span = self.cause.span;
342
343        let mut first_error = None;
344        let mut r_borrow_var = None;
345        let mut autoderef = self.autoderef(span, a);
346        let mut found = None;
347
348        for (referent_ty, autoderefs) in autoderef.by_ref() {
349            if autoderefs == 0 {
350                // Don't let this pass, otherwise it would cause
351                // &T to autoref to &&T.
352                continue;
353            }
354
355            // At this point, we have deref'd `a` to `referent_ty`. So
356            // imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
357            // In the autoderef loop for `&'a mut Vec<T>`, we would get
358            // three callbacks:
359            //
360            // - `&'a mut Vec<T>` -- 0 derefs, just ignore it
361            // - `Vec<T>` -- 1 deref
362            // - `[T]` -- 2 deref
363            //
364            // At each point after the first callback, we want to
365            // check to see whether this would match out target type
366            // (`&'b mut [T]`) if we autoref'd it. We can't just
367            // compare the referent types, though, because we still
368            // have to consider the mutability. E.g., in the case
369            // we've been considering, we have an `&mut` reference, so
370            // the `T` in `[T]` needs to be unified with equality.
371            //
372            // Therefore, we construct reference types reflecting what
373            // the types will be after we do the final auto-ref and
374            // compare those. Note that this means we use the target
375            // mutability [1], since it may be that we are coercing
376            // from `&mut T` to `&U`.
377            //
378            // One fine point concerns the region that we use. We
379            // choose the region such that the region of the final
380            // type that results from `unify` will be the region we
381            // want for the autoref:
382            //
383            // - if in sub mode, that means we want to use `'b` (the
384            //   region from the target reference) for both
385            //   pointers [2]. This is because sub mode (somewhat
386            //   arbitrarily) returns the subtype region. In the case
387            //   where we are coercing to a target type, we know we
388            //   want to use that target type region (`'b`) because --
389            //   for the program to type-check -- it must be the
390            //   smaller of the two.
391            //   - One fine point. It may be surprising that we can
392            //     use `'b` without relating `'a` and `'b`. The reason
393            //     that this is ok is that what we produce is
394            //     effectively a `&'b *x` expression (if you could
395            //     annotate the region of a borrow), and regionck has
396            //     code that adds edges from the region of a borrow
397            //     (`'b`, here) into the regions in the borrowed
398            //     expression (`*x`, here). (Search for "link".)
399            // - if in lub mode, things can get fairly complicated. The
400            //   easiest thing is just to make a fresh
401            //   region variable [4], which effectively means we defer
402            //   the decision to region inference (and regionck, which will add
403            //   some more edges to this variable). However, this can wind up
404            //   creating a crippling number of variables in some cases --
405            //   e.g., #32278 -- so we optimize one particular case [3].
406            //   Let me try to explain with some examples:
407            //   - The "running example" above represents the simple case,
408            //     where we have one `&` reference at the outer level and
409            //     ownership all the rest of the way down. In this case,
410            //     we want `LUB('a, 'b)` as the resulting region.
411            //   - However, if there are nested borrows, that region is
412            //     too strong. Consider a coercion from `&'a &'x Rc<T>` to
413            //     `&'b T`. In this case, `'a` is actually irrelevant.
414            //     The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
415            //     we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
416            //     (The errors actually show up in borrowck, typically, because
417            //     this extra edge causes the region `'a` to be inferred to something
418            //     too big, which then results in borrowck errors.)
419            //   - We could track the innermost shared reference, but there is already
420            //     code in regionck that has the job of creating links between
421            //     the region of a borrow and the regions in the thing being
422            //     borrowed (here, `'a` and `'x`), and it knows how to handle
423            //     all the various cases. So instead we just make a region variable
424            //     and let regionck figure it out.
425            let r = if !self.use_lub {
426                r_b // [2] above
427            } else if autoderefs == 1 {
428                r_a // [3] above
429            } else {
430                if r_borrow_var.is_none() {
431                    // create var lazily, at most once
432                    let coercion = Coercion(span);
433                    let r = self.next_region_var(coercion);
434                    r_borrow_var = Some(r); // [4] above
435                }
436                r_borrow_var.unwrap()
437            };
438            let derefd_ty_a = Ty::new_ref(
439                self.tcx,
440                r,
441                referent_ty,
442                mutbl_b, // [1] above
443            );
444            match self.unify(derefd_ty_a, b) {
445                Ok(ok) => {
446                    found = Some(ok);
447                    break;
448                }
449                Err(err) => {
450                    if first_error.is_none() {
451                        first_error = Some(err);
452                    }
453                }
454            }
455        }
456
457        // Extract type or return an error. We return the first error
458        // we got, which should be from relating the "base" type
459        // (e.g., in example above, the failure from relating `Vec<T>`
460        // to the target type), since that should be the least
461        // confusing.
462        let Some(InferOk { value: ty, mut obligations }) = found else {
463            if let Some(first_error) = first_error {
464                debug!("coerce_borrowed_pointer: failed with err = {:?}", first_error);
465                return Err(first_error);
466            } else {
467                // This may happen in the new trait solver since autoderef requires
468                // the pointee to be structurally normalizable, or else it'll just bail.
469                // So when we have a type like `&<not well formed>`, then we get no
470                // autoderef steps (even though there should be at least one). That means
471                // we get no type mismatches, since the loop above just exits early.
472                return Err(TypeError::Mismatch);
473            }
474        };
475
476        if ty == a && mt_a.mutbl.is_not() && autoderef.step_count() == 1 {
477            // As a special case, if we would produce `&'a *x`, that's
478            // a total no-op. We end up with the type `&'a T` just as
479            // we started with. In that case, just skip it
480            // altogether. This is just an optimization.
481            //
482            // Note that for `&mut`, we DO want to reborrow --
483            // otherwise, this would be a move, which might be an
484            // error. For example `foo(self.x)` where `self` and
485            // `self.x` both have `&mut `type would be a move of
486            // `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
487            // which is a borrow.
488            assert!(mutbl_b.is_not()); // can only coerce &T -> &U
489            return success(vec![], ty, obligations);
490        }
491
492        let InferOk { value: mut adjustments, obligations: o } =
493            self.adjust_steps_as_infer_ok(&autoderef);
494        obligations.extend(o);
495        obligations.extend(autoderef.into_obligations());
496
497        // Now apply the autoref. We have to extract the region out of
498        // the final ref type we got.
499        let ty::Ref(..) = ty.kind() else {
500            span_bug!(span, "expected a ref type, got {:?}", ty);
501        };
502        let mutbl = AutoBorrowMutability::new(mutbl_b, self.allow_two_phase);
503        adjustments.push(Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)), target: ty });
504
505        debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);
506
507        success(adjustments, ty, obligations)
508    }
509
510    /// Performs [unsized coercion] by emulating a fulfillment loop on a
511    /// `CoerceUnsized` goal until all `CoerceUnsized` and `Unsize` goals
512    /// are successfully selected.
513    ///
514    /// [unsized coercion](https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions)
515    #[instrument(skip(self), level = "debug")]
516    fn coerce_unsized(&self, mut source: Ty<'tcx>, mut target: Ty<'tcx>) -> CoerceResult<'tcx> {
517        source = self.shallow_resolve(source);
518        target = self.shallow_resolve(target);
519        debug!(?source, ?target);
520
521        // We don't apply any coercions incase either the source or target
522        // aren't sufficiently well known but tend to instead just equate
523        // them both.
524        if source.is_ty_var() {
525            debug!("coerce_unsized: source is a TyVar, bailing out");
526            return Err(TypeError::Mismatch);
527        }
528        if target.is_ty_var() {
529            debug!("coerce_unsized: target is a TyVar, bailing out");
530            return Err(TypeError::Mismatch);
531        }
532
533        let traits =
534            (self.tcx.lang_items().unsize_trait(), self.tcx.lang_items().coerce_unsized_trait());
535        let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
536            debug!("missing Unsize or CoerceUnsized traits");
537            return Err(TypeError::Mismatch);
538        };
539
540        // Note, we want to avoid unnecessary unsizing. We don't want to coerce to
541        // a DST unless we have to. This currently comes out in the wash since
542        // we can't unify [T] with U. But to properly support DST, we need to allow
543        // that, at which point we will need extra checks on the target here.
544
545        // Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
546        let reborrow = match (source.kind(), target.kind()) {
547            (&ty::Ref(_, ty_a, mutbl_a), &ty::Ref(_, _, mutbl_b)) => {
548                coerce_mutbls(mutbl_a, mutbl_b)?;
549
550                let coercion = Coercion(self.cause.span);
551                let r_borrow = self.next_region_var(coercion);
552
553                // We don't allow two-phase borrows here, at least for initial
554                // implementation. If it happens that this coercion is a function argument,
555                // the reborrow in coerce_borrowed_ptr will pick it up.
556                let mutbl = AutoBorrowMutability::new(mutbl_b, AllowTwoPhase::No);
557
558                Some((
559                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
560                    Adjustment {
561                        kind: Adjust::Borrow(AutoBorrow::Ref(mutbl)),
562                        target: Ty::new_ref(self.tcx, r_borrow, ty_a, mutbl_b),
563                    },
564                ))
565            }
566            (&ty::Ref(_, ty_a, mt_a), &ty::RawPtr(_, mt_b)) => {
567                coerce_mutbls(mt_a, mt_b)?;
568
569                Some((
570                    Adjustment { kind: Adjust::Deref(None), target: ty_a },
571                    Adjustment {
572                        kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
573                        target: Ty::new_ptr(self.tcx, ty_a, mt_b),
574                    },
575                ))
576            }
577            _ => None,
578        };
579        let coerce_source = reborrow.as_ref().map_or(source, |(_, r)| r.target);
580
581        // Setup either a subtyping or a LUB relationship between
582        // the `CoerceUnsized` target type and the expected type.
583        // We only have the latter, so we use an inference variable
584        // for the former and let type inference do the rest.
585        let coerce_target = self.next_ty_var(self.cause.span);
586        let mut coercion = self.unify_and(coerce_target, target, |target| {
587            let unsize = Adjustment { kind: Adjust::Pointer(PointerCoercion::Unsize), target };
588            match reborrow {
589                None => vec![unsize],
590                Some((ref deref, ref autoref)) => vec![deref.clone(), autoref.clone(), unsize],
591            }
592        })?;
593
594        let mut selcx = traits::SelectionContext::new(self);
595
596        // Create an obligation for `Source: CoerceUnsized<Target>`.
597        let cause = self.cause(self.cause.span, ObligationCauseCode::Coercion { source, target });
598
599        // Use a FIFO queue for this custom fulfillment procedure.
600        //
601        // A Vec (or SmallVec) is not a natural choice for a queue. However,
602        // this code path is hot, and this queue usually has a max length of 1
603        // and almost never more than 3. By using a SmallVec we avoid an
604        // allocation, at the (very small) cost of (occasionally) having to
605        // shift subsequent elements down when removing the front element.
606        let mut queue: SmallVec<[PredicateObligation<'tcx>; 4]> = smallvec![Obligation::new(
607            self.tcx,
608            cause,
609            self.fcx.param_env,
610            ty::TraitRef::new(self.tcx, coerce_unsized_did, [coerce_source, coerce_target])
611        )];
612
613        let mut has_unsized_tuple_coercion = false;
614
615        // Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
616        // emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
617        // inference might unify those two inner type variables later.
618        let traits = [coerce_unsized_did, unsize_did];
619        while !queue.is_empty() {
620            let obligation = queue.remove(0);
621            let trait_pred = match obligation.predicate.kind().no_bound_vars() {
622                Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)))
623                    if traits.contains(&trait_pred.def_id()) =>
624                {
625                    self.resolve_vars_if_possible(trait_pred)
626                }
627                // Eagerly process alias-relate obligations in new trait solver,
628                // since these can be emitted in the process of solving trait goals,
629                // but we need to constrain vars before processing goals mentioning
630                // them.
631                Some(ty::PredicateKind::AliasRelate(..)) => {
632                    let ocx = ObligationCtxt::new(self);
633                    ocx.register_obligation(obligation);
634                    if !ocx.select_where_possible().is_empty() {
635                        return Err(TypeError::Mismatch);
636                    }
637                    coercion.obligations.extend(ocx.into_pending_obligations());
638                    continue;
639                }
640                _ => {
641                    coercion.obligations.push(obligation);
642                    continue;
643                }
644            };
645            debug!("coerce_unsized resolve step: {:?}", trait_pred);
646            match selcx.select(&obligation.with(selcx.tcx(), trait_pred)) {
647                // Uncertain or unimplemented.
648                Ok(None) => {
649                    if trait_pred.def_id() == unsize_did {
650                        let self_ty = trait_pred.self_ty();
651                        let unsize_ty = trait_pred.trait_ref.args[1].expect_ty();
652                        debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
653                        match (self_ty.kind(), unsize_ty.kind()) {
654                            (&ty::Infer(ty::TyVar(v)), ty::Dynamic(..))
655                                if self.type_var_is_sized(v) =>
656                            {
657                                debug!("coerce_unsized: have sized infer {:?}", v);
658                                coercion.obligations.push(obligation);
659                                // `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
660                                // for unsizing.
661                            }
662                            _ => {
663                                // Some other case for `$0: Unsize<Something>`. Note that we
664                                // hit this case even if `Something` is a sized type, so just
665                                // don't do the coercion.
666                                debug!("coerce_unsized: ambiguous unsize");
667                                return Err(TypeError::Mismatch);
668                            }
669                        }
670                    } else {
671                        debug!("coerce_unsized: early return - ambiguous");
672                        return Err(TypeError::Mismatch);
673                    }
674                }
675                Err(traits::Unimplemented) => {
676                    debug!("coerce_unsized: early return - can't prove obligation");
677                    return Err(TypeError::Mismatch);
678                }
679
680                // Dyn-compatibility violations or miscellaneous.
681                Err(err) => {
682                    let guar = self.err_ctxt().report_selection_error(
683                        obligation.clone(),
684                        &obligation,
685                        &err,
686                    );
687                    self.fcx.set_tainted_by_errors(guar);
688                    // Treat this like an obligation and follow through
689                    // with the unsizing - the lack of a coercion should
690                    // be silent, as it causes a type mismatch later.
691                }
692
693                Ok(Some(impl_source)) => {
694                    // Some builtin coercions are still unstable so we detect
695                    // these here and emit a feature error if coercion doesn't fail
696                    // due to another reason.
697                    match impl_source {
698                        traits::ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => {
699                            has_unsized_tuple_coercion = true;
700                        }
701                        _ => {}
702                    }
703                    queue.extend(impl_source.nested_obligations())
704                }
705            }
706        }
707
708        if has_unsized_tuple_coercion && !self.tcx.features().unsized_tuple_coercion() {
709            feature_err(
710                &self.tcx.sess,
711                sym::unsized_tuple_coercion,
712                self.cause.span,
713                "unsized tuple coercion is not stable enough for use and is subject to change",
714            )
715            .emit();
716        }
717
718        Ok(coercion)
719    }
720
721    fn coerce_dyn_star(
722        &self,
723        a: Ty<'tcx>,
724        b: Ty<'tcx>,
725        predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
726        b_region: ty::Region<'tcx>,
727    ) -> CoerceResult<'tcx> {
728        if !self.tcx.features().dyn_star() {
729            return Err(TypeError::Mismatch);
730        }
731
732        // FIXME(dyn_star): We should probably allow things like casting from
733        // `dyn* Foo + Send` to `dyn* Foo`.
734        if let ty::Dynamic(a_data, _, ty::DynStar) = a.kind()
735            && let ty::Dynamic(b_data, _, ty::DynStar) = b.kind()
736            && a_data.principal_def_id() == b_data.principal_def_id()
737        {
738            return self.unify_and(a, b, |_| vec![]);
739        }
740
741        // Check the obligations of the cast -- for example, when casting
742        // `usize` to `dyn* Clone + 'static`:
743        let obligations = predicates
744            .iter()
745            .map(|predicate| {
746                // For each existential predicate (e.g., `?Self: Clone`) instantiate
747                // the type of the expression (e.g., `usize` in our example above)
748                // and then require that the resulting predicate (e.g., `usize: Clone`)
749                // holds (it does).
750                let predicate = predicate.with_self_ty(self.tcx, a);
751                Obligation::new(self.tcx, self.cause.clone(), self.param_env, predicate)
752            })
753            .chain([
754                // Enforce the region bound (e.g., `usize: 'static`, in our example).
755                Obligation::new(
756                    self.tcx,
757                    self.cause.clone(),
758                    self.param_env,
759                    ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
760                        ty::OutlivesPredicate(a, b_region),
761                    ))),
762                ),
763                // Enforce that the type is `usize`/pointer-sized.
764                Obligation::new(
765                    self.tcx,
766                    self.cause.clone(),
767                    self.param_env,
768                    ty::TraitRef::new(
769                        self.tcx,
770                        self.tcx
771                            .require_lang_item(hir::LangItem::PointerLike, Some(self.cause.span)),
772                        [a],
773                    ),
774                ),
775            ])
776            .collect();
777
778        Ok(InferOk {
779            value: (
780                vec![Adjustment { kind: Adjust::Pointer(PointerCoercion::DynStar), target: b }],
781                b,
782            ),
783            obligations,
784        })
785    }
786
787    /// Applies reborrowing for `Pin`
788    ///
789    /// We currently only support reborrowing `Pin<&mut T>` as `Pin<&mut T>`. This is accomplished
790    /// by inserting a call to `Pin::as_mut` during MIR building.
791    ///
792    /// In the future we might want to support other reborrowing coercions, such as:
793    /// - `Pin<&mut T>` as `Pin<&T>`
794    /// - `Pin<&T>` as `Pin<&T>`
795    /// - `Pin<Box<T>>` as `Pin<&T>`
796    /// - `Pin<Box<T>>` as `Pin<&mut T>`
797    #[instrument(skip(self), level = "trace")]
798    fn coerce_pin_ref(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
799        // We need to make sure the two types are compatible for coercion.
800        // Then we will build a ReborrowPin adjustment and return that as an InferOk.
801
802        // Right now we can only reborrow if this is a `Pin<&mut T>`.
803        let extract_pin_mut = |ty: Ty<'tcx>| {
804            // Get the T out of Pin<T>
805            let (pin, ty) = match ty.kind() {
806                ty::Adt(pin, args) if self.tcx.is_lang_item(pin.did(), hir::LangItem::Pin) => {
807                    (*pin, args[0].expect_ty())
808                }
809                _ => {
810                    debug!("can't reborrow {:?} as pinned", ty);
811                    return Err(TypeError::Mismatch);
812                }
813            };
814            // Make sure the T is something we understand (just `&mut U` for now)
815            match ty.kind() {
816                ty::Ref(region, ty, mutbl) => Ok((pin, *region, *ty, *mutbl)),
817                _ => {
818                    debug!("can't reborrow pin of inner type {:?}", ty);
819                    Err(TypeError::Mismatch)
820                }
821            }
822        };
823
824        let (pin, a_region, a_ty, mut_a) = extract_pin_mut(a)?;
825        let (_, _, _b_ty, mut_b) = extract_pin_mut(b)?;
826
827        coerce_mutbls(mut_a, mut_b)?;
828
829        // update a with b's mutability since we'll be coercing mutability
830        let a = Ty::new_adt(
831            self.tcx,
832            pin,
833            self.tcx.mk_args(&[Ty::new_ref(self.tcx, a_region, a_ty, mut_b).into()]),
834        );
835
836        // To complete the reborrow, we need to make sure we can unify the inner types, and if so we
837        // add the adjustments.
838        self.unify_and(a, b, |_inner_ty| {
839            vec![Adjustment { kind: Adjust::ReborrowPin(mut_b), target: b }]
840        })
841    }
842
843    fn coerce_from_safe_fn<F, G>(
844        &self,
845        a: Ty<'tcx>,
846        fn_ty_a: ty::PolyFnSig<'tcx>,
847        b: Ty<'tcx>,
848        to_unsafe: F,
849        normal: G,
850    ) -> CoerceResult<'tcx>
851    where
852        F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
853        G: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
854    {
855        self.commit_if_ok(|snapshot| {
856            let outer_universe = self.infcx.universe();
857
858            let result = if let ty::FnPtr(_, hdr_b) = b.kind()
859                && fn_ty_a.safety().is_safe()
860                && hdr_b.safety.is_unsafe()
861            {
862                let unsafe_a = self.tcx.safe_to_unsafe_fn_ty(fn_ty_a);
863                self.unify_and(unsafe_a, b, to_unsafe)
864            } else {
865                self.unify_and(a, b, normal)
866            };
867
868            // FIXME(#73154): This is a hack. Currently LUB can generate
869            // unsolvable constraints. Additionally, it returns `a`
870            // unconditionally, even when the "LUB" is `b`. In the future, we
871            // want the coerced type to be the actual supertype of these two,
872            // but for now, we want to just error to ensure we don't lock
873            // ourselves into a specific behavior with NLL.
874            self.leak_check(outer_universe, Some(snapshot))?;
875
876            result
877        })
878    }
879
880    fn coerce_from_fn_pointer(
881        &self,
882        a: Ty<'tcx>,
883        fn_ty_a: ty::PolyFnSig<'tcx>,
884        b: Ty<'tcx>,
885    ) -> CoerceResult<'tcx> {
886        //! Attempts to coerce from the type of a Rust function item
887        //! into a closure or a `proc`.
888        //!
889
890        let b = self.shallow_resolve(b);
891        debug!("coerce_from_fn_pointer(a={:?}, b={:?})", a, b);
892
893        self.coerce_from_safe_fn(
894            a,
895            fn_ty_a,
896            b,
897            simple(Adjust::Pointer(PointerCoercion::UnsafeFnPointer)),
898            identity,
899        )
900    }
901
902    fn coerce_from_fn_item(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
903        //! Attempts to coerce from the type of a Rust function item
904        //! into a closure or a `proc`.
905
906        let b = self.shallow_resolve(b);
907        let InferOk { value: b, mut obligations } =
908            self.at(&self.cause, self.param_env).normalize(b);
909        debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
910
911        match b.kind() {
912            ty::FnPtr(_, b_hdr) => {
913                let mut a_sig = a.fn_sig(self.tcx);
914                if let ty::FnDef(def_id, _) = *a.kind() {
915                    // Intrinsics are not coercible to function pointers
916                    if self.tcx.intrinsic(def_id).is_some() {
917                        return Err(TypeError::IntrinsicCast);
918                    }
919
920                    let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
921                    if matches!(fn_attrs.inline, InlineAttr::Force { .. }) {
922                        return Err(TypeError::ForceInlineCast);
923                    }
924
925                    if b_hdr.safety.is_safe()
926                        && self.tcx.codegen_fn_attrs(def_id).safe_target_features
927                    {
928                        // Allow the coercion if the current function has all the features that would be
929                        // needed to call the coercee safely.
930                        if let Some(safe_sig) = self.tcx.adjust_target_feature_sig(
931                            def_id,
932                            a_sig,
933                            self.fcx.body_id.into(),
934                        ) {
935                            a_sig = safe_sig;
936                        } else {
937                            return Err(TypeError::TargetFeatureCast(def_id));
938                        }
939                    }
940                }
941
942                let InferOk { value: a_sig, obligations: o1 } =
943                    self.at(&self.cause, self.param_env).normalize(a_sig);
944                obligations.extend(o1);
945
946                let a_fn_pointer = Ty::new_fn_ptr(self.tcx, a_sig);
947                let InferOk { value, obligations: o2 } = self.coerce_from_safe_fn(
948                    a_fn_pointer,
949                    a_sig,
950                    b,
951                    |unsafe_ty| {
952                        vec![
953                            Adjustment {
954                                kind: Adjust::Pointer(PointerCoercion::ReifyFnPointer),
955                                target: a_fn_pointer,
956                            },
957                            Adjustment {
958                                kind: Adjust::Pointer(PointerCoercion::UnsafeFnPointer),
959                                target: unsafe_ty,
960                            },
961                        ]
962                    },
963                    simple(Adjust::Pointer(PointerCoercion::ReifyFnPointer)),
964                )?;
965
966                obligations.extend(o2);
967                Ok(InferOk { value, obligations })
968            }
969            _ => self.unify_and(a, b, identity),
970        }
971    }
972
973    fn coerce_closure_to_fn(
974        &self,
975        a: Ty<'tcx>,
976        closure_def_id_a: DefId,
977        args_a: GenericArgsRef<'tcx>,
978        b: Ty<'tcx>,
979    ) -> CoerceResult<'tcx> {
980        //! Attempts to coerce from the type of a non-capturing closure
981        //! into a function pointer.
982        //!
983
984        let b = self.shallow_resolve(b);
985
986        match b.kind() {
987            // At this point we haven't done capture analysis, which means
988            // that the ClosureArgs just contains an inference variable instead
989            // of tuple of captured types.
990            //
991            // All we care here is if any variable is being captured and not the exact paths,
992            // so we check `upvars_mentioned` for root variables being captured.
993            ty::FnPtr(_, hdr)
994                if self
995                    .tcx
996                    .upvars_mentioned(closure_def_id_a.expect_local())
997                    .is_none_or(|u| u.is_empty()) =>
998            {
999                // We coerce the closure, which has fn type
1000                //     `extern "rust-call" fn((arg0,arg1,...)) -> _`
1001                // to
1002                //     `fn(arg0,arg1,...) -> _`
1003                // or
1004                //     `unsafe fn(arg0,arg1,...) -> _`
1005                let closure_sig = args_a.as_closure().sig();
1006                let safety = hdr.safety;
1007                let pointer_ty =
1008                    Ty::new_fn_ptr(self.tcx, self.tcx.signature_unclosure(closure_sig, safety));
1009                debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
1010                self.unify_and(
1011                    pointer_ty,
1012                    b,
1013                    simple(Adjust::Pointer(PointerCoercion::ClosureFnPointer(safety))),
1014                )
1015            }
1016            _ => self.unify_and(a, b, identity),
1017        }
1018    }
1019
1020    fn coerce_raw_ptr(
1021        &self,
1022        a: Ty<'tcx>,
1023        b: Ty<'tcx>,
1024        mutbl_b: hir::Mutability,
1025    ) -> CoerceResult<'tcx> {
1026        debug!("coerce_raw_ptr(a={:?}, b={:?})", a, b);
1027
1028        let (is_ref, mt_a) = match *a.kind() {
1029            ty::Ref(_, ty, mutbl) => (true, ty::TypeAndMut { ty, mutbl }),
1030            ty::RawPtr(ty, mutbl) => (false, ty::TypeAndMut { ty, mutbl }),
1031            _ => return self.unify_and(a, b, identity),
1032        };
1033        coerce_mutbls(mt_a.mutbl, mutbl_b)?;
1034
1035        // Check that the types which they point at are compatible.
1036        let a_raw = Ty::new_ptr(self.tcx, mt_a.ty, mutbl_b);
1037        // Although references and raw ptrs have the same
1038        // representation, we still register an Adjust::DerefRef so that
1039        // regionck knows that the region for `a` must be valid here.
1040        if is_ref {
1041            self.unify_and(a_raw, b, |target| {
1042                vec![
1043                    Adjustment { kind: Adjust::Deref(None), target: mt_a.ty },
1044                    Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)), target },
1045                ]
1046            })
1047        } else if mt_a.mutbl != mutbl_b {
1048            self.unify_and(a_raw, b, simple(Adjust::Pointer(PointerCoercion::MutToConstPointer)))
1049        } else {
1050            self.unify_and(a_raw, b, identity)
1051        }
1052    }
1053}
1054
1055impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
1056    /// Attempt to coerce an expression to a type, and return the
1057    /// adjusted type of the expression, if successful.
1058    /// Adjustments are only recorded if the coercion succeeded.
1059    /// The expressions *must not* have any preexisting adjustments.
1060    pub(crate) fn coerce(
1061        &self,
1062        expr: &'tcx hir::Expr<'tcx>,
1063        expr_ty: Ty<'tcx>,
1064        mut target: Ty<'tcx>,
1065        allow_two_phase: AllowTwoPhase,
1066        cause: Option<ObligationCause<'tcx>>,
1067    ) -> RelateResult<'tcx, Ty<'tcx>> {
1068        let source = self.try_structurally_resolve_type(expr.span, expr_ty);
1069        if self.next_trait_solver() {
1070            target = self.try_structurally_resolve_type(
1071                cause.as_ref().map_or(expr.span, |cause| cause.span),
1072                target,
1073            );
1074        }
1075        debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);
1076
1077        let cause =
1078            cause.unwrap_or_else(|| self.cause(expr.span, ObligationCauseCode::ExprAssignable));
1079        let coerce = Coerce::new(
1080            self,
1081            cause,
1082            allow_two_phase,
1083            self.expr_guaranteed_to_constitute_read_for_never(expr),
1084        );
1085        let ok = self.commit_if_ok(|_| coerce.coerce(source, target))?;
1086
1087        let (adjustments, _) = self.register_infer_ok_obligations(ok);
1088        self.apply_adjustments(expr, adjustments);
1089        Ok(if let Err(guar) = expr_ty.error_reported() {
1090            Ty::new_error(self.tcx, guar)
1091        } else {
1092            target
1093        })
1094    }
1095
1096    /// Probe whether `expr_ty` can be coerced to `target_ty`. This has no side-effects,
1097    /// and may return false positives if types are not yet fully constrained by inference.
1098    ///
1099    /// Returns false if the coercion is not possible, or if the coercion creates any
1100    /// sub-obligations that result in errors.
1101    ///
1102    /// This should only be used for diagnostics.
1103    pub(crate) fn may_coerce(&self, expr_ty: Ty<'tcx>, target_ty: Ty<'tcx>) -> bool {
1104        let cause = self.cause(DUMMY_SP, ObligationCauseCode::ExprAssignable);
1105        // We don't ever need two-phase here since we throw out the result of the coercion.
1106        // We also just always set `coerce_never` to true, since this is a heuristic.
1107        let coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No, true);
1108        self.probe(|_| {
1109            // Make sure to structurally resolve the types, since we use
1110            // the `TyKind`s heavily in coercion.
1111            let ocx = ObligationCtxt::new(self);
1112            let structurally_resolve = |ty| {
1113                let ty = self.shallow_resolve(ty);
1114                if self.next_trait_solver()
1115                    && let ty::Alias(..) = ty.kind()
1116                {
1117                    ocx.structurally_normalize_ty(&cause, self.param_env, ty)
1118                } else {
1119                    Ok(ty)
1120                }
1121            };
1122            let Ok(expr_ty) = structurally_resolve(expr_ty) else {
1123                return false;
1124            };
1125            let Ok(target_ty) = structurally_resolve(target_ty) else {
1126                return false;
1127            };
1128
1129            let Ok(ok) = coerce.coerce(expr_ty, target_ty) else {
1130                return false;
1131            };
1132            ocx.register_obligations(ok.obligations);
1133            ocx.select_where_possible().is_empty()
1134        })
1135    }
1136
1137    /// Given a type and a target type, this function will calculate and return
1138    /// how many dereference steps needed to coerce `expr_ty` to `target`. If
1139    /// it's not possible, return `None`.
1140    pub(crate) fn deref_steps_for_suggestion(
1141        &self,
1142        expr_ty: Ty<'tcx>,
1143        target: Ty<'tcx>,
1144    ) -> Option<usize> {
1145        let cause = self.cause(DUMMY_SP, ObligationCauseCode::ExprAssignable);
1146        // We don't ever need two-phase here since we throw out the result of the coercion.
1147        let coerce = Coerce::new(self, cause, AllowTwoPhase::No, true);
1148        coerce
1149            .autoderef(DUMMY_SP, expr_ty)
1150            .find_map(|(ty, steps)| self.probe(|_| coerce.unify(ty, target)).ok().map(|_| steps))
1151    }
1152
1153    /// Given a type, this function will calculate and return the type given
1154    /// for `<Ty as Deref>::Target` only if `Ty` also implements `DerefMut`.
1155    ///
1156    /// This function is for diagnostics only, since it does not register
1157    /// trait or region sub-obligations. (presumably we could, but it's not
1158    /// particularly important for diagnostics...)
1159    pub(crate) fn deref_once_mutably_for_diagnostic(&self, expr_ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
1160        self.autoderef(DUMMY_SP, expr_ty).silence_errors().nth(1).and_then(|(deref_ty, _)| {
1161            self.infcx
1162                .type_implements_trait(
1163                    self.tcx.lang_items().deref_mut_trait()?,
1164                    [expr_ty],
1165                    self.param_env,
1166                )
1167                .may_apply()
1168                .then_some(deref_ty)
1169        })
1170    }
1171
1172    /// Given some expressions, their known unified type and another expression,
1173    /// tries to unify the types, potentially inserting coercions on any of the
1174    /// provided expressions and returns their LUB (aka "common supertype").
1175    ///
1176    /// This is really an internal helper. From outside the coercion
1177    /// module, you should instantiate a `CoerceMany` instance.
1178    fn try_find_coercion_lub<E>(
1179        &self,
1180        cause: &ObligationCause<'tcx>,
1181        exprs: &[E],
1182        prev_ty: Ty<'tcx>,
1183        new: &hir::Expr<'_>,
1184        new_ty: Ty<'tcx>,
1185    ) -> RelateResult<'tcx, Ty<'tcx>>
1186    where
1187        E: AsCoercionSite,
1188    {
1189        let prev_ty = self.try_structurally_resolve_type(cause.span, prev_ty);
1190        let new_ty = self.try_structurally_resolve_type(new.span, new_ty);
1191        debug!(
1192            "coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
1193            prev_ty,
1194            new_ty,
1195            exprs.len()
1196        );
1197
1198        // The following check fixes #88097, where the compiler erroneously
1199        // attempted to coerce a closure type to itself via a function pointer.
1200        if prev_ty == new_ty {
1201            return Ok(prev_ty);
1202        }
1203
1204        let is_force_inline = |ty: Ty<'tcx>| {
1205            if let ty::FnDef(did, _) = ty.kind() {
1206                matches!(self.tcx.codegen_fn_attrs(did).inline, InlineAttr::Force { .. })
1207            } else {
1208                false
1209            }
1210        };
1211        if is_force_inline(prev_ty) || is_force_inline(new_ty) {
1212            return Err(TypeError::ForceInlineCast);
1213        }
1214
1215        // Special-case that coercion alone cannot handle:
1216        // Function items or non-capturing closures of differing IDs or GenericArgs.
1217        let (a_sig, b_sig) = {
1218            let is_capturing_closure = |ty: Ty<'tcx>| {
1219                if let &ty::Closure(closure_def_id, _args) = ty.kind() {
1220                    self.tcx.upvars_mentioned(closure_def_id.expect_local()).is_some()
1221                } else {
1222                    false
1223                }
1224            };
1225            if is_capturing_closure(prev_ty) || is_capturing_closure(new_ty) {
1226                (None, None)
1227            } else {
1228                match (prev_ty.kind(), new_ty.kind()) {
1229                    (ty::FnDef(..), ty::FnDef(..)) => {
1230                        // Don't reify if the function types have a LUB, i.e., they
1231                        // are the same function and their parameters have a LUB.
1232                        match self
1233                            .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
1234                        {
1235                            // We have a LUB of prev_ty and new_ty, just return it.
1236                            Ok(ok) => return Ok(self.register_infer_ok_obligations(ok)),
1237                            Err(_) => {
1238                                (Some(prev_ty.fn_sig(self.tcx)), Some(new_ty.fn_sig(self.tcx)))
1239                            }
1240                        }
1241                    }
1242                    (ty::Closure(_, args), ty::FnDef(..)) => {
1243                        let b_sig = new_ty.fn_sig(self.tcx);
1244                        let a_sig =
1245                            self.tcx.signature_unclosure(args.as_closure().sig(), b_sig.safety());
1246                        (Some(a_sig), Some(b_sig))
1247                    }
1248                    (ty::FnDef(..), ty::Closure(_, args)) => {
1249                        let a_sig = prev_ty.fn_sig(self.tcx);
1250                        let b_sig =
1251                            self.tcx.signature_unclosure(args.as_closure().sig(), a_sig.safety());
1252                        (Some(a_sig), Some(b_sig))
1253                    }
1254                    (ty::Closure(_, args_a), ty::Closure(_, args_b)) => (
1255                        Some(
1256                            self.tcx
1257                                .signature_unclosure(args_a.as_closure().sig(), hir::Safety::Safe),
1258                        ),
1259                        Some(
1260                            self.tcx
1261                                .signature_unclosure(args_b.as_closure().sig(), hir::Safety::Safe),
1262                        ),
1263                    ),
1264                    _ => (None, None),
1265                }
1266            }
1267        };
1268        if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
1269            // Intrinsics are not coercible to function pointers.
1270            if a_sig.abi() == ExternAbi::RustIntrinsic || b_sig.abi() == ExternAbi::RustIntrinsic {
1271                return Err(TypeError::IntrinsicCast);
1272            }
1273            // The signature must match.
1274            let (a_sig, b_sig) = self.normalize(new.span, (a_sig, b_sig));
1275            let sig = self
1276                .at(cause, self.param_env)
1277                .lub(a_sig, b_sig)
1278                .map(|ok| self.register_infer_ok_obligations(ok))?;
1279
1280            // Reify both sides and return the reified fn pointer type.
1281            let fn_ptr = Ty::new_fn_ptr(self.tcx, sig);
1282            let prev_adjustment = match prev_ty.kind() {
1283                ty::Closure(..) => {
1284                    Adjust::Pointer(PointerCoercion::ClosureFnPointer(a_sig.safety()))
1285                }
1286                ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
1287                _ => span_bug!(cause.span, "should not try to coerce a {prev_ty} to a fn pointer"),
1288            };
1289            let next_adjustment = match new_ty.kind() {
1290                ty::Closure(..) => {
1291                    Adjust::Pointer(PointerCoercion::ClosureFnPointer(b_sig.safety()))
1292                }
1293                ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
1294                _ => span_bug!(new.span, "should not try to coerce a {new_ty} to a fn pointer"),
1295            };
1296            for expr in exprs.iter().map(|e| e.as_coercion_site()) {
1297                self.apply_adjustments(
1298                    expr,
1299                    vec![Adjustment { kind: prev_adjustment.clone(), target: fn_ptr }],
1300                );
1301            }
1302            self.apply_adjustments(new, vec![Adjustment { kind: next_adjustment, target: fn_ptr }]);
1303            return Ok(fn_ptr);
1304        }
1305
1306        // Configure a Coerce instance to compute the LUB.
1307        // We don't allow two-phase borrows on any autorefs this creates since we
1308        // probably aren't processing function arguments here and even if we were,
1309        // they're going to get autorefed again anyway and we can apply 2-phase borrows
1310        // at that time.
1311        //
1312        // NOTE: we set `coerce_never` to `true` here because coercion LUBs only
1313        // operate on values and not places, so a never coercion is valid.
1314        let mut coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No, true);
1315        coerce.use_lub = true;
1316
1317        // First try to coerce the new expression to the type of the previous ones,
1318        // but only if the new expression has no coercion already applied to it.
1319        let mut first_error = None;
1320        if !self.typeck_results.borrow().adjustments().contains_key(new.hir_id) {
1321            let result = self.commit_if_ok(|_| coerce.coerce(new_ty, prev_ty));
1322            match result {
1323                Ok(ok) => {
1324                    let (adjustments, target) = self.register_infer_ok_obligations(ok);
1325                    self.apply_adjustments(new, adjustments);
1326                    debug!(
1327                        "coercion::try_find_coercion_lub: was able to coerce from new type {:?} to previous type {:?} ({:?})",
1328                        new_ty, prev_ty, target
1329                    );
1330                    return Ok(target);
1331                }
1332                Err(e) => first_error = Some(e),
1333            }
1334        }
1335
1336        match self.commit_if_ok(|_| coerce.coerce(prev_ty, new_ty)) {
1337            Err(_) => {
1338                // Avoid giving strange errors on failed attempts.
1339                if let Some(e) = first_error {
1340                    Err(e)
1341                } else {
1342                    Err(self
1343                        .commit_if_ok(|_| self.at(cause, self.param_env).lub(prev_ty, new_ty))
1344                        .unwrap_err())
1345                }
1346            }
1347            Ok(ok) => {
1348                let (adjustments, target) = self.register_infer_ok_obligations(ok);
1349                for expr in exprs {
1350                    let expr = expr.as_coercion_site();
1351                    self.apply_adjustments(expr, adjustments.clone());
1352                }
1353                debug!(
1354                    "coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?} ({:?})",
1355                    prev_ty, new_ty, target
1356                );
1357                Ok(target)
1358            }
1359        }
1360    }
1361}
1362
1363/// Check whether `ty` can be coerced to `output_ty`.
1364/// Used from clippy.
1365pub fn can_coerce<'tcx>(
1366    tcx: TyCtxt<'tcx>,
1367    param_env: ty::ParamEnv<'tcx>,
1368    body_id: LocalDefId,
1369    ty: Ty<'tcx>,
1370    output_ty: Ty<'tcx>,
1371) -> bool {
1372    let root_ctxt = crate::typeck_root_ctxt::TypeckRootCtxt::new(tcx, body_id);
1373    let fn_ctxt = FnCtxt::new(&root_ctxt, param_env, body_id);
1374    fn_ctxt.may_coerce(ty, output_ty)
1375}
1376
1377/// CoerceMany encapsulates the pattern you should use when you have
1378/// many expressions that are all getting coerced to a common
1379/// type. This arises, for example, when you have a match (the result
1380/// of each arm is coerced to a common type). It also arises in less
1381/// obvious places, such as when you have many `break foo` expressions
1382/// that target the same loop, or the various `return` expressions in
1383/// a function.
1384///
1385/// The basic protocol is as follows:
1386///
1387/// - Instantiate the `CoerceMany` with an initial `expected_ty`.
1388///   This will also serve as the "starting LUB". The expectation is
1389///   that this type is something which all of the expressions *must*
1390///   be coercible to. Use a fresh type variable if needed.
1391/// - For each expression whose result is to be coerced, invoke `coerce()` with.
1392///   - In some cases we wish to coerce "non-expressions" whose types are implicitly
1393///     unit. This happens for example if you have a `break` with no expression,
1394///     or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
1395///   - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
1396///     from you so that you don't have to worry your pretty head about it.
1397///     But if an error is reported, the final type will be `err`.
1398///   - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
1399///     previously coerced expressions.
1400/// - When all done, invoke `complete()`. This will return the LUB of
1401///   all your expressions.
1402///   - WARNING: I don't believe this final type is guaranteed to be
1403///     related to your initial `expected_ty` in any particular way,
1404///     although it will typically be a subtype, so you should check it.
1405///   - Invoking `complete()` may cause us to go and adjust the "adjustments" on
1406///     previously coerced expressions.
1407///
1408/// Example:
1409///
1410/// ```ignore (illustrative)
1411/// let mut coerce = CoerceMany::new(expected_ty);
1412/// for expr in exprs {
1413///     let expr_ty = fcx.check_expr_with_expectation(expr, expected);
1414///     coerce.coerce(fcx, &cause, expr, expr_ty);
1415/// }
1416/// let final_ty = coerce.complete(fcx);
1417/// ```
1418pub(crate) struct CoerceMany<'tcx, 'exprs, E: AsCoercionSite> {
1419    expected_ty: Ty<'tcx>,
1420    final_ty: Option<Ty<'tcx>>,
1421    expressions: Expressions<'tcx, 'exprs, E>,
1422    pushed: usize,
1423}
1424
1425/// The type of a `CoerceMany` that is storing up the expressions into
1426/// a buffer. We use this in `check/mod.rs` for things like `break`.
1427pub(crate) type DynamicCoerceMany<'tcx> = CoerceMany<'tcx, 'tcx, &'tcx hir::Expr<'tcx>>;
1428
1429enum Expressions<'tcx, 'exprs, E: AsCoercionSite> {
1430    Dynamic(Vec<&'tcx hir::Expr<'tcx>>),
1431    UpFront(&'exprs [E]),
1432}
1433
1434impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
1435    /// The usual case; collect the set of expressions dynamically.
1436    /// If the full set of coercion sites is known before hand,
1437    /// consider `with_coercion_sites()` instead to avoid allocation.
1438    pub(crate) fn new(expected_ty: Ty<'tcx>) -> Self {
1439        Self::make(expected_ty, Expressions::Dynamic(vec![]))
1440    }
1441
1442    /// As an optimization, you can create a `CoerceMany` with a
1443    /// preexisting slice of expressions. In this case, you are
1444    /// expected to pass each element in the slice to `coerce(...)` in
1445    /// order. This is used with arrays in particular to avoid
1446    /// needlessly cloning the slice.
1447    pub(crate) fn with_coercion_sites(expected_ty: Ty<'tcx>, coercion_sites: &'exprs [E]) -> Self {
1448        Self::make(expected_ty, Expressions::UpFront(coercion_sites))
1449    }
1450
1451    fn make(expected_ty: Ty<'tcx>, expressions: Expressions<'tcx, 'exprs, E>) -> Self {
1452        CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
1453    }
1454
1455    /// Returns the "expected type" with which this coercion was
1456    /// constructed. This represents the "downward propagated" type
1457    /// that was given to us at the start of typing whatever construct
1458    /// we are typing (e.g., the match expression).
1459    ///
1460    /// Typically, this is used as the expected type when
1461    /// type-checking each of the alternative expressions whose types
1462    /// we are trying to merge.
1463    pub(crate) fn expected_ty(&self) -> Ty<'tcx> {
1464        self.expected_ty
1465    }
1466
1467    /// Returns the current "merged type", representing our best-guess
1468    /// at the LUB of the expressions we've seen so far (if any). This
1469    /// isn't *final* until you call `self.complete()`, which will return
1470    /// the merged type.
1471    pub(crate) fn merged_ty(&self) -> Ty<'tcx> {
1472        self.final_ty.unwrap_or(self.expected_ty)
1473    }
1474
1475    /// Indicates that the value generated by `expression`, which is
1476    /// of type `expression_ty`, is one of the possibilities that we
1477    /// could coerce from. This will record `expression`, and later
1478    /// calls to `coerce` may come back and add adjustments and things
1479    /// if necessary.
1480    pub(crate) fn coerce<'a>(
1481        &mut self,
1482        fcx: &FnCtxt<'a, 'tcx>,
1483        cause: &ObligationCause<'tcx>,
1484        expression: &'tcx hir::Expr<'tcx>,
1485        expression_ty: Ty<'tcx>,
1486    ) {
1487        self.coerce_inner(fcx, cause, Some(expression), expression_ty, |_| {}, false)
1488    }
1489
1490    /// Indicates that one of the inputs is a "forced unit". This
1491    /// occurs in a case like `if foo { ... };`, where the missing else
1492    /// generates a "forced unit". Another example is a `loop { break;
1493    /// }`, where the `break` has no argument expression. We treat
1494    /// these cases slightly differently for error-reporting
1495    /// purposes. Note that these tend to correspond to cases where
1496    /// the `()` expression is implicit in the source, and hence we do
1497    /// not take an expression argument.
1498    ///
1499    /// The `augment_error` gives you a chance to extend the error
1500    /// message, in case any results (e.g., we use this to suggest
1501    /// removing a `;`).
1502    pub(crate) fn coerce_forced_unit<'a>(
1503        &mut self,
1504        fcx: &FnCtxt<'a, 'tcx>,
1505        cause: &ObligationCause<'tcx>,
1506        augment_error: impl FnOnce(&mut Diag<'_>),
1507        label_unit_as_expected: bool,
1508    ) {
1509        self.coerce_inner(
1510            fcx,
1511            cause,
1512            None,
1513            fcx.tcx.types.unit,
1514            augment_error,
1515            label_unit_as_expected,
1516        )
1517    }
1518
1519    /// The inner coercion "engine". If `expression` is `None`, this
1520    /// is a forced-unit case, and hence `expression_ty` must be
1521    /// `Nil`.
1522    #[instrument(skip(self, fcx, augment_error, label_expression_as_expected), level = "debug")]
1523    pub(crate) fn coerce_inner<'a>(
1524        &mut self,
1525        fcx: &FnCtxt<'a, 'tcx>,
1526        cause: &ObligationCause<'tcx>,
1527        expression: Option<&'tcx hir::Expr<'tcx>>,
1528        mut expression_ty: Ty<'tcx>,
1529        augment_error: impl FnOnce(&mut Diag<'_>),
1530        label_expression_as_expected: bool,
1531    ) {
1532        // Incorporate whatever type inference information we have
1533        // until now; in principle we might also want to process
1534        // pending obligations, but doing so should only improve
1535        // compatibility (hopefully that is true) by helping us
1536        // uncover never types better.
1537        if expression_ty.is_ty_var() {
1538            expression_ty = fcx.infcx.shallow_resolve(expression_ty);
1539        }
1540
1541        // If we see any error types, just propagate that error
1542        // upwards.
1543        if let Err(guar) = (expression_ty, self.merged_ty()).error_reported() {
1544            self.final_ty = Some(Ty::new_error(fcx.tcx, guar));
1545            return;
1546        }
1547
1548        let (expected, found) = if label_expression_as_expected {
1549            // In the case where this is a "forced unit", like
1550            // `break`, we want to call the `()` "expected"
1551            // since it is implied by the syntax.
1552            // (Note: not all force-units work this way.)"
1553            (expression_ty, self.merged_ty())
1554        } else {
1555            // Otherwise, the "expected" type for error
1556            // reporting is the current unification type,
1557            // which is basically the LUB of the expressions
1558            // we've seen so far (combined with the expected
1559            // type)
1560            (self.merged_ty(), expression_ty)
1561        };
1562
1563        // Handle the actual type unification etc.
1564        let result = if let Some(expression) = expression {
1565            if self.pushed == 0 {
1566                // Special-case the first expression we are coercing.
1567                // To be honest, I'm not entirely sure why we do this.
1568                // We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
1569                fcx.coerce(
1570                    expression,
1571                    expression_ty,
1572                    self.expected_ty,
1573                    AllowTwoPhase::No,
1574                    Some(cause.clone()),
1575                )
1576            } else {
1577                match self.expressions {
1578                    Expressions::Dynamic(ref exprs) => fcx.try_find_coercion_lub(
1579                        cause,
1580                        exprs,
1581                        self.merged_ty(),
1582                        expression,
1583                        expression_ty,
1584                    ),
1585                    Expressions::UpFront(coercion_sites) => fcx.try_find_coercion_lub(
1586                        cause,
1587                        &coercion_sites[0..self.pushed],
1588                        self.merged_ty(),
1589                        expression,
1590                        expression_ty,
1591                    ),
1592                }
1593            }
1594        } else {
1595            // this is a hack for cases where we default to `()` because
1596            // the expression etc has been omitted from the source. An
1597            // example is an `if let` without an else:
1598            //
1599            //     if let Some(x) = ... { }
1600            //
1601            // we wind up with a second match arm that is like `_ =>
1602            // ()`. That is the case we are considering here. We take
1603            // a different path to get the right "expected, found"
1604            // message and so forth (and because we know that
1605            // `expression_ty` will be unit).
1606            //
1607            // Another example is `break` with no argument expression.
1608            assert!(expression_ty.is_unit(), "if let hack without unit type");
1609            fcx.at(cause, fcx.param_env)
1610                .eq(
1611                    // needed for tests/ui/type-alias-impl-trait/issue-65679-inst-opaque-ty-from-val-twice.rs
1612                    DefineOpaqueTypes::Yes,
1613                    expected,
1614                    found,
1615                )
1616                .map(|infer_ok| {
1617                    fcx.register_infer_ok_obligations(infer_ok);
1618                    expression_ty
1619                })
1620        };
1621
1622        debug!(?result);
1623        match result {
1624            Ok(v) => {
1625                self.final_ty = Some(v);
1626                if let Some(e) = expression {
1627                    match self.expressions {
1628                        Expressions::Dynamic(ref mut buffer) => buffer.push(e),
1629                        Expressions::UpFront(coercion_sites) => {
1630                            // if the user gave us an array to validate, check that we got
1631                            // the next expression in the list, as expected
1632                            assert_eq!(
1633                                coercion_sites[self.pushed].as_coercion_site().hir_id,
1634                                e.hir_id
1635                            );
1636                        }
1637                    }
1638                    self.pushed += 1;
1639                }
1640            }
1641            Err(coercion_error) => {
1642                // Mark that we've failed to coerce the types here to suppress
1643                // any superfluous errors we might encounter while trying to
1644                // emit or provide suggestions on how to fix the initial error.
1645                fcx.set_tainted_by_errors(
1646                    fcx.dcx().span_delayed_bug(cause.span, "coercion error but no error emitted"),
1647                );
1648                let (expected, found) = fcx.resolve_vars_if_possible((expected, found));
1649
1650                let mut err;
1651                let mut unsized_return = false;
1652                match *cause.code() {
1653                    ObligationCauseCode::ReturnNoExpression => {
1654                        err = struct_span_code_err!(
1655                            fcx.dcx(),
1656                            cause.span,
1657                            E0069,
1658                            "`return;` in a function whose return type is not `()`"
1659                        );
1660                        if let Some(value) = fcx.err_ctxt().ty_kind_suggestion(fcx.param_env, found)
1661                        {
1662                            err.span_suggestion_verbose(
1663                                cause.span.shrink_to_hi(),
1664                                "give the `return` a value of the expected type",
1665                                format!(" {value}"),
1666                                Applicability::HasPlaceholders,
1667                            );
1668                        }
1669                        err.span_label(cause.span, "return type is not `()`");
1670                    }
1671                    ObligationCauseCode::BlockTailExpression(blk_id, ..) => {
1672                        err = self.report_return_mismatched_types(
1673                            cause,
1674                            expected,
1675                            found,
1676                            coercion_error,
1677                            fcx,
1678                            blk_id,
1679                            expression,
1680                        );
1681                        if !fcx.tcx.features().unsized_locals() {
1682                            unsized_return = self.is_return_ty_definitely_unsized(fcx);
1683                        }
1684                    }
1685                    ObligationCauseCode::ReturnValue(return_expr_id) => {
1686                        err = self.report_return_mismatched_types(
1687                            cause,
1688                            expected,
1689                            found,
1690                            coercion_error,
1691                            fcx,
1692                            return_expr_id,
1693                            expression,
1694                        );
1695                        if !fcx.tcx.features().unsized_locals() {
1696                            unsized_return = self.is_return_ty_definitely_unsized(fcx);
1697                        }
1698                    }
1699                    ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause {
1700                        arm_span,
1701                        arm_ty,
1702                        prior_arm_ty,
1703                        ref prior_non_diverging_arms,
1704                        tail_defines_return_position_impl_trait: Some(rpit_def_id),
1705                        ..
1706                    }) => {
1707                        err = fcx.err_ctxt().report_mismatched_types(
1708                            cause,
1709                            fcx.param_env,
1710                            expected,
1711                            found,
1712                            coercion_error,
1713                        );
1714                        // Check that we're actually in the second or later arm
1715                        if prior_non_diverging_arms.len() > 0 {
1716                            self.suggest_boxing_tail_for_return_position_impl_trait(
1717                                fcx,
1718                                &mut err,
1719                                rpit_def_id,
1720                                arm_ty,
1721                                prior_arm_ty,
1722                                prior_non_diverging_arms
1723                                    .iter()
1724                                    .chain(std::iter::once(&arm_span))
1725                                    .copied(),
1726                            );
1727                        }
1728                    }
1729                    ObligationCauseCode::IfExpression(box IfExpressionCause {
1730                        then_id,
1731                        else_id,
1732                        then_ty,
1733                        else_ty,
1734                        tail_defines_return_position_impl_trait: Some(rpit_def_id),
1735                        ..
1736                    }) => {
1737                        err = fcx.err_ctxt().report_mismatched_types(
1738                            cause,
1739                            fcx.param_env,
1740                            expected,
1741                            found,
1742                            coercion_error,
1743                        );
1744                        let then_span = fcx.find_block_span_from_hir_id(then_id);
1745                        let else_span = fcx.find_block_span_from_hir_id(else_id);
1746                        // don't suggest wrapping either blocks in `if .. {} else {}`
1747                        let is_empty_arm = |id| {
1748                            let hir::Node::Block(blk) = fcx.tcx.hir_node(id) else {
1749                                return false;
1750                            };
1751                            if blk.expr.is_some() || !blk.stmts.is_empty() {
1752                                return false;
1753                            }
1754                            let Some((_, hir::Node::Expr(expr))) =
1755                                fcx.tcx.hir().parent_iter(id).nth(1)
1756                            else {
1757                                return false;
1758                            };
1759                            matches!(expr.kind, hir::ExprKind::If(..))
1760                        };
1761                        if !is_empty_arm(then_id) && !is_empty_arm(else_id) {
1762                            self.suggest_boxing_tail_for_return_position_impl_trait(
1763                                fcx,
1764                                &mut err,
1765                                rpit_def_id,
1766                                then_ty,
1767                                else_ty,
1768                                [then_span, else_span].into_iter(),
1769                            );
1770                        }
1771                    }
1772                    _ => {
1773                        err = fcx.err_ctxt().report_mismatched_types(
1774                            cause,
1775                            fcx.param_env,
1776                            expected,
1777                            found,
1778                            coercion_error,
1779                        );
1780                    }
1781                }
1782
1783                augment_error(&mut err);
1784
1785                if let Some(expr) = expression {
1786                    if let hir::ExprKind::Loop(
1787                        _,
1788                        _,
1789                        loop_src @ (hir::LoopSource::While | hir::LoopSource::ForLoop),
1790                        _,
1791                    ) = expr.kind
1792                    {
1793                        let loop_type = if loop_src == hir::LoopSource::While {
1794                            "`while` loops"
1795                        } else {
1796                            "`for` loops"
1797                        };
1798
1799                        err.note(format!("{loop_type} evaluate to unit type `()`"));
1800                    }
1801
1802                    fcx.emit_coerce_suggestions(
1803                        &mut err,
1804                        expr,
1805                        found,
1806                        expected,
1807                        None,
1808                        Some(coercion_error),
1809                    );
1810                }
1811
1812                let reported = err.emit_unless(unsized_return);
1813
1814                self.final_ty = Some(Ty::new_error(fcx.tcx, reported));
1815            }
1816        }
1817    }
1818
1819    fn suggest_boxing_tail_for_return_position_impl_trait(
1820        &self,
1821        fcx: &FnCtxt<'_, 'tcx>,
1822        err: &mut Diag<'_>,
1823        rpit_def_id: LocalDefId,
1824        a_ty: Ty<'tcx>,
1825        b_ty: Ty<'tcx>,
1826        arm_spans: impl Iterator<Item = Span>,
1827    ) {
1828        let compatible = |ty: Ty<'tcx>| {
1829            fcx.probe(|_| {
1830                let ocx = ObligationCtxt::new(fcx);
1831                ocx.register_obligations(
1832                    fcx.tcx.item_self_bounds(rpit_def_id).iter_identity().filter_map(|clause| {
1833                        let predicate = clause
1834                            .kind()
1835                            .map_bound(|clause| match clause {
1836                                ty::ClauseKind::Trait(trait_pred) => Some(ty::ClauseKind::Trait(
1837                                    trait_pred.with_self_ty(fcx.tcx, ty),
1838                                )),
1839                                ty::ClauseKind::Projection(proj_pred) => Some(
1840                                    ty::ClauseKind::Projection(proj_pred.with_self_ty(fcx.tcx, ty)),
1841                                ),
1842                                _ => None,
1843                            })
1844                            .transpose()?;
1845                        Some(Obligation::new(
1846                            fcx.tcx,
1847                            ObligationCause::dummy(),
1848                            fcx.param_env,
1849                            predicate,
1850                        ))
1851                    }),
1852                );
1853                ocx.select_where_possible().is_empty()
1854            })
1855        };
1856
1857        if !compatible(a_ty) || !compatible(b_ty) {
1858            return;
1859        }
1860
1861        let rpid_def_span = fcx.tcx.def_span(rpit_def_id);
1862        err.subdiagnostic(SuggestBoxingForReturnImplTrait::ChangeReturnType {
1863            start_sp: rpid_def_span.with_hi(rpid_def_span.lo() + BytePos(4)),
1864            end_sp: rpid_def_span.shrink_to_hi(),
1865        });
1866
1867        let (starts, ends) =
1868            arm_spans.map(|span| (span.shrink_to_lo(), span.shrink_to_hi())).unzip();
1869        err.subdiagnostic(SuggestBoxingForReturnImplTrait::BoxReturnExpr { starts, ends });
1870    }
1871
1872    fn report_return_mismatched_types<'infcx>(
1873        &self,
1874        cause: &ObligationCause<'tcx>,
1875        expected: Ty<'tcx>,
1876        found: Ty<'tcx>,
1877        ty_err: TypeError<'tcx>,
1878        fcx: &'infcx FnCtxt<'_, 'tcx>,
1879        block_or_return_id: hir::HirId,
1880        expression: Option<&'tcx hir::Expr<'tcx>>,
1881    ) -> Diag<'infcx> {
1882        let mut err =
1883            fcx.err_ctxt().report_mismatched_types(cause, fcx.param_env, expected, found, ty_err);
1884
1885        let due_to_block = matches!(fcx.tcx.hir_node(block_or_return_id), hir::Node::Block(..));
1886
1887        let parent_id = fcx.tcx.parent_hir_id(block_or_return_id);
1888        let parent = fcx.tcx.hir_node(parent_id);
1889        if let Some(expr) = expression
1890            && let hir::Node::Expr(hir::Expr {
1891                kind: hir::ExprKind::Closure(&hir::Closure { body, .. }),
1892                ..
1893            }) = parent
1894            && !matches!(fcx.tcx.hir().body(body).value.kind, hir::ExprKind::Block(..))
1895        {
1896            fcx.suggest_missing_semicolon(&mut err, expr, expected, true);
1897        }
1898        // Verify that this is a tail expression of a function, otherwise the
1899        // label pointing out the cause for the type coercion will be wrong
1900        // as prior return coercions would not be relevant (#57664).
1901        if let Some(expr) = expression
1902            && due_to_block
1903        {
1904            fcx.suggest_missing_semicolon(&mut err, expr, expected, false);
1905            let pointing_at_return_type = fcx.suggest_mismatched_types_on_tail(
1906                &mut err,
1907                expr,
1908                expected,
1909                found,
1910                block_or_return_id,
1911            );
1912            if let Some(cond_expr) = fcx.tcx.hir().get_if_cause(expr.hir_id)
1913                && expected.is_unit()
1914                && !pointing_at_return_type
1915                // If the block is from an external macro or try (`?`) desugaring, then
1916                // do not suggest adding a semicolon, because there's nowhere to put it.
1917                // See issues #81943 and #87051.
1918                && matches!(
1919                    cond_expr.span.desugaring_kind(),
1920                    None | Some(DesugaringKind::WhileLoop)
1921                )
1922                && !cond_expr.span.in_external_macro(fcx.tcx.sess.source_map())
1923                && !matches!(
1924                    cond_expr.kind,
1925                    hir::ExprKind::Match(.., hir::MatchSource::TryDesugar(_))
1926                )
1927            {
1928                err.span_label(cond_expr.span, "expected this to be `()`");
1929                if expr.can_have_side_effects() {
1930                    fcx.suggest_semicolon_at_end(cond_expr.span, &mut err);
1931                }
1932            }
1933        };
1934
1935        // If this is due to an explicit `return`, suggest adding a return type.
1936        if let Some((fn_id, fn_decl)) = fcx.get_fn_decl(block_or_return_id)
1937            && !due_to_block
1938        {
1939            fcx.suggest_missing_return_type(&mut err, fn_decl, expected, found, fn_id);
1940        }
1941
1942        // If this is due to a block, then maybe we forgot a `return`/`break`.
1943        if due_to_block
1944            && let Some(expr) = expression
1945            && let Some(parent_fn_decl) =
1946                fcx.tcx.hir().fn_decl_by_hir_id(fcx.tcx.local_def_id_to_hir_id(fcx.body_id))
1947        {
1948            fcx.suggest_missing_break_or_return_expr(
1949                &mut err,
1950                expr,
1951                parent_fn_decl,
1952                expected,
1953                found,
1954                block_or_return_id,
1955                fcx.body_id,
1956            );
1957        }
1958
1959        let ret_coercion_span = fcx.ret_coercion_span.get();
1960
1961        if let Some(sp) = ret_coercion_span
1962            // If the closure has an explicit return type annotation, or if
1963            // the closure's return type has been inferred from outside
1964            // requirements (such as an Fn* trait bound), then a type error
1965            // may occur at the first return expression we see in the closure
1966            // (if it conflicts with the declared return type). Skip adding a
1967            // note in this case, since it would be incorrect.
1968            && let Some(fn_sig) = fcx.body_fn_sig()
1969            && fn_sig.output().is_ty_var()
1970        {
1971            err.span_note(sp, format!("return type inferred to be `{expected}` here"));
1972        }
1973
1974        err
1975    }
1976
1977    /// Checks whether the return type is unsized via an obligation, which makes
1978    /// sure we consider `dyn Trait: Sized` where clauses, which are trivially
1979    /// false but technically valid for typeck.
1980    fn is_return_ty_definitely_unsized(&self, fcx: &FnCtxt<'_, 'tcx>) -> bool {
1981        if let Some(sig) = fcx.body_fn_sig() {
1982            !fcx.predicate_may_hold(&Obligation::new(
1983                fcx.tcx,
1984                ObligationCause::dummy(),
1985                fcx.param_env,
1986                ty::TraitRef::new(
1987                    fcx.tcx,
1988                    fcx.tcx.require_lang_item(hir::LangItem::Sized, None),
1989                    [sig.output()],
1990                ),
1991            ))
1992        } else {
1993            false
1994        }
1995    }
1996
1997    pub(crate) fn complete<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Ty<'tcx> {
1998        if let Some(final_ty) = self.final_ty {
1999            final_ty
2000        } else {
2001            // If we only had inputs that were of type `!` (or no
2002            // inputs at all), then the final type is `!`.
2003            assert_eq!(self.pushed, 0);
2004            fcx.tcx.types.never
2005        }
2006    }
2007}
2008
2009/// Something that can be converted into an expression to which we can
2010/// apply a coercion.
2011pub(crate) trait AsCoercionSite {
2012    fn as_coercion_site(&self) -> &hir::Expr<'_>;
2013}
2014
2015impl AsCoercionSite for hir::Expr<'_> {
2016    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2017        self
2018    }
2019}
2020
2021impl<'a, T> AsCoercionSite for &'a T
2022where
2023    T: AsCoercionSite,
2024{
2025    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2026        (**self).as_coercion_site()
2027    }
2028}
2029
2030impl AsCoercionSite for ! {
2031    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2032        *self
2033    }
2034}
2035
2036impl AsCoercionSite for hir::Arm<'_> {
2037    fn as_coercion_site(&self) -> &hir::Expr<'_> {
2038        self.body
2039    }
2040}