1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
use std::fmt::Debug;
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::{ControlFlow, Deref};

#[cfg(feature = "nightly")]
use rustc_macros::{HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_serialize::Decodable;
use tracing::debug;

use crate::debug::{DebugWithInfcx, WithInfcx};
use crate::fold::{FallibleTypeFolder, TypeFoldable, TypeFolder, TypeSuperFoldable};
use crate::inherent::*;
use crate::lift::Lift;
use crate::visit::{Flags, TypeSuperVisitable, TypeVisitable, TypeVisitableExt, TypeVisitor};
use crate::{self as ty, InferCtxtLike, Interner, SsoHashSet};

/// Binder is a binder for higher-ranked lifetimes or types. It is part of the
/// compiler's representation for things like `for<'a> Fn(&'a isize)`
/// (which would be represented by the type `PolyTraitRef ==
/// Binder<I, TraitRef>`). Note that when we instantiate,
/// erase, or otherwise "discharge" these bound vars, we change the
/// type from `Binder<I, T>` to just `T` (see
/// e.g., `liberate_late_bound_regions`).
///
/// `Decodable` and `Encodable` are implemented for `Binder<T>` using the `impl_binder_encode_decode!` macro.
#[derive(derivative::Derivative)]
#[derivative(
    Clone(bound = "T: Clone"),
    Copy(bound = "T: Copy"),
    Hash(bound = "T: Hash"),
    PartialEq(bound = "T: PartialEq"),
    Eq(bound = "T: Eq"),
    Debug(bound = "T: Debug")
)]
#[cfg_attr(feature = "nightly", derive(HashStable_NoContext))]
pub struct Binder<I: Interner, T> {
    value: T,
    bound_vars: I::BoundVarKinds,
}

// FIXME: We manually derive `Lift` because the `derive(Lift_Generic)` doesn't
// understand how to turn `T` to `T::Lifted` in the output `type Lifted`.
impl<I: Interner, U: Interner, T> Lift<U> for Binder<I, T>
where
    T: Lift<U>,
    I::BoundVarKinds: Lift<U, Lifted = U::BoundVarKinds>,
{
    type Lifted = Binder<U, T::Lifted>;

    fn lift_to_tcx(self, tcx: U) -> Option<Self::Lifted> {
        Some(Binder {
            value: self.value.lift_to_tcx(tcx)?,
            bound_vars: self.bound_vars.lift_to_tcx(tcx)?,
        })
    }
}

impl<I: Interner, T: DebugWithInfcx<I>> DebugWithInfcx<I> for ty::Binder<I, T> {
    fn fmt<Infcx: InferCtxtLike<Interner = I>>(
        this: WithInfcx<'_, Infcx, &Self>,
        f: &mut core::fmt::Formatter<'_>,
    ) -> core::fmt::Result {
        f.debug_tuple("Binder")
            .field(&this.map(|data| data.as_ref().skip_binder()))
            .field(&this.data.bound_vars())
            .finish()
    }
}

macro_rules! impl_binder_encode_decode {
    ($($t:ty),+ $(,)?) => {
        $(
            impl<I: Interner, E: crate::TyEncoder<I = I>> rustc_serialize::Encodable<E> for ty::Binder<I, $t>
            where
                $t: rustc_serialize::Encodable<E>,
                I::BoundVarKinds: rustc_serialize::Encodable<E>,
            {
                fn encode(&self, e: &mut E) {
                    self.bound_vars().encode(e);
                    self.as_ref().skip_binder().encode(e);
                }
            }
            impl<I: Interner, D: crate::TyDecoder<I = I>> Decodable<D> for ty::Binder<I, $t>
            where
                $t: TypeVisitable<I> + rustc_serialize::Decodable<D>,
                I::BoundVarKinds: rustc_serialize::Decodable<D>,
            {
                fn decode(decoder: &mut D) -> Self {
                    let bound_vars = Decodable::decode(decoder);
                    ty::Binder::bind_with_vars(<$t>::decode(decoder), bound_vars)
                }
            }
        )*
    }
}

impl_binder_encode_decode! {
    ty::FnSig<I>,
    ty::TraitPredicate<I>,
    ty::ExistentialPredicate<I>,
    ty::TraitRef<I>,
    ty::ExistentialTraitRef<I>,
}

impl<I: Interner, T> Binder<I, T>
where
    T: TypeVisitable<I>,
{
    /// Wraps `value` in a binder, asserting that `value` does not
    /// contain any bound vars that would be bound by the
    /// binder. This is commonly used to 'inject' a value T into a
    /// different binding level.
    #[track_caller]
    pub fn dummy(value: T) -> Binder<I, T> {
        assert!(
            !value.has_escaping_bound_vars(),
            "`{value:?}` has escaping bound vars, so it cannot be wrapped in a dummy binder."
        );
        Binder { value, bound_vars: Default::default() }
    }

    pub fn bind_with_vars(value: T, bound_vars: I::BoundVarKinds) -> Binder<I, T> {
        if cfg!(debug_assertions) {
            let mut validator = ValidateBoundVars::new(bound_vars);
            value.visit_with(&mut validator);
        }
        Binder { value, bound_vars }
    }
}

impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Binder<I, T> {
    fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
        folder.try_fold_binder(self)
    }
}

impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Binder<I, T> {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        visitor.visit_binder(self)
    }
}

impl<I: Interner, T: TypeFoldable<I>> TypeSuperFoldable<I> for Binder<I, T> {
    fn try_super_fold_with<F: FallibleTypeFolder<I>>(
        self,
        folder: &mut F,
    ) -> Result<Self, F::Error> {
        self.try_map_bound(|ty| ty.try_fold_with(folder))
    }
}

impl<I: Interner, T: TypeVisitable<I>> TypeSuperVisitable<I> for Binder<I, T> {
    fn super_visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        self.as_ref().skip_binder().visit_with(visitor)
    }
}

impl<I: Interner, T> Binder<I, T> {
    /// Skips the binder and returns the "bound" value. This is a
    /// risky thing to do because it's easy to get confused about
    /// De Bruijn indices and the like. It is usually better to
    /// discharge the binder using `no_bound_vars` or
    /// `instantiate_bound_regions` or something like
    /// that. `skip_binder` is only valid when you are either
    /// extracting data that has nothing to do with bound vars, you
    /// are doing some sort of test that does not involve bound
    /// regions, or you are being very careful about your depth
    /// accounting.
    ///
    /// Some examples where `skip_binder` is reasonable:
    ///
    /// - extracting the `DefId` from a PolyTraitRef;
    /// - comparing the self type of a PolyTraitRef to see if it is equal to
    ///   a type parameter `X`, since the type `X` does not reference any regions
    pub fn skip_binder(self) -> T {
        self.value
    }

    pub fn bound_vars(&self) -> I::BoundVarKinds {
        self.bound_vars
    }

    pub fn as_ref(&self) -> Binder<I, &T> {
        Binder { value: &self.value, bound_vars: self.bound_vars }
    }

    pub fn as_deref(&self) -> Binder<I, &T::Target>
    where
        T: Deref,
    {
        Binder { value: &self.value, bound_vars: self.bound_vars }
    }

    pub fn map_bound_ref<F, U: TypeVisitable<I>>(&self, f: F) -> Binder<I, U>
    where
        F: FnOnce(&T) -> U,
    {
        self.as_ref().map_bound(f)
    }

    pub fn map_bound<F, U: TypeVisitable<I>>(self, f: F) -> Binder<I, U>
    where
        F: FnOnce(T) -> U,
    {
        let Binder { value, bound_vars } = self;
        let value = f(value);
        if cfg!(debug_assertions) {
            let mut validator = ValidateBoundVars::new(bound_vars);
            value.visit_with(&mut validator);
        }
        Binder { value, bound_vars }
    }

    pub fn try_map_bound<F, U: TypeVisitable<I>, E>(self, f: F) -> Result<Binder<I, U>, E>
    where
        F: FnOnce(T) -> Result<U, E>,
    {
        let Binder { value, bound_vars } = self;
        let value = f(value)?;
        if cfg!(debug_assertions) {
            let mut validator = ValidateBoundVars::new(bound_vars);
            value.visit_with(&mut validator);
        }
        Ok(Binder { value, bound_vars })
    }

    /// Wraps a `value` in a binder, using the same bound variables as the
    /// current `Binder`. This should not be used if the new value *changes*
    /// the bound variables. Note: the (old or new) value itself does not
    /// necessarily need to *name* all the bound variables.
    ///
    /// This currently doesn't do anything different than `bind`, because we
    /// don't actually track bound vars. However, semantically, it is different
    /// because bound vars aren't allowed to change here, whereas they are
    /// in `bind`. This may be (debug) asserted in the future.
    pub fn rebind<U>(&self, value: U) -> Binder<I, U>
    where
        U: TypeVisitable<I>,
    {
        Binder::bind_with_vars(value, self.bound_vars)
    }

    /// Unwraps and returns the value within, but only if it contains
    /// no bound vars at all. (In other words, if this binder --
    /// and indeed any enclosing binder -- doesn't bind anything at
    /// all.) Otherwise, returns `None`.
    ///
    /// (One could imagine having a method that just unwraps a single
    /// binder, but permits late-bound vars bound by enclosing
    /// binders, but that would require adjusting the debruijn
    /// indices, and given the shallow binding structure we often use,
    /// would not be that useful.)
    pub fn no_bound_vars(self) -> Option<T>
    where
        T: TypeVisitable<I>,
    {
        // `self.value` is equivalent to `self.skip_binder()`
        if self.value.has_escaping_bound_vars() { None } else { Some(self.skip_binder()) }
    }

    /// Splits the contents into two things that share the same binder
    /// level as the original, returning two distinct binders.
    ///
    /// `f` should consider bound regions at depth 1 to be free, and
    /// anything it produces with bound regions at depth 1 will be
    /// bound in the resulting return values.
    pub fn split<U, V, F>(self, f: F) -> (Binder<I, U>, Binder<I, V>)
    where
        F: FnOnce(T) -> (U, V),
    {
        let Binder { value, bound_vars } = self;
        let (u, v) = f(value);
        (Binder { value: u, bound_vars }, Binder { value: v, bound_vars })
    }
}

impl<I: Interner, T> Binder<I, Option<T>> {
    pub fn transpose(self) -> Option<Binder<I, T>> {
        let Binder { value, bound_vars } = self;
        value.map(|value| Binder { value, bound_vars })
    }
}

impl<I: Interner, T: IntoIterator> Binder<I, T> {
    pub fn iter(self) -> impl Iterator<Item = Binder<I, T::Item>> {
        let Binder { value, bound_vars } = self;
        value.into_iter().map(move |value| Binder { value, bound_vars })
    }
}

pub struct ValidateBoundVars<I: Interner> {
    bound_vars: I::BoundVarKinds,
    binder_index: ty::DebruijnIndex,
    // We may encounter the same variable at different levels of binding, so
    // this can't just be `Ty`
    visited: SsoHashSet<(ty::DebruijnIndex, I::Ty)>,
}

impl<I: Interner> ValidateBoundVars<I> {
    pub fn new(bound_vars: I::BoundVarKinds) -> Self {
        ValidateBoundVars {
            bound_vars,
            binder_index: ty::INNERMOST,
            visited: SsoHashSet::default(),
        }
    }
}

impl<I: Interner> TypeVisitor<I> for ValidateBoundVars<I> {
    type Result = ControlFlow<()>;

    fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &Binder<I, T>) -> Self::Result {
        self.binder_index.shift_in(1);
        let result = t.super_visit_with(self);
        self.binder_index.shift_out(1);
        result
    }

    fn visit_ty(&mut self, t: I::Ty) -> Self::Result {
        if t.outer_exclusive_binder() < self.binder_index
            || !self.visited.insert((self.binder_index, t))
        {
            return ControlFlow::Break(());
        }
        match t.kind() {
            ty::Bound(debruijn, bound_ty) if debruijn == self.binder_index => {
                let idx = bound_ty.var().as_usize();
                if self.bound_vars.len() <= idx {
                    panic!("Not enough bound vars: {:?} not found in {:?}", t, self.bound_vars);
                }
                bound_ty.assert_eq(self.bound_vars[idx]);
            }
            _ => {}
        };

        t.super_visit_with(self)
    }

    fn visit_region(&mut self, r: I::Region) -> Self::Result {
        match r.kind() {
            ty::ReBound(index, br) if index == self.binder_index => {
                let idx = br.var().as_usize();
                if self.bound_vars.len() <= idx {
                    panic!("Not enough bound vars: {:?} not found in {:?}", r, self.bound_vars);
                }
                br.assert_eq(self.bound_vars[idx]);
            }

            _ => (),
        };

        ControlFlow::Continue(())
    }
}

/// Similar to [`super::Binder`] except that it tracks early bound generics, i.e. `struct Foo<T>(T)`
/// needs `T` instantiated immediately. This type primarily exists to avoid forgetting to call
/// `instantiate`.
///
/// If you don't have anything to `instantiate`, you may be looking for
/// [`instantiate_identity`](EarlyBinder::instantiate_identity) or [`skip_binder`](EarlyBinder::skip_binder).
#[derive(derivative::Derivative)]
#[derivative(
    Clone(bound = "T: Clone"),
    Copy(bound = "T: Copy"),
    PartialEq(bound = "T: PartialEq"),
    Eq(bound = "T: Eq"),
    Ord(bound = "T: Ord"),
    PartialOrd(bound = "T: Ord"),
    Hash(bound = "T: Hash"),
    Debug(bound = "T: Debug")
)]
#[cfg_attr(feature = "nightly", derive(TyEncodable, TyDecodable, HashStable_NoContext))]
pub struct EarlyBinder<I: Interner, T> {
    value: T,
    _tcx: PhantomData<I>,
}

/// For early binders, you should first call `instantiate` before using any visitors.
#[cfg(feature = "nightly")]
impl<I: Interner, T> !TypeFoldable<I> for ty::EarlyBinder<I, T> {}

/// For early binders, you should first call `instantiate` before using any visitors.
#[cfg(feature = "nightly")]
impl<I: Interner, T> !TypeVisitable<I> for ty::EarlyBinder<I, T> {}

impl<I: Interner, T> EarlyBinder<I, T> {
    pub fn bind(value: T) -> EarlyBinder<I, T> {
        EarlyBinder { value, _tcx: PhantomData }
    }

    pub fn as_ref(&self) -> EarlyBinder<I, &T> {
        EarlyBinder { value: &self.value, _tcx: PhantomData }
    }

    pub fn map_bound_ref<F, U>(&self, f: F) -> EarlyBinder<I, U>
    where
        F: FnOnce(&T) -> U,
    {
        self.as_ref().map_bound(f)
    }

    pub fn map_bound<F, U>(self, f: F) -> EarlyBinder<I, U>
    where
        F: FnOnce(T) -> U,
    {
        let value = f(self.value);
        EarlyBinder { value, _tcx: PhantomData }
    }

    pub fn try_map_bound<F, U, E>(self, f: F) -> Result<EarlyBinder<I, U>, E>
    where
        F: FnOnce(T) -> Result<U, E>,
    {
        let value = f(self.value)?;
        Ok(EarlyBinder { value, _tcx: PhantomData })
    }

    pub fn rebind<U>(&self, value: U) -> EarlyBinder<I, U> {
        EarlyBinder { value, _tcx: PhantomData }
    }

    /// Skips the binder and returns the "bound" value.
    /// This can be used to extract data that does not depend on generic parameters
    /// (e.g., getting the `DefId` of the inner value or getting the number of
    /// arguments of an `FnSig`). Otherwise, consider using
    /// [`instantiate_identity`](EarlyBinder::instantiate_identity).
    ///
    /// To skip the binder on `x: &EarlyBinder<I, T>` to obtain `&T`, leverage
    /// [`EarlyBinder::as_ref`](EarlyBinder::as_ref): `x.as_ref().skip_binder()`.
    ///
    /// See also [`Binder::skip_binder`](super::Binder::skip_binder), which is
    /// the analogous operation on [`super::Binder`].
    pub fn skip_binder(self) -> T {
        self.value
    }
}

impl<I: Interner, T> EarlyBinder<I, Option<T>> {
    pub fn transpose(self) -> Option<EarlyBinder<I, T>> {
        self.value.map(|value| EarlyBinder { value, _tcx: PhantomData })
    }
}

impl<'s, I: Interner, Iter: IntoIterator> EarlyBinder<I, Iter>
where
    Iter::Item: TypeFoldable<I>,
{
    pub fn iter_instantiated(
        self,
        tcx: I,
        args: &'s [I::GenericArg],
    ) -> IterInstantiated<'s, I, Iter> {
        IterInstantiated { it: self.value.into_iter(), tcx, args }
    }

    /// Similar to [`instantiate_identity`](EarlyBinder::instantiate_identity),
    /// but on an iterator of `TypeFoldable` values.
    pub fn instantiate_identity_iter(self) -> Iter::IntoIter {
        self.value.into_iter()
    }
}

pub struct IterInstantiated<'s, I: Interner, Iter: IntoIterator> {
    it: Iter::IntoIter,
    tcx: I,
    args: &'s [I::GenericArg],
}

impl<I: Interner, Iter: IntoIterator> Iterator for IterInstantiated<'_, I, Iter>
where
    Iter::Item: TypeFoldable<I>,
{
    type Item = Iter::Item;

    fn next(&mut self) -> Option<Self::Item> {
        Some(
            EarlyBinder { value: self.it.next()?, _tcx: PhantomData }
                .instantiate(self.tcx, self.args),
        )
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }
}

impl<I: Interner, Iter: IntoIterator> DoubleEndedIterator for IterInstantiated<'_, I, Iter>
where
    Iter::IntoIter: DoubleEndedIterator,
    Iter::Item: TypeFoldable<I>,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        Some(
            EarlyBinder { value: self.it.next_back()?, _tcx: PhantomData }
                .instantiate(self.tcx, self.args),
        )
    }
}

impl<I: Interner, Iter: IntoIterator> ExactSizeIterator for IterInstantiated<'_, I, Iter>
where
    Iter::IntoIter: ExactSizeIterator,
    Iter::Item: TypeFoldable<I>,
{
}

impl<'s, I: Interner, Iter: IntoIterator> EarlyBinder<I, Iter>
where
    Iter::Item: Deref,
    <Iter::Item as Deref>::Target: Copy + TypeFoldable<I>,
{
    pub fn iter_instantiated_copied(
        self,
        tcx: I,
        args: &'s [I::GenericArg],
    ) -> IterInstantiatedCopied<'s, I, Iter> {
        IterInstantiatedCopied { it: self.value.into_iter(), tcx, args }
    }

    /// Similar to [`instantiate_identity`](EarlyBinder::instantiate_identity),
    /// but on an iterator of values that deref to a `TypeFoldable`.
    pub fn instantiate_identity_iter_copied(
        self,
    ) -> impl Iterator<Item = <Iter::Item as Deref>::Target> {
        self.value.into_iter().map(|v| *v)
    }
}

pub struct IterInstantiatedCopied<'a, I: Interner, Iter: IntoIterator> {
    it: Iter::IntoIter,
    tcx: I,
    args: &'a [I::GenericArg],
}

impl<I: Interner, Iter: IntoIterator> Iterator for IterInstantiatedCopied<'_, I, Iter>
where
    Iter::Item: Deref,
    <Iter::Item as Deref>::Target: Copy + TypeFoldable<I>,
{
    type Item = <Iter::Item as Deref>::Target;

    fn next(&mut self) -> Option<Self::Item> {
        self.it.next().map(|value| {
            EarlyBinder { value: *value, _tcx: PhantomData }.instantiate(self.tcx, self.args)
        })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.it.size_hint()
    }
}

impl<I: Interner, Iter: IntoIterator> DoubleEndedIterator for IterInstantiatedCopied<'_, I, Iter>
where
    Iter::IntoIter: DoubleEndedIterator,
    Iter::Item: Deref,
    <Iter::Item as Deref>::Target: Copy + TypeFoldable<I>,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.it.next_back().map(|value| {
            EarlyBinder { value: *value, _tcx: PhantomData }.instantiate(self.tcx, self.args)
        })
    }
}

impl<I: Interner, Iter: IntoIterator> ExactSizeIterator for IterInstantiatedCopied<'_, I, Iter>
where
    Iter::IntoIter: ExactSizeIterator,
    Iter::Item: Deref,
    <Iter::Item as Deref>::Target: Copy + TypeFoldable<I>,
{
}

pub struct EarlyBinderIter<I, T> {
    t: T,
    _tcx: PhantomData<I>,
}

impl<I: Interner, T: IntoIterator> EarlyBinder<I, T> {
    pub fn transpose_iter(self) -> EarlyBinderIter<I, T::IntoIter> {
        EarlyBinderIter { t: self.value.into_iter(), _tcx: PhantomData }
    }
}

impl<I: Interner, T: Iterator> Iterator for EarlyBinderIter<I, T> {
    type Item = EarlyBinder<I, T::Item>;

    fn next(&mut self) -> Option<Self::Item> {
        self.t.next().map(|value| EarlyBinder { value, _tcx: PhantomData })
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        self.t.size_hint()
    }
}

impl<I: Interner, T: TypeFoldable<I>> ty::EarlyBinder<I, T> {
    pub fn instantiate(self, tcx: I, args: &[I::GenericArg]) -> T {
        let mut folder = ArgFolder { tcx, args, binders_passed: 0 };
        self.value.fold_with(&mut folder)
    }

    /// Makes the identity replacement `T0 => T0, ..., TN => TN`.
    /// Conceptually, this converts universally bound variables into placeholders
    /// when inside of a given item.
    ///
    /// For example, consider `for<T> fn foo<T>(){ .. }`:
    /// - Outside of `foo`, `T` is bound (represented by the presence of `EarlyBinder`).
    /// - Inside of the body of `foo`, we treat `T` as a placeholder by calling
    /// `instantiate_identity` to discharge the `EarlyBinder`.
    pub fn instantiate_identity(self) -> T {
        self.value
    }

    /// Returns the inner value, but only if it contains no bound vars.
    pub fn no_bound_vars(self) -> Option<T> {
        if !self.value.has_param() { Some(self.value) } else { None }
    }
}

///////////////////////////////////////////////////////////////////////////
// The actual instantiation engine itself is a type folder.

struct ArgFolder<'a, I: Interner> {
    tcx: I,
    args: &'a [I::GenericArg],

    /// Number of region binders we have passed through while doing the instantiation
    binders_passed: u32,
}

impl<'a, I: Interner> TypeFolder<I> for ArgFolder<'a, I> {
    #[inline]
    fn interner(&self) -> I {
        self.tcx
    }

    fn fold_binder<T: TypeFoldable<I>>(&mut self, t: ty::Binder<I, T>) -> ty::Binder<I, T> {
        self.binders_passed += 1;
        let t = t.super_fold_with(self);
        self.binders_passed -= 1;
        t
    }

    fn fold_region(&mut self, r: I::Region) -> I::Region {
        // Note: This routine only handles regions that are bound on
        // type declarations and other outer declarations, not those
        // bound in *fn types*. Region instantiation of the bound
        // regions that appear in a function signature is done using
        // the specialized routine `ty::replace_late_regions()`.
        match r.kind() {
            ty::ReEarlyParam(data) => {
                let rk = self.args.get(data.index() as usize).map(|k| k.kind());
                match rk {
                    Some(ty::GenericArgKind::Lifetime(lt)) => self.shift_region_through_binders(lt),
                    Some(other) => self.region_param_expected(data, r, other),
                    None => self.region_param_out_of_range(data, r),
                }
            }
            ty::ReBound(..)
            | ty::ReLateParam(_)
            | ty::ReStatic
            | ty::RePlaceholder(_)
            | ty::ReErased
            | ty::ReError(_) => r,
            ty::ReVar(_) => panic!("unexpected region: {r:?}"),
        }
    }

    fn fold_ty(&mut self, t: I::Ty) -> I::Ty {
        if !t.has_param() {
            return t;
        }

        match t.kind() {
            ty::Param(p) => self.ty_for_param(p, t),
            _ => t.super_fold_with(self),
        }
    }

    fn fold_const(&mut self, c: I::Const) -> I::Const {
        if let ty::ConstKind::Param(p) = c.kind() {
            self.const_for_param(p, c)
        } else {
            c.super_fold_with(self)
        }
    }
}

impl<'a, I: Interner> ArgFolder<'a, I> {
    fn ty_for_param(&self, p: I::ParamTy, source_ty: I::Ty) -> I::Ty {
        // Look up the type in the args. It really should be in there.
        let opt_ty = self.args.get(p.index() as usize).map(|k| k.kind());
        let ty = match opt_ty {
            Some(ty::GenericArgKind::Type(ty)) => ty,
            Some(kind) => self.type_param_expected(p, source_ty, kind),
            None => self.type_param_out_of_range(p, source_ty),
        };

        self.shift_vars_through_binders(ty)
    }

    #[cold]
    #[inline(never)]
    fn type_param_expected(&self, p: I::ParamTy, ty: I::Ty, kind: ty::GenericArgKind<I>) -> ! {
        panic!(
            "expected type for `{:?}` ({:?}/{}) but found {:?} when instantiating, args={:?}",
            p,
            ty,
            p.index(),
            kind,
            self.args,
        )
    }

    #[cold]
    #[inline(never)]
    fn type_param_out_of_range(&self, p: I::ParamTy, ty: I::Ty) -> ! {
        panic!(
            "type parameter `{:?}` ({:?}/{}) out of range when instantiating, args={:?}",
            p,
            ty,
            p.index(),
            self.args,
        )
    }

    fn const_for_param(&self, p: I::ParamConst, source_ct: I::Const) -> I::Const {
        // Look up the const in the args. It really should be in there.
        let opt_ct = self.args.get(p.index() as usize).map(|k| k.kind());
        let ct = match opt_ct {
            Some(ty::GenericArgKind::Const(ct)) => ct,
            Some(kind) => self.const_param_expected(p, source_ct, kind),
            None => self.const_param_out_of_range(p, source_ct),
        };

        self.shift_vars_through_binders(ct)
    }

    #[cold]
    #[inline(never)]
    fn const_param_expected(
        &self,
        p: I::ParamConst,
        ct: I::Const,
        kind: ty::GenericArgKind<I>,
    ) -> ! {
        panic!(
            "expected const for `{:?}` ({:?}/{}) but found {:?} when instantiating args={:?}",
            p,
            ct,
            p.index(),
            kind,
            self.args,
        )
    }

    #[cold]
    #[inline(never)]
    fn const_param_out_of_range(&self, p: I::ParamConst, ct: I::Const) -> ! {
        panic!(
            "const parameter `{:?}` ({:?}/{}) out of range when instantiating args={:?}",
            p,
            ct,
            p.index(),
            self.args,
        )
    }

    #[cold]
    #[inline(never)]
    fn region_param_expected(
        &self,
        ebr: I::EarlyParamRegion,
        r: I::Region,
        kind: ty::GenericArgKind<I>,
    ) -> ! {
        panic!(
            "expected region for `{:?}` ({:?}/{}) but found {:?} when instantiating args={:?}",
            ebr,
            r,
            ebr.index(),
            kind,
            self.args,
        )
    }

    #[cold]
    #[inline(never)]
    fn region_param_out_of_range(&self, ebr: I::EarlyParamRegion, r: I::Region) -> ! {
        panic!(
            "const parameter `{:?}` ({:?}/{}) out of range when instantiating args={:?}",
            ebr,
            r,
            ebr.index(),
            self.args,
        )
    }

    /// It is sometimes necessary to adjust the De Bruijn indices during instantiation. This occurs
    /// when we are instantating a type with escaping bound vars into a context where we have
    /// passed through binders. That's quite a mouthful. Let's see an example:
    ///
    /// ```
    /// type Func<A> = fn(A);
    /// type MetaFunc = for<'a> fn(Func<&'a i32>);
    /// ```
    ///
    /// The type `MetaFunc`, when fully expanded, will be
    /// ```ignore (illustrative)
    /// for<'a> fn(fn(&'a i32))
    /// //      ^~ ^~ ^~~
    /// //      |  |  |
    /// //      |  |  DebruijnIndex of 2
    /// //      Binders
    /// ```
    /// Here the `'a` lifetime is bound in the outer function, but appears as an argument of the
    /// inner one. Therefore, that appearance will have a DebruijnIndex of 2, because we must skip
    /// over the inner binder (remember that we count De Bruijn indices from 1). However, in the
    /// definition of `MetaFunc`, the binder is not visible, so the type `&'a i32` will have a
    /// De Bruijn index of 1. It's only during the instantiation that we can see we must increase the
    /// depth by 1 to account for the binder that we passed through.
    ///
    /// As a second example, consider this twist:
    ///
    /// ```
    /// type FuncTuple<A> = (A,fn(A));
    /// type MetaFuncTuple = for<'a> fn(FuncTuple<&'a i32>);
    /// ```
    ///
    /// Here the final type will be:
    /// ```ignore (illustrative)
    /// for<'a> fn((&'a i32, fn(&'a i32)))
    /// //          ^~~         ^~~
    /// //          |           |
    /// //   DebruijnIndex of 1 |
    /// //               DebruijnIndex of 2
    /// ```
    /// As indicated in the diagram, here the same type `&'a i32` is instantiated once, but in the
    /// first case we do not increase the De Bruijn index and in the second case we do. The reason
    /// is that only in the second case have we passed through a fn binder.
    fn shift_vars_through_binders<T: TypeFoldable<I>>(&self, val: T) -> T {
        debug!(
            "shift_vars(val={:?}, binders_passed={:?}, has_escaping_bound_vars={:?})",
            val,
            self.binders_passed,
            val.has_escaping_bound_vars()
        );

        if self.binders_passed == 0 || !val.has_escaping_bound_vars() {
            return val;
        }

        let result = ty::fold::shift_vars(TypeFolder::interner(self), val, self.binders_passed);
        debug!("shift_vars: shifted result = {:?}", result);

        result
    }

    fn shift_region_through_binders(&self, region: I::Region) -> I::Region {
        if self.binders_passed == 0 || !region.has_escaping_bound_vars() {
            return region;
        }
        ty::fold::shift_region(self.tcx, region, self.binders_passed)
    }
}