rustc_next_trait_solver/coherence.rs
1use std::fmt::Debug;
2use std::ops::ControlFlow;
3
4use derive_where::derive_where;
5use rustc_type_ir::inherent::*;
6use rustc_type_ir::visit::{TypeVisitable, TypeVisitableExt, TypeVisitor};
7use rustc_type_ir::{self as ty, InferCtxtLike, Interner};
8use tracing::instrument;
9
10/// Whether we do the orphan check relative to this crate or to some remote crate.
11#[derive(Copy, Clone, Debug)]
12pub enum InCrate {
13 Local { mode: OrphanCheckMode },
14 Remote,
15}
16
17#[derive(Copy, Clone, Debug)]
18pub enum OrphanCheckMode {
19 /// Proper orphan check.
20 Proper,
21 /// Improper orphan check for backward compatibility.
22 ///
23 /// In this mode, type params inside projections are considered to be covered
24 /// even if the projection may normalize to a type that doesn't actually cover
25 /// them. This is unsound. See also [#124559] and [#99554].
26 ///
27 /// [#124559]: https://github.com/rust-lang/rust/issues/124559
28 /// [#99554]: https://github.com/rust-lang/rust/issues/99554
29 Compat,
30}
31
32#[derive(Debug, Copy, Clone)]
33pub enum Conflict {
34 Upstream,
35 Downstream,
36}
37
38/// Returns whether all impls which would apply to the `trait_ref`
39/// e.g. `Ty: Trait<Arg>` are already known in the local crate.
40///
41/// This both checks whether any downstream or sibling crates could
42/// implement it and whether an upstream crate can add this impl
43/// without breaking backwards compatibility.
44#[instrument(level = "debug", skip(infcx, lazily_normalize_ty), ret)]
45pub fn trait_ref_is_knowable<Infcx, I, E>(
46 infcx: &Infcx,
47 trait_ref: ty::TraitRef<I>,
48 mut lazily_normalize_ty: impl FnMut(I::Ty) -> Result<I::Ty, E>,
49) -> Result<Result<(), Conflict>, E>
50where
51 Infcx: InferCtxtLike<Interner = I>,
52 I: Interner,
53 E: Debug,
54{
55 if orphan_check_trait_ref(infcx, trait_ref, InCrate::Remote, &mut lazily_normalize_ty)?.is_ok()
56 {
57 // A downstream or cousin crate is allowed to implement some
58 // generic parameters of this trait-ref.
59 return Ok(Err(Conflict::Downstream));
60 }
61
62 if trait_ref_is_local_or_fundamental(infcx.cx(), trait_ref) {
63 // This is a local or fundamental trait, so future-compatibility
64 // is no concern. We know that downstream/cousin crates are not
65 // allowed to implement a generic parameter of this trait ref,
66 // which means impls could only come from dependencies of this
67 // crate, which we already know about.
68 return Ok(Ok(()));
69 }
70
71 // This is a remote non-fundamental trait, so if another crate
72 // can be the "final owner" of the generic parameters of this trait-ref,
73 // they are allowed to implement it future-compatibly.
74 //
75 // However, if we are a final owner, then nobody else can be,
76 // and if we are an intermediate owner, then we don't care
77 // about future-compatibility, which means that we're OK if
78 // we are an owner.
79 if orphan_check_trait_ref(
80 infcx,
81 trait_ref,
82 InCrate::Local { mode: OrphanCheckMode::Proper },
83 &mut lazily_normalize_ty,
84 )?
85 .is_ok()
86 {
87 Ok(Ok(()))
88 } else {
89 Ok(Err(Conflict::Upstream))
90 }
91}
92
93pub fn trait_ref_is_local_or_fundamental<I: Interner>(tcx: I, trait_ref: ty::TraitRef<I>) -> bool {
94 trait_ref.def_id.is_local() || tcx.trait_is_fundamental(trait_ref.def_id)
95}
96
97#[derive(Debug, Copy, Clone)]
98pub enum IsFirstInputType {
99 No,
100 Yes,
101}
102
103impl From<bool> for IsFirstInputType {
104 fn from(b: bool) -> IsFirstInputType {
105 match b {
106 false => IsFirstInputType::No,
107 true => IsFirstInputType::Yes,
108 }
109 }
110}
111
112#[derive_where(Debug; I: Interner, T: Debug)]
113pub enum OrphanCheckErr<I: Interner, T> {
114 NonLocalInputType(Vec<(I::Ty, IsFirstInputType)>),
115 UncoveredTyParams(UncoveredTyParams<I, T>),
116}
117
118#[derive_where(Debug; I: Interner, T: Debug)]
119pub struct UncoveredTyParams<I: Interner, T> {
120 pub uncovered: T,
121 pub local_ty: Option<I::Ty>,
122}
123
124/// Checks whether a trait-ref is potentially implementable by a crate.
125///
126/// The current rule is that a trait-ref orphan checks in a crate C:
127///
128/// 1. Order the parameters in the trait-ref in generic parameters order
129/// - Self first, others linearly (e.g., `<U as Foo<V, W>>` is U < V < W).
130/// 2. Of these type parameters, there is at least one type parameter
131/// in which, walking the type as a tree, you can reach a type local
132/// to C where all types in-between are fundamental types. Call the
133/// first such parameter the "local key parameter".
134/// - e.g., `Box<LocalType>` is OK, because you can visit LocalType
135/// going through `Box`, which is fundamental.
136/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
137/// the same reason.
138/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
139/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
140/// the local type and the type parameter.
141/// 3. Before this local type, no generic type parameter of the impl must
142/// be reachable through fundamental types.
143/// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
144/// - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is
145/// reachable through the fundamental type `Box`.
146/// 4. Every type in the local key parameter not known in C, going
147/// through the parameter's type tree, must appear only as a subtree of
148/// a type local to C, with only fundamental types between the type
149/// local to C and the local key parameter.
150/// - e.g., `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
151/// is bad, because the only local type with `T` as a subtree is
152/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
153/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
154/// the second occurrence of `T` is not a subtree of *any* local type.
155/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
156/// `LocalType<Vec<T>>`, which is local and has no types between it and
157/// the type parameter.
158///
159/// The orphan rules actually serve several different purposes:
160///
161/// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where
162/// every type local to one crate is unknown in the other) can't implement
163/// the same trait-ref. This follows because it can be seen that no such
164/// type can orphan-check in 2 such crates.
165///
166/// To check that a local impl follows the orphan rules, we check it in
167/// InCrate::Local mode, using type parameters for the "generic" types.
168///
169/// In InCrate::Local mode the orphan check succeeds if the current crate
170/// is definitely allowed to implement the given trait (no false positives).
171///
172/// 2. They ground negative reasoning for coherence. If a user wants to
173/// write both a conditional blanket impl and a specific impl, we need to
174/// make sure they do not overlap. For example, if we write
175/// ```ignore (illustrative)
176/// impl<T> IntoIterator for Vec<T>
177/// impl<T: Iterator> IntoIterator for T
178/// ```
179/// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0.
180/// We can observe that this holds in the current crate, but we need to make
181/// sure this will also hold in all unknown crates (both "independent" crates,
182/// which we need for link-safety, and also child crates, because we don't want
183/// child crates to get error for impl conflicts in a *dependency*).
184///
185/// For that, we only allow negative reasoning if, for every assignment to the
186/// inference variables, every unknown crate would get an orphan error if they
187/// try to implement this trait-ref. To check for this, we use InCrate::Remote
188/// mode. That is sound because we already know all the impls from known crates.
189///
190/// In InCrate::Remote mode the orphan check succeeds if a foreign crate
191/// *could* implement the given trait (no false negatives).
192///
193/// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can
194/// add "non-blanket" impls without breaking negative reasoning in dependent
195/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
196///
197/// For that, we only allow a crate to perform negative reasoning on
198/// non-local-non-`#[fundamental]` if there's a local key parameter as per (2).
199///
200/// Because we never perform negative reasoning generically (coherence does
201/// not involve type parameters), this can be interpreted as doing the full
202/// orphan check (using InCrate::Local mode), instantiating non-local known
203/// types for all inference variables.
204///
205/// This allows for crates to future-compatibly add impls as long as they
206/// can't apply to types with a key parameter in a child crate - applying
207/// the rules, this basically means that every type parameter in the impl
208/// must appear behind a non-fundamental type (because this is not a
209/// type-system requirement, crate owners might also go for "semantic
210/// future-compatibility" involving things such as sealed traits, but
211/// the above requirement is sufficient, and is necessary in "open world"
212/// cases).
213///
214/// Note that this function is never called for types that have both type
215/// parameters and inference variables.
216#[instrument(level = "trace", skip(infcx, lazily_normalize_ty), ret)]
217pub fn orphan_check_trait_ref<Infcx, I, E: Debug>(
218 infcx: &Infcx,
219 trait_ref: ty::TraitRef<I>,
220 in_crate: InCrate,
221 lazily_normalize_ty: impl FnMut(I::Ty) -> Result<I::Ty, E>,
222) -> Result<Result<(), OrphanCheckErr<I, I::Ty>>, E>
223where
224 Infcx: InferCtxtLike<Interner = I>,
225 I: Interner,
226 E: Debug,
227{
228 if trait_ref.has_param() {
229 panic!("orphan check only expects inference variables: {trait_ref:?}");
230 }
231
232 let mut checker = OrphanChecker::new(infcx, in_crate, lazily_normalize_ty);
233 Ok(match trait_ref.visit_with(&mut checker) {
234 ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)),
235 ControlFlow::Break(residual) => match residual {
236 OrphanCheckEarlyExit::NormalizationFailure(err) => return Err(err),
237 OrphanCheckEarlyExit::UncoveredTyParam(ty) => {
238 // Does there exist some local type after the `ParamTy`.
239 checker.search_first_local_ty = true;
240 let local_ty = match trait_ref.visit_with(&mut checker) {
241 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(local_ty)) => Some(local_ty),
242 _ => None,
243 };
244 Err(OrphanCheckErr::UncoveredTyParams(UncoveredTyParams {
245 uncovered: ty,
246 local_ty,
247 }))
248 }
249 OrphanCheckEarlyExit::LocalTy(_) => Ok(()),
250 },
251 })
252}
253
254struct OrphanChecker<'a, Infcx, I: Interner, F> {
255 infcx: &'a Infcx,
256 in_crate: InCrate,
257 in_self_ty: bool,
258 lazily_normalize_ty: F,
259 /// Ignore orphan check failures and exclusively search for the first local type.
260 search_first_local_ty: bool,
261 non_local_tys: Vec<(I::Ty, IsFirstInputType)>,
262}
263
264impl<'a, Infcx, I, F, E> OrphanChecker<'a, Infcx, I, F>
265where
266 Infcx: InferCtxtLike<Interner = I>,
267 I: Interner,
268 F: FnOnce(I::Ty) -> Result<I::Ty, E>,
269{
270 fn new(infcx: &'a Infcx, in_crate: InCrate, lazily_normalize_ty: F) -> Self {
271 OrphanChecker {
272 infcx,
273 in_crate,
274 in_self_ty: true,
275 lazily_normalize_ty,
276 search_first_local_ty: false,
277 non_local_tys: Vec::new(),
278 }
279 }
280
281 fn found_non_local_ty(&mut self, t: I::Ty) -> ControlFlow<OrphanCheckEarlyExit<I, E>> {
282 self.non_local_tys.push((t, self.in_self_ty.into()));
283 ControlFlow::Continue(())
284 }
285
286 fn found_uncovered_ty_param(&mut self, ty: I::Ty) -> ControlFlow<OrphanCheckEarlyExit<I, E>> {
287 if self.search_first_local_ty {
288 return ControlFlow::Continue(());
289 }
290
291 ControlFlow::Break(OrphanCheckEarlyExit::UncoveredTyParam(ty))
292 }
293
294 fn def_id_is_local(&mut self, def_id: I::DefId) -> bool {
295 match self.in_crate {
296 InCrate::Local { .. } => def_id.is_local(),
297 InCrate::Remote => false,
298 }
299 }
300}
301
302enum OrphanCheckEarlyExit<I: Interner, E> {
303 NormalizationFailure(E),
304 UncoveredTyParam(I::Ty),
305 LocalTy(I::Ty),
306}
307
308impl<'a, Infcx, I, F, E> TypeVisitor<I> for OrphanChecker<'a, Infcx, I, F>
309where
310 Infcx: InferCtxtLike<Interner = I>,
311 I: Interner,
312 F: FnMut(I::Ty) -> Result<I::Ty, E>,
313{
314 type Result = ControlFlow<OrphanCheckEarlyExit<I, E>>;
315
316 fn visit_region(&mut self, _r: I::Region) -> Self::Result {
317 ControlFlow::Continue(())
318 }
319
320 fn visit_ty(&mut self, ty: I::Ty) -> Self::Result {
321 let ty = self.infcx.shallow_resolve(ty);
322 let ty = match (self.lazily_normalize_ty)(ty) {
323 Ok(norm_ty) if norm_ty.is_ty_var() => ty,
324 Ok(norm_ty) => norm_ty,
325 Err(err) => return ControlFlow::Break(OrphanCheckEarlyExit::NormalizationFailure(err)),
326 };
327
328 let result = match ty.kind() {
329 ty::Bool
330 | ty::Char
331 | ty::Int(..)
332 | ty::Uint(..)
333 | ty::Float(..)
334 | ty::Str
335 | ty::FnDef(..)
336 | ty::Pat(..)
337 | ty::FnPtr(..)
338 | ty::Array(..)
339 | ty::Slice(..)
340 | ty::RawPtr(..)
341 | ty::Never
342 | ty::Tuple(..)
343 // FIXME(unsafe_binders): Non-local?
344 | ty::UnsafeBinder(_) => self.found_non_local_ty(ty),
345
346 ty::Param(..) => panic!("unexpected ty param"),
347
348 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => {
349 match self.in_crate {
350 InCrate::Local { .. } => self.found_uncovered_ty_param(ty),
351 // The inference variable might be unified with a local
352 // type in that remote crate.
353 InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
354 }
355 }
356
357 // A rigid alias may normalize to anything.
358 // * If it references an infer var, placeholder or bound ty, it may
359 // normalize to that, so we have to treat it as an uncovered ty param.
360 // * Otherwise it may normalize to any non-type-generic type
361 // be it local or non-local.
362 ty::Alias(kind, _) => {
363 if ty.has_type_flags(
364 ty::TypeFlags::HAS_TY_PLACEHOLDER
365 | ty::TypeFlags::HAS_TY_BOUND
366 | ty::TypeFlags::HAS_TY_INFER,
367 ) {
368 match self.in_crate {
369 InCrate::Local { mode } => match kind {
370 ty::Projection => {
371 if let OrphanCheckMode::Compat = mode {
372 ControlFlow::Continue(())
373 } else {
374 self.found_uncovered_ty_param(ty)
375 }
376 }
377 _ => self.found_uncovered_ty_param(ty),
378 },
379 InCrate::Remote => {
380 // The inference variable might be unified with a local
381 // type in that remote crate.
382 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
383 }
384 }
385 } else {
386 // Regarding *opaque types* specifically, we choose to treat them as non-local,
387 // even those that appear within the same crate. This seems somewhat surprising
388 // at first, but makes sense when you consider that opaque types are supposed
389 // to hide the underlying type *within the same crate*. When an opaque type is
390 // used from outside the module where it is declared, it should be impossible to
391 // observe anything about it other than the traits that it implements.
392 //
393 // The alternative would be to look at the underlying type to determine whether
394 // or not the opaque type itself should be considered local.
395 //
396 // However, this could make it a breaking change to switch the underlying hidden
397 // type from a local type to a remote type. This would violate the rule that
398 // opaque types should be completely opaque apart from the traits that they
399 // implement, so we don't use this behavior.
400 // Addendum: Moreover, revealing the underlying type is likely to cause cycle
401 // errors as we rely on coherence / the specialization graph during typeck.
402
403 self.found_non_local_ty(ty)
404 }
405 }
406
407 // For fundamental types, we just look inside of them.
408 ty::Ref(_, ty, _) => ty.visit_with(self),
409 ty::Adt(def, args) => {
410 if self.def_id_is_local(def.def_id()) {
411 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
412 } else if def.is_fundamental() {
413 args.visit_with(self)
414 } else {
415 self.found_non_local_ty(ty)
416 }
417 }
418 ty::Foreign(def_id) => {
419 if self.def_id_is_local(def_id) {
420 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
421 } else {
422 self.found_non_local_ty(ty)
423 }
424 }
425 ty::Dynamic(tt, ..) => {
426 let principal = tt.principal().map(|p| p.def_id());
427 if principal.is_some_and(|p| self.def_id_is_local(p)) {
428 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
429 } else {
430 self.found_non_local_ty(ty)
431 }
432 }
433 ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
434 ty::Closure(did, ..) | ty::CoroutineClosure(did, ..) | ty::Coroutine(did, ..) => {
435 if self.def_id_is_local(did) {
436 ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty))
437 } else {
438 self.found_non_local_ty(ty)
439 }
440 }
441 // This should only be created when checking whether we have to check whether some
442 // auto trait impl applies. There will never be multiple impls, so we can just
443 // act as if it were a local type here.
444 ty::CoroutineWitness(..) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)),
445 };
446 // A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so
447 // the first type we visit is always the self type.
448 self.in_self_ty = false;
449 result
450 }
451
452 /// All possible values for a constant parameter already exist
453 /// in the crate defining the trait, so they are always non-local[^1].
454 ///
455 /// Because there's no way to have an impl where the first local
456 /// generic argument is a constant, we also don't have to fail
457 /// the orphan check when encountering a parameter or a generic constant.
458 ///
459 /// This means that we can completely ignore constants during the orphan check.
460 ///
461 /// See `tests/ui/coherence/const-generics-orphan-check-ok.rs` for examples.
462 ///
463 /// [^1]: This might not hold for function pointers or trait objects in the future.
464 /// As these should be quite rare as const arguments and especially rare as impl
465 /// parameters, allowing uncovered const parameters in impls seems more useful
466 /// than allowing `impl<T> Trait<local_fn_ptr, T> for i32` to compile.
467 fn visit_const(&mut self, _c: I::Const) -> Self::Result {
468 ControlFlow::Continue(())
469 }
470}