rustc_hir_typeck/
expr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
// ignore-tidy-filelength
// FIXME: we should move the field error reporting code somewhere else.

//! Type checking expressions.
//!
//! See [`rustc_hir_analysis::check`] for more context on type checking in general.

use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_data_structures::unord::UnordMap;
use rustc_errors::codes::*;
use rustc_errors::{
    Applicability, Diag, ErrorGuaranteed, StashKey, Subdiagnostic, pluralize, struct_span_code_err,
};
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::intravisit::Visitor;
use rustc_hir::lang_items::LangItem;
use rustc_hir::{ExprKind, HirId, QPath};
use rustc_hir_analysis::hir_ty_lowering::HirTyLowerer as _;
use rustc_infer::infer;
use rustc_infer::infer::{DefineOpaqueTypes, InferOk};
use rustc_infer::traits::ObligationCause;
use rustc_infer::traits::query::NoSolution;
use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TypeVisitableExt};
use rustc_middle::{bug, span_bug};
use rustc_session::errors::ExprParenthesesNeeded;
use rustc_session::parse::feature_err;
use rustc_span::Span;
use rustc_span::edit_distance::find_best_match_for_name;
use rustc_span::hygiene::DesugaringKind;
use rustc_span::source_map::Spanned;
use rustc_span::symbol::{Ident, Symbol, kw, sym};
use rustc_target::abi::{FIRST_VARIANT, FieldIdx};
use rustc_trait_selection::infer::InferCtxtExt;
use rustc_trait_selection::traits::{self, ObligationCauseCode, ObligationCtxt};
use tracing::{debug, instrument, trace};
use {rustc_ast as ast, rustc_hir as hir};

use crate::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
use crate::TupleArgumentsFlag::DontTupleArguments;
use crate::coercion::{CoerceMany, DynamicCoerceMany};
use crate::errors::{
    AddressOfTemporaryTaken, FieldMultiplySpecifiedInInitializer,
    FunctionalRecordUpdateOnNonStruct, HelpUseLatestEdition, ReturnLikeStatementKind,
    ReturnStmtOutsideOfFnBody, StructExprNonExhaustive, TypeMismatchFruTypo,
    YieldExprOutsideOfCoroutine,
};
use crate::{
    BreakableCtxt, CoroutineTypes, Diverges, FnCtxt, Needs, cast, fatally_break_rust,
    report_unexpected_variant_res, type_error_struct,
};

impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
    pub(crate) fn check_expr_has_type_or_error(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        expected_ty: Ty<'tcx>,
        extend_err: impl FnOnce(&mut Diag<'_>),
    ) -> Ty<'tcx> {
        let mut ty = self.check_expr_with_expectation(expr, ExpectHasType(expected_ty));

        // While we don't allow *arbitrary* coercions here, we *do* allow
        // coercions from ! to `expected`.
        if ty.is_never() && self.expr_guaranteed_to_constitute_read_for_never(expr) {
            if let Some(_) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
                let reported = self.dcx().span_delayed_bug(
                    expr.span,
                    "expression with never type wound up being adjusted",
                );
                return Ty::new_error(self.tcx(), reported);
            }

            let adj_ty = self.next_ty_var(expr.span);
            self.apply_adjustments(expr, vec![Adjustment {
                kind: Adjust::NeverToAny,
                target: adj_ty,
            }]);
            ty = adj_ty;
        }

        if let Err(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
            let _ = self.emit_type_mismatch_suggestions(
                &mut err,
                expr.peel_drop_temps(),
                ty,
                expected_ty,
                None,
                None,
            );
            extend_err(&mut err);
            err.emit();
        }
        ty
    }

    pub(super) fn check_expr_coercible_to_type(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        expected: Ty<'tcx>,
        expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
    ) -> Ty<'tcx> {
        let ty = self.check_expr_with_hint(expr, expected);
        // checks don't need two phase
        self.demand_coerce(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No)
    }

    pub(super) fn check_expr_with_hint(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        expected: Ty<'tcx>,
    ) -> Ty<'tcx> {
        self.check_expr_with_expectation(expr, ExpectHasType(expected))
    }

    fn check_expr_with_expectation_and_needs(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
        needs: Needs,
    ) -> Ty<'tcx> {
        let ty = self.check_expr_with_expectation(expr, expected);

        // If the expression is used in a place whether mutable place is required
        // e.g. LHS of assignment, perform the conversion.
        if let Needs::MutPlace = needs {
            self.convert_place_derefs_to_mutable(expr);
        }

        ty
    }

    pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
        self.check_expr_with_expectation(expr, NoExpectation)
    }

    pub(super) fn check_expr_with_needs(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        needs: Needs,
    ) -> Ty<'tcx> {
        self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
    }

    /// Invariant:
    /// If an expression has any sub-expressions that result in a type error,
    /// inspecting that expression's type with `ty.references_error()` will return
    /// true. Likewise, if an expression is known to diverge, inspecting its
    /// type with `ty::type_is_bot` will return true (n.b.: since Rust is
    /// strict, _|_ can appear in the type of an expression that does not,
    /// itself, diverge: for example, fn() -> _|_.)
    /// Note that inspecting a type's structure *directly* may expose the fact
    /// that there are actually multiple representations for `Error`, so avoid
    /// that when err needs to be handled differently.
    #[instrument(skip(self, expr), level = "debug")]
    pub(super) fn check_expr_with_expectation(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        self.check_expr_with_expectation_and_args(expr, expected, &[], None)
    }

    /// Same as `check_expr_with_expectation`, but allows us to pass in the arguments of a
    /// `ExprKind::Call` when evaluating its callee when it is an `ExprKind::Path`.
    pub(super) fn check_expr_with_expectation_and_args(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
        args: &'tcx [hir::Expr<'tcx>],
        call: Option<&'tcx hir::Expr<'tcx>>,
    ) -> Ty<'tcx> {
        if self.tcx().sess.verbose_internals() {
            // make this code only run with -Zverbose-internals because it is probably slow
            if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
                if !lint_str.contains('\n') {
                    debug!("expr text: {lint_str}");
                } else {
                    let mut lines = lint_str.lines();
                    if let Some(line0) = lines.next() {
                        let remaining_lines = lines.count();
                        debug!("expr text: {line0}");
                        debug!("expr text: ...(and {remaining_lines} more lines)");
                    }
                }
            }
        }

        // True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
        // without the final expr (e.g. `try { return; }`). We don't want to generate an
        // unreachable_code lint for it since warnings for autogenerated code are confusing.
        let is_try_block_generated_unit_expr = match expr.kind {
            ExprKind::Call(_, [arg]) => {
                expr.span.is_desugaring(DesugaringKind::TryBlock)
                    && arg.span.is_desugaring(DesugaringKind::TryBlock)
            }
            _ => false,
        };

        // Warn for expressions after diverging siblings.
        if !is_try_block_generated_unit_expr {
            self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
        }

        // Whether a past expression diverges doesn't affect typechecking of this expression, so we
        // reset `diverges` while checking `expr`.
        let old_diverges = self.diverges.replace(Diverges::Maybe);

        if self.is_whole_body.replace(false) {
            // If this expression is the whole body and the function diverges because of its
            // arguments, we check this here to ensure the body is considered to diverge.
            self.diverges.set(self.function_diverges_because_of_empty_arguments.get())
        };

        let ty = ensure_sufficient_stack(|| match &expr.kind {
            hir::ExprKind::Path(
                qpath @ (hir::QPath::Resolved(..) | hir::QPath::TypeRelative(..)),
            ) => self.check_expr_path(qpath, expr, Some(args), call),
            _ => self.check_expr_kind(expr, expected),
        });
        let ty = self.resolve_vars_if_possible(ty);

        // Warn for non-block expressions with diverging children.
        match expr.kind {
            ExprKind::Block(..)
            | ExprKind::If(..)
            | ExprKind::Let(..)
            | ExprKind::Loop(..)
            | ExprKind::Match(..) => {}
            // If `expr` is a result of desugaring the try block and is an ok-wrapped
            // diverging expression (e.g. it arose from desugaring of `try { return }`),
            // we skip issuing a warning because it is autogenerated code.
            ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
            ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
            ExprKind::MethodCall(segment, ..) => {
                self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
            }
            _ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
        }

        // Any expression that produces a value of type `!` must have diverged,
        // unless it's a place expression that isn't being read from, in which case
        // diverging would be unsound since we may never actually read the `!`.
        // e.g. `let _ = *never_ptr;` with `never_ptr: *const !`.
        if ty.is_never() && self.expr_guaranteed_to_constitute_read_for_never(expr) {
            self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
        }

        // Record the type, which applies it effects.
        // We need to do this after the warning above, so that
        // we don't warn for the diverging expression itself.
        self.write_ty(expr.hir_id, ty);

        // Combine the diverging and has_error flags.
        self.diverges.set(self.diverges.get() | old_diverges);

        debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
        debug!("... {:?}, expected is {:?}", ty, expected);

        ty
    }

    /// Whether this expression constitutes a read of value of the type that
    /// it evaluates to.
    ///
    /// This is used to determine if we should consider the block to diverge
    /// if the expression evaluates to `!`, and if we should insert a `NeverToAny`
    /// coercion for values of type `!`.
    ///
    /// This function generally returns `false` if the expression is a place
    /// expression and the *parent* expression is the scrutinee of a match or
    /// the pointee of an `&` addr-of expression, since both of those parent
    /// expressions take a *place* and not a value.
    pub(super) fn expr_guaranteed_to_constitute_read_for_never(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> bool {
        // We only care about place exprs. Anything else returns an immediate
        // which would constitute a read. We don't care about distinguishing
        // "syntactic" place exprs since if the base of a field projection is
        // not a place then it would've been UB to read from it anyways since
        // that constitutes a read.
        if !expr.is_syntactic_place_expr() {
            return true;
        }

        let parent_node = self.tcx.parent_hir_node(expr.hir_id);
        match parent_node {
            hir::Node::Expr(parent_expr) => {
                match parent_expr.kind {
                    // Addr-of, field projections, and LHS of assignment don't constitute reads.
                    // Assignment does call `drop_in_place`, though, but its safety
                    // requirements are not the same.
                    ExprKind::AddrOf(..) | hir::ExprKind::Field(..) => false,
                    ExprKind::Assign(lhs, _, _) => {
                        // Only the LHS does not constitute a read
                        expr.hir_id != lhs.hir_id
                    }

                    // See note on `PatKind::Or` below for why this is `all`.
                    ExprKind::Match(scrutinee, arms, _) => {
                        assert_eq!(scrutinee.hir_id, expr.hir_id);
                        arms.iter()
                            .all(|arm| self.pat_guaranteed_to_constitute_read_for_never(arm.pat))
                    }
                    ExprKind::Let(hir::LetExpr { init, pat, .. }) => {
                        assert_eq!(init.hir_id, expr.hir_id);
                        self.pat_guaranteed_to_constitute_read_for_never(*pat)
                    }

                    // Any expression child of these expressions constitute reads.
                    ExprKind::Array(_)
                    | ExprKind::Call(_, _)
                    | ExprKind::MethodCall(_, _, _, _)
                    | ExprKind::Tup(_)
                    | ExprKind::Binary(_, _, _)
                    | ExprKind::Unary(_, _)
                    | ExprKind::Cast(_, _)
                    | ExprKind::Type(_, _)
                    | ExprKind::DropTemps(_)
                    | ExprKind::If(_, _, _)
                    | ExprKind::Closure(_)
                    | ExprKind::Block(_, _)
                    | ExprKind::AssignOp(_, _, _)
                    | ExprKind::Index(_, _, _)
                    | ExprKind::Break(_, _)
                    | ExprKind::Ret(_)
                    | ExprKind::Become(_)
                    | ExprKind::InlineAsm(_)
                    | ExprKind::Struct(_, _, _)
                    | ExprKind::Repeat(_, _)
                    | ExprKind::Yield(_, _) => true,

                    // These expressions have no (direct) sub-exprs.
                    ExprKind::ConstBlock(_)
                    | ExprKind::Loop(_, _, _, _)
                    | ExprKind::Lit(_)
                    | ExprKind::Path(_)
                    | ExprKind::Continue(_)
                    | ExprKind::OffsetOf(_, _)
                    | ExprKind::Err(_) => unreachable!("no sub-expr expected for {:?}", expr.kind),
                }
            }

            // If we have a subpattern that performs a read, we want to consider this
            // to diverge for compatibility to support something like `let x: () = *never_ptr;`.
            hir::Node::LetStmt(hir::LetStmt { init: Some(target), pat, .. }) => {
                assert_eq!(target.hir_id, expr.hir_id);
                self.pat_guaranteed_to_constitute_read_for_never(*pat)
            }

            // These nodes (if they have a sub-expr) do constitute a read.
            hir::Node::Block(_)
            | hir::Node::Arm(_)
            | hir::Node::ExprField(_)
            | hir::Node::AnonConst(_)
            | hir::Node::ConstBlock(_)
            | hir::Node::ConstArg(_)
            | hir::Node::Stmt(_)
            | hir::Node::Item(hir::Item {
                kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
                ..
            })
            | hir::Node::TraitItem(hir::TraitItem {
                kind: hir::TraitItemKind::Const(..), ..
            })
            | hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. }) => true,

            // These nodes do not have direct sub-exprs.
            hir::Node::Param(_)
            | hir::Node::Item(_)
            | hir::Node::ForeignItem(_)
            | hir::Node::TraitItem(_)
            | hir::Node::ImplItem(_)
            | hir::Node::Variant(_)
            | hir::Node::Field(_)
            | hir::Node::PathSegment(_)
            | hir::Node::Ty(_)
            | hir::Node::AssocItemConstraint(_)
            | hir::Node::TraitRef(_)
            | hir::Node::Pat(_)
            | hir::Node::PatField(_)
            | hir::Node::LetStmt(_)
            | hir::Node::Synthetic
            | hir::Node::Err(_)
            | hir::Node::Ctor(_)
            | hir::Node::Lifetime(_)
            | hir::Node::GenericParam(_)
            | hir::Node::Crate(_)
            | hir::Node::Infer(_)
            | hir::Node::WhereBoundPredicate(_)
            | hir::Node::ArrayLenInfer(_)
            | hir::Node::PreciseCapturingNonLifetimeArg(_)
            | hir::Node::OpaqueTy(_) => {
                unreachable!("no sub-expr expected for {parent_node:?}")
            }
        }
    }

    /// Whether this pattern constitutes a read of value of the scrutinee that
    /// it is matching against. This is used to determine whether we should
    /// perform `NeverToAny` coercions.
    ///
    /// See above for the nuances of what happens when this returns true.
    pub(super) fn pat_guaranteed_to_constitute_read_for_never(&self, pat: &hir::Pat<'_>) -> bool {
        match pat.kind {
            // Does not constitute a read.
            hir::PatKind::Wild => false,

            // This is unnecessarily restrictive when the pattern that doesn't
            // constitute a read is unreachable.
            //
            // For example `match *never_ptr { value => {}, _ => {} }` or
            // `match *never_ptr { _ if false => {}, value => {} }`.
            //
            // It is however fine to be restrictive here; only returning `true`
            // can lead to unsoundness.
            hir::PatKind::Or(subpats) => {
                subpats.iter().all(|pat| self.pat_guaranteed_to_constitute_read_for_never(pat))
            }

            // Does constitute a read, since it is equivalent to a discriminant read.
            hir::PatKind::Never => true,

            // All of these constitute a read, or match on something that isn't `!`,
            // which would require a `NeverToAny` coercion.
            hir::PatKind::Binding(_, _, _, _)
            | hir::PatKind::Struct(_, _, _)
            | hir::PatKind::TupleStruct(_, _, _)
            | hir::PatKind::Path(_)
            | hir::PatKind::Tuple(_, _)
            | hir::PatKind::Box(_)
            | hir::PatKind::Ref(_, _)
            | hir::PatKind::Deref(_)
            | hir::PatKind::Lit(_)
            | hir::PatKind::Range(_, _, _)
            | hir::PatKind::Slice(_, _, _)
            | hir::PatKind::Err(_) => true,
        }
    }

    #[instrument(skip(self, expr), level = "debug")]
    fn check_expr_kind(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        trace!("expr={:#?}", expr);

        let tcx = self.tcx;
        match expr.kind {
            ExprKind::Lit(ref lit) => self.check_lit(lit, expected),
            ExprKind::Binary(op, lhs, rhs) => self.check_binop(expr, op, lhs, rhs, expected),
            ExprKind::Assign(lhs, rhs, span) => {
                self.check_expr_assign(expr, expected, lhs, rhs, span)
            }
            ExprKind::AssignOp(op, lhs, rhs) => {
                self.check_binop_assign(expr, op, lhs, rhs, expected)
            }
            ExprKind::Unary(unop, oprnd) => self.check_expr_unary(unop, oprnd, expected, expr),
            ExprKind::AddrOf(kind, mutbl, oprnd) => {
                self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
            }
            ExprKind::Path(QPath::LangItem(lang_item, _)) => {
                self.check_lang_item_path(lang_item, expr)
            }
            ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, None, None),
            ExprKind::InlineAsm(asm) => {
                // We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
                self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
                self.check_expr_asm(asm)
            }
            ExprKind::OffsetOf(container, fields) => self.check_offset_of(container, fields, expr),
            ExprKind::Break(destination, ref expr_opt) => {
                self.check_expr_break(destination, expr_opt.as_deref(), expr)
            }
            ExprKind::Continue(destination) => {
                if destination.target_id.is_ok() {
                    tcx.types.never
                } else {
                    // There was an error; make type-check fail.
                    Ty::new_misc_error(tcx)
                }
            }
            ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
            ExprKind::Become(call) => self.check_expr_become(call, expr),
            ExprKind::Let(let_expr) => self.check_expr_let(let_expr, expr.hir_id),
            ExprKind::Loop(body, _, source, _) => {
                self.check_expr_loop(body, source, expected, expr)
            }
            ExprKind::Match(discrim, arms, match_src) => {
                self.check_match(expr, discrim, arms, expected, match_src)
            }
            ExprKind::Closure(closure) => self.check_expr_closure(closure, expr.span, expected),
            ExprKind::Block(body, _) => self.check_block_with_expected(body, expected),
            ExprKind::Call(callee, args) => self.check_call(expr, callee, args, expected),
            ExprKind::MethodCall(segment, receiver, args, _) => {
                self.check_method_call(expr, segment, receiver, args, expected)
            }
            ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
            ExprKind::Type(e, t) => {
                let ascribed_ty = self.lower_ty_saving_user_provided_ty(t);
                let ty = self.check_expr_with_hint(e, ascribed_ty);
                self.demand_eqtype(e.span, ascribed_ty, ty);
                ascribed_ty
            }
            ExprKind::If(cond, then_expr, opt_else_expr) => {
                self.check_then_else(cond, then_expr, opt_else_expr, expr.span, expected)
            }
            ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
            ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
            ExprKind::ConstBlock(ref block) => self.check_expr_const_block(block, expected),
            ExprKind::Repeat(element, ref count) => {
                self.check_expr_repeat(element, count, expected, expr)
            }
            ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
            ExprKind::Struct(qpath, fields, ref base_expr) => {
                self.check_expr_struct(expr, expected, qpath, fields, base_expr)
            }
            ExprKind::Field(base, field) => self.check_field(expr, base, field, expected),
            ExprKind::Index(base, idx, brackets_span) => {
                self.check_expr_index(base, idx, expr, brackets_span)
            }
            ExprKind::Yield(value, _) => self.check_expr_yield(value, expr),
            hir::ExprKind::Err(guar) => Ty::new_error(tcx, guar),
        }
    }

    fn check_expr_unary(
        &self,
        unop: hir::UnOp,
        oprnd: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let expected_inner = match unop {
            hir::UnOp::Not | hir::UnOp::Neg => expected,
            hir::UnOp::Deref => NoExpectation,
        };
        let mut oprnd_t = self.check_expr_with_expectation(oprnd, expected_inner);

        if !oprnd_t.references_error() {
            oprnd_t = self.structurally_resolve_type(expr.span, oprnd_t);
            match unop {
                hir::UnOp::Deref => {
                    if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
                        oprnd_t = ty;
                    } else {
                        let mut err = type_error_struct!(
                            self.dcx(),
                            expr.span,
                            oprnd_t,
                            E0614,
                            "type `{oprnd_t}` cannot be dereferenced",
                        );
                        let sp = tcx.sess.source_map().start_point(expr.span).with_parent(None);
                        if let Some(sp) =
                            tcx.sess.psess.ambiguous_block_expr_parse.borrow().get(&sp)
                        {
                            err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
                        }
                        oprnd_t = Ty::new_error(tcx, err.emit());
                    }
                }
                hir::UnOp::Not => {
                    let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
                    // If it's builtin, we can reuse the type, this helps inference.
                    if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
                        oprnd_t = result;
                    }
                }
                hir::UnOp::Neg => {
                    let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
                    // If it's builtin, we can reuse the type, this helps inference.
                    if !oprnd_t.is_numeric() {
                        oprnd_t = result;
                    }
                }
            }
        }
        oprnd_t
    }

    fn check_expr_addr_of(
        &self,
        kind: hir::BorrowKind,
        mutbl: hir::Mutability,
        oprnd: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
            match ty.kind() {
                ty::Ref(_, ty, _) | ty::RawPtr(ty, _) => {
                    if oprnd.is_syntactic_place_expr() {
                        // Places may legitimately have unsized types.
                        // For example, dereferences of a wide pointer and
                        // the last field of a struct can be unsized.
                        ExpectHasType(*ty)
                    } else {
                        Expectation::rvalue_hint(self, *ty)
                    }
                }
                _ => NoExpectation,
            }
        });
        let ty =
            self.check_expr_with_expectation_and_needs(oprnd, hint, Needs::maybe_mut_place(mutbl));

        match kind {
            _ if ty.references_error() => Ty::new_misc_error(self.tcx),
            hir::BorrowKind::Raw => {
                self.check_named_place_expr(oprnd);
                Ty::new_ptr(self.tcx, ty, mutbl)
            }
            hir::BorrowKind::Ref => {
                // Note: at this point, we cannot say what the best lifetime
                // is to use for resulting pointer. We want to use the
                // shortest lifetime possible so as to avoid spurious borrowck
                // errors. Moreover, the longest lifetime will depend on the
                // precise details of the value whose address is being taken
                // (and how long it is valid), which we don't know yet until
                // type inference is complete.
                //
                // Therefore, here we simply generate a region variable. The
                // region inferencer will then select a suitable value.
                // Finally, borrowck will infer the value of the region again,
                // this time with enough precision to check that the value
                // whose address was taken can actually be made to live as long
                // as it needs to live.
                let region = self.next_region_var(infer::BorrowRegion(expr.span));
                Ty::new_ref(self.tcx, region, ty, mutbl)
            }
        }
    }

    /// Does this expression refer to a place that either:
    /// * Is based on a local or static.
    /// * Contains a dereference
    /// Note that the adjustments for the children of `expr` should already
    /// have been resolved.
    fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
        let is_named = oprnd.is_place_expr(|base| {
            // Allow raw borrows if there are any deref adjustments.
            //
            // const VAL: (i32,) = (0,);
            // const REF: &(i32,) = &(0,);
            //
            // &raw const VAL.0;            // ERROR
            // &raw const REF.0;            // OK, same as &raw const (*REF).0;
            //
            // This is maybe too permissive, since it allows
            // `let u = &raw const Box::new((1,)).0`, which creates an
            // immediately dangling raw pointer.
            self.typeck_results
                .borrow()
                .adjustments()
                .get(base.hir_id)
                .is_some_and(|x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
        });
        if !is_named {
            self.dcx().emit_err(AddressOfTemporaryTaken { span: oprnd.span });
        }
    }

    fn check_lang_item_path(
        &self,
        lang_item: hir::LangItem,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id).1
    }

    pub(crate) fn check_expr_path(
        &self,
        qpath: &'tcx hir::QPath<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
        args: Option<&'tcx [hir::Expr<'tcx>]>,
        call: Option<&'tcx hir::Expr<'tcx>>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let (res, opt_ty, segs) =
            self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
        let ty = match res {
            Res::Err => {
                self.suggest_assoc_method_call(segs);
                let e =
                    self.dcx().span_delayed_bug(qpath.span(), "`Res::Err` but no error emitted");
                self.set_tainted_by_errors(e);
                Ty::new_error(tcx, e)
            }
            Res::Def(DefKind::Variant, _) => {
                let e = report_unexpected_variant_res(
                    tcx,
                    res,
                    Some(expr),
                    qpath,
                    expr.span,
                    E0533,
                    "value",
                );
                Ty::new_error(tcx, e)
            }
            _ => {
                self.instantiate_value_path(
                    segs,
                    opt_ty,
                    res,
                    call.map_or(expr.span, |e| e.span),
                    expr.span,
                    expr.hir_id,
                )
                .0
            }
        };

        if let ty::FnDef(did, _) = *ty.kind() {
            let fn_sig = ty.fn_sig(tcx);

            if tcx.is_intrinsic(did, sym::transmute) {
                let Some(from) = fn_sig.inputs().skip_binder().get(0) else {
                    span_bug!(
                        tcx.def_span(did),
                        "intrinsic fn `transmute` defined with no parameters"
                    );
                };
                let to = fn_sig.output().skip_binder();
                // We defer the transmute to the end of typeck, once all inference vars have
                // been resolved or we errored. This is important as we can only check transmute
                // on concrete types, but the output type may not be known yet (it would only
                // be known if explicitly specified via turbofish).
                self.deferred_transmute_checks.borrow_mut().push((*from, to, expr.hir_id));
            }
            if !tcx.features().unsized_fn_params {
                // We want to remove some Sized bounds from std functions,
                // but don't want to expose the removal to stable Rust.
                // i.e., we don't want to allow
                //
                // ```rust
                // drop as fn(str);
                // ```
                //
                // to work in stable even if the Sized bound on `drop` is relaxed.
                for i in 0..fn_sig.inputs().skip_binder().len() {
                    // We just want to check sizedness, so instead of introducing
                    // placeholder lifetimes with probing, we just replace higher lifetimes
                    // with fresh vars.
                    let span = args.and_then(|args| args.get(i)).map_or(expr.span, |arg| arg.span);
                    let input = self.instantiate_binder_with_fresh_vars(
                        span,
                        infer::BoundRegionConversionTime::FnCall,
                        fn_sig.input(i),
                    );
                    self.require_type_is_sized_deferred(
                        input,
                        span,
                        ObligationCauseCode::SizedArgumentType(None),
                    );
                }
            }
            // Here we want to prevent struct constructors from returning unsized types.
            // There were two cases this happened: fn pointer coercion in stable
            // and usual function call in presence of unsized_locals.
            // Also, as we just want to check sizedness, instead of introducing
            // placeholder lifetimes with probing, we just replace higher lifetimes
            // with fresh vars.
            let output = self.instantiate_binder_with_fresh_vars(
                expr.span,
                infer::BoundRegionConversionTime::FnCall,
                fn_sig.output(),
            );
            self.require_type_is_sized_deferred(
                output,
                call.map_or(expr.span, |e| e.span),
                ObligationCauseCode::SizedCallReturnType,
            );
        }

        // We always require that the type provided as the value for
        // a type parameter outlives the moment of instantiation.
        let args = self.typeck_results.borrow().node_args(expr.hir_id);
        self.add_wf_bounds(args, expr);

        ty
    }

    fn check_expr_break(
        &self,
        destination: hir::Destination,
        expr_opt: Option<&'tcx hir::Expr<'tcx>>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        if let Ok(target_id) = destination.target_id {
            let (e_ty, cause);
            if let Some(e) = expr_opt {
                // If this is a break with a value, we need to type-check
                // the expression. Get an expected type from the loop context.
                let opt_coerce_to = {
                    // We should release `enclosing_breakables` before the `check_expr_with_hint`
                    // below, so can't move this block of code to the enclosing scope and share
                    // `ctxt` with the second `enclosing_breakables` borrow below.
                    let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
                    match enclosing_breakables.opt_find_breakable(target_id) {
                        Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
                        None => {
                            // Avoid ICE when `break` is inside a closure (#65383).
                            return Ty::new_error_with_message(
                                tcx,
                                expr.span,
                                "break was outside loop, but no error was emitted",
                            );
                        }
                    }
                };

                // If the loop context is not a `loop { }`, then break with
                // a value is illegal, and `opt_coerce_to` will be `None`.
                // Set expectation to error in that case and set tainted
                // by error (#114529)
                let coerce_to = opt_coerce_to.unwrap_or_else(|| {
                    let guar = self.dcx().span_delayed_bug(
                        expr.span,
                        "illegal break with value found but no error reported",
                    );
                    self.set_tainted_by_errors(guar);
                    Ty::new_error(tcx, guar)
                });

                // Recurse without `enclosing_breakables` borrowed.
                e_ty = self.check_expr_with_hint(e, coerce_to);
                cause = self.misc(e.span);
            } else {
                // Otherwise, this is a break *without* a value. That's
                // always legal, and is equivalent to `break ()`.
                e_ty = tcx.types.unit;
                cause = self.misc(expr.span);
            }

            // Now that we have type-checked `expr_opt`, borrow
            // the `enclosing_loops` field and let's coerce the
            // type of `expr_opt` into what is expected.
            let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
            let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
                // Avoid ICE when `break` is inside a closure (#65383).
                return Ty::new_error_with_message(
                    tcx,
                    expr.span,
                    "break was outside loop, but no error was emitted",
                );
            };

            if let Some(ref mut coerce) = ctxt.coerce {
                if let Some(e) = expr_opt {
                    coerce.coerce(self, &cause, e, e_ty);
                } else {
                    assert!(e_ty.is_unit());
                    let ty = coerce.expected_ty();
                    coerce.coerce_forced_unit(
                        self,
                        &cause,
                        |mut err| {
                            self.suggest_missing_semicolon(&mut err, expr, e_ty, false);
                            self.suggest_mismatched_types_on_tail(
                                &mut err, expr, ty, e_ty, target_id,
                            );
                            let error =
                                Some(TypeError::Sorts(ExpectedFound { expected: ty, found: e_ty }));
                            self.annotate_loop_expected_due_to_inference(err, expr, error);
                            if let Some(val) =
                                self.err_ctxt().ty_kind_suggestion(self.param_env, ty)
                            {
                                err.span_suggestion_verbose(
                                    expr.span.shrink_to_hi(),
                                    "give the `break` a value of the expected type",
                                    format!(" {val}"),
                                    Applicability::HasPlaceholders,
                                );
                            }
                        },
                        false,
                    );
                }
            } else {
                // If `ctxt.coerce` is `None`, we can just ignore
                // the type of the expression. This is because
                // either this was a break *without* a value, in
                // which case it is always a legal type (`()`), or
                // else an error would have been flagged by the
                // `loops` pass for using break with an expression
                // where you are not supposed to.
                assert!(expr_opt.is_none() || self.tainted_by_errors().is_some());
            }

            // If we encountered a `break`, then (no surprise) it may be possible to break from the
            // loop... unless the value being returned from the loop diverges itself, e.g.
            // `break return 5` or `break loop {}`.
            ctxt.may_break |= !self.diverges.get().is_always();

            // the type of a `break` is always `!`, since it diverges
            tcx.types.never
        } else {
            // Otherwise, we failed to find the enclosing loop;
            // this can only happen if the `break` was not
            // inside a loop at all, which is caught by the
            // loop-checking pass.
            let err = Ty::new_error_with_message(
                self.tcx,
                expr.span,
                "break was outside loop, but no error was emitted",
            );

            // We still need to assign a type to the inner expression to
            // prevent the ICE in #43162.
            if let Some(e) = expr_opt {
                self.check_expr_with_hint(e, err);

                // ... except when we try to 'break rust;'.
                // ICE this expression in particular (see #43162).
                if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
                    if let [segment] = path.segments
                        && segment.ident.name == sym::rust
                    {
                        fatally_break_rust(self.tcx, expr.span);
                    }
                }
            }

            // There was an error; make type-check fail.
            err
        }
    }

    fn check_expr_return(
        &self,
        expr_opt: Option<&'tcx hir::Expr<'tcx>>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        if self.ret_coercion.is_none() {
            self.emit_return_outside_of_fn_body(expr, ReturnLikeStatementKind::Return);

            if let Some(e) = expr_opt {
                // We still have to type-check `e` (issue #86188), but calling
                // `check_return_expr` only works inside fn bodies.
                self.check_expr(e);
            }
        } else if let Some(e) = expr_opt {
            if self.ret_coercion_span.get().is_none() {
                self.ret_coercion_span.set(Some(e.span));
            }
            self.check_return_expr(e, true);
        } else {
            let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
            if self.ret_coercion_span.get().is_none() {
                self.ret_coercion_span.set(Some(expr.span));
            }
            let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
            if let Some((_, fn_decl)) = self.get_fn_decl(expr.hir_id) {
                coercion.coerce_forced_unit(
                    self,
                    &cause,
                    |db| {
                        let span = fn_decl.output.span();
                        if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
                            db.span_label(
                                span,
                                format!("expected `{snippet}` because of this return type"),
                            );
                        }
                    },
                    true,
                );
            } else {
                coercion.coerce_forced_unit(self, &cause, |_| (), true);
            }
        }
        self.tcx.types.never
    }

    fn check_expr_become(
        &self,
        call: &'tcx hir::Expr<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        match &self.ret_coercion {
            Some(ret_coercion) => {
                let ret_ty = ret_coercion.borrow().expected_ty();
                let call_expr_ty = self.check_expr_with_hint(call, ret_ty);

                // N.B. don't coerce here, as tail calls can't support most/all coercions
                // FIXME(explicit_tail_calls): add a diagnostic note that `become` doesn't allow coercions
                self.demand_suptype(expr.span, ret_ty, call_expr_ty);
            }
            None => {
                self.emit_return_outside_of_fn_body(expr, ReturnLikeStatementKind::Become);

                // Fallback to simply type checking `call` without hint/demanding the right types.
                // Best effort to highlight more errors.
                self.check_expr(call);
            }
        }

        self.tcx.types.never
    }

    /// Check an expression that _is being returned_.
    /// For example, this is called with `return_expr: $expr` when `return $expr`
    /// is encountered.
    ///
    /// Note that this function must only be called in function bodies.
    ///
    /// `explicit_return` is `true` if we're checking an explicit `return expr`,
    /// and `false` if we're checking a trailing expression.
    pub(super) fn check_return_expr(
        &self,
        return_expr: &'tcx hir::Expr<'tcx>,
        explicit_return: bool,
    ) {
        let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
            span_bug!(return_expr.span, "check_return_expr called outside fn body")
        });

        let ret_ty = ret_coercion.borrow().expected_ty();
        let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
        let mut span = return_expr.span;
        let mut hir_id = return_expr.hir_id;
        // Use the span of the trailing expression for our cause,
        // not the span of the entire function
        if !explicit_return
            && let ExprKind::Block(body, _) = return_expr.kind
            && let Some(last_expr) = body.expr
        {
            span = last_expr.span;
            hir_id = last_expr.hir_id;
        }
        ret_coercion.borrow_mut().coerce(
            self,
            &self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
            return_expr,
            return_expr_ty,
        );

        if let Some(fn_sig) = self.body_fn_sig()
            && fn_sig.output().has_opaque_types()
        {
            // Point any obligations that were registered due to opaque type
            // inference at the return expression.
            self.select_obligations_where_possible(|errors| {
                self.point_at_return_for_opaque_ty_error(
                    errors,
                    hir_id,
                    span,
                    return_expr_ty,
                    return_expr.span,
                );
            });
        }
    }

    /// Emit an error because `return` or `become` is used outside of a function body.
    ///
    /// `expr` is the `return` (`become`) "statement", `kind` is the kind of the statement
    /// either `Return` or `Become`.
    fn emit_return_outside_of_fn_body(&self, expr: &hir::Expr<'_>, kind: ReturnLikeStatementKind) {
        let mut err = ReturnStmtOutsideOfFnBody {
            span: expr.span,
            encl_body_span: None,
            encl_fn_span: None,
            statement_kind: kind,
        };

        let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);

        if let hir::Node::Item(hir::Item {
            kind: hir::ItemKind::Fn(..), span: encl_fn_span, ..
        })
        | hir::Node::TraitItem(hir::TraitItem {
            kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
            span: encl_fn_span,
            ..
        })
        | hir::Node::ImplItem(hir::ImplItem {
            kind: hir::ImplItemKind::Fn(..),
            span: encl_fn_span,
            ..
        }) = self.tcx.hir_node_by_def_id(encl_item_id.def_id)
        {
            // We are inside a function body, so reporting "return statement
            // outside of function body" needs an explanation.

            let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);

            // If this didn't hold, we would not have to report an error in
            // the first place.
            assert_ne!(encl_item_id.def_id, encl_body_owner_id);

            let encl_body = self.tcx.hir().body_owned_by(encl_body_owner_id);

            err.encl_body_span = Some(encl_body.value.span);
            err.encl_fn_span = Some(*encl_fn_span);
        }

        self.dcx().emit_err(err);
    }

    fn point_at_return_for_opaque_ty_error(
        &self,
        errors: &mut Vec<traits::FulfillmentError<'tcx>>,
        hir_id: HirId,
        span: Span,
        return_expr_ty: Ty<'tcx>,
        return_span: Span,
    ) {
        // Don't point at the whole block if it's empty
        if span == return_span {
            return;
        }
        for err in errors {
            let cause = &mut err.obligation.cause;
            if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
                let new_cause = ObligationCause::new(
                    cause.span,
                    cause.body_id,
                    ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, hir_id))),
                );
                *cause = new_cause;
            }
        }
    }

    pub(crate) fn check_lhs_assignable(
        &self,
        lhs: &'tcx hir::Expr<'tcx>,
        code: ErrCode,
        op_span: Span,
        adjust_err: impl FnOnce(&mut Diag<'_>),
    ) {
        if lhs.is_syntactic_place_expr() {
            return;
        }

        let mut err = self.dcx().struct_span_err(op_span, "invalid left-hand side of assignment");
        err.code(code);
        err.span_label(lhs.span, "cannot assign to this expression");

        self.comes_from_while_condition(lhs.hir_id, |expr| {
            err.span_suggestion_verbose(
                expr.span.shrink_to_lo(),
                "you might have meant to use pattern destructuring",
                "let ",
                Applicability::MachineApplicable,
            );
        });
        self.check_for_missing_semi(lhs, &mut err);

        adjust_err(&mut err);

        err.emit();
    }

    /// Check if the expression that could not be assigned to was a typoed expression that
    pub(crate) fn check_for_missing_semi(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        err: &mut Diag<'_>,
    ) -> bool {
        if let hir::ExprKind::Binary(binop, lhs, rhs) = expr.kind
            && let hir::BinOpKind::Mul = binop.node
            && self.tcx.sess.source_map().is_multiline(lhs.span.between(rhs.span))
            && rhs.is_syntactic_place_expr()
        {
            //      v missing semicolon here
            // foo()
            // *bar = baz;
            // (#80446).
            err.span_suggestion_verbose(
                lhs.span.shrink_to_hi(),
                "you might have meant to write a semicolon here",
                ";",
                Applicability::MachineApplicable,
            );
            return true;
        }
        false
    }

    // Check if an expression `original_expr_id` comes from the condition of a while loop,
    /// as opposed from the body of a while loop, which we can naively check by iterating
    /// parents until we find a loop...
    pub(super) fn comes_from_while_condition(
        &self,
        original_expr_id: HirId,
        then: impl FnOnce(&hir::Expr<'_>),
    ) {
        let mut parent = self.tcx.parent_hir_id(original_expr_id);
        loop {
            let node = self.tcx.hir_node(parent);
            match node {
                hir::Node::Expr(hir::Expr {
                    kind:
                        hir::ExprKind::Loop(
                            hir::Block {
                                expr:
                                    Some(hir::Expr {
                                        kind:
                                            hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
                                        ..
                                    }),
                                ..
                            },
                            _,
                            hir::LoopSource::While,
                            _,
                        ),
                    ..
                }) => {
                    // Check if our original expression is a child of the condition of a while loop.
                    // If it is, then we have a situation like `while Some(0) = value.get(0) {`,
                    // where `while let` was more likely intended.
                    if self.tcx.hir().parent_id_iter(original_expr_id).any(|id| id == expr.hir_id) {
                        then(expr);
                    }
                    break;
                }
                hir::Node::Item(_)
                | hir::Node::ImplItem(_)
                | hir::Node::TraitItem(_)
                | hir::Node::Crate(_) => break,
                _ => {
                    parent = self.tcx.parent_hir_id(parent);
                }
            }
        }
    }

    // A generic function for checking the 'then' and 'else' clauses in an 'if'
    // or 'if-else' expression.
    fn check_then_else(
        &self,
        cond_expr: &'tcx hir::Expr<'tcx>,
        then_expr: &'tcx hir::Expr<'tcx>,
        opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
        sp: Span,
        orig_expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});

        self.warn_if_unreachable(
            cond_expr.hir_id,
            then_expr.span,
            "block in `if` or `while` expression",
        );

        let cond_diverges = self.diverges.get();
        self.diverges.set(Diverges::Maybe);

        let expected = orig_expected.adjust_for_branches(self);
        let then_ty = self.check_expr_with_expectation(then_expr, expected);
        let then_diverges = self.diverges.get();
        self.diverges.set(Diverges::Maybe);

        // We've already taken the expected type's preferences
        // into account when typing the `then` branch. To figure
        // out the initial shot at a LUB, we thus only consider
        // `expected` if it represents a *hard* constraint
        // (`only_has_type`); otherwise, we just go with a
        // fresh type variable.
        let coerce_to_ty = expected.coercion_target_type(self, sp);
        let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);

        coerce.coerce(self, &self.misc(sp), then_expr, then_ty);

        if let Some(else_expr) = opt_else_expr {
            let else_ty = self.check_expr_with_expectation(else_expr, expected);
            let else_diverges = self.diverges.get();

            let tail_defines_return_position_impl_trait =
                self.return_position_impl_trait_from_match_expectation(orig_expected);
            let if_cause = self.if_cause(
                sp,
                cond_expr.span,
                then_expr,
                else_expr,
                then_ty,
                else_ty,
                tail_defines_return_position_impl_trait,
            );

            coerce.coerce(self, &if_cause, else_expr, else_ty);

            // We won't diverge unless both branches do (or the condition does).
            self.diverges.set(cond_diverges | then_diverges & else_diverges);
        } else {
            self.if_fallback_coercion(sp, cond_expr, then_expr, &mut coerce);

            // If the condition is false we can't diverge.
            self.diverges.set(cond_diverges);
        }

        let result_ty = coerce.complete(self);
        if let Err(guar) = cond_ty.error_reported() {
            Ty::new_error(self.tcx, guar)
        } else {
            result_ty
        }
    }

    /// Type check assignment expression `expr` of form `lhs = rhs`.
    /// The expected type is `()` and is passed to the function for the purposes of diagnostics.
    fn check_expr_assign(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        expected: Expectation<'tcx>,
        lhs: &'tcx hir::Expr<'tcx>,
        rhs: &'tcx hir::Expr<'tcx>,
        span: Span,
    ) -> Ty<'tcx> {
        let expected_ty = expected.coercion_target_type(self, expr.span);
        if expected_ty == self.tcx.types.bool {
            // The expected type is `bool` but this will result in `()` so we can reasonably
            // say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
            // The likely cause of this is `if foo = bar { .. }`.
            let actual_ty = self.tcx.types.unit;
            let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap_err();
            let lhs_ty = self.check_expr(lhs);
            let rhs_ty = self.check_expr(rhs);
            let refs_can_coerce = |lhs: Ty<'tcx>, rhs: Ty<'tcx>| {
                let lhs = Ty::new_imm_ref(self.tcx, self.tcx.lifetimes.re_erased, lhs.peel_refs());
                let rhs = Ty::new_imm_ref(self.tcx, self.tcx.lifetimes.re_erased, rhs.peel_refs());
                self.can_coerce(rhs, lhs)
            };
            let (applicability, eq) = if self.can_coerce(rhs_ty, lhs_ty) {
                (Applicability::MachineApplicable, true)
            } else if refs_can_coerce(rhs_ty, lhs_ty) {
                // The lhs and rhs are likely missing some references in either side. Subsequent
                // suggestions will show up.
                (Applicability::MaybeIncorrect, true)
            } else if let ExprKind::Binary(
                Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
                _,
                rhs_expr,
            ) = lhs.kind
            {
                // if x == 1 && y == 2 { .. }
                //                 +
                let actual_lhs_ty = self.check_expr(rhs_expr);
                (
                    Applicability::MaybeIncorrect,
                    self.can_coerce(rhs_ty, actual_lhs_ty)
                        || refs_can_coerce(rhs_ty, actual_lhs_ty),
                )
            } else if let ExprKind::Binary(
                Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
                lhs_expr,
                _,
            ) = rhs.kind
            {
                // if x == 1 && y == 2 { .. }
                //       +
                let actual_rhs_ty = self.check_expr(lhs_expr);
                (
                    Applicability::MaybeIncorrect,
                    self.can_coerce(actual_rhs_ty, lhs_ty)
                        || refs_can_coerce(actual_rhs_ty, lhs_ty),
                )
            } else {
                (Applicability::MaybeIncorrect, false)
            };
            if !lhs.is_syntactic_place_expr()
                && lhs.is_approximately_pattern()
                && !matches!(lhs.kind, hir::ExprKind::Lit(_))
            {
                // Do not suggest `if let x = y` as `==` is way more likely to be the intention.
                if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
                    self.tcx.parent_hir_node(expr.hir_id)
                {
                    err.span_suggestion_verbose(
                        expr.span.shrink_to_lo(),
                        "you might have meant to use pattern matching",
                        "let ",
                        applicability,
                    );
                };
            }
            if eq {
                err.span_suggestion_verbose(
                    span.shrink_to_hi(),
                    "you might have meant to compare for equality",
                    '=',
                    applicability,
                );
            }

            // If the assignment expression itself is ill-formed, don't
            // bother emitting another error
            let reported = err.emit_unless(lhs_ty.references_error() || rhs_ty.references_error());
            return Ty::new_error(self.tcx, reported);
        }

        let lhs_ty = self.check_expr_with_needs(lhs, Needs::MutPlace);

        let suggest_deref_binop = |err: &mut Diag<'_>, rhs_ty: Ty<'tcx>| {
            if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
                // Can only assign if the type is sized, so if `DerefMut` yields a type that is
                // unsized, do not suggest dereferencing it.
                let lhs_deref_ty_is_sized = self
                    .infcx
                    .type_implements_trait(
                        self.tcx.require_lang_item(LangItem::Sized, None),
                        [lhs_deref_ty],
                        self.param_env,
                    )
                    .may_apply();
                if lhs_deref_ty_is_sized && self.can_coerce(rhs_ty, lhs_deref_ty) {
                    err.span_suggestion_verbose(
                        lhs.span.shrink_to_lo(),
                        "consider dereferencing here to assign to the mutably borrowed value",
                        "*",
                        Applicability::MachineApplicable,
                    );
                }
            }
        };

        // This is (basically) inlined `check_expr_coercible_to_type`, but we want
        // to suggest an additional fixup here in `suggest_deref_binop`.
        let rhs_ty = self.check_expr_with_hint(rhs, lhs_ty);
        if let Err(mut diag) =
            self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
        {
            suggest_deref_binop(&mut diag, rhs_ty);
            diag.emit();
        }

        self.check_lhs_assignable(lhs, E0070, span, |err| {
            if let Some(rhs_ty) = self.typeck_results.borrow().expr_ty_opt(rhs) {
                suggest_deref_binop(err, rhs_ty);
            }
        });

        self.require_type_is_sized(lhs_ty, lhs.span, ObligationCauseCode::AssignmentLhsSized);

        if let Err(guar) = (lhs_ty, rhs_ty).error_reported() {
            Ty::new_error(self.tcx, guar)
        } else {
            self.tcx.types.unit
        }
    }

    pub(super) fn check_expr_let(
        &self,
        let_expr: &'tcx hir::LetExpr<'tcx>,
        hir_id: HirId,
    ) -> Ty<'tcx> {
        // for let statements, this is done in check_stmt
        let init = let_expr.init;
        self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
        // otherwise check exactly as a let statement
        self.check_decl((let_expr, hir_id).into());
        // but return a bool, for this is a boolean expression
        if let ast::Recovered::Yes(error_guaranteed) = let_expr.recovered {
            self.set_tainted_by_errors(error_guaranteed);
            Ty::new_error(self.tcx, error_guaranteed)
        } else {
            self.tcx.types.bool
        }
    }

    fn check_expr_loop(
        &self,
        body: &'tcx hir::Block<'tcx>,
        source: hir::LoopSource,
        expected: Expectation<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        let coerce = match source {
            // you can only use break with a value from a normal `loop { }`
            hir::LoopSource::Loop => {
                let coerce_to = expected.coercion_target_type(self, body.span);
                Some(CoerceMany::new(coerce_to))
            }

            hir::LoopSource::While | hir::LoopSource::ForLoop => None,
        };

        let ctxt = BreakableCtxt {
            coerce,
            may_break: false, // Will get updated if/when we find a `break`.
        };

        let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
            self.check_block_no_value(body);
        });

        if ctxt.may_break {
            // No way to know whether it's diverging because
            // of a `break` or an outer `break` or `return`.
            self.diverges.set(Diverges::Maybe);
        } else {
            self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
        }

        // If we permit break with a value, then result type is
        // the LUB of the breaks (possibly ! if none); else, it
        // is nil. This makes sense because infinite loops
        // (which would have type !) are only possible iff we
        // permit break with a value.
        if ctxt.coerce.is_none() && !ctxt.may_break {
            self.dcx().span_bug(body.span, "no coercion, but loop may not break");
        }
        ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.types.unit)
    }

    /// Checks a method call.
    fn check_method_call(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        segment: &'tcx hir::PathSegment<'tcx>,
        rcvr: &'tcx hir::Expr<'tcx>,
        args: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let rcvr_t = self.check_expr(rcvr);
        // no need to check for bot/err -- callee does that
        let rcvr_t = self.structurally_resolve_type(rcvr.span, rcvr_t);

        let method = match self.lookup_method(rcvr_t, segment, segment.ident.span, expr, rcvr, args)
        {
            Ok(method) => {
                // We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
                // trigger this codepath causing `structurally_resolve_type` to emit an error.
                self.write_method_call_and_enforce_effects(expr.hir_id, expr.span, method);
                Ok(method)
            }
            Err(error) => {
                if segment.ident.name == kw::Empty {
                    span_bug!(rcvr.span, "empty method name")
                } else {
                    Err(self.report_method_error(expr.hir_id, rcvr_t, error, expected, false))
                }
            }
        };

        // Call the generic checker.
        self.check_method_argument_types(
            segment.ident.span,
            expr,
            method,
            args,
            DontTupleArguments,
            expected,
        )
    }

    fn check_expr_cast(
        &self,
        e: &'tcx hir::Expr<'tcx>,
        t: &'tcx hir::Ty<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        // Find the type of `e`. Supply hints based on the type we are casting to,
        // if appropriate.
        let t_cast = self.lower_ty_saving_user_provided_ty(t);
        let t_cast = self.resolve_vars_if_possible(t_cast);
        let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
        let t_expr = self.resolve_vars_if_possible(t_expr);

        // Eagerly check for some obvious errors.
        if let Err(guar) = (t_expr, t_cast).error_reported() {
            Ty::new_error(self.tcx, guar)
        } else {
            // Defer other checks until we're done type checking.
            let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
            match cast::CastCheck::new(self, e, t_expr, t_cast, t.span, expr.span) {
                Ok(cast_check) => {
                    debug!(
                        "check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
                        t_cast, t_expr, cast_check,
                    );
                    deferred_cast_checks.push(cast_check);
                    t_cast
                }
                Err(guar) => Ty::new_error(self.tcx, guar),
            }
        }
    }

    fn check_expr_array(
        &self,
        args: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        let element_ty = if !args.is_empty() {
            let coerce_to = expected
                .to_option(self)
                .and_then(|uty| match *uty.kind() {
                    ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
                    _ => None,
                })
                .unwrap_or_else(|| self.next_ty_var(expr.span));
            let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
            assert_eq!(self.diverges.get(), Diverges::Maybe);
            for e in args {
                let e_ty = self.check_expr_with_hint(e, coerce_to);
                let cause = self.misc(e.span);
                coerce.coerce(self, &cause, e, e_ty);
            }
            coerce.complete(self)
        } else {
            self.next_ty_var(expr.span)
        };
        let array_len = args.len() as u64;
        self.suggest_array_len(expr, array_len);
        Ty::new_array(self.tcx, element_ty, array_len)
    }

    fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
        let parent_node = self.tcx.hir().parent_iter(expr.hir_id).find(|(_, node)| {
            !matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
        });
        let Some((
            _,
            hir::Node::LetStmt(hir::LetStmt { ty: Some(ty), .. })
            | hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(ty, _, _), .. }),
        )) = parent_node
        else {
            return;
        };
        if let hir::TyKind::Array(_, length) = ty.peel_refs().kind
            && let hir::ArrayLen::Body(ct) = length
        {
            let span = ct.span();
            self.dcx().try_steal_modify_and_emit_err(
                span,
                StashKey::UnderscoreForArrayLengths,
                |err| {
                    err.span_suggestion(
                        span,
                        "consider specifying the array length",
                        array_len,
                        Applicability::MaybeIncorrect,
                    );
                },
            );
        }
    }

    fn check_expr_const_block(
        &self,
        block: &'tcx hir::ConstBlock,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        let body = self.tcx.hir().body(block.body);

        // Create a new function context.
        let def_id = block.def_id;
        let fcx = FnCtxt::new(self, self.param_env, def_id);
        crate::GatherLocalsVisitor::new(&fcx).visit_body(body);

        let ty = fcx.check_expr_with_expectation(body.value, expected);
        fcx.require_type_is_sized(ty, body.value.span, ObligationCauseCode::ConstSized);
        fcx.write_ty(block.hir_id, ty);
        ty
    }

    fn check_expr_repeat(
        &self,
        element: &'tcx hir::Expr<'tcx>,
        count: &'tcx hir::ArrayLen<'tcx>,
        expected: Expectation<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        let tcx = self.tcx;
        let count_span = count.span();
        let count = self.try_structurally_resolve_const(count_span, self.lower_array_length(count));

        if let Some(count) = count.try_to_target_usize(tcx) {
            self.suggest_array_len(expr, count);
        }

        let uty = match expected {
            ExpectHasType(uty) => match *uty.kind() {
                ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
                _ => None,
            },
            _ => None,
        };

        let (element_ty, t) = match uty {
            Some(uty) => {
                self.check_expr_coercible_to_type(element, uty, None);
                (uty, uty)
            }
            None => {
                let ty = self.next_ty_var(element.span);
                let element_ty = self.check_expr_has_type_or_error(element, ty, |_| {});
                (element_ty, ty)
            }
        };

        if let Err(guar) = element_ty.error_reported() {
            return Ty::new_error(tcx, guar);
        }

        // If the length is 0, we don't create any elements, so we don't copy any.
        // If the length is 1, we don't copy that one element, we move it. Only check
        // for `Copy` if the length is larger, or unevaluated.
        // FIXME(min_const_generic_exprs): We could perhaps defer this check so that
        // we don't require `<?0t as Tr>::CONST` doesn't unnecessarily require `Copy`.
        if count.try_to_target_usize(tcx).is_none_or(|x| x > 1) {
            self.enforce_repeat_element_needs_copy_bound(element, element_ty);
        }

        let ty = Ty::new_array_with_const_len(tcx, t, count);
        self.register_wf_obligation(ty.into(), expr.span, ObligationCauseCode::WellFormed(None));
        ty
    }

    /// Requires that `element_ty` is `Copy` (unless it's a const expression itself).
    fn enforce_repeat_element_needs_copy_bound(
        &self,
        element: &hir::Expr<'_>,
        element_ty: Ty<'tcx>,
    ) {
        let tcx = self.tcx;
        // Actual constants as the repeat element get inserted repeatedly instead of getting copied via Copy.
        match &element.kind {
            hir::ExprKind::ConstBlock(..) => return,
            hir::ExprKind::Path(qpath) => {
                let res = self.typeck_results.borrow().qpath_res(qpath, element.hir_id);
                if let Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::AnonConst, _) = res
                {
                    return;
                }
            }
            _ => {}
        }
        // If someone calls a const fn or constructs a const value, they can extract that
        // out into a separate constant (or a const block in the future), so we check that
        // to tell them that in the diagnostic. Does not affect typeck.
        let is_constable = match element.kind {
            hir::ExprKind::Call(func, _args) => match *self.node_ty(func.hir_id).kind() {
                ty::FnDef(def_id, _) if tcx.is_const_fn(def_id) => traits::IsConstable::Fn,
                _ => traits::IsConstable::No,
            },
            hir::ExprKind::Path(qpath) => {
                match self.typeck_results.borrow().qpath_res(&qpath, element.hir_id) {
                    Res::Def(DefKind::Ctor(_, CtorKind::Const), _) => traits::IsConstable::Ctor,
                    _ => traits::IsConstable::No,
                }
            }
            _ => traits::IsConstable::No,
        };

        let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
        let code = traits::ObligationCauseCode::RepeatElementCopy {
            is_constable,
            elt_type: element_ty,
            elt_span: element.span,
            elt_stmt_span: self
                .tcx
                .hir()
                .parent_iter(element.hir_id)
                .find_map(|(_, node)| match node {
                    hir::Node::Item(it) => Some(it.span),
                    hir::Node::Stmt(stmt) => Some(stmt.span),
                    _ => None,
                })
                .expect("array repeat expressions must be inside an item or statement"),
        };
        self.require_type_meets(element_ty, element.span, code, lang_item);
    }

    fn check_expr_tuple(
        &self,
        elts: &'tcx [hir::Expr<'tcx>],
        expected: Expectation<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        let flds = expected.only_has_type(self).and_then(|ty| {
            let ty = self.try_structurally_resolve_type(expr.span, ty);
            match ty.kind() {
                ty::Tuple(flds) => Some(&flds[..]),
                _ => None,
            }
        });

        let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
            Some(fs) if i < fs.len() => {
                let ety = fs[i];
                self.check_expr_coercible_to_type(e, ety, None);
                ety
            }
            _ => self.check_expr_with_expectation(e, NoExpectation),
        });
        let tuple = Ty::new_tup_from_iter(self.tcx, elt_ts_iter);
        if let Err(guar) = tuple.error_reported() {
            Ty::new_error(self.tcx, guar)
        } else {
            self.require_type_is_sized(
                tuple,
                expr.span,
                ObligationCauseCode::TupleInitializerSized,
            );
            tuple
        }
    }

    fn check_expr_struct(
        &self,
        expr: &hir::Expr<'_>,
        expected: Expectation<'tcx>,
        qpath: &QPath<'tcx>,
        fields: &'tcx [hir::ExprField<'tcx>],
        base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
    ) -> Ty<'tcx> {
        // Find the relevant variant
        let (variant, adt_ty) = match self.check_struct_path(qpath, expr.hir_id) {
            Ok(data) => data,
            Err(guar) => {
                self.check_struct_fields_on_error(fields, base_expr);
                return Ty::new_error(self.tcx, guar);
            }
        };

        // Prohibit struct expressions when non-exhaustive flag is set.
        let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
        if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
            self.dcx()
                .emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
        }

        self.check_expr_struct_fields(
            adt_ty,
            expected,
            expr,
            qpath.span(),
            variant,
            fields,
            base_expr,
        );

        self.require_type_is_sized(adt_ty, expr.span, ObligationCauseCode::StructInitializerSized);
        adt_ty
    }

    fn check_expr_struct_fields(
        &self,
        adt_ty: Ty<'tcx>,
        expected: Expectation<'tcx>,
        expr: &hir::Expr<'_>,
        span: Span,
        variant: &'tcx ty::VariantDef,
        hir_fields: &'tcx [hir::ExprField<'tcx>],
        base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
    ) {
        let tcx = self.tcx;

        let adt_ty = self.try_structurally_resolve_type(span, adt_ty);
        let adt_ty_hint = expected.only_has_type(self).and_then(|expected| {
            self.fudge_inference_if_ok(|| {
                let ocx = ObligationCtxt::new(self);
                ocx.sup(&self.misc(span), self.param_env, expected, adt_ty)?;
                if !ocx.select_where_possible().is_empty() {
                    return Err(TypeError::Mismatch);
                }
                Ok(self.resolve_vars_if_possible(adt_ty))
            })
            .ok()
        });
        if let Some(adt_ty_hint) = adt_ty_hint {
            // re-link the variables that the fudging above can create.
            self.demand_eqtype(span, adt_ty_hint, adt_ty);
        }

        let ty::Adt(adt, args) = adt_ty.kind() else {
            span_bug!(span, "non-ADT passed to check_expr_struct_fields");
        };
        let adt_kind = adt.adt_kind();

        let mut remaining_fields = variant
            .fields
            .iter_enumerated()
            .map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
            .collect::<UnordMap<_, _>>();

        let mut seen_fields = FxHashMap::default();

        let mut error_happened = false;

        if variant.fields.len() != remaining_fields.len() {
            // Some field is defined more than once. Make sure we don't try to
            // instantiate this struct in static/const context.
            let guar =
                self.dcx().span_delayed_bug(expr.span, "struct fields have non-unique names");
            self.set_tainted_by_errors(guar);
            error_happened = true;
        }

        // Type-check each field.
        for (idx, field) in hir_fields.iter().enumerate() {
            let ident = tcx.adjust_ident(field.ident, variant.def_id);
            let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
                seen_fields.insert(ident, field.span);
                self.write_field_index(field.hir_id, i);

                // We don't look at stability attributes on
                // struct-like enums (yet...), but it's definitely not
                // a bug to have constructed one.
                if adt_kind != AdtKind::Enum {
                    tcx.check_stability(v_field.did, Some(expr.hir_id), field.span, None);
                }

                self.field_ty(field.span, v_field, args)
            } else {
                error_happened = true;
                let guar = if let Some(prev_span) = seen_fields.get(&ident) {
                    self.dcx().emit_err(FieldMultiplySpecifiedInInitializer {
                        span: field.ident.span,
                        prev_span: *prev_span,
                        ident,
                    })
                } else {
                    self.report_unknown_field(
                        adt_ty,
                        variant,
                        expr,
                        field,
                        hir_fields,
                        adt.variant_descr(),
                    )
                };

                Ty::new_error(tcx, guar)
            };

            // Check that the expected field type is WF. Otherwise, we emit no use-site error
            // in the case of coercions for non-WF fields, which leads to incorrect error
            // tainting. See issue #126272.
            self.register_wf_obligation(
                field_type.into(),
                field.expr.span,
                ObligationCauseCode::WellFormed(None),
            );

            // Make sure to give a type to the field even if there's
            // an error, so we can continue type-checking.
            let ty = self.check_expr_with_hint(field.expr, field_type);
            let diag = self.demand_coerce_diag(field.expr, ty, field_type, None, AllowTwoPhase::No);

            if let Err(diag) = diag {
                if idx == hir_fields.len() - 1 {
                    if remaining_fields.is_empty() {
                        self.suggest_fru_from_range_and_emit(field, variant, args, diag);
                    } else {
                        diag.stash(field.span, StashKey::MaybeFruTypo);
                    }
                } else {
                    diag.emit();
                }
            }
        }

        // Make sure the programmer specified correct number of fields.
        if adt_kind == AdtKind::Union && hir_fields.len() != 1 {
            struct_span_code_err!(
                self.dcx(),
                span,
                E0784,
                "union expressions should have exactly one field",
            )
            .emit();
        }

        // If check_expr_struct_fields hit an error, do not attempt to populate
        // the fields with the base_expr. This could cause us to hit errors later
        // when certain fields are assumed to exist that in fact do not.
        if error_happened {
            if let Some(base_expr) = base_expr {
                self.check_expr(base_expr);
            }
            return;
        }

        if let Some(base_expr) = base_expr {
            // FIXME: We are currently creating two branches here in order to maintain
            // consistency. But they should be merged as much as possible.
            let fru_tys = if self.tcx.features().type_changing_struct_update {
                if adt.is_struct() {
                    // Make some fresh generic parameters for our ADT type.
                    let fresh_args = self.fresh_args_for_item(base_expr.span, adt.did());
                    // We do subtyping on the FRU fields first, so we can
                    // learn exactly what types we expect the base expr
                    // needs constrained to be compatible with the struct
                    // type we expect from the expectation value.
                    let fru_tys = variant
                        .fields
                        .iter()
                        .map(|f| {
                            let fru_ty = self
                                .normalize(expr.span, self.field_ty(base_expr.span, f, fresh_args));
                            let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
                            if let Some(_) = remaining_fields.remove(&ident) {
                                let target_ty = self.field_ty(base_expr.span, f, args);
                                let cause = self.misc(base_expr.span);
                                match self.at(&cause, self.param_env).sup(
                                    // We're already using inference variables for any params, and don't allow converting
                                    // between different structs, so there is no way this ever actually defines an opaque type.
                                    // Thus choosing `Yes` is fine.
                                    DefineOpaqueTypes::Yes,
                                    target_ty,
                                    fru_ty,
                                ) {
                                    Ok(InferOk { obligations, value: () }) => {
                                        self.register_predicates(obligations)
                                    }
                                    Err(_) => {
                                        span_bug!(
                                            cause.span(),
                                            "subtyping remaining fields of type changing FRU failed: {target_ty} != {fru_ty}: {}::{}",
                                            variant.name,
                                            ident.name,
                                        );
                                    }
                                }
                            }
                            self.resolve_vars_if_possible(fru_ty)
                        })
                        .collect();
                    // The use of fresh args that we have subtyped against
                    // our base ADT type's fields allows us to guide inference
                    // along so that, e.g.
                    // ```
                    // MyStruct<'a, F1, F2, const C: usize> {
                    //     f: F1,
                    //     // Other fields that reference `'a`, `F2`, and `C`
                    // }
                    //
                    // let x = MyStruct {
                    //    f: 1usize,
                    //    ..other_struct
                    // };
                    // ```
                    // will have the `other_struct` expression constrained to
                    // `MyStruct<'a, _, F2, C>`, as opposed to just `_`...
                    // This is important to allow coercions to happen in
                    // `other_struct` itself. See `coerce-in-base-expr.rs`.
                    let fresh_base_ty = Ty::new_adt(self.tcx, *adt, fresh_args);
                    self.check_expr_has_type_or_error(
                        base_expr,
                        self.resolve_vars_if_possible(fresh_base_ty),
                        |_| {},
                    );
                    fru_tys
                } else {
                    // Check the base_expr, regardless of a bad expected adt_ty, so we can get
                    // type errors on that expression, too.
                    self.check_expr(base_expr);
                    self.dcx().emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
                    return;
                }
            } else {
                self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
                    let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
                    let same_adt = matches!((adt_ty.kind(), base_ty.kind()),
                        (ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt);
                    if self.tcx.sess.is_nightly_build() && same_adt {
                        feature_err(
                            &self.tcx.sess,
                            sym::type_changing_struct_update,
                            base_expr.span,
                            "type changing struct updating is experimental",
                        )
                        .emit();
                    }
                });
                match adt_ty.kind() {
                    ty::Adt(adt, args) if adt.is_struct() => variant
                        .fields
                        .iter()
                        .map(|f| self.normalize(expr.span, f.ty(self.tcx, args)))
                        .collect(),
                    _ => {
                        self.dcx()
                            .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
                        return;
                    }
                }
            };
            self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr.hir_id, fru_tys);
        } else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
            debug!(?remaining_fields);
            let private_fields: Vec<&ty::FieldDef> = variant
                .fields
                .iter()
                .filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr.hir_id), tcx))
                .collect();

            if !private_fields.is_empty() {
                self.report_private_fields(adt_ty, span, expr.span, private_fields, hir_fields);
            } else {
                self.report_missing_fields(
                    adt_ty,
                    span,
                    remaining_fields,
                    variant,
                    hir_fields,
                    args,
                );
            }
        }
    }

    fn check_struct_fields_on_error(
        &self,
        fields: &'tcx [hir::ExprField<'tcx>],
        base_expr: &'tcx Option<&'tcx hir::Expr<'tcx>>,
    ) {
        for field in fields {
            self.check_expr(field.expr);
        }
        if let Some(base) = *base_expr {
            self.check_expr(base);
        }
    }

    /// Report an error for a struct field expression when there are fields which aren't provided.
    ///
    /// ```text
    /// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
    ///  --> src/main.rs:8:5
    ///   |
    /// 8 |     foo::Foo {};
    ///   |     ^^^^^^^^ missing `you_can_use_this_field`
    ///
    /// error: aborting due to 1 previous error
    /// ```
    fn report_missing_fields(
        &self,
        adt_ty: Ty<'tcx>,
        span: Span,
        remaining_fields: UnordMap<Ident, (FieldIdx, &ty::FieldDef)>,
        variant: &'tcx ty::VariantDef,
        hir_fields: &'tcx [hir::ExprField<'tcx>],
        args: GenericArgsRef<'tcx>,
    ) {
        let len = remaining_fields.len();

        let displayable_field_names: Vec<&str> =
            remaining_fields.items().map(|(ident, _)| ident.as_str()).into_sorted_stable_ord();

        let mut truncated_fields_error = String::new();
        let remaining_fields_names = match &displayable_field_names[..] {
            [field1] => format!("`{field1}`"),
            [field1, field2] => format!("`{field1}` and `{field2}`"),
            [field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
            _ => {
                truncated_fields_error =
                    format!(" and {} other field{}", len - 3, pluralize!(len - 3));
                displayable_field_names
                    .iter()
                    .take(3)
                    .map(|n| format!("`{n}`"))
                    .collect::<Vec<_>>()
                    .join(", ")
            }
        };

        let mut err = struct_span_code_err!(
            self.dcx(),
            span,
            E0063,
            "missing field{} {}{} in initializer of `{}`",
            pluralize!(len),
            remaining_fields_names,
            truncated_fields_error,
            adt_ty
        );
        err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));

        if let Some(hir_field) = hir_fields.last() {
            self.suggest_fru_from_range_and_emit(hir_field, variant, args, err);
        } else {
            err.emit();
        }
    }

    /// If the last field is a range literal, but it isn't supposed to be, then they probably
    /// meant to use functional update syntax.
    fn suggest_fru_from_range_and_emit(
        &self,
        last_expr_field: &hir::ExprField<'tcx>,
        variant: &ty::VariantDef,
        args: GenericArgsRef<'tcx>,
        mut err: Diag<'_>,
    ) {
        // I don't use 'is_range_literal' because only double-sided, half-open ranges count.
        if let ExprKind::Struct(QPath::LangItem(LangItem::Range, ..), [range_start, range_end], _) =
            last_expr_field.expr.kind
            && let variant_field =
                variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
            && let range_def_id = self.tcx.lang_items().range_struct()
            && variant_field
                .and_then(|field| field.ty(self.tcx, args).ty_adt_def())
                .map(|adt| adt.did())
                != range_def_id
        {
            // Use a (somewhat arbitrary) filtering heuristic to avoid printing
            // expressions that are either too long, or have control character
            // such as newlines in them.
            let expr = self
                .tcx
                .sess
                .source_map()
                .span_to_snippet(range_end.expr.span)
                .ok()
                .filter(|s| s.len() < 25 && !s.contains(|c: char| c.is_control()));

            let fru_span = self
                .tcx
                .sess
                .source_map()
                .span_extend_while_whitespace(range_start.span)
                .shrink_to_hi()
                .to(range_end.span);

            err.subdiagnostic(TypeMismatchFruTypo { expr_span: range_start.span, fru_span, expr });

            // Suppress any range expr type mismatches
            self.dcx().try_steal_replace_and_emit_err(
                last_expr_field.span,
                StashKey::MaybeFruTypo,
                err,
            );
        } else {
            err.emit();
        }
    }

    /// Report an error for a struct field expression when there are invisible fields.
    ///
    /// ```text
    /// error: cannot construct `Foo` with struct literal syntax due to private fields
    ///  --> src/main.rs:8:5
    ///   |
    /// 8 |     foo::Foo {};
    ///   |     ^^^^^^^^
    ///
    /// error: aborting due to 1 previous error
    /// ```
    fn report_private_fields(
        &self,
        adt_ty: Ty<'tcx>,
        span: Span,
        expr_span: Span,
        private_fields: Vec<&ty::FieldDef>,
        used_fields: &'tcx [hir::ExprField<'tcx>],
    ) {
        let mut err =
            self.dcx().struct_span_err(
                span,
                format!(
                    "cannot construct `{adt_ty}` with struct literal syntax due to private fields",
                ),
            );
        let (used_private_fields, remaining_private_fields): (
            Vec<(Symbol, Span, bool)>,
            Vec<(Symbol, Span, bool)>,
        ) = private_fields
            .iter()
            .map(|field| {
                match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
                    Some(used_field) => (field.name, used_field.span, true),
                    None => (field.name, self.tcx.def_span(field.did), false),
                }
            })
            .partition(|field| field.2);
        err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
        if !remaining_private_fields.is_empty() {
            let remaining_private_fields_len = remaining_private_fields.len();
            let names = match &remaining_private_fields
                .iter()
                .map(|(name, _, _)| name)
                .collect::<Vec<_>>()[..]
            {
                _ if remaining_private_fields_len > 6 => String::new(),
                [name] => format!("`{name}` "),
                [names @ .., last] => {
                    let names = names.iter().map(|name| format!("`{name}`")).collect::<Vec<_>>();
                    format!("{} and `{last}` ", names.join(", "))
                }
                [] => bug!("expected at least one private field to report"),
            };
            err.note(format!(
                "{}private field{s} {names}that {were} not provided",
                if used_fields.is_empty() { "" } else { "...and other " },
                s = pluralize!(remaining_private_fields_len),
                were = pluralize!("was", remaining_private_fields_len),
            ));
        }

        if let ty::Adt(def, _) = adt_ty.kind() {
            let def_id = def.did();
            let mut items = self
                .tcx
                .inherent_impls(def_id)
                .into_iter()
                .flat_map(|i| self.tcx.associated_items(i).in_definition_order())
                // Only assoc fn with no receivers.
                .filter(|item| {
                    matches!(item.kind, ty::AssocKind::Fn) && !item.fn_has_self_parameter
                })
                .filter_map(|item| {
                    // Only assoc fns that return `Self`
                    let fn_sig = self.tcx.fn_sig(item.def_id).skip_binder();
                    let ret_ty = fn_sig.output();
                    let ret_ty =
                        self.tcx.normalize_erasing_late_bound_regions(self.param_env, ret_ty);
                    if !self.can_eq(self.param_env, ret_ty, adt_ty) {
                        return None;
                    }
                    let input_len = fn_sig.inputs().skip_binder().len();
                    let order = !item.name.as_str().starts_with("new");
                    Some((order, item.name, input_len))
                })
                .collect::<Vec<_>>();
            items.sort_by_key(|(order, _, _)| *order);
            let suggestion = |name, args| {
                format!(
                    "::{name}({})",
                    std::iter::repeat("_").take(args).collect::<Vec<_>>().join(", ")
                )
            };
            match &items[..] {
                [] => {}
                [(_, name, args)] => {
                    err.span_suggestion_verbose(
                        span.shrink_to_hi().with_hi(expr_span.hi()),
                        format!("you might have meant to use the `{name}` associated function"),
                        suggestion(name, *args),
                        Applicability::MaybeIncorrect,
                    );
                }
                _ => {
                    err.span_suggestions(
                        span.shrink_to_hi().with_hi(expr_span.hi()),
                        "you might have meant to use an associated function to build this type",
                        items.iter().map(|(_, name, args)| suggestion(name, *args)),
                        Applicability::MaybeIncorrect,
                    );
                }
            }
            if let Some(default_trait) = self.tcx.get_diagnostic_item(sym::Default)
                && self
                    .infcx
                    .type_implements_trait(default_trait, [adt_ty], self.param_env)
                    .may_apply()
            {
                err.multipart_suggestion(
                    "consider using the `Default` trait",
                    vec![
                        (span.shrink_to_lo(), "<".to_string()),
                        (
                            span.shrink_to_hi().with_hi(expr_span.hi()),
                            " as std::default::Default>::default()".to_string(),
                        ),
                    ],
                    Applicability::MaybeIncorrect,
                );
            }
        }

        err.emit();
    }

    fn report_unknown_field(
        &self,
        ty: Ty<'tcx>,
        variant: &'tcx ty::VariantDef,
        expr: &hir::Expr<'_>,
        field: &hir::ExprField<'_>,
        skip_fields: &[hir::ExprField<'_>],
        kind_name: &str,
    ) -> ErrorGuaranteed {
        // we don't care to report errors for a struct if the struct itself is tainted
        if let Err(guar) = variant.has_errors() {
            return guar;
        }
        let mut err = self.err_ctxt().type_error_struct_with_diag(
            field.ident.span,
            |actual| match ty.kind() {
                ty::Adt(adt, ..) if adt.is_enum() => struct_span_code_err!(
                    self.dcx(),
                    field.ident.span,
                    E0559,
                    "{} `{}::{}` has no field named `{}`",
                    kind_name,
                    actual,
                    variant.name,
                    field.ident
                ),
                _ => struct_span_code_err!(
                    self.dcx(),
                    field.ident.span,
                    E0560,
                    "{} `{}` has no field named `{}`",
                    kind_name,
                    actual,
                    field.ident
                ),
            },
            ty,
        );

        let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
        match variant.ctor {
            Some((CtorKind::Fn, def_id)) => match ty.kind() {
                ty::Adt(adt, ..) if adt.is_enum() => {
                    err.span_label(
                        variant_ident_span,
                        format!(
                            "`{adt}::{variant}` defined here",
                            adt = ty,
                            variant = variant.name,
                        ),
                    );
                    err.span_label(field.ident.span, "field does not exist");
                    let fn_sig = self.tcx.fn_sig(def_id).instantiate_identity();
                    let inputs = fn_sig.inputs().skip_binder();
                    let fields = format!(
                        "({})",
                        inputs.iter().map(|i| format!("/* {i} */")).collect::<Vec<_>>().join(", ")
                    );
                    let (replace_span, sugg) = match expr.kind {
                        hir::ExprKind::Struct(qpath, ..) => {
                            (qpath.span().shrink_to_hi().with_hi(expr.span.hi()), fields)
                        }
                        _ => {
                            (expr.span, format!("{ty}::{variant}{fields}", variant = variant.name))
                        }
                    };
                    err.span_suggestion_verbose(
                        replace_span,
                        format!(
                            "`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
                            adt = ty,
                            variant = variant.name,
                        ),
                        sugg,
                        Applicability::HasPlaceholders,
                    );
                }
                _ => {
                    err.span_label(variant_ident_span, format!("`{ty}` defined here"));
                    err.span_label(field.ident.span, "field does not exist");
                    let fn_sig = self.tcx.fn_sig(def_id).instantiate_identity();
                    let inputs = fn_sig.inputs().skip_binder();
                    let fields = format!(
                        "({})",
                        inputs.iter().map(|i| format!("/* {i} */")).collect::<Vec<_>>().join(", ")
                    );
                    err.span_suggestion_verbose(
                        expr.span,
                        format!("`{ty}` is a tuple {kind_name}, use the appropriate syntax",),
                        format!("{ty}{fields}"),
                        Applicability::HasPlaceholders,
                    );
                }
            },
            _ => {
                // prevent all specified fields from being suggested
                let available_field_names = self.available_field_names(variant, expr, skip_fields);
                if let Some(field_name) =
                    find_best_match_for_name(&available_field_names, field.ident.name, None)
                {
                    err.span_label(field.ident.span, "unknown field");
                    err.span_suggestion_verbose(
                        field.ident.span,
                        "a field with a similar name exists",
                        field_name,
                        Applicability::MaybeIncorrect,
                    );
                } else {
                    match ty.kind() {
                        ty::Adt(adt, ..) => {
                            if adt.is_enum() {
                                err.span_label(
                                    field.ident.span,
                                    format!("`{}::{}` does not have this field", ty, variant.name),
                                );
                            } else {
                                err.span_label(
                                    field.ident.span,
                                    format!("`{ty}` does not have this field"),
                                );
                            }
                            if available_field_names.is_empty() {
                                err.note("all struct fields are already assigned");
                            } else {
                                err.note(format!(
                                    "available fields are: {}",
                                    self.name_series_display(available_field_names)
                                ));
                            }
                        }
                        _ => bug!("non-ADT passed to report_unknown_field"),
                    }
                };
            }
        }
        err.emit()
    }

    fn available_field_names(
        &self,
        variant: &'tcx ty::VariantDef,
        expr: &hir::Expr<'_>,
        skip_fields: &[hir::ExprField<'_>],
    ) -> Vec<Symbol> {
        variant
            .fields
            .iter()
            .filter(|field| {
                skip_fields.iter().all(|&skip| skip.ident.name != field.name)
                    && self.is_field_suggestable(field, expr.hir_id, expr.span)
            })
            .map(|field| field.name)
            .collect()
    }

    fn name_series_display(&self, names: Vec<Symbol>) -> String {
        // dynamic limit, to never omit just one field
        let limit = if names.len() == 6 { 6 } else { 5 };
        let mut display =
            names.iter().take(limit).map(|n| format!("`{n}`")).collect::<Vec<_>>().join(", ");
        if names.len() > limit {
            display = format!("{} ... and {} others", display, names.len() - limit);
        }
        display
    }

    /// Find the position of a field named `ident` in `base_def`, accounting for unnammed fields.
    /// Return whether such a field has been found. The path to it is stored in `nested_fields`.
    /// `ident` must have been adjusted beforehand.
    fn find_adt_field(
        &self,
        base_def: ty::AdtDef<'tcx>,
        ident: Ident,
    ) -> Option<(FieldIdx, &'tcx ty::FieldDef)> {
        // No way to find a field in an enum.
        if base_def.is_enum() {
            return None;
        }

        for (field_idx, field) in base_def.non_enum_variant().fields.iter_enumerated() {
            if field.ident(self.tcx).normalize_to_macros_2_0() == ident {
                // We found the field we wanted.
                return Some((field_idx, field));
            }
        }

        None
    }

    // Check field access expressions
    fn check_field(
        &self,
        expr: &'tcx hir::Expr<'tcx>,
        base: &'tcx hir::Expr<'tcx>,
        field: Ident,
        expected: Expectation<'tcx>,
    ) -> Ty<'tcx> {
        debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
        let base_ty = self.check_expr(base);
        let base_ty = self.structurally_resolve_type(base.span, base_ty);
        let mut private_candidate = None;
        let mut autoderef = self.autoderef(expr.span, base_ty);
        while let Some((deref_base_ty, _)) = autoderef.next() {
            debug!("deref_base_ty: {:?}", deref_base_ty);
            match deref_base_ty.kind() {
                ty::Adt(base_def, args) if !base_def.is_enum() => {
                    debug!("struct named {:?}", deref_base_ty);
                    let body_hir_id = self.tcx.local_def_id_to_hir_id(self.body_id);
                    let (ident, def_scope) =
                        self.tcx.adjust_ident_and_get_scope(field, base_def.did(), body_hir_id);

                    // we don't care to report errors for a struct if the struct itself is tainted
                    if let Err(guar) = base_def.non_enum_variant().has_errors() {
                        return Ty::new_error(self.tcx(), guar);
                    }

                    if let Some((idx, field)) = self.find_adt_field(*base_def, ident) {
                        self.write_field_index(expr.hir_id, idx);

                        let adjustments = self.adjust_steps(&autoderef);
                        if field.vis.is_accessible_from(def_scope, self.tcx) {
                            self.apply_adjustments(base, adjustments);
                            self.register_predicates(autoderef.into_obligations());

                            self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
                            return self.field_ty(expr.span, field, args);
                        }

                        // The field is not accessible, fall through to error reporting.
                        private_candidate = Some((adjustments, base_def.did()));
                    }
                }
                ty::Tuple(tys) => {
                    if let Ok(index) = field.as_str().parse::<usize>() {
                        if field.name == sym::integer(index) {
                            if let Some(&field_ty) = tys.get(index) {
                                let adjustments = self.adjust_steps(&autoderef);
                                self.apply_adjustments(base, adjustments);
                                self.register_predicates(autoderef.into_obligations());

                                self.write_field_index(expr.hir_id, FieldIdx::from_usize(index));
                                return field_ty;
                            }
                        }
                    }
                }
                _ => {}
            }
        }
        self.structurally_resolve_type(autoderef.span(), autoderef.final_ty(false));

        if let Some((adjustments, did)) = private_candidate {
            // (#90483) apply adjustments to avoid ExprUseVisitor from
            // creating erroneous projection.
            self.apply_adjustments(base, adjustments);
            let guar = self.ban_private_field_access(
                expr,
                base_ty,
                field,
                did,
                expected.only_has_type(self),
            );
            return Ty::new_error(self.tcx(), guar);
        }

        let guar = if field.name == kw::Empty {
            self.dcx().span_delayed_bug(field.span, "field name with no name")
        } else if self.method_exists_for_diagnostic(
            field,
            base_ty,
            expr.hir_id,
            expected.only_has_type(self),
        ) {
            self.ban_take_value_of_method(expr, base_ty, field)
        } else if !base_ty.is_primitive_ty() {
            self.ban_nonexisting_field(field, base, expr, base_ty)
        } else {
            let field_name = field.to_string();
            let mut err = type_error_struct!(
                self.dcx(),
                field.span,
                base_ty,
                E0610,
                "`{base_ty}` is a primitive type and therefore doesn't have fields",
            );
            let is_valid_suffix = |field: &str| {
                if field == "f32" || field == "f64" {
                    return true;
                }
                let mut chars = field.chars().peekable();
                match chars.peek() {
                    Some('e') | Some('E') => {
                        chars.next();
                        if let Some(c) = chars.peek()
                            && !c.is_numeric()
                            && *c != '-'
                            && *c != '+'
                        {
                            return false;
                        }
                        while let Some(c) = chars.peek() {
                            if !c.is_numeric() {
                                break;
                            }
                            chars.next();
                        }
                    }
                    _ => (),
                }
                let suffix = chars.collect::<String>();
                suffix.is_empty() || suffix == "f32" || suffix == "f64"
            };
            let maybe_partial_suffix = |field: &str| -> Option<&str> {
                let first_chars = ['f', 'l'];
                if field.len() >= 1
                    && field.to_lowercase().starts_with(first_chars)
                    && field[1..].chars().all(|c| c.is_ascii_digit())
                {
                    if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
                } else {
                    None
                }
            };
            if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
                && let ExprKind::Lit(Spanned {
                    node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
                    ..
                }) = base.kind
                && !base.span.from_expansion()
            {
                if is_valid_suffix(&field_name) {
                    err.span_suggestion_verbose(
                        field.span.shrink_to_lo(),
                        "if intended to be a floating point literal, consider adding a `0` after the period",
                        '0',
                        Applicability::MaybeIncorrect,
                    );
                } else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
                    err.span_suggestion_verbose(
                        field.span,
                        format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
                        format!("0{correct_suffix}"),
                        Applicability::MaybeIncorrect,
                    );
                }
            }
            err.emit()
        };

        Ty::new_error(self.tcx(), guar)
    }

    fn suggest_await_on_field_access(
        &self,
        err: &mut Diag<'_>,
        field_ident: Ident,
        base: &'tcx hir::Expr<'tcx>,
        ty: Ty<'tcx>,
    ) {
        let Some(output_ty) = self.err_ctxt().get_impl_future_output_ty(ty) else {
            err.span_label(field_ident.span, "unknown field");
            return;
        };
        let ty::Adt(def, _) = output_ty.kind() else {
            err.span_label(field_ident.span, "unknown field");
            return;
        };
        // no field access on enum type
        if def.is_enum() {
            err.span_label(field_ident.span, "unknown field");
            return;
        }
        if !def.non_enum_variant().fields.iter().any(|field| field.ident(self.tcx) == field_ident) {
            err.span_label(field_ident.span, "unknown field");
            return;
        }
        err.span_label(
            field_ident.span,
            "field not available in `impl Future`, but it is available in its `Output`",
        );
        err.span_suggestion_verbose(
            base.span.shrink_to_hi(),
            "consider `await`ing on the `Future` and access the field of its `Output`",
            ".await",
            Applicability::MaybeIncorrect,
        );
    }

    fn ban_nonexisting_field(
        &self,
        ident: Ident,
        base: &'tcx hir::Expr<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
        base_ty: Ty<'tcx>,
    ) -> ErrorGuaranteed {
        debug!(
            "ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
            ident, base, expr, base_ty
        );
        let mut err = self.no_such_field_err(ident, base_ty, base.hir_id);

        match *base_ty.peel_refs().kind() {
            ty::Array(_, len) => {
                self.maybe_suggest_array_indexing(&mut err, base, ident, len);
            }
            ty::RawPtr(..) => {
                self.suggest_first_deref_field(&mut err, base, ident);
            }
            ty::Param(param_ty) => {
                err.span_label(ident.span, "unknown field");
                self.point_at_param_definition(&mut err, param_ty);
            }
            ty::Alias(ty::Opaque, _) => {
                self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
            }
            _ => {
                err.span_label(ident.span, "unknown field");
            }
        }

        self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
            if let ty::Adt(def, _) = output_ty.kind()
                && !def.is_enum()
            {
                def.non_enum_variant().fields.iter().any(|field| {
                    field.ident(self.tcx) == ident
                        && field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
                })
            } else if let ty::Tuple(tys) = output_ty.kind()
                && let Ok(idx) = ident.as_str().parse::<usize>()
            {
                idx < tys.len()
            } else {
                false
            }
        });

        if ident.name == kw::Await {
            // We know by construction that `<expr>.await` is either on Rust 2015
            // or results in `ExprKind::Await`. Suggest switching the edition to 2018.
            err.note("to `.await` a `Future`, switch to Rust 2018 or later");
            HelpUseLatestEdition::new().add_to_diag(&mut err);
        }

        err.emit()
    }

    fn ban_private_field_access(
        &self,
        expr: &hir::Expr<'tcx>,
        expr_t: Ty<'tcx>,
        field: Ident,
        base_did: DefId,
        return_ty: Option<Ty<'tcx>>,
    ) -> ErrorGuaranteed {
        let mut err = self.private_field_err(field, base_did);

        // Also check if an accessible method exists, which is often what is meant.
        if self.method_exists_for_diagnostic(field, expr_t, expr.hir_id, return_ty)
            && !self.expr_in_place(expr.hir_id)
        {
            self.suggest_method_call(
                &mut err,
                format!("a method `{field}` also exists, call it with parentheses"),
                field,
                expr_t,
                expr,
                None,
            );
        }
        err.emit()
    }

    fn ban_take_value_of_method(
        &self,
        expr: &hir::Expr<'tcx>,
        expr_t: Ty<'tcx>,
        field: Ident,
    ) -> ErrorGuaranteed {
        let mut err = type_error_struct!(
            self.dcx(),
            field.span,
            expr_t,
            E0615,
            "attempted to take value of method `{field}` on type `{expr_t}`",
        );
        err.span_label(field.span, "method, not a field");
        let expr_is_call =
            if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
                self.tcx.parent_hir_node(expr.hir_id)
            {
                expr.hir_id == callee.hir_id
            } else {
                false
            };
        let expr_snippet =
            self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
        let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
        let after_open = expr.span.lo() + rustc_span::BytePos(1);
        let before_close = expr.span.hi() - rustc_span::BytePos(1);

        if expr_is_call && is_wrapped {
            err.multipart_suggestion(
                "remove wrapping parentheses to call the method",
                vec![
                    (expr.span.with_hi(after_open), String::new()),
                    (expr.span.with_lo(before_close), String::new()),
                ],
                Applicability::MachineApplicable,
            );
        } else if !self.expr_in_place(expr.hir_id) {
            // Suggest call parentheses inside the wrapping parentheses
            let span = if is_wrapped {
                expr.span.with_lo(after_open).with_hi(before_close)
            } else {
                expr.span
            };
            self.suggest_method_call(
                &mut err,
                "use parentheses to call the method",
                field,
                expr_t,
                expr,
                Some(span),
            );
        } else if let ty::RawPtr(ptr_ty, _) = expr_t.kind()
            && let ty::Adt(adt_def, _) = ptr_ty.kind()
            && let ExprKind::Field(base_expr, _) = expr.kind
            && let [variant] = &adt_def.variants().raw
            && variant.fields.iter().any(|f| f.ident(self.tcx) == field)
        {
            err.multipart_suggestion(
                "to access the field, dereference first",
                vec![
                    (base_expr.span.shrink_to_lo(), "(*".to_string()),
                    (base_expr.span.shrink_to_hi(), ")".to_string()),
                ],
                Applicability::MaybeIncorrect,
            );
        } else {
            err.help("methods are immutable and cannot be assigned to");
        }

        err.emit()
    }

    fn point_at_param_definition(&self, err: &mut Diag<'_>, param: ty::ParamTy) {
        let generics = self.tcx.generics_of(self.body_id);
        let generic_param = generics.type_param(param, self.tcx);
        if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
            return;
        }
        let param_def_id = generic_param.def_id;
        let param_hir_id = match param_def_id.as_local() {
            Some(x) => self.tcx.local_def_id_to_hir_id(x),
            None => return,
        };
        let param_span = self.tcx.hir().span(param_hir_id);
        let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());

        err.span_label(param_span, format!("type parameter '{param_name}' declared here"));
    }

    fn maybe_suggest_array_indexing(
        &self,
        err: &mut Diag<'_>,
        base: &hir::Expr<'_>,
        field: Ident,
        len: ty::Const<'tcx>,
    ) {
        err.span_label(field.span, "unknown field");
        if let (Some(len), Ok(user_index)) = (
            self.try_structurally_resolve_const(base.span, len).try_to_target_usize(self.tcx),
            field.as_str().parse::<u64>(),
        ) {
            let help = "instead of using tuple indexing, use array indexing";
            let applicability = if len < user_index {
                Applicability::MachineApplicable
            } else {
                Applicability::MaybeIncorrect
            };
            err.multipart_suggestion(
                help,
                vec![
                    (base.span.between(field.span), "[".to_string()),
                    (field.span.shrink_to_hi(), "]".to_string()),
                ],
                applicability,
            );
        }
    }

    fn suggest_first_deref_field(&self, err: &mut Diag<'_>, base: &hir::Expr<'_>, field: Ident) {
        err.span_label(field.span, "unknown field");
        let val = if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
            && base.len() < 20
        {
            format!("`{base}`")
        } else {
            "the value".to_string()
        };
        err.multipart_suggestion(
            format!("{val} is a raw pointer; try dereferencing it"),
            vec![
                (base.span.shrink_to_lo(), "(*".to_string()),
                (base.span.shrink_to_hi(), ")".to_string()),
            ],
            Applicability::MaybeIncorrect,
        );
    }

    fn no_such_field_err(&self, field: Ident, expr_t: Ty<'tcx>, id: HirId) -> Diag<'_> {
        let span = field.span;
        debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);

        let mut err = type_error_struct!(
            self.dcx(),
            span,
            expr_t,
            E0609,
            "no field `{field}` on type `{expr_t}`",
        );

        // try to add a suggestion in case the field is a nested field of a field of the Adt
        let mod_id = self.tcx.parent_module(id).to_def_id();
        let (ty, unwrap) = if let ty::Adt(def, args) = expr_t.kind()
            && (self.tcx.is_diagnostic_item(sym::Result, def.did())
                || self.tcx.is_diagnostic_item(sym::Option, def.did()))
            && let Some(arg) = args.get(0)
            && let Some(ty) = arg.as_type()
        {
            (ty, "unwrap().")
        } else {
            (expr_t, "")
        };
        for (found_fields, args) in
            self.get_field_candidates_considering_privacy_for_diag(span, ty, mod_id, id)
        {
            let field_names = found_fields.iter().map(|field| field.name).collect::<Vec<_>>();
            let mut candidate_fields: Vec<_> = found_fields
                .into_iter()
                .filter_map(|candidate_field| {
                    self.check_for_nested_field_satisfying_condition_for_diag(
                        span,
                        &|candidate_field, _| candidate_field.ident(self.tcx()) == field,
                        candidate_field,
                        args,
                        vec![],
                        mod_id,
                        id,
                    )
                })
                .map(|mut field_path| {
                    field_path.pop();
                    field_path
                        .iter()
                        .map(|id| format!("{}.", id.name.to_ident_string()))
                        .collect::<String>()
                })
                .collect::<Vec<_>>();
            candidate_fields.sort();

            let len = candidate_fields.len();
            if len > 0 {
                err.span_suggestions(
                    field.span.shrink_to_lo(),
                    format!(
                        "{} of the expressions' fields {} a field of the same name",
                        if len > 1 { "some" } else { "one" },
                        if len > 1 { "have" } else { "has" },
                    ),
                    candidate_fields.iter().map(|path| format!("{unwrap}{path}")),
                    Applicability::MaybeIncorrect,
                );
            } else if let Some(field_name) =
                find_best_match_for_name(&field_names, field.name, None)
            {
                err.span_suggestion_verbose(
                    field.span,
                    "a field with a similar name exists",
                    format!("{unwrap}{}", field_name),
                    Applicability::MaybeIncorrect,
                );
            } else if !field_names.is_empty() {
                let is = if field_names.len() == 1 { " is" } else { "s are" };
                err.note(
                    format!("available field{is}: {}", self.name_series_display(field_names),),
                );
            }
        }
        err
    }

    fn private_field_err(&self, field: Ident, base_did: DefId) -> Diag<'_> {
        let struct_path = self.tcx().def_path_str(base_did);
        let kind_name = self.tcx().def_descr(base_did);
        struct_span_code_err!(
            self.dcx(),
            field.span,
            E0616,
            "field `{field}` of {kind_name} `{struct_path}` is private",
        )
        .with_span_label(field.span, "private field")
    }

    pub(crate) fn get_field_candidates_considering_privacy_for_diag(
        &self,
        span: Span,
        base_ty: Ty<'tcx>,
        mod_id: DefId,
        hir_id: HirId,
    ) -> Vec<(Vec<&'tcx ty::FieldDef>, GenericArgsRef<'tcx>)> {
        debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);

        let mut autoderef = self.autoderef(span, base_ty).silence_errors();
        let deref_chain: Vec<_> = autoderef.by_ref().collect();

        // Don't probe if we hit the recursion limit, since it may result in
        // quadratic blowup if we then try to further deref the results of this
        // function. This is a best-effort method, after all.
        if autoderef.reached_recursion_limit() {
            return vec![];
        }

        deref_chain
            .into_iter()
            .filter_map(move |(base_t, _)| {
                match base_t.kind() {
                    ty::Adt(base_def, args) if !base_def.is_enum() => {
                        let tcx = self.tcx;
                        let fields = &base_def.non_enum_variant().fields;
                        // Some struct, e.g. some that impl `Deref`, have all private fields
                        // because you're expected to deref them to access the _real_ fields.
                        // This, for example, will help us suggest accessing a field through a `Box<T>`.
                        if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
                            return None;
                        }
                        return Some((
                            fields
                                .iter()
                                .filter(move |field| {
                                    field.vis.is_accessible_from(mod_id, tcx)
                                        && self.is_field_suggestable(field, hir_id, span)
                                })
                                // For compile-time reasons put a limit on number of fields we search
                                .take(100)
                                .collect::<Vec<_>>(),
                            *args,
                        ));
                    }
                    _ => None,
                }
            })
            .collect()
    }

    /// This method is called after we have encountered a missing field error to recursively
    /// search for the field
    pub(crate) fn check_for_nested_field_satisfying_condition_for_diag(
        &self,
        span: Span,
        matches: &impl Fn(&ty::FieldDef, Ty<'tcx>) -> bool,
        candidate_field: &ty::FieldDef,
        subst: GenericArgsRef<'tcx>,
        mut field_path: Vec<Ident>,
        mod_id: DefId,
        hir_id: HirId,
    ) -> Option<Vec<Ident>> {
        debug!(
            "check_for_nested_field_satisfying(span: {:?}, candidate_field: {:?}, field_path: {:?}",
            span, candidate_field, field_path
        );

        if field_path.len() > 3 {
            // For compile-time reasons and to avoid infinite recursion we only check for fields
            // up to a depth of three
            None
        } else {
            field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
            let field_ty = candidate_field.ty(self.tcx, subst);
            if matches(candidate_field, field_ty) {
                return Some(field_path);
            } else {
                for (nested_fields, subst) in self
                    .get_field_candidates_considering_privacy_for_diag(
                        span, field_ty, mod_id, hir_id,
                    )
                {
                    // recursively search fields of `candidate_field` if it's a ty::Adt
                    for field in nested_fields {
                        if let Some(field_path) = self
                            .check_for_nested_field_satisfying_condition_for_diag(
                                span,
                                matches,
                                field,
                                subst,
                                field_path.clone(),
                                mod_id,
                                hir_id,
                            )
                        {
                            return Some(field_path);
                        }
                    }
                }
            }
            None
        }
    }

    fn check_expr_index(
        &self,
        base: &'tcx hir::Expr<'tcx>,
        idx: &'tcx hir::Expr<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
        brackets_span: Span,
    ) -> Ty<'tcx> {
        let base_t = self.check_expr(base);
        let idx_t = self.check_expr(idx);

        if base_t.references_error() {
            base_t
        } else if idx_t.references_error() {
            idx_t
        } else {
            let base_t = self.structurally_resolve_type(base.span, base_t);
            match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
                Some((index_ty, element_ty)) => {
                    // two-phase not needed because index_ty is never mutable
                    self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
                    self.select_obligations_where_possible(|errors| {
                        self.point_at_index(errors, idx.span);
                    });
                    element_ty
                }
                None => {
                    // Attempt to *shallowly* search for an impl which matches,
                    // but has nested obligations which are unsatisfied.
                    for (base_t, _) in self.autoderef(base.span, base_t).silence_errors() {
                        if let Some((_, index_ty, element_ty)) =
                            self.find_and_report_unsatisfied_index_impl(base, base_t)
                        {
                            self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
                            return element_ty;
                        }
                    }

                    let mut err = type_error_struct!(
                        self.dcx(),
                        brackets_span,
                        base_t,
                        E0608,
                        "cannot index into a value of type `{base_t}`",
                    );
                    // Try to give some advice about indexing tuples.
                    if let ty::Tuple(types) = base_t.kind() {
                        let mut needs_note = true;
                        // If the index is an integer, we can show the actual
                        // fixed expression:
                        if let ExprKind::Lit(lit) = idx.kind
                            && let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node
                            && i.get()
                                < types
                                    .len()
                                    .try_into()
                                    .expect("expected tuple index to be < usize length")
                        {
                            err.span_suggestion(
                                brackets_span,
                                "to access tuple elements, use",
                                format!(".{i}"),
                                Applicability::MachineApplicable,
                            );
                            needs_note = false;
                        } else if let ExprKind::Path(..) = idx.peel_borrows().kind {
                            err.span_label(
                                idx.span,
                                "cannot access tuple elements at a variable index",
                            );
                        }
                        if needs_note {
                            err.help(
                                "to access tuple elements, use tuple indexing \
                                        syntax (e.g., `tuple.0`)",
                            );
                        }
                    }

                    if base_t.is_unsafe_ptr() && idx_t.is_integral() {
                        err.multipart_suggestion(
                            "consider using `wrapping_add` or `add` for indexing into raw pointer",
                            vec![
                                (base.span.between(idx.span), ".wrapping_add(".to_owned()),
                                (
                                    idx.span.shrink_to_hi().until(expr.span.shrink_to_hi()),
                                    ")".to_owned(),
                                ),
                            ],
                            Applicability::MaybeIncorrect,
                        );
                    }

                    let reported = err.emit();
                    Ty::new_error(self.tcx, reported)
                }
            }
        }
    }

    /// Try to match an implementation of `Index` against a self type, and report
    /// the unsatisfied predicates that result from confirming this impl.
    ///
    /// Given an index expression, sometimes the `Self` type shallowly but does not
    /// deeply satisfy an impl predicate. Instead of simply saying that the type
    /// does not support being indexed, we want to point out exactly what nested
    /// predicates cause this to be, so that the user can add them to fix their code.
    fn find_and_report_unsatisfied_index_impl(
        &self,
        base_expr: &hir::Expr<'_>,
        base_ty: Ty<'tcx>,
    ) -> Option<(ErrorGuaranteed, Ty<'tcx>, Ty<'tcx>)> {
        let index_trait_def_id = self.tcx.lang_items().index_trait()?;
        let index_trait_output_def_id = self.tcx.get_diagnostic_item(sym::IndexOutput)?;

        let mut relevant_impls = vec![];
        self.tcx.for_each_relevant_impl(index_trait_def_id, base_ty, |impl_def_id| {
            relevant_impls.push(impl_def_id);
        });
        let [impl_def_id] = relevant_impls[..] else {
            // Only report unsatisfied impl predicates if there's one impl
            return None;
        };

        self.commit_if_ok(|snapshot| {
            let outer_universe = self.universe();

            let ocx = ObligationCtxt::new_with_diagnostics(self);
            let impl_args = self.fresh_args_for_item(base_expr.span, impl_def_id);
            let impl_trait_ref =
                self.tcx.impl_trait_ref(impl_def_id).unwrap().instantiate(self.tcx, impl_args);
            let cause = self.misc(base_expr.span);

            // Match the impl self type against the base ty. If this fails,
            // we just skip this impl, since it's not particularly useful.
            let impl_trait_ref = ocx.normalize(&cause, self.param_env, impl_trait_ref);
            ocx.eq(&cause, self.param_env, base_ty, impl_trait_ref.self_ty())?;

            // Register the impl's predicates. One of these predicates
            // must be unsatisfied, or else we wouldn't have gotten here
            // in the first place.
            ocx.register_obligations(traits::predicates_for_generics(
                |idx, span| {
                    cause.clone().derived_cause(
                        ty::Binder::dummy(ty::TraitPredicate {
                            trait_ref: impl_trait_ref,
                            polarity: ty::PredicatePolarity::Positive,
                        }),
                        |derived| {
                            ObligationCauseCode::ImplDerived(Box::new(traits::ImplDerivedCause {
                                derived,
                                impl_or_alias_def_id: impl_def_id,
                                impl_def_predicate_index: Some(idx),
                                span,
                            }))
                        },
                    )
                },
                self.param_env,
                self.tcx.predicates_of(impl_def_id).instantiate(self.tcx, impl_args),
            ));

            // Normalize the output type, which we can use later on as the
            // return type of the index expression...
            let element_ty = ocx.normalize(
                &cause,
                self.param_env,
                Ty::new_projection_from_args(
                    self.tcx,
                    index_trait_output_def_id,
                    impl_trait_ref.args,
                ),
            );

            let true_errors = ocx.select_where_possible();

            // Do a leak check -- we can't really report a useful error here,
            // but it at least avoids an ICE when the error has to do with higher-ranked
            // lifetimes.
            self.leak_check(outer_universe, Some(snapshot))?;

            // Bail if we have ambiguity errors, which we can't report in a useful way.
            let ambiguity_errors = ocx.select_all_or_error();
            if true_errors.is_empty() && !ambiguity_errors.is_empty() {
                return Err(NoSolution);
            }

            // There should be at least one error reported. If not, we
            // will still delay a span bug in `report_fulfillment_errors`.
            Ok::<_, NoSolution>((
                self.err_ctxt().report_fulfillment_errors(true_errors),
                impl_trait_ref.args.type_at(1),
                element_ty,
            ))
        })
        .ok()
    }

    fn point_at_index(&self, errors: &mut Vec<traits::FulfillmentError<'tcx>>, span: Span) {
        let mut seen_preds = FxHashSet::default();
        // We re-sort here so that the outer most root obligations comes first, as we have the
        // subsequent weird logic to identify *every* relevant obligation for proper deduplication
        // of diagnostics.
        errors.sort_by_key(|error| error.root_obligation.recursion_depth);
        for error in errors {
            match (
                error.root_obligation.predicate.kind().skip_binder(),
                error.obligation.predicate.kind().skip_binder(),
            ) {
                (ty::PredicateKind::Clause(ty::ClauseKind::Trait(predicate)), _)
                    if self.tcx.is_lang_item(predicate.trait_ref.def_id, LangItem::Index) =>
                {
                    seen_preds.insert(error.obligation.predicate.kind().skip_binder());
                }
                (_, ty::PredicateKind::Clause(ty::ClauseKind::Trait(predicate)))
                    if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) =>
                {
                    seen_preds.insert(error.obligation.predicate.kind().skip_binder());
                }
                (root, pred) if seen_preds.contains(&pred) || seen_preds.contains(&root) => {}
                _ => continue,
            }
            error.obligation.cause.span = span;
        }
    }

    fn check_expr_yield(
        &self,
        value: &'tcx hir::Expr<'tcx>,
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        match self.coroutine_types {
            Some(CoroutineTypes { resume_ty, yield_ty }) => {
                self.check_expr_coercible_to_type(value, yield_ty, None);

                resume_ty
            }
            _ => {
                self.dcx().emit_err(YieldExprOutsideOfCoroutine { span: expr.span });
                // Avoid expressions without types during writeback (#78653).
                self.check_expr(value);
                self.tcx.types.unit
            }
        }
    }

    fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
        let needs = if is_input { Needs::None } else { Needs::MutPlace };
        let ty = self.check_expr_with_needs(expr, needs);
        self.require_type_is_sized(ty, expr.span, ObligationCauseCode::InlineAsmSized);

        if !is_input && !expr.is_syntactic_place_expr() {
            self.dcx()
                .struct_span_err(expr.span, "invalid asm output")
                .with_span_label(expr.span, "cannot assign to this expression")
                .emit();
        }

        // If this is an input value, we require its type to be fully resolved
        // at this point. This allows us to provide helpful coercions which help
        // pass the type candidate list in a later pass.
        //
        // We don't require output types to be resolved at this point, which
        // allows them to be inferred based on how they are used later in the
        // function.
        if is_input {
            let ty = self.structurally_resolve_type(expr.span, ty);
            match *ty.kind() {
                ty::FnDef(..) => {
                    let fnptr_ty = Ty::new_fn_ptr(self.tcx, ty.fn_sig(self.tcx));
                    self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
                }
                ty::Ref(_, base_ty, mutbl) => {
                    let ptr_ty = Ty::new_ptr(self.tcx, base_ty, mutbl);
                    self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
                }
                _ => {}
            }
        }
    }

    fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
        let mut diverge = asm.asm_macro.diverges(asm.options);

        for (op, _op_sp) in asm.operands {
            match op {
                hir::InlineAsmOperand::In { expr, .. } => {
                    self.check_expr_asm_operand(expr, true);
                }
                hir::InlineAsmOperand::Out { expr: Some(expr), .. }
                | hir::InlineAsmOperand::InOut { expr, .. } => {
                    self.check_expr_asm_operand(expr, false);
                }
                hir::InlineAsmOperand::Out { expr: None, .. } => {}
                hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
                    self.check_expr_asm_operand(in_expr, true);
                    if let Some(out_expr) = out_expr {
                        self.check_expr_asm_operand(out_expr, false);
                    }
                }
                // `AnonConst`s have their own body and is type-checked separately.
                // As they don't flow into the type system we don't need them to
                // be well-formed.
                hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymFn { .. } => {}
                hir::InlineAsmOperand::SymStatic { .. } => {}
                hir::InlineAsmOperand::Label { block } => {
                    let previous_diverges = self.diverges.get();

                    // The label blocks should have unit return value or diverge.
                    let ty =
                        self.check_block_with_expected(block, ExpectHasType(self.tcx.types.unit));
                    if !ty.is_never() {
                        self.demand_suptype(block.span, self.tcx.types.unit, ty);
                        diverge = false;
                    }

                    // We need this to avoid false unreachable warning when a label diverges.
                    self.diverges.set(previous_diverges);
                }
            }
        }

        if diverge { self.tcx.types.never } else { self.tcx.types.unit }
    }

    fn check_offset_of(
        &self,
        container: &'tcx hir::Ty<'tcx>,
        fields: &[Ident],
        expr: &'tcx hir::Expr<'tcx>,
    ) -> Ty<'tcx> {
        let container = self.lower_ty(container).normalized;

        let mut field_indices = Vec::with_capacity(fields.len());
        let mut current_container = container;
        let mut fields = fields.into_iter();

        while let Some(&field) = fields.next() {
            let container = self.structurally_resolve_type(expr.span, current_container);

            match container.kind() {
                ty::Adt(container_def, args) if container_def.is_enum() => {
                    let block = self.tcx.local_def_id_to_hir_id(self.body_id);
                    let (ident, _def_scope) =
                        self.tcx.adjust_ident_and_get_scope(field, container_def.did(), block);

                    if !self.tcx.features().offset_of_enum {
                        rustc_session::parse::feature_err(
                            &self.tcx.sess,
                            sym::offset_of_enum,
                            ident.span,
                            "using enums in offset_of is experimental",
                        )
                        .emit();
                    }

                    let Some((index, variant)) = container_def
                        .variants()
                        .iter_enumerated()
                        .find(|(_, v)| v.ident(self.tcx).normalize_to_macros_2_0() == ident)
                    else {
                        type_error_struct!(
                            self.dcx(),
                            ident.span,
                            container,
                            E0599,
                            "no variant named `{ident}` found for enum `{container}`",
                        )
                        .with_span_label(field.span, "variant not found")
                        .emit();
                        break;
                    };
                    let Some(&subfield) = fields.next() else {
                        type_error_struct!(
                            self.dcx(),
                            ident.span,
                            container,
                            E0795,
                            "`{ident}` is an enum variant; expected field at end of `offset_of`",
                        )
                        .with_span_label(field.span, "enum variant")
                        .emit();
                        break;
                    };
                    let (subident, sub_def_scope) =
                        self.tcx.adjust_ident_and_get_scope(subfield, variant.def_id, block);

                    let Some((subindex, field)) = variant
                        .fields
                        .iter_enumerated()
                        .find(|(_, f)| f.ident(self.tcx).normalize_to_macros_2_0() == subident)
                    else {
                        type_error_struct!(
                            self.dcx(),
                            ident.span,
                            container,
                            E0609,
                            "no field named `{subfield}` on enum variant `{container}::{ident}`",
                        )
                        .with_span_label(field.span, "this enum variant...")
                        .with_span_label(subident.span, "...does not have this field")
                        .emit();
                        break;
                    };

                    let field_ty = self.field_ty(expr.span, field, args);

                    // Enums are anyway always sized. But just to safeguard against future
                    // language extensions, let's double-check.
                    self.require_type_is_sized(field_ty, expr.span, ObligationCauseCode::Misc);

                    if field.vis.is_accessible_from(sub_def_scope, self.tcx) {
                        self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
                    } else {
                        self.private_field_err(ident, container_def.did()).emit();
                    }

                    // Save the index of all fields regardless of their visibility in case
                    // of error recovery.
                    field_indices.push((index, subindex));
                    current_container = field_ty;

                    continue;
                }
                ty::Adt(container_def, args) => {
                    let block = self.tcx.local_def_id_to_hir_id(self.body_id);
                    let (ident, def_scope) =
                        self.tcx.adjust_ident_and_get_scope(field, container_def.did(), block);

                    let fields = &container_def.non_enum_variant().fields;
                    if let Some((index, field)) = fields
                        .iter_enumerated()
                        .find(|(_, f)| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
                    {
                        let field_ty = self.field_ty(expr.span, field, args);

                        if self.tcx.features().offset_of_slice {
                            self.require_type_has_static_alignment(
                                field_ty,
                                expr.span,
                                ObligationCauseCode::Misc,
                            );
                        } else {
                            self.require_type_is_sized(
                                field_ty,
                                expr.span,
                                ObligationCauseCode::Misc,
                            );
                        }

                        if field.vis.is_accessible_from(def_scope, self.tcx) {
                            self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
                        } else {
                            self.private_field_err(ident, container_def.did()).emit();
                        }

                        // Save the index of all fields regardless of their visibility in case
                        // of error recovery.
                        field_indices.push((FIRST_VARIANT, index));
                        current_container = field_ty;

                        continue;
                    }
                }
                ty::Tuple(tys) => {
                    if let Ok(index) = field.as_str().parse::<usize>()
                        && field.name == sym::integer(index)
                    {
                        if let Some(&field_ty) = tys.get(index) {
                            if self.tcx.features().offset_of_slice {
                                self.require_type_has_static_alignment(
                                    field_ty,
                                    expr.span,
                                    ObligationCauseCode::Misc,
                                );
                            } else {
                                self.require_type_is_sized(
                                    field_ty,
                                    expr.span,
                                    ObligationCauseCode::Misc,
                                );
                            }

                            field_indices.push((FIRST_VARIANT, index.into()));
                            current_container = field_ty;

                            continue;
                        }
                    }
                }
                _ => (),
            };

            self.no_such_field_err(field, container, expr.hir_id).emit();

            break;
        }

        self.typeck_results
            .borrow_mut()
            .offset_of_data_mut()
            .insert(expr.hir_id, (container, field_indices));

        self.tcx.types.usize
    }
}