rustc_codegen_ssa/mir/
operand.rs

1use std::fmt;
2
3use itertools::Either;
4use rustc_abi as abi;
5use rustc_abi::{
6    Align, BackendRepr, FIRST_VARIANT, FieldIdx, Primitive, Size, TagEncoding, VariantIdx, Variants,
7};
8use rustc_middle::mir::interpret::{Pointer, Scalar, alloc_range};
9use rustc_middle::mir::{self, ConstValue};
10use rustc_middle::ty::Ty;
11use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
12use rustc_middle::{bug, span_bug};
13use rustc_session::config::OptLevel;
14use tracing::{debug, instrument};
15
16use super::place::{PlaceRef, PlaceValue};
17use super::rvalue::transmute_scalar;
18use super::{FunctionCx, LocalRef};
19use crate::MemFlags;
20use crate::common::IntPredicate;
21use crate::traits::*;
22
23/// The representation of a Rust value. The enum variant is in fact
24/// uniquely determined by the value's type, but is kept as a
25/// safety check.
26#[derive(Copy, Clone, Debug)]
27pub enum OperandValue<V> {
28    /// A reference to the actual operand. The data is guaranteed
29    /// to be valid for the operand's lifetime.
30    /// The second value, if any, is the extra data (vtable or length)
31    /// which indicates that it refers to an unsized rvalue.
32    ///
33    /// An `OperandValue` *must* be this variant for any type for which
34    /// [`LayoutTypeCodegenMethods::is_backend_ref`] returns `true`.
35    /// (That basically amounts to "isn't one of the other variants".)
36    ///
37    /// This holds a [`PlaceValue`] (like a [`PlaceRef`] does) with a pointer
38    /// to the location holding the value. The type behind that pointer is the
39    /// one returned by [`LayoutTypeCodegenMethods::backend_type`].
40    Ref(PlaceValue<V>),
41    /// A single LLVM immediate value.
42    ///
43    /// An `OperandValue` *must* be this variant for any type for which
44    /// [`LayoutTypeCodegenMethods::is_backend_immediate`] returns `true`.
45    /// The backend value in this variant must be the *immediate* backend type,
46    /// as returned by [`LayoutTypeCodegenMethods::immediate_backend_type`].
47    Immediate(V),
48    /// A pair of immediate LLVM values. Used by wide pointers too.
49    ///
50    /// # Invariants
51    /// - For `Pair(a, b)`, `a` is always at offset 0, but may have `FieldIdx(1..)`
52    /// - `b` is not at offset 0, because `V` is not a 1ZST type.
53    /// - `a` and `b` will have a different FieldIdx, but otherwise `b`'s may be lower
54    ///   or they may not be adjacent, due to arbitrary numbers of 1ZST fields that
55    ///   will not affect the shape of the data which determines if `Pair` will be used.
56    /// - An `OperandValue` *must* be this variant for any type for which
57    /// [`LayoutTypeCodegenMethods::is_backend_scalar_pair`] returns `true`.
58    /// - The backend values in this variant must be the *immediate* backend types,
59    /// as returned by [`LayoutTypeCodegenMethods::scalar_pair_element_backend_type`]
60    /// with `immediate: true`.
61    Pair(V, V),
62    /// A value taking no bytes, and which therefore needs no LLVM value at all.
63    ///
64    /// If you ever need a `V` to pass to something, get a fresh poison value
65    /// from [`ConstCodegenMethods::const_poison`].
66    ///
67    /// An `OperandValue` *must* be this variant for any type for which
68    /// `is_zst` on its `Layout` returns `true`. Note however that
69    /// these values can still require alignment.
70    ZeroSized,
71}
72
73impl<V: CodegenObject> OperandValue<V> {
74    /// Treat this value as a pointer and return the data pointer and
75    /// optional metadata as backend values.
76    ///
77    /// If you're making a place, use [`Self::deref`] instead.
78    pub(crate) fn pointer_parts(self) -> (V, Option<V>) {
79        match self {
80            OperandValue::Immediate(llptr) => (llptr, None),
81            OperandValue::Pair(llptr, llextra) => (llptr, Some(llextra)),
82            _ => bug!("OperandValue cannot be a pointer: {self:?}"),
83        }
84    }
85
86    /// Treat this value as a pointer and return the place to which it points.
87    ///
88    /// The pointer immediate doesn't inherently know its alignment,
89    /// so you need to pass it in. If you want to get it from a type's ABI
90    /// alignment, then maybe you want [`OperandRef::deref`] instead.
91    ///
92    /// This is the inverse of [`PlaceValue::address`].
93    pub(crate) fn deref(self, align: Align) -> PlaceValue<V> {
94        let (llval, llextra) = self.pointer_parts();
95        PlaceValue { llval, llextra, align }
96    }
97
98    pub(crate) fn is_expected_variant_for_type<'tcx, Cx: LayoutTypeCodegenMethods<'tcx>>(
99        &self,
100        cx: &Cx,
101        ty: TyAndLayout<'tcx>,
102    ) -> bool {
103        match self {
104            OperandValue::ZeroSized => ty.is_zst(),
105            OperandValue::Immediate(_) => cx.is_backend_immediate(ty),
106            OperandValue::Pair(_, _) => cx.is_backend_scalar_pair(ty),
107            OperandValue::Ref(_) => cx.is_backend_ref(ty),
108        }
109    }
110}
111
112/// An `OperandRef` is an "SSA" reference to a Rust value, along with
113/// its type.
114///
115/// NOTE: unless you know a value's type exactly, you should not
116/// generate LLVM opcodes acting on it and instead act via methods,
117/// to avoid nasty edge cases. In particular, using `Builder::store`
118/// directly is sure to cause problems -- use `OperandRef::store`
119/// instead.
120#[derive(Copy, Clone)]
121pub struct OperandRef<'tcx, V> {
122    /// The value.
123    pub val: OperandValue<V>,
124
125    /// The layout of value, based on its Rust type.
126    pub layout: TyAndLayout<'tcx>,
127}
128
129impl<V: CodegenObject> fmt::Debug for OperandRef<'_, V> {
130    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
131        write!(f, "OperandRef({:?} @ {:?})", self.val, self.layout)
132    }
133}
134
135impl<'a, 'tcx, V: CodegenObject> OperandRef<'tcx, V> {
136    pub fn zero_sized(layout: TyAndLayout<'tcx>) -> OperandRef<'tcx, V> {
137        assert!(layout.is_zst());
138        OperandRef { val: OperandValue::ZeroSized, layout }
139    }
140
141    pub(crate) fn from_const<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
142        bx: &mut Bx,
143        val: mir::ConstValue,
144        ty: Ty<'tcx>,
145    ) -> Self {
146        let layout = bx.layout_of(ty);
147
148        let val = match val {
149            ConstValue::Scalar(x) => {
150                let BackendRepr::Scalar(scalar) = layout.backend_repr else {
151                    bug!("from_const: invalid ByVal layout: {:#?}", layout);
152                };
153                let llval = bx.scalar_to_backend(x, scalar, bx.immediate_backend_type(layout));
154                OperandValue::Immediate(llval)
155            }
156            ConstValue::ZeroSized => return OperandRef::zero_sized(layout),
157            ConstValue::Slice { alloc_id, meta } => {
158                let BackendRepr::ScalarPair(a_scalar, _) = layout.backend_repr else {
159                    bug!("from_const: invalid ScalarPair layout: {:#?}", layout);
160                };
161                let a = Scalar::from_pointer(Pointer::new(alloc_id.into(), Size::ZERO), &bx.tcx());
162                let a_llval = bx.scalar_to_backend(
163                    a,
164                    a_scalar,
165                    bx.scalar_pair_element_backend_type(layout, 0, true),
166                );
167                let b_llval = bx.const_usize(meta);
168                OperandValue::Pair(a_llval, b_llval)
169            }
170            ConstValue::Indirect { alloc_id, offset } => {
171                let alloc = bx.tcx().global_alloc(alloc_id).unwrap_memory();
172                return Self::from_const_alloc(bx, layout, alloc, offset);
173            }
174        };
175
176        OperandRef { val, layout }
177    }
178
179    fn from_const_alloc<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
180        bx: &mut Bx,
181        layout: TyAndLayout<'tcx>,
182        alloc: rustc_middle::mir::interpret::ConstAllocation<'tcx>,
183        offset: Size,
184    ) -> Self {
185        let alloc_align = alloc.inner().align;
186        assert!(alloc_align >= layout.align.abi, "{alloc_align:?} < {:?}", layout.align.abi);
187
188        let read_scalar = |start, size, s: abi::Scalar, ty| {
189            match alloc.0.read_scalar(
190                bx,
191                alloc_range(start, size),
192                /*read_provenance*/ matches!(s.primitive(), abi::Primitive::Pointer(_)),
193            ) {
194                Ok(val) => bx.scalar_to_backend(val, s, ty),
195                Err(_) => bx.const_poison(ty),
196            }
197        };
198
199        // It may seem like all types with `Scalar` or `ScalarPair` ABI are fair game at this point.
200        // However, `MaybeUninit<u64>` is considered a `Scalar` as far as its layout is concerned --
201        // and yet cannot be represented by an interpreter `Scalar`, since we have to handle the
202        // case where some of the bytes are initialized and others are not. So, we need an extra
203        // check that walks over the type of `mplace` to make sure it is truly correct to treat this
204        // like a `Scalar` (or `ScalarPair`).
205        match layout.backend_repr {
206            BackendRepr::Scalar(s @ abi::Scalar::Initialized { .. }) => {
207                let size = s.size(bx);
208                assert_eq!(size, layout.size, "abi::Scalar size does not match layout size");
209                let val = read_scalar(offset, size, s, bx.immediate_backend_type(layout));
210                OperandRef { val: OperandValue::Immediate(val), layout }
211            }
212            BackendRepr::ScalarPair(
213                a @ abi::Scalar::Initialized { .. },
214                b @ abi::Scalar::Initialized { .. },
215            ) => {
216                let (a_size, b_size) = (a.size(bx), b.size(bx));
217                let b_offset = (offset + a_size).align_to(b.align(bx).abi);
218                assert!(b_offset.bytes() > 0);
219                let a_val = read_scalar(
220                    offset,
221                    a_size,
222                    a,
223                    bx.scalar_pair_element_backend_type(layout, 0, true),
224                );
225                let b_val = read_scalar(
226                    b_offset,
227                    b_size,
228                    b,
229                    bx.scalar_pair_element_backend_type(layout, 1, true),
230                );
231                OperandRef { val: OperandValue::Pair(a_val, b_val), layout }
232            }
233            _ if layout.is_zst() => OperandRef::zero_sized(layout),
234            _ => {
235                // Neither a scalar nor scalar pair. Load from a place
236                // FIXME: should we cache `const_data_from_alloc` to avoid repeating this for the
237                // same `ConstAllocation`?
238                let init = bx.const_data_from_alloc(alloc);
239                let base_addr = bx.static_addr_of(init, alloc_align, None);
240
241                let llval = bx.const_ptr_byte_offset(base_addr, offset);
242                bx.load_operand(PlaceRef::new_sized(llval, layout))
243            }
244        }
245    }
246
247    /// Asserts that this operand refers to a scalar and returns
248    /// a reference to its value.
249    pub fn immediate(self) -> V {
250        match self.val {
251            OperandValue::Immediate(s) => s,
252            _ => bug!("not immediate: {:?}", self),
253        }
254    }
255
256    /// Asserts that this operand is a pointer (or reference) and returns
257    /// the place to which it points.  (This requires no code to be emitted
258    /// as we represent places using the pointer to the place.)
259    ///
260    /// This uses [`Ty::builtin_deref`] to include the type of the place and
261    /// assumes the place is aligned to the pointee's usual ABI alignment.
262    ///
263    /// If you don't need the type, see [`OperandValue::pointer_parts`]
264    /// or [`OperandValue::deref`].
265    pub fn deref<Cx: CodegenMethods<'tcx>>(self, cx: &Cx) -> PlaceRef<'tcx, V> {
266        if self.layout.ty.is_box() {
267            // Derefer should have removed all Box derefs
268            bug!("dereferencing {:?} in codegen", self.layout.ty);
269        }
270
271        let projected_ty = self
272            .layout
273            .ty
274            .builtin_deref(true)
275            .unwrap_or_else(|| bug!("deref of non-pointer {:?}", self));
276
277        let layout = cx.layout_of(projected_ty);
278        self.val.deref(layout.align.abi).with_type(layout)
279    }
280
281    /// If this operand is a `Pair`, we return an aggregate with the two values.
282    /// For other cases, see `immediate`.
283    pub fn immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
284        self,
285        bx: &mut Bx,
286    ) -> V {
287        if let OperandValue::Pair(a, b) = self.val {
288            let llty = bx.cx().immediate_backend_type(self.layout);
289            debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}", self, llty);
290            // Reconstruct the immediate aggregate.
291            let mut llpair = bx.cx().const_poison(llty);
292            llpair = bx.insert_value(llpair, a, 0);
293            llpair = bx.insert_value(llpair, b, 1);
294            llpair
295        } else {
296            self.immediate()
297        }
298    }
299
300    /// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
301    pub fn from_immediate_or_packed_pair<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
302        bx: &mut Bx,
303        llval: V,
304        layout: TyAndLayout<'tcx>,
305    ) -> Self {
306        let val = if let BackendRepr::ScalarPair(..) = layout.backend_repr {
307            debug!("Operand::from_immediate_or_packed_pair: unpacking {:?} @ {:?}", llval, layout);
308
309            // Deconstruct the immediate aggregate.
310            let a_llval = bx.extract_value(llval, 0);
311            let b_llval = bx.extract_value(llval, 1);
312            OperandValue::Pair(a_llval, b_llval)
313        } else {
314            OperandValue::Immediate(llval)
315        };
316        OperandRef { val, layout }
317    }
318
319    pub(crate) fn extract_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
320        &self,
321        fx: &mut FunctionCx<'a, 'tcx, Bx>,
322        bx: &mut Bx,
323        i: usize,
324    ) -> Self {
325        let field = self.layout.field(bx.cx(), i);
326        let offset = self.layout.fields.offset(i);
327
328        if !bx.is_backend_ref(self.layout) && bx.is_backend_ref(field) {
329            // Part of https://github.com/rust-lang/compiler-team/issues/838
330            span_bug!(
331                fx.mir.span,
332                "Non-ref type {self:?} cannot project to ref field type {field:?}",
333            );
334        }
335
336        let val = if field.is_zst() {
337            OperandValue::ZeroSized
338        } else if field.size == self.layout.size {
339            assert_eq!(offset.bytes(), 0);
340            fx.codegen_transmute_operand(bx, *self, field)
341        } else {
342            let (in_scalar, imm) = match (self.val, self.layout.backend_repr) {
343                // Extract a scalar component from a pair.
344                (OperandValue::Pair(a_llval, b_llval), BackendRepr::ScalarPair(a, b)) => {
345                    if offset.bytes() == 0 {
346                        assert_eq!(field.size, a.size(bx.cx()));
347                        (Some(a), a_llval)
348                    } else {
349                        assert_eq!(offset, a.size(bx.cx()).align_to(b.align(bx.cx()).abi));
350                        assert_eq!(field.size, b.size(bx.cx()));
351                        (Some(b), b_llval)
352                    }
353                }
354
355                _ => {
356                    span_bug!(fx.mir.span, "OperandRef::extract_field({:?}): not applicable", self)
357                }
358            };
359            OperandValue::Immediate(match field.backend_repr {
360                BackendRepr::SimdVector { .. } => imm,
361                BackendRepr::Scalar(out_scalar) => {
362                    let Some(in_scalar) = in_scalar else {
363                        span_bug!(
364                            fx.mir.span,
365                            "OperandRef::extract_field({:?}): missing input scalar for output scalar",
366                            self
367                        )
368                    };
369                    if in_scalar != out_scalar {
370                        // If the backend and backend_immediate types might differ,
371                        // flip back to the backend type then to the new immediate.
372                        // This avoids nop truncations, but still handles things like
373                        // Bools in union fields needs to be truncated.
374                        let backend = bx.from_immediate(imm);
375                        bx.to_immediate_scalar(backend, out_scalar)
376                    } else {
377                        imm
378                    }
379                }
380                BackendRepr::ScalarPair(_, _) | BackendRepr::Memory { .. } => bug!(),
381            })
382        };
383
384        OperandRef { val, layout: field }
385    }
386
387    /// Obtain the actual discriminant of a value.
388    #[instrument(level = "trace", skip(fx, bx))]
389    pub fn codegen_get_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
390        self,
391        fx: &mut FunctionCx<'a, 'tcx, Bx>,
392        bx: &mut Bx,
393        cast_to: Ty<'tcx>,
394    ) -> V {
395        let dl = &bx.tcx().data_layout;
396        let cast_to_layout = bx.cx().layout_of(cast_to);
397        let cast_to = bx.cx().immediate_backend_type(cast_to_layout);
398
399        // We check uninhabitedness separately because a type like
400        // `enum Foo { Bar(i32, !) }` is still reported as `Variants::Single`,
401        // *not* as `Variants::Empty`.
402        if self.layout.is_uninhabited() {
403            return bx.cx().const_poison(cast_to);
404        }
405
406        let (tag_scalar, tag_encoding, tag_field) = match self.layout.variants {
407            Variants::Empty => unreachable!("we already handled uninhabited types"),
408            Variants::Single { index } => {
409                let discr_val =
410                    if let Some(discr) = self.layout.ty.discriminant_for_variant(bx.tcx(), index) {
411                        discr.val
412                    } else {
413                        // This arm is for types which are neither enums nor coroutines,
414                        // and thus for which the only possible "variant" should be the first one.
415                        assert_eq!(index, FIRST_VARIANT);
416                        // There's thus no actual discriminant to return, so we return
417                        // what it would have been if this was a single-variant enum.
418                        0
419                    };
420                return bx.cx().const_uint_big(cast_to, discr_val);
421            }
422            Variants::Multiple { tag, ref tag_encoding, tag_field, .. } => {
423                (tag, tag_encoding, tag_field)
424            }
425        };
426
427        // Read the tag/niche-encoded discriminant from memory.
428        let tag_op = match self.val {
429            OperandValue::ZeroSized => bug!(),
430            OperandValue::Immediate(_) | OperandValue::Pair(_, _) => {
431                self.extract_field(fx, bx, tag_field.as_usize())
432            }
433            OperandValue::Ref(place) => {
434                let tag = place.with_type(self.layout).project_field(bx, tag_field.as_usize());
435                bx.load_operand(tag)
436            }
437        };
438        let tag_imm = tag_op.immediate();
439
440        // Decode the discriminant (specifically if it's niche-encoded).
441        match *tag_encoding {
442            TagEncoding::Direct => {
443                let signed = match tag_scalar.primitive() {
444                    // We use `i1` for bytes that are always `0` or `1`,
445                    // e.g., `#[repr(i8)] enum E { A, B }`, but we can't
446                    // let LLVM interpret the `i1` as signed, because
447                    // then `i1 1` (i.e., `E::B`) is effectively `i8 -1`.
448                    Primitive::Int(_, signed) => !tag_scalar.is_bool() && signed,
449                    _ => false,
450                };
451                bx.intcast(tag_imm, cast_to, signed)
452            }
453            TagEncoding::Niche { untagged_variant, ref niche_variants, niche_start } => {
454                // Cast to an integer so we don't have to treat a pointer as a
455                // special case.
456                let (tag, tag_llty) = match tag_scalar.primitive() {
457                    // FIXME(erikdesjardins): handle non-default addrspace ptr sizes
458                    Primitive::Pointer(_) => {
459                        let t = bx.type_from_integer(dl.ptr_sized_integer());
460                        let tag = bx.ptrtoint(tag_imm, t);
461                        (tag, t)
462                    }
463                    _ => (tag_imm, bx.cx().immediate_backend_type(tag_op.layout)),
464                };
465
466                // `layout_sanity_check` ensures that we only get here for cases where the discriminant
467                // value and the variant index match, since that's all `Niche` can encode.
468
469                let relative_max = niche_variants.end().as_u32() - niche_variants.start().as_u32();
470                let niche_start_const = bx.cx().const_uint_big(tag_llty, niche_start);
471
472                // We have a subrange `niche_start..=niche_end` inside `range`.
473                // If the value of the tag is inside this subrange, it's a
474                // "niche value", an increment of the discriminant. Otherwise it
475                // indicates the untagged variant.
476                // A general algorithm to extract the discriminant from the tag
477                // is:
478                // relative_tag = tag - niche_start
479                // is_niche = relative_tag <= (ule) relative_max
480                // discr = if is_niche {
481                //     cast(relative_tag) + niche_variants.start()
482                // } else {
483                //     untagged_variant
484                // }
485                // However, we will likely be able to emit simpler code.
486                let (is_niche, tagged_discr, delta) = if relative_max == 0 {
487                    // Best case scenario: only one tagged variant. This will
488                    // likely become just a comparison and a jump.
489                    // The algorithm is:
490                    // is_niche = tag == niche_start
491                    // discr = if is_niche {
492                    //     niche_start
493                    // } else {
494                    //     untagged_variant
495                    // }
496                    let is_niche = bx.icmp(IntPredicate::IntEQ, tag, niche_start_const);
497                    let tagged_discr =
498                        bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64);
499                    (is_niche, tagged_discr, 0)
500                } else {
501                    // Thanks to parameter attributes and load metadata, LLVM already knows
502                    // the general valid range of the tag. It's possible, though, for there
503                    // to be an impossible value *in the middle*, which those ranges don't
504                    // communicate, so it's worth an `assume` to let the optimizer know.
505                    // Most importantly, this means when optimizing a variant test like
506                    // `SELECT(is_niche, complex, CONST) == CONST` it's ok to simplify that
507                    // to `!is_niche` because the `complex` part can't possibly match.
508                    //
509                    // This was previously asserted on `tagged_discr` below, where the
510                    // impossible value is more obvious, but that caused an intermediate
511                    // value to become multi-use and thus not optimize, so instead this
512                    // assumes on the original input which is always multi-use. See
513                    // <https://github.com/llvm/llvm-project/issues/134024#issuecomment-3131782555>
514                    //
515                    // FIXME: If we ever get range assume operand bundles in LLVM (so we
516                    // don't need the `icmp`s in the instruction stream any more), it
517                    // might be worth moving this back to being on the switch argument
518                    // where it's more obviously applicable.
519                    if niche_variants.contains(&untagged_variant)
520                        && bx.cx().sess().opts.optimize != OptLevel::No
521                    {
522                        let impossible = niche_start
523                            .wrapping_add(u128::from(untagged_variant.as_u32()))
524                            .wrapping_sub(u128::from(niche_variants.start().as_u32()));
525                        let impossible = bx.cx().const_uint_big(tag_llty, impossible);
526                        let ne = bx.icmp(IntPredicate::IntNE, tag, impossible);
527                        bx.assume(ne);
528                    }
529
530                    // With multiple niched variants we'll have to actually compute
531                    // the variant index from the stored tag.
532                    //
533                    // However, there's still one small optimization we can often do for
534                    // determining *whether* a tag value is a natural value or a niched
535                    // variant. The general algorithm involves a subtraction that often
536                    // wraps in practice, making it tricky to analyse. However, in cases
537                    // where there are few enough possible values of the tag that it doesn't
538                    // need to wrap around, we can instead just look for the contiguous
539                    // tag values on the end of the range with a single comparison.
540                    //
541                    // For example, take the type `enum Demo { A, B, Untagged(bool) }`.
542                    // The `bool` is {0, 1}, and the two other variants are given the
543                    // tags {2, 3} respectively. That means the `tag_range` is
544                    // `[0, 3]`, which doesn't wrap as unsigned (nor as signed), so
545                    // we can test for the niched variants with just `>= 2`.
546                    //
547                    // That means we're looking either for the niche values *above*
548                    // the natural values of the untagged variant:
549                    //
550                    //             niche_start                  niche_end
551                    //                  |                           |
552                    //                  v                           v
553                    // MIN -------------+---------------------------+---------- MAX
554                    //         ^        |         is niche          |
555                    //         |        +---------------------------+
556                    //         |                                    |
557                    //   tag_range.start                      tag_range.end
558                    //
559                    // Or *below* the natural values:
560                    //
561                    //    niche_start              niche_end
562                    //         |                       |
563                    //         v                       v
564                    // MIN ----+-----------------------+---------------------- MAX
565                    //         |       is niche        |           ^
566                    //         +-----------------------+           |
567                    //         |                                   |
568                    //   tag_range.start                      tag_range.end
569                    //
570                    // With those two options and having the flexibility to choose
571                    // between a signed or unsigned comparison on the tag, that
572                    // covers most realistic scenarios. The tests have a (contrived)
573                    // example of a 1-byte enum with over 128 niched variants which
574                    // wraps both as signed as unsigned, though, and for something
575                    // like that we're stuck with the general algorithm.
576
577                    let tag_range = tag_scalar.valid_range(&dl);
578                    let tag_size = tag_scalar.size(&dl);
579                    let niche_end = u128::from(relative_max).wrapping_add(niche_start);
580                    let niche_end = tag_size.truncate(niche_end);
581
582                    let relative_discr = bx.sub(tag, niche_start_const);
583                    let cast_tag = bx.intcast(relative_discr, cast_to, false);
584                    let is_niche = if tag_range.no_unsigned_wraparound(tag_size) == Ok(true) {
585                        if niche_start == tag_range.start {
586                            let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
587                            bx.icmp(IntPredicate::IntULE, tag, niche_end_const)
588                        } else {
589                            assert_eq!(niche_end, tag_range.end);
590                            bx.icmp(IntPredicate::IntUGE, tag, niche_start_const)
591                        }
592                    } else if tag_range.no_signed_wraparound(tag_size) == Ok(true) {
593                        if niche_start == tag_range.start {
594                            let niche_end_const = bx.cx().const_uint_big(tag_llty, niche_end);
595                            bx.icmp(IntPredicate::IntSLE, tag, niche_end_const)
596                        } else {
597                            assert_eq!(niche_end, tag_range.end);
598                            bx.icmp(IntPredicate::IntSGE, tag, niche_start_const)
599                        }
600                    } else {
601                        bx.icmp(
602                            IntPredicate::IntULE,
603                            relative_discr,
604                            bx.cx().const_uint(tag_llty, relative_max as u64),
605                        )
606                    };
607
608                    (is_niche, cast_tag, niche_variants.start().as_u32() as u128)
609                };
610
611                let tagged_discr = if delta == 0 {
612                    tagged_discr
613                } else {
614                    bx.add(tagged_discr, bx.cx().const_uint_big(cast_to, delta))
615                };
616
617                let untagged_variant_const =
618                    bx.cx().const_uint(cast_to, u64::from(untagged_variant.as_u32()));
619
620                let discr = bx.select(is_niche, tagged_discr, untagged_variant_const);
621
622                // In principle we could insert assumes on the possible range of `discr`, but
623                // currently in LLVM this isn't worth it because the original `tag` will
624                // have either a `range` parameter attribute or `!range` metadata,
625                // or come from a `transmute` that already `assume`d it.
626
627                discr
628            }
629        }
630    }
631}
632
633/// Each of these variants starts out as `Either::Right` when it's uninitialized,
634/// then setting the field changes that to `Either::Left` with the backend value.
635#[derive(Debug, Copy, Clone)]
636enum OperandValueBuilder<V> {
637    ZeroSized,
638    Immediate(Either<V, abi::Scalar>),
639    Pair(Either<V, abi::Scalar>, Either<V, abi::Scalar>),
640    /// `repr(simd)` types need special handling because they each have a non-empty
641    /// array field (which uses [`OperandValue::Ref`]) despite the SIMD type itself
642    /// using [`OperandValue::Immediate`] which for any other kind of type would
643    /// mean that its one non-ZST field would also be [`OperandValue::Immediate`].
644    Vector(Either<V, ()>),
645}
646
647/// Allows building up an `OperandRef` by setting fields one at a time.
648#[derive(Debug, Copy, Clone)]
649pub(super) struct OperandRefBuilder<'tcx, V> {
650    val: OperandValueBuilder<V>,
651    layout: TyAndLayout<'tcx>,
652}
653
654impl<'a, 'tcx, V: CodegenObject> OperandRefBuilder<'tcx, V> {
655    /// Creates an uninitialized builder for an instance of the `layout`.
656    ///
657    /// ICEs for [`BackendRepr::Memory`] types (other than ZSTs), which should
658    /// be built up inside a [`PlaceRef`] instead as they need an allocated place
659    /// into which to write the values of the fields.
660    pub(super) fn new(layout: TyAndLayout<'tcx>) -> Self {
661        let val = match layout.backend_repr {
662            BackendRepr::Memory { .. } if layout.is_zst() => OperandValueBuilder::ZeroSized,
663            BackendRepr::Scalar(s) => OperandValueBuilder::Immediate(Either::Right(s)),
664            BackendRepr::ScalarPair(a, b) => {
665                OperandValueBuilder::Pair(Either::Right(a), Either::Right(b))
666            }
667            BackendRepr::SimdVector { .. } => OperandValueBuilder::Vector(Either::Right(())),
668            BackendRepr::Memory { .. } => {
669                bug!("Cannot use non-ZST Memory-ABI type in operand builder: {layout:?}");
670            }
671        };
672        OperandRefBuilder { val, layout }
673    }
674
675    pub(super) fn insert_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
676        &mut self,
677        bx: &mut Bx,
678        variant: VariantIdx,
679        field: FieldIdx,
680        field_operand: OperandRef<'tcx, V>,
681    ) {
682        if let OperandValue::ZeroSized = field_operand.val {
683            // A ZST never adds any state, so just ignore it.
684            // This special-casing is worth it because of things like
685            // `Result<!, !>` where `Ok(never)` is legal to write,
686            // but the type shows as FieldShape::Primitive so we can't
687            // actually look at the layout for the field being set.
688            return;
689        }
690
691        let is_zero_offset = if let abi::FieldsShape::Primitive = self.layout.fields {
692            // The other branch looking at field layouts ICEs for primitives,
693            // so we need to handle them separately.
694            // Because we handled ZSTs above (like the metadata in a thin pointer),
695            // the only possibility is that we're setting the one-and-only field.
696            assert!(!self.layout.is_zst());
697            assert_eq!(variant, FIRST_VARIANT);
698            assert_eq!(field, FieldIdx::ZERO);
699            true
700        } else {
701            let variant_layout = self.layout.for_variant(bx.cx(), variant);
702            let field_offset = variant_layout.fields.offset(field.as_usize());
703            field_offset == Size::ZERO
704        };
705
706        let mut update = |tgt: &mut Either<V, abi::Scalar>, src, from_scalar| {
707            let to_scalar = tgt.unwrap_right();
708            // We transmute here (rather than just `from_immediate`) because in
709            // `Result<usize, *const ()>` the field of the `Ok` is an integer,
710            // but the corresponding scalar in the enum is a pointer.
711            let imm = transmute_scalar(bx, src, from_scalar, to_scalar);
712            *tgt = Either::Left(imm);
713        };
714
715        match (field_operand.val, field_operand.layout.backend_repr) {
716            (OperandValue::ZeroSized, _) => unreachable!("Handled above"),
717            (OperandValue::Immediate(v), BackendRepr::Scalar(from_scalar)) => match &mut self.val {
718                OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
719                    update(val, v, from_scalar);
720                }
721                OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
722                    update(fst, v, from_scalar);
723                }
724                OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
725                    update(snd, v, from_scalar);
726                }
727                _ => {
728                    bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
729                }
730            },
731            (OperandValue::Immediate(v), BackendRepr::SimdVector { .. }) => match &mut self.val {
732                OperandValueBuilder::Vector(val @ Either::Right(())) if is_zero_offset => {
733                    *val = Either::Left(v);
734                }
735                _ => {
736                    bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
737                }
738            },
739            (OperandValue::Pair(a, b), BackendRepr::ScalarPair(from_sa, from_sb)) => {
740                match &mut self.val {
741                    OperandValueBuilder::Pair(fst @ Either::Right(_), snd @ Either::Right(_)) => {
742                        update(fst, a, from_sa);
743                        update(snd, b, from_sb);
744                    }
745                    _ => bug!(
746                        "Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}"
747                    ),
748                }
749            }
750            (OperandValue::Ref(place), BackendRepr::Memory { .. }) => match &mut self.val {
751                OperandValueBuilder::Vector(val @ Either::Right(())) => {
752                    let ibty = bx.cx().immediate_backend_type(self.layout);
753                    let simd = bx.load_from_place(ibty, place);
754                    *val = Either::Left(simd);
755                }
756                _ => {
757                    bug!("Tried to insert {field_operand:?} into {variant:?}.{field:?} of {self:?}")
758                }
759            },
760            _ => bug!("Operand cannot be used with `insert_field`: {field_operand:?}"),
761        }
762    }
763
764    /// Insert the immediate value `imm` for field `f` in the *type itself*,
765    /// rather than into one of the variants.
766    ///
767    /// Most things want [`Self::insert_field`] instead, but this one is
768    /// necessary for writing things like enum tags that aren't in any variant.
769    pub(super) fn insert_imm(&mut self, f: FieldIdx, imm: V) {
770        let field_offset = self.layout.fields.offset(f.as_usize());
771        let is_zero_offset = field_offset == Size::ZERO;
772        match &mut self.val {
773            OperandValueBuilder::Immediate(val @ Either::Right(_)) if is_zero_offset => {
774                *val = Either::Left(imm);
775            }
776            OperandValueBuilder::Pair(fst @ Either::Right(_), _) if is_zero_offset => {
777                *fst = Either::Left(imm);
778            }
779            OperandValueBuilder::Pair(_, snd @ Either::Right(_)) if !is_zero_offset => {
780                *snd = Either::Left(imm);
781            }
782            _ => bug!("Tried to insert {imm:?} into field {f:?} of {self:?}"),
783        }
784    }
785
786    /// After having set all necessary fields, this converts the builder back
787    /// to the normal `OperandRef`.
788    ///
789    /// ICEs if any required fields were not set.
790    pub(super) fn build(&self, cx: &impl CodegenMethods<'tcx, Value = V>) -> OperandRef<'tcx, V> {
791        let OperandRefBuilder { val, layout } = *self;
792
793        // For something like `Option::<u32>::None`, it's expected that the
794        // payload scalar will not actually have been set, so this converts
795        // unset scalars to corresponding `undef` values so long as the scalar
796        // from the layout allows uninit.
797        let unwrap = |r: Either<V, abi::Scalar>| match r {
798            Either::Left(v) => v,
799            Either::Right(s) if s.is_uninit_valid() => {
800                let bty = cx.type_from_scalar(s);
801                cx.const_undef(bty)
802            }
803            Either::Right(_) => bug!("OperandRef::build called while fields are missing {self:?}"),
804        };
805
806        let val = match val {
807            OperandValueBuilder::ZeroSized => OperandValue::ZeroSized,
808            OperandValueBuilder::Immediate(v) => OperandValue::Immediate(unwrap(v)),
809            OperandValueBuilder::Pair(a, b) => OperandValue::Pair(unwrap(a), unwrap(b)),
810            OperandValueBuilder::Vector(v) => match v {
811                Either::Left(v) => OperandValue::Immediate(v),
812                Either::Right(())
813                    if let BackendRepr::SimdVector { element, .. } = layout.backend_repr
814                        && element.is_uninit_valid() =>
815                {
816                    let bty = cx.immediate_backend_type(layout);
817                    OperandValue::Immediate(cx.const_undef(bty))
818                }
819                Either::Right(()) => {
820                    bug!("OperandRef::build called while fields are missing {self:?}")
821                }
822            },
823        };
824        OperandRef { val, layout }
825    }
826}
827
828impl<'a, 'tcx, V: CodegenObject> OperandValue<V> {
829    /// Returns an `OperandValue` that's generally UB to use in any way.
830    ///
831    /// Depending on the `layout`, returns `ZeroSized` for ZSTs, an `Immediate` or
832    /// `Pair` containing poison value(s), or a `Ref` containing a poison pointer.
833    ///
834    /// Supports sized types only.
835    pub fn poison<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
836        bx: &mut Bx,
837        layout: TyAndLayout<'tcx>,
838    ) -> OperandValue<V> {
839        assert!(layout.is_sized());
840        if layout.is_zst() {
841            OperandValue::ZeroSized
842        } else if bx.cx().is_backend_immediate(layout) {
843            let ibty = bx.cx().immediate_backend_type(layout);
844            OperandValue::Immediate(bx.const_poison(ibty))
845        } else if bx.cx().is_backend_scalar_pair(layout) {
846            let ibty0 = bx.cx().scalar_pair_element_backend_type(layout, 0, true);
847            let ibty1 = bx.cx().scalar_pair_element_backend_type(layout, 1, true);
848            OperandValue::Pair(bx.const_poison(ibty0), bx.const_poison(ibty1))
849        } else {
850            let ptr = bx.cx().type_ptr();
851            OperandValue::Ref(PlaceValue::new_sized(bx.const_poison(ptr), layout.align.abi))
852        }
853    }
854
855    pub fn store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
856        self,
857        bx: &mut Bx,
858        dest: PlaceRef<'tcx, V>,
859    ) {
860        self.store_with_flags(bx, dest, MemFlags::empty());
861    }
862
863    pub fn volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
864        self,
865        bx: &mut Bx,
866        dest: PlaceRef<'tcx, V>,
867    ) {
868        self.store_with_flags(bx, dest, MemFlags::VOLATILE);
869    }
870
871    pub fn unaligned_volatile_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
872        self,
873        bx: &mut Bx,
874        dest: PlaceRef<'tcx, V>,
875    ) {
876        self.store_with_flags(bx, dest, MemFlags::VOLATILE | MemFlags::UNALIGNED);
877    }
878
879    pub fn nontemporal_store<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
880        self,
881        bx: &mut Bx,
882        dest: PlaceRef<'tcx, V>,
883    ) {
884        self.store_with_flags(bx, dest, MemFlags::NONTEMPORAL);
885    }
886
887    pub(crate) fn store_with_flags<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
888        self,
889        bx: &mut Bx,
890        dest: PlaceRef<'tcx, V>,
891        flags: MemFlags,
892    ) {
893        debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
894        match self {
895            OperandValue::ZeroSized => {
896                // Avoid generating stores of zero-sized values, because the only way to have a
897                // zero-sized value is through `undef`/`poison`, and the store itself is useless.
898            }
899            OperandValue::Ref(val) => {
900                assert!(dest.layout.is_sized(), "cannot directly store unsized values");
901                if val.llextra.is_some() {
902                    bug!("cannot directly store unsized values");
903                }
904                bx.typed_place_copy_with_flags(dest.val, val, dest.layout, flags);
905            }
906            OperandValue::Immediate(s) => {
907                let val = bx.from_immediate(s);
908                bx.store_with_flags(val, dest.val.llval, dest.val.align, flags);
909            }
910            OperandValue::Pair(a, b) => {
911                let BackendRepr::ScalarPair(a_scalar, b_scalar) = dest.layout.backend_repr else {
912                    bug!("store_with_flags: invalid ScalarPair layout: {:#?}", dest.layout);
913                };
914                let b_offset = a_scalar.size(bx).align_to(b_scalar.align(bx).abi);
915
916                let val = bx.from_immediate(a);
917                let align = dest.val.align;
918                bx.store_with_flags(val, dest.val.llval, align, flags);
919
920                let llptr = bx.inbounds_ptradd(dest.val.llval, bx.const_usize(b_offset.bytes()));
921                let val = bx.from_immediate(b);
922                let align = dest.val.align.restrict_for_offset(b_offset);
923                bx.store_with_flags(val, llptr, align, flags);
924            }
925        }
926    }
927}
928
929impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
930    fn maybe_codegen_consume_direct(
931        &mut self,
932        bx: &mut Bx,
933        place_ref: mir::PlaceRef<'tcx>,
934    ) -> Option<OperandRef<'tcx, Bx::Value>> {
935        debug!("maybe_codegen_consume_direct(place_ref={:?})", place_ref);
936
937        match self.locals[place_ref.local] {
938            LocalRef::Operand(mut o) => {
939                // We only need to handle the projections that
940                // `LocalAnalyzer::process_place` let make it here.
941                for elem in place_ref.projection {
942                    match *elem {
943                        mir::ProjectionElem::Field(f, _) => {
944                            assert!(
945                                !o.layout.ty.is_any_ptr(),
946                                "Bad PlaceRef: destructing pointers should use cast/PtrMetadata, \
947                                 but tried to access field {f:?} of pointer {o:?}",
948                            );
949                            o = o.extract_field(self, bx, f.index());
950                        }
951                        mir::PlaceElem::Downcast(_, vidx) => {
952                            debug_assert_eq!(
953                                o.layout.variants,
954                                abi::Variants::Single { index: vidx },
955                            );
956                            let layout = o.layout.for_variant(bx.cx(), vidx);
957                            o = OperandRef { val: o.val, layout }
958                        }
959                        mir::PlaceElem::Subtype(subtype_ty) => {
960                            let subtype_ty = self.monomorphize(subtype_ty);
961                            let layout = self.cx.layout_of(subtype_ty);
962                            o = OperandRef { val: o.val, layout }
963                        }
964                        _ => return None,
965                    }
966                }
967
968                Some(o)
969            }
970            LocalRef::PendingOperand => {
971                bug!("use of {:?} before def", place_ref);
972            }
973            LocalRef::Place(..) | LocalRef::UnsizedPlace(..) => {
974                // watch out for locals that do not have an
975                // alloca; they are handled somewhat differently
976                None
977            }
978        }
979    }
980
981    pub fn codegen_consume(
982        &mut self,
983        bx: &mut Bx,
984        place_ref: mir::PlaceRef<'tcx>,
985    ) -> OperandRef<'tcx, Bx::Value> {
986        debug!("codegen_consume(place_ref={:?})", place_ref);
987
988        let ty = self.monomorphized_place_ty(place_ref);
989        let layout = bx.cx().layout_of(ty);
990
991        // ZSTs don't require any actual memory access.
992        if layout.is_zst() {
993            return OperandRef::zero_sized(layout);
994        }
995
996        if let Some(o) = self.maybe_codegen_consume_direct(bx, place_ref) {
997            return o;
998        }
999
1000        // for most places, to consume them we just load them
1001        // out from their home
1002        let place = self.codegen_place(bx, place_ref);
1003        bx.load_operand(place)
1004    }
1005
1006    pub fn codegen_operand(
1007        &mut self,
1008        bx: &mut Bx,
1009        operand: &mir::Operand<'tcx>,
1010    ) -> OperandRef<'tcx, Bx::Value> {
1011        debug!("codegen_operand(operand={:?})", operand);
1012
1013        match *operand {
1014            mir::Operand::Copy(ref place) | mir::Operand::Move(ref place) => {
1015                self.codegen_consume(bx, place.as_ref())
1016            }
1017
1018            mir::Operand::Constant(ref constant) => {
1019                let constant_ty = self.monomorphize(constant.ty());
1020                // Most SIMD vector constants should be passed as immediates.
1021                // (In particular, some intrinsics really rely on this.)
1022                if constant_ty.is_simd() {
1023                    // However, some SIMD types do not actually use the vector ABI
1024                    // (in particular, packed SIMD types do not). Ensure we exclude those.
1025                    let layout = bx.layout_of(constant_ty);
1026                    if let BackendRepr::SimdVector { .. } = layout.backend_repr {
1027                        let (llval, ty) = self.immediate_const_vector(bx, constant);
1028                        return OperandRef {
1029                            val: OperandValue::Immediate(llval),
1030                            layout: bx.layout_of(ty),
1031                        };
1032                    }
1033                }
1034                self.eval_mir_constant_to_operand(bx, constant)
1035            }
1036        }
1037    }
1038}