1use rustc_abi::{FIRST_VARIANT, FieldIdx};
9use rustc_ast::util::parser::ExprPrecedence;
10use rustc_data_structures::fx::{FxHashMap, FxHashSet};
11use rustc_data_structures::stack::ensure_sufficient_stack;
12use rustc_data_structures::unord::UnordMap;
13use rustc_errors::codes::*;
14use rustc_errors::{
15 Applicability, Diag, ErrorGuaranteed, MultiSpan, StashKey, Subdiagnostic, listify, pluralize,
16 struct_span_code_err,
17};
18use rustc_hir::attrs::AttributeKind;
19use rustc_hir::def::{CtorKind, DefKind, Res};
20use rustc_hir::def_id::DefId;
21use rustc_hir::lang_items::LangItem;
22use rustc_hir::{ExprKind, HirId, QPath, find_attr};
23use rustc_hir_analysis::NoVariantNamed;
24use rustc_hir_analysis::hir_ty_lowering::{FeedConstTy, HirTyLowerer as _};
25use rustc_infer::infer::{self, DefineOpaqueTypes, InferOk, RegionVariableOrigin};
26use rustc_infer::traits::query::NoSolution;
27use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
28use rustc_middle::ty::error::{ExpectedFound, TypeError};
29use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TypeVisitableExt};
30use rustc_middle::{bug, span_bug};
31use rustc_session::errors::ExprParenthesesNeeded;
32use rustc_session::parse::feature_err;
33use rustc_span::edit_distance::find_best_match_for_name;
34use rustc_span::hygiene::DesugaringKind;
35use rustc_span::source_map::Spanned;
36use rustc_span::{Ident, Span, Symbol, kw, sym};
37use rustc_trait_selection::infer::InferCtxtExt;
38use rustc_trait_selection::traits::{self, ObligationCauseCode, ObligationCtxt};
39use tracing::{debug, instrument, trace};
40use {rustc_ast as ast, rustc_hir as hir};
41
42use crate::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
43use crate::coercion::{CoerceMany, DynamicCoerceMany};
44use crate::errors::{
45 AddressOfTemporaryTaken, BaseExpressionDoubleDot, BaseExpressionDoubleDotAddExpr,
46 BaseExpressionDoubleDotRemove, CantDereference, FieldMultiplySpecifiedInInitializer,
47 FunctionalRecordUpdateOnNonStruct, HelpUseLatestEdition, NakedAsmOutsideNakedFn, NoFieldOnType,
48 NoFieldOnVariant, ReturnLikeStatementKind, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive,
49 TypeMismatchFruTypo, YieldExprOutsideOfCoroutine,
50};
51use crate::{
52 BreakableCtxt, CoroutineTypes, Diverges, FnCtxt, GatherLocalsVisitor, Needs,
53 TupleArgumentsFlag, cast, fatally_break_rust, report_unexpected_variant_res, type_error_struct,
54};
55
56impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
57 pub(crate) fn precedence(&self, expr: &hir::Expr<'_>) -> ExprPrecedence {
58 let has_attr = |id: HirId| -> bool {
59 for attr in self.tcx.hir_attrs(id) {
60 if attr.span().desugaring_kind().is_none() {
74 return true;
75 }
76 }
77 false
78 };
79 expr.precedence(&has_attr)
80 }
81
82 pub(crate) fn check_expr_has_type_or_error(
86 &self,
87 expr: &'tcx hir::Expr<'tcx>,
88 expected_ty: Ty<'tcx>,
89 extend_err: impl FnOnce(&mut Diag<'_>),
90 ) -> Ty<'tcx> {
91 let mut ty = self.check_expr_with_expectation(expr, ExpectHasType(expected_ty));
92
93 if self.try_structurally_resolve_type(expr.span, ty).is_never()
96 && self.expr_guaranteed_to_constitute_read_for_never(expr)
97 {
98 if let Some(adjustments) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
99 let reported = self.dcx().span_delayed_bug(
100 expr.span,
101 "expression with never type wound up being adjusted",
102 );
103
104 return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &adjustments[..] {
105 target.to_owned()
106 } else {
107 Ty::new_error(self.tcx(), reported)
108 };
109 }
110
111 let adj_ty = self.next_ty_var(expr.span);
112 self.apply_adjustments(
113 expr,
114 vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
115 );
116 ty = adj_ty;
117 }
118
119 if let Err(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
120 let _ = self.emit_type_mismatch_suggestions(
121 &mut err,
122 expr.peel_drop_temps(),
123 ty,
124 expected_ty,
125 None,
126 None,
127 );
128 extend_err(&mut err);
129 err.emit();
130 }
131 ty
132 }
133
134 pub(super) fn check_expr_coercible_to_type(
138 &self,
139 expr: &'tcx hir::Expr<'tcx>,
140 expected: Ty<'tcx>,
141 expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
142 ) -> Ty<'tcx> {
143 self.check_expr_coercible_to_type_or_error(expr, expected, expected_ty_expr, |_, _| {})
144 }
145
146 pub(crate) fn check_expr_coercible_to_type_or_error(
147 &self,
148 expr: &'tcx hir::Expr<'tcx>,
149 expected: Ty<'tcx>,
150 expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
151 extend_err: impl FnOnce(&mut Diag<'_>, Ty<'tcx>),
152 ) -> Ty<'tcx> {
153 let ty = self.check_expr_with_hint(expr, expected);
154 match self.demand_coerce_diag(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No) {
156 Ok(ty) => ty,
157 Err(mut err) => {
158 extend_err(&mut err, ty);
159 err.emit();
160 expected
164 }
165 }
166 }
167
168 pub(super) fn check_expr_with_hint(
173 &self,
174 expr: &'tcx hir::Expr<'tcx>,
175 expected: Ty<'tcx>,
176 ) -> Ty<'tcx> {
177 self.check_expr_with_expectation(expr, ExpectHasType(expected))
178 }
179
180 fn check_expr_with_expectation_and_needs(
183 &self,
184 expr: &'tcx hir::Expr<'tcx>,
185 expected: Expectation<'tcx>,
186 needs: Needs,
187 ) -> Ty<'tcx> {
188 let ty = self.check_expr_with_expectation(expr, expected);
189
190 if let Needs::MutPlace = needs {
193 self.convert_place_derefs_to_mutable(expr);
194 }
195
196 ty
197 }
198
199 pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
201 self.check_expr_with_expectation(expr, NoExpectation)
202 }
203
204 pub(super) fn check_expr_with_needs(
207 &self,
208 expr: &'tcx hir::Expr<'tcx>,
209 needs: Needs,
210 ) -> Ty<'tcx> {
211 self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
212 }
213
214 #[instrument(skip(self, expr), level = "debug")]
217 pub(super) fn check_expr_with_expectation(
218 &self,
219 expr: &'tcx hir::Expr<'tcx>,
220 expected: Expectation<'tcx>,
221 ) -> Ty<'tcx> {
222 self.check_expr_with_expectation_and_args(expr, expected, None)
223 }
224
225 pub(super) fn check_expr_with_expectation_and_args(
230 &self,
231 expr: &'tcx hir::Expr<'tcx>,
232 expected: Expectation<'tcx>,
233 call_expr_and_args: Option<(&'tcx hir::Expr<'tcx>, &'tcx [hir::Expr<'tcx>])>,
234 ) -> Ty<'tcx> {
235 if self.tcx().sess.verbose_internals() {
236 if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
238 if !lint_str.contains('\n') {
239 debug!("expr text: {lint_str}");
240 } else {
241 let mut lines = lint_str.lines();
242 if let Some(line0) = lines.next() {
243 let remaining_lines = lines.count();
244 debug!("expr text: {line0}");
245 debug!("expr text: ...(and {remaining_lines} more lines)");
246 }
247 }
248 }
249 }
250
251 let is_try_block_generated_unit_expr = match expr.kind {
255 ExprKind::Call(_, [arg]) => {
256 expr.span.is_desugaring(DesugaringKind::TryBlock)
257 && arg.span.is_desugaring(DesugaringKind::TryBlock)
258 }
259 _ => false,
260 };
261
262 if !is_try_block_generated_unit_expr {
264 self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
265 }
266
267 let old_diverges = self.diverges.replace(Diverges::Maybe);
270
271 if self.is_whole_body.replace(false) {
272 self.diverges.set(self.function_diverges_because_of_empty_arguments.get())
275 };
276
277 let ty = ensure_sufficient_stack(|| match &expr.kind {
278 hir::ExprKind::Path(
280 qpath @ (hir::QPath::Resolved(..) | hir::QPath::TypeRelative(..)),
281 ) => self.check_expr_path(qpath, expr, call_expr_and_args),
282 _ => self.check_expr_kind(expr, expected),
283 });
284 let ty = self.resolve_vars_if_possible(ty);
285
286 match expr.kind {
288 ExprKind::Block(..)
289 | ExprKind::If(..)
290 | ExprKind::Let(..)
291 | ExprKind::Loop(..)
292 | ExprKind::Match(..) => {}
293 ExprKind::Cast(_, _) => {}
296 ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
300 ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::Contract) => {}
302 ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
303 ExprKind::MethodCall(segment, ..) => {
304 self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
305 }
306 _ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
307 }
308
309 if self.try_structurally_resolve_type(expr.span, ty).is_never()
314 && self.expr_guaranteed_to_constitute_read_for_never(expr)
315 {
316 self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
317 }
318
319 self.write_ty(expr.hir_id, ty);
323
324 self.diverges.set(self.diverges.get() | old_diverges);
326
327 debug!("type of {} is...", self.tcx.hir_id_to_string(expr.hir_id));
328 debug!("... {:?}, expected is {:?}", ty, expected);
329
330 ty
331 }
332
333 pub(super) fn expr_guaranteed_to_constitute_read_for_never(
345 &self,
346 expr: &'tcx hir::Expr<'tcx>,
347 ) -> bool {
348 if !expr.is_syntactic_place_expr() {
354 return true;
355 }
356
357 let parent_node = self.tcx.parent_hir_node(expr.hir_id);
358 match parent_node {
359 hir::Node::Expr(parent_expr) => {
360 match parent_expr.kind {
361 ExprKind::AddrOf(..) | hir::ExprKind::Field(..) => false,
365
366 ExprKind::Type(..) | ExprKind::UnsafeBinderCast(..) => {
369 self.expr_guaranteed_to_constitute_read_for_never(expr)
370 }
371
372 ExprKind::Assign(lhs, _, _) => {
373 expr.hir_id != lhs.hir_id
375 }
376
377 ExprKind::Match(scrutinee, arms, _) => {
379 assert_eq!(scrutinee.hir_id, expr.hir_id);
380 arms.iter()
381 .all(|arm| self.pat_guaranteed_to_constitute_read_for_never(arm.pat))
382 }
383 ExprKind::Let(hir::LetExpr { init, pat, .. }) => {
384 assert_eq!(init.hir_id, expr.hir_id);
385 self.pat_guaranteed_to_constitute_read_for_never(*pat)
386 }
387
388 ExprKind::Array(_)
390 | ExprKind::Call(_, _)
391 | ExprKind::Use(_, _)
392 | ExprKind::MethodCall(_, _, _, _)
393 | ExprKind::Tup(_)
394 | ExprKind::Binary(_, _, _)
395 | ExprKind::Unary(_, _)
396 | ExprKind::Cast(_, _)
397 | ExprKind::DropTemps(_)
398 | ExprKind::If(_, _, _)
399 | ExprKind::Closure(_)
400 | ExprKind::Block(_, _)
401 | ExprKind::AssignOp(_, _, _)
402 | ExprKind::Index(_, _, _)
403 | ExprKind::Break(_, _)
404 | ExprKind::Ret(_)
405 | ExprKind::Become(_)
406 | ExprKind::InlineAsm(_)
407 | ExprKind::Struct(_, _, _)
408 | ExprKind::Repeat(_, _)
409 | ExprKind::Yield(_, _) => true,
410
411 ExprKind::ConstBlock(_)
413 | ExprKind::Loop(_, _, _, _)
414 | ExprKind::Lit(_)
415 | ExprKind::Path(_)
416 | ExprKind::Continue(_)
417 | ExprKind::OffsetOf(_, _)
418 | ExprKind::Err(_) => unreachable!("no sub-expr expected for {:?}", expr.kind),
419 }
420 }
421
422 hir::Node::LetStmt(hir::LetStmt { init: Some(target), pat, .. }) => {
425 assert_eq!(target.hir_id, expr.hir_id);
426 self.pat_guaranteed_to_constitute_read_for_never(*pat)
427 }
428
429 hir::Node::Block(_)
431 | hir::Node::Arm(_)
432 | hir::Node::ExprField(_)
433 | hir::Node::AnonConst(_)
434 | hir::Node::ConstBlock(_)
435 | hir::Node::ConstArg(_)
436 | hir::Node::Stmt(_)
437 | hir::Node::Item(hir::Item {
438 kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
439 ..
440 })
441 | hir::Node::TraitItem(hir::TraitItem {
442 kind: hir::TraitItemKind::Const(..), ..
443 })
444 | hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. }) => true,
445
446 hir::Node::TyPat(_) | hir::Node::Pat(_) => {
447 self.dcx().span_delayed_bug(expr.span, "place expr not allowed in pattern");
448 true
449 }
450
451 hir::Node::Param(_)
453 | hir::Node::Item(_)
454 | hir::Node::ForeignItem(_)
455 | hir::Node::TraitItem(_)
456 | hir::Node::ImplItem(_)
457 | hir::Node::Variant(_)
458 | hir::Node::Field(_)
459 | hir::Node::PathSegment(_)
460 | hir::Node::Ty(_)
461 | hir::Node::AssocItemConstraint(_)
462 | hir::Node::TraitRef(_)
463 | hir::Node::PatField(_)
464 | hir::Node::PatExpr(_)
465 | hir::Node::LetStmt(_)
466 | hir::Node::Synthetic
467 | hir::Node::Err(_)
468 | hir::Node::Ctor(_)
469 | hir::Node::Lifetime(_)
470 | hir::Node::GenericParam(_)
471 | hir::Node::Crate(_)
472 | hir::Node::Infer(_)
473 | hir::Node::WherePredicate(_)
474 | hir::Node::PreciseCapturingNonLifetimeArg(_)
475 | hir::Node::OpaqueTy(_) => {
476 unreachable!("no sub-expr expected for {parent_node:?}")
477 }
478 }
479 }
480
481 pub(super) fn pat_guaranteed_to_constitute_read_for_never(&self, pat: &hir::Pat<'_>) -> bool {
487 match pat.kind {
488 hir::PatKind::Wild => false,
490
491 hir::PatKind::Guard(_, _) => true,
493
494 hir::PatKind::Or(subpats) => {
503 subpats.iter().all(|pat| self.pat_guaranteed_to_constitute_read_for_never(pat))
504 }
505
506 hir::PatKind::Never => true,
508
509 hir::PatKind::Missing
512 | hir::PatKind::Binding(_, _, _, _)
513 | hir::PatKind::Struct(_, _, _)
514 | hir::PatKind::TupleStruct(_, _, _)
515 | hir::PatKind::Tuple(_, _)
516 | hir::PatKind::Box(_)
517 | hir::PatKind::Ref(_, _)
518 | hir::PatKind::Deref(_)
519 | hir::PatKind::Expr(_)
520 | hir::PatKind::Range(_, _, _)
521 | hir::PatKind::Slice(_, _, _)
522 | hir::PatKind::Err(_) => true,
523 }
524 }
525
526 #[instrument(skip(self, expr), level = "debug")]
527 fn check_expr_kind(
528 &self,
529 expr: &'tcx hir::Expr<'tcx>,
530 expected: Expectation<'tcx>,
531 ) -> Ty<'tcx> {
532 trace!("expr={:#?}", expr);
533
534 let tcx = self.tcx;
535 match expr.kind {
536 ExprKind::Lit(ref lit) => self.check_expr_lit(lit, expected),
537 ExprKind::Binary(op, lhs, rhs) => self.check_expr_binop(expr, op, lhs, rhs, expected),
538 ExprKind::Assign(lhs, rhs, span) => {
539 self.check_expr_assign(expr, expected, lhs, rhs, span)
540 }
541 ExprKind::AssignOp(op, lhs, rhs) => {
542 self.check_expr_assign_op(expr, op, lhs, rhs, expected)
543 }
544 ExprKind::Unary(unop, oprnd) => self.check_expr_unop(unop, oprnd, expected, expr),
545 ExprKind::AddrOf(kind, mutbl, oprnd) => {
546 self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
547 }
548 ExprKind::Path(QPath::LangItem(lang_item, _)) => {
549 self.check_lang_item_path(lang_item, expr)
550 }
551 ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, None),
552 ExprKind::InlineAsm(asm) => {
553 self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
555 self.check_expr_asm(asm, expr.span)
556 }
557 ExprKind::OffsetOf(container, fields) => {
558 self.check_expr_offset_of(container, fields, expr)
559 }
560 ExprKind::Break(destination, ref expr_opt) => {
561 self.check_expr_break(destination, expr_opt.as_deref(), expr)
562 }
563 ExprKind::Continue(destination) => self.check_expr_continue(destination, expr),
564 ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
565 ExprKind::Become(call) => self.check_expr_become(call, expr),
566 ExprKind::Let(let_expr) => self.check_expr_let(let_expr, expr.hir_id),
567 ExprKind::Loop(body, _, source, _) => {
568 self.check_expr_loop(body, source, expected, expr)
569 }
570 ExprKind::Match(discrim, arms, match_src) => {
571 self.check_expr_match(expr, discrim, arms, expected, match_src)
572 }
573 ExprKind::Closure(closure) => self.check_expr_closure(closure, expr.span, expected),
574 ExprKind::Block(body, _) => self.check_expr_block(body, expected),
575 ExprKind::Call(callee, args) => self.check_expr_call(expr, callee, args, expected),
576 ExprKind::Use(used_expr, _) => self.check_expr_use(used_expr, expected),
577 ExprKind::MethodCall(segment, receiver, args, _) => {
578 self.check_expr_method_call(expr, segment, receiver, args, expected)
579 }
580 ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
581 ExprKind::Type(e, t) => {
582 let ascribed_ty = self.lower_ty_saving_user_provided_ty(t);
583 let ty = self.check_expr_with_hint(e, ascribed_ty);
584 self.demand_eqtype(e.span, ascribed_ty, ty);
585 ascribed_ty
586 }
587 ExprKind::If(cond, then_expr, opt_else_expr) => {
588 self.check_expr_if(expr.hir_id, cond, then_expr, opt_else_expr, expr.span, expected)
589 }
590 ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
591 ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
592 ExprKind::ConstBlock(ref block) => self.check_expr_const_block(block, expected),
593 ExprKind::Repeat(element, ref count) => {
594 self.check_expr_repeat(element, count, expected, expr)
595 }
596 ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
597 ExprKind::Struct(qpath, fields, ref base_expr) => {
598 self.check_expr_struct(expr, expected, qpath, fields, base_expr)
599 }
600 ExprKind::Field(base, field) => self.check_expr_field(expr, base, field, expected),
601 ExprKind::Index(base, idx, brackets_span) => {
602 self.check_expr_index(base, idx, expr, brackets_span)
603 }
604 ExprKind::Yield(value, _) => self.check_expr_yield(value, expr),
605 ExprKind::UnsafeBinderCast(kind, inner_expr, ty) => {
606 self.check_expr_unsafe_binder_cast(expr.span, kind, inner_expr, ty, expected)
607 }
608 ExprKind::Err(guar) => Ty::new_error(tcx, guar),
609 }
610 }
611
612 fn check_expr_unop(
613 &self,
614 unop: hir::UnOp,
615 oprnd: &'tcx hir::Expr<'tcx>,
616 expected: Expectation<'tcx>,
617 expr: &'tcx hir::Expr<'tcx>,
618 ) -> Ty<'tcx> {
619 let tcx = self.tcx;
620 let expected_inner = match unop {
621 hir::UnOp::Not | hir::UnOp::Neg => expected,
622 hir::UnOp::Deref => NoExpectation,
623 };
624 let mut oprnd_t = self.check_expr_with_expectation(oprnd, expected_inner);
625
626 if !oprnd_t.references_error() {
627 oprnd_t = self.structurally_resolve_type(expr.span, oprnd_t);
628 match unop {
629 hir::UnOp::Deref => {
630 if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
631 oprnd_t = ty;
632 } else {
633 let mut err =
634 self.dcx().create_err(CantDereference { span: expr.span, ty: oprnd_t });
635 let sp = tcx.sess.source_map().start_point(expr.span).with_parent(None);
636 if let Some(sp) =
637 tcx.sess.psess.ambiguous_block_expr_parse.borrow().get(&sp)
638 {
639 err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
640 }
641 oprnd_t = Ty::new_error(tcx, err.emit());
642 }
643 }
644 hir::UnOp::Not => {
645 let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
646 if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
648 oprnd_t = result;
649 }
650 }
651 hir::UnOp::Neg => {
652 let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
653 if !oprnd_t.is_numeric() {
655 oprnd_t = result;
656 }
657 }
658 }
659 }
660 oprnd_t
661 }
662
663 fn check_expr_addr_of(
664 &self,
665 kind: hir::BorrowKind,
666 mutbl: hir::Mutability,
667 oprnd: &'tcx hir::Expr<'tcx>,
668 expected: Expectation<'tcx>,
669 expr: &'tcx hir::Expr<'tcx>,
670 ) -> Ty<'tcx> {
671 let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
672 match self.try_structurally_resolve_type(expr.span, ty).kind() {
673 ty::Ref(_, ty, _) | ty::RawPtr(ty, _) => {
674 if oprnd.is_syntactic_place_expr() {
675 ExpectHasType(*ty)
679 } else {
680 Expectation::rvalue_hint(self, *ty)
681 }
682 }
683 _ => NoExpectation,
684 }
685 });
686 let ty =
687 self.check_expr_with_expectation_and_needs(oprnd, hint, Needs::maybe_mut_place(mutbl));
688
689 match kind {
690 _ if ty.references_error() => Ty::new_misc_error(self.tcx),
691 hir::BorrowKind::Raw => {
692 self.check_named_place_expr(oprnd);
693 Ty::new_ptr(self.tcx, ty, mutbl)
694 }
695 hir::BorrowKind::Ref | hir::BorrowKind::Pin => {
696 let region = self.next_region_var(RegionVariableOrigin::BorrowRegion(expr.span));
711 match kind {
712 hir::BorrowKind::Ref => Ty::new_ref(self.tcx, region, ty, mutbl),
713 hir::BorrowKind::Pin => Ty::new_pinned_ref(self.tcx, region, ty, mutbl),
714 _ => unreachable!(),
715 }
716 }
717 }
718 }
719
720 fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
726 let is_named = oprnd.is_place_expr(|base| {
727 self.typeck_results
739 .borrow()
740 .adjustments()
741 .get(base.hir_id)
742 .is_some_and(|x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
743 });
744 if !is_named {
745 self.dcx().emit_err(AddressOfTemporaryTaken { span: oprnd.span });
746 }
747 }
748
749 fn check_lang_item_path(
750 &self,
751 lang_item: hir::LangItem,
752 expr: &'tcx hir::Expr<'tcx>,
753 ) -> Ty<'tcx> {
754 self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id).1
755 }
756
757 pub(crate) fn check_expr_path(
758 &self,
759 qpath: &'tcx hir::QPath<'tcx>,
760 expr: &'tcx hir::Expr<'tcx>,
761 call_expr_and_args: Option<(&'tcx hir::Expr<'tcx>, &'tcx [hir::Expr<'tcx>])>,
762 ) -> Ty<'tcx> {
763 let tcx = self.tcx;
764 let (res, opt_ty, segs) =
765 self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
766 let ty = match res {
767 Res::Err => {
768 self.suggest_assoc_method_call(segs);
769 let e =
770 self.dcx().span_delayed_bug(qpath.span(), "`Res::Err` but no error emitted");
771 Ty::new_error(tcx, e)
772 }
773 Res::Def(DefKind::Variant, _) => {
774 let e = report_unexpected_variant_res(
775 tcx,
776 res,
777 Some(expr),
778 qpath,
779 expr.span,
780 E0533,
781 "value",
782 );
783 Ty::new_error(tcx, e)
784 }
785 _ => {
786 self.instantiate_value_path(
787 segs,
788 opt_ty,
789 res,
790 call_expr_and_args.map_or(expr.span, |(e, _)| e.span),
791 expr.span,
792 expr.hir_id,
793 )
794 .0
795 }
796 };
797
798 if let ty::FnDef(did, _) = *ty.kind() {
799 let fn_sig = ty.fn_sig(tcx);
800
801 if tcx.is_intrinsic(did, sym::transmute) {
802 let Some(from) = fn_sig.inputs().skip_binder().get(0) else {
803 span_bug!(
804 tcx.def_span(did),
805 "intrinsic fn `transmute` defined with no parameters"
806 );
807 };
808 let to = fn_sig.output().skip_binder();
809 self.deferred_transmute_checks.borrow_mut().push((*from, to, expr.hir_id));
814 }
815 if !tcx.features().unsized_fn_params() {
816 for i in 0..fn_sig.inputs().skip_binder().len() {
826 let span = call_expr_and_args
830 .and_then(|(_, args)| args.get(i))
831 .map_or(expr.span, |arg| arg.span);
832 let input = self.instantiate_binder_with_fresh_vars(
833 span,
834 infer::BoundRegionConversionTime::FnCall,
835 fn_sig.input(i),
836 );
837 self.require_type_is_sized_deferred(
838 input,
839 span,
840 ObligationCauseCode::SizedArgumentType(None),
841 );
842 }
843 }
844 let output = self.instantiate_binder_with_fresh_vars(
850 expr.span,
851 infer::BoundRegionConversionTime::FnCall,
852 fn_sig.output(),
853 );
854 self.require_type_is_sized_deferred(
855 output,
856 call_expr_and_args.map_or(expr.span, |(e, _)| e.span),
857 ObligationCauseCode::SizedCallReturnType,
858 );
859 }
860
861 let args = self.typeck_results.borrow().node_args(expr.hir_id);
864 self.add_wf_bounds(args, expr.span);
865
866 ty
867 }
868
869 fn check_expr_break(
870 &self,
871 destination: hir::Destination,
872 expr_opt: Option<&'tcx hir::Expr<'tcx>>,
873 expr: &'tcx hir::Expr<'tcx>,
874 ) -> Ty<'tcx> {
875 let tcx = self.tcx;
876 if let Ok(target_id) = destination.target_id {
877 let (e_ty, cause);
878 if let Some(e) = expr_opt {
879 let opt_coerce_to = {
882 let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
886 match enclosing_breakables.opt_find_breakable(target_id) {
887 Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
888 None => {
889 return Ty::new_error_with_message(
891 tcx,
892 expr.span,
893 "break was outside loop, but no error was emitted",
894 );
895 }
896 }
897 };
898
899 let coerce_to = opt_coerce_to.unwrap_or_else(|| {
904 let guar = self.dcx().span_delayed_bug(
905 expr.span,
906 "illegal break with value found but no error reported",
907 );
908 self.set_tainted_by_errors(guar);
909 Ty::new_error(tcx, guar)
910 });
911
912 e_ty = self.check_expr_with_hint(e, coerce_to);
914 cause = self.misc(e.span);
915 } else {
916 e_ty = tcx.types.unit;
919 cause = self.misc(expr.span);
920 }
921
922 let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
926 let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
927 return Ty::new_error_with_message(
929 tcx,
930 expr.span,
931 "break was outside loop, but no error was emitted",
932 );
933 };
934
935 if let Some(ref mut coerce) = ctxt.coerce {
936 if let Some(e) = expr_opt {
937 coerce.coerce(self, &cause, e, e_ty);
938 } else {
939 assert!(e_ty.is_unit());
940 let ty = coerce.expected_ty();
941 coerce.coerce_forced_unit(
942 self,
943 &cause,
944 |mut err| {
945 self.suggest_missing_semicolon(&mut err, expr, e_ty, false, false);
946 self.suggest_mismatched_types_on_tail(
947 &mut err, expr, ty, e_ty, target_id,
948 );
949 let error =
950 Some(TypeError::Sorts(ExpectedFound { expected: ty, found: e_ty }));
951 self.annotate_loop_expected_due_to_inference(err, expr, error);
952 if let Some(val) =
953 self.err_ctxt().ty_kind_suggestion(self.param_env, ty)
954 {
955 err.span_suggestion_verbose(
956 expr.span.shrink_to_hi(),
957 "give the `break` a value of the expected type",
958 format!(" {val}"),
959 Applicability::HasPlaceholders,
960 );
961 }
962 },
963 false,
964 );
965 }
966 } else {
967 assert!(expr_opt.is_none() || self.tainted_by_errors().is_some());
975 }
976
977 ctxt.may_break |= !self.diverges.get().is_always();
981
982 tcx.types.never
984 } else {
985 let err = Ty::new_error_with_message(
990 self.tcx,
991 expr.span,
992 "break was outside loop, but no error was emitted",
993 );
994
995 if let Some(e) = expr_opt {
998 self.check_expr_with_hint(e, err);
999
1000 if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
1003 if let [segment] = path.segments
1004 && segment.ident.name == sym::rust
1005 {
1006 fatally_break_rust(self.tcx, expr.span);
1007 }
1008 }
1009 }
1010
1011 err
1013 }
1014 }
1015
1016 fn check_expr_continue(
1017 &self,
1018 destination: hir::Destination,
1019 expr: &'tcx hir::Expr<'tcx>,
1020 ) -> Ty<'tcx> {
1021 if let Ok(target_id) = destination.target_id {
1022 if let hir::Node::Expr(hir::Expr { kind: ExprKind::Loop(..), .. }) =
1023 self.tcx.hir_node(target_id)
1024 {
1025 self.tcx.types.never
1026 } else {
1027 let guar = self.dcx().span_delayed_bug(
1030 expr.span,
1031 "found `continue` not pointing to loop, but no error reported",
1032 );
1033 Ty::new_error(self.tcx, guar)
1034 }
1035 } else {
1036 Ty::new_misc_error(self.tcx)
1038 }
1039 }
1040
1041 fn check_expr_return(
1042 &self,
1043 expr_opt: Option<&'tcx hir::Expr<'tcx>>,
1044 expr: &'tcx hir::Expr<'tcx>,
1045 ) -> Ty<'tcx> {
1046 if self.ret_coercion.is_none() {
1047 self.emit_return_outside_of_fn_body(expr, ReturnLikeStatementKind::Return);
1048
1049 if let Some(e) = expr_opt {
1050 self.check_expr(e);
1053 }
1054 } else if let Some(e) = expr_opt {
1055 if self.ret_coercion_span.get().is_none() {
1056 self.ret_coercion_span.set(Some(e.span));
1057 }
1058 self.check_return_or_body_tail(e, true);
1059 } else {
1060 let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
1061 if self.ret_coercion_span.get().is_none() {
1062 self.ret_coercion_span.set(Some(expr.span));
1063 }
1064 let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
1065 if let Some((_, fn_decl)) = self.get_fn_decl(expr.hir_id) {
1066 coercion.coerce_forced_unit(
1067 self,
1068 &cause,
1069 |db| {
1070 let span = fn_decl.output.span();
1071 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
1072 db.span_label(
1073 span,
1074 format!("expected `{snippet}` because of this return type"),
1075 );
1076 }
1077 },
1078 true,
1079 );
1080 } else {
1081 coercion.coerce_forced_unit(self, &cause, |_| (), true);
1082 }
1083 }
1084 self.tcx.types.never
1085 }
1086
1087 fn check_expr_become(
1088 &self,
1089 call: &'tcx hir::Expr<'tcx>,
1090 expr: &'tcx hir::Expr<'tcx>,
1091 ) -> Ty<'tcx> {
1092 match &self.ret_coercion {
1093 Some(ret_coercion) => {
1094 let ret_ty = ret_coercion.borrow().expected_ty();
1095 let call_expr_ty = self.check_expr_with_hint(call, ret_ty);
1096
1097 self.demand_suptype(expr.span, ret_ty, call_expr_ty);
1100 }
1101 None => {
1102 self.emit_return_outside_of_fn_body(expr, ReturnLikeStatementKind::Become);
1103
1104 self.check_expr(call);
1107 }
1108 }
1109
1110 self.tcx.types.never
1111 }
1112
1113 pub(super) fn check_return_or_body_tail(
1122 &self,
1123 return_expr: &'tcx hir::Expr<'tcx>,
1124 explicit_return: bool,
1125 ) {
1126 let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
1127 span_bug!(return_expr.span, "check_return_expr called outside fn body")
1128 });
1129
1130 let ret_ty = ret_coercion.borrow().expected_ty();
1131 let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
1132 let mut span = return_expr.span;
1133 let mut hir_id = return_expr.hir_id;
1134 if !explicit_return
1137 && let ExprKind::Block(body, _) = return_expr.kind
1138 && let Some(last_expr) = body.expr
1139 {
1140 span = last_expr.span;
1141 hir_id = last_expr.hir_id;
1142 }
1143 ret_coercion.borrow_mut().coerce(
1144 self,
1145 &self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
1146 return_expr,
1147 return_expr_ty,
1148 );
1149
1150 if let Some(fn_sig) = self.body_fn_sig()
1151 && fn_sig.output().has_opaque_types()
1152 {
1153 self.select_obligations_where_possible(|errors| {
1156 self.point_at_return_for_opaque_ty_error(
1157 errors,
1158 hir_id,
1159 span,
1160 return_expr_ty,
1161 return_expr.span,
1162 );
1163 });
1164 }
1165 }
1166
1167 fn emit_return_outside_of_fn_body(&self, expr: &hir::Expr<'_>, kind: ReturnLikeStatementKind) {
1172 let mut err = ReturnStmtOutsideOfFnBody {
1173 span: expr.span,
1174 encl_body_span: None,
1175 encl_fn_span: None,
1176 statement_kind: kind,
1177 };
1178
1179 let encl_item_id = self.tcx.hir_get_parent_item(expr.hir_id);
1180
1181 if let hir::Node::Item(hir::Item {
1182 kind: hir::ItemKind::Fn { .. },
1183 span: encl_fn_span,
1184 ..
1185 })
1186 | hir::Node::TraitItem(hir::TraitItem {
1187 kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
1188 span: encl_fn_span,
1189 ..
1190 })
1191 | hir::Node::ImplItem(hir::ImplItem {
1192 kind: hir::ImplItemKind::Fn(..),
1193 span: encl_fn_span,
1194 ..
1195 }) = self.tcx.hir_node_by_def_id(encl_item_id.def_id)
1196 {
1197 let encl_body_owner_id = self.tcx.hir_enclosing_body_owner(expr.hir_id);
1201
1202 assert_ne!(encl_item_id.def_id, encl_body_owner_id);
1205
1206 let encl_body = self.tcx.hir_body_owned_by(encl_body_owner_id);
1207
1208 err.encl_body_span = Some(encl_body.value.span);
1209 err.encl_fn_span = Some(*encl_fn_span);
1210 }
1211
1212 self.dcx().emit_err(err);
1213 }
1214
1215 fn point_at_return_for_opaque_ty_error(
1216 &self,
1217 errors: &mut Vec<traits::FulfillmentError<'tcx>>,
1218 hir_id: HirId,
1219 span: Span,
1220 return_expr_ty: Ty<'tcx>,
1221 return_span: Span,
1222 ) {
1223 if span == return_span {
1225 return;
1226 }
1227 for err in errors {
1228 let cause = &mut err.obligation.cause;
1229 if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
1230 let new_cause = self.cause(
1231 cause.span,
1232 ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, hir_id))),
1233 );
1234 *cause = new_cause;
1235 }
1236 }
1237 }
1238
1239 pub(crate) fn check_lhs_assignable(
1240 &self,
1241 lhs: &'tcx hir::Expr<'tcx>,
1242 code: ErrCode,
1243 op_span: Span,
1244 adjust_err: impl FnOnce(&mut Diag<'_>),
1245 ) {
1246 if lhs.is_syntactic_place_expr() {
1247 return;
1248 }
1249
1250 let mut err = self.dcx().struct_span_err(op_span, "invalid left-hand side of assignment");
1251 err.code(code);
1252 err.span_label(lhs.span, "cannot assign to this expression");
1253
1254 self.comes_from_while_condition(lhs.hir_id, |expr| {
1255 err.span_suggestion_verbose(
1256 expr.span.shrink_to_lo(),
1257 "you might have meant to use pattern destructuring",
1258 "let ",
1259 Applicability::MachineApplicable,
1260 );
1261 });
1262 self.check_for_missing_semi(lhs, &mut err);
1263
1264 adjust_err(&mut err);
1265
1266 err.emit();
1267 }
1268
1269 pub(crate) fn check_for_missing_semi(
1271 &self,
1272 expr: &'tcx hir::Expr<'tcx>,
1273 err: &mut Diag<'_>,
1274 ) -> bool {
1275 if let hir::ExprKind::Binary(binop, lhs, rhs) = expr.kind
1276 && let hir::BinOpKind::Mul = binop.node
1277 && self.tcx.sess.source_map().is_multiline(lhs.span.between(rhs.span))
1278 && rhs.is_syntactic_place_expr()
1279 {
1280 err.span_suggestion_verbose(
1285 lhs.span.shrink_to_hi(),
1286 "you might have meant to write a semicolon here",
1287 ";",
1288 Applicability::MachineApplicable,
1289 );
1290 return true;
1291 }
1292 false
1293 }
1294
1295 pub(super) fn comes_from_while_condition(
1299 &self,
1300 original_expr_id: HirId,
1301 then: impl FnOnce(&hir::Expr<'_>),
1302 ) {
1303 let mut parent = self.tcx.parent_hir_id(original_expr_id);
1304 loop {
1305 let node = self.tcx.hir_node(parent);
1306 match node {
1307 hir::Node::Expr(hir::Expr {
1308 kind:
1309 hir::ExprKind::Loop(
1310 hir::Block {
1311 expr:
1312 Some(hir::Expr {
1313 kind:
1314 hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
1315 ..
1316 }),
1317 ..
1318 },
1319 _,
1320 hir::LoopSource::While,
1321 _,
1322 ),
1323 ..
1324 }) => {
1325 if self.tcx.hir_parent_id_iter(original_expr_id).any(|id| id == expr.hir_id) {
1329 then(expr);
1330 }
1331 break;
1332 }
1333 hir::Node::Item(_)
1334 | hir::Node::ImplItem(_)
1335 | hir::Node::TraitItem(_)
1336 | hir::Node::Crate(_) => break,
1337 _ => {
1338 parent = self.tcx.parent_hir_id(parent);
1339 }
1340 }
1341 }
1342 }
1343
1344 fn check_expr_if(
1347 &self,
1348 expr_id: HirId,
1349 cond_expr: &'tcx hir::Expr<'tcx>,
1350 then_expr: &'tcx hir::Expr<'tcx>,
1351 opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
1352 sp: Span,
1353 orig_expected: Expectation<'tcx>,
1354 ) -> Ty<'tcx> {
1355 let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
1356
1357 self.warn_if_unreachable(
1358 cond_expr.hir_id,
1359 then_expr.span,
1360 "block in `if` or `while` expression",
1361 );
1362
1363 let cond_diverges = self.diverges.get();
1364 self.diverges.set(Diverges::Maybe);
1365
1366 let expected = orig_expected.try_structurally_resolve_and_adjust_for_branches(self, sp);
1367 let then_ty = self.check_expr_with_expectation(then_expr, expected);
1368 let then_diverges = self.diverges.get();
1369 self.diverges.set(Diverges::Maybe);
1370
1371 let coerce_to_ty = expected.coercion_target_type(self, sp);
1378 let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
1379
1380 coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
1381
1382 if let Some(else_expr) = opt_else_expr {
1383 let else_ty = self.check_expr_with_expectation(else_expr, expected);
1384 let else_diverges = self.diverges.get();
1385
1386 let tail_defines_return_position_impl_trait =
1387 self.return_position_impl_trait_from_match_expectation(orig_expected);
1388 let if_cause =
1389 self.if_cause(expr_id, else_expr, tail_defines_return_position_impl_trait);
1390
1391 coerce.coerce(self, &if_cause, else_expr, else_ty);
1392
1393 self.diverges.set(cond_diverges | then_diverges & else_diverges);
1395 } else {
1396 self.if_fallback_coercion(sp, cond_expr, then_expr, &mut coerce);
1397
1398 self.diverges.set(cond_diverges);
1400 }
1401
1402 let result_ty = coerce.complete(self);
1403 if let Err(guar) = cond_ty.error_reported() {
1404 Ty::new_error(self.tcx, guar)
1405 } else {
1406 result_ty
1407 }
1408 }
1409
1410 fn check_expr_assign(
1413 &self,
1414 expr: &'tcx hir::Expr<'tcx>,
1415 expected: Expectation<'tcx>,
1416 lhs: &'tcx hir::Expr<'tcx>,
1417 rhs: &'tcx hir::Expr<'tcx>,
1418 span: Span,
1419 ) -> Ty<'tcx> {
1420 let expected_ty = expected.only_has_type(self);
1421 if expected_ty == Some(self.tcx.types.bool) {
1422 let guar = self.expr_assign_expected_bool_error(expr, lhs, rhs, span);
1423 return Ty::new_error(self.tcx, guar);
1424 }
1425
1426 let lhs_ty = self.check_expr_with_needs(lhs, Needs::MutPlace);
1427
1428 let suggest_deref_binop = |err: &mut Diag<'_>, rhs_ty: Ty<'tcx>| {
1429 if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
1430 let lhs_deref_ty_is_sized = self
1433 .infcx
1434 .type_implements_trait(
1435 self.tcx.require_lang_item(LangItem::Sized, span),
1436 [lhs_deref_ty],
1437 self.param_env,
1438 )
1439 .may_apply();
1440 if lhs_deref_ty_is_sized && self.may_coerce(rhs_ty, lhs_deref_ty) {
1441 err.span_suggestion_verbose(
1442 lhs.span.shrink_to_lo(),
1443 "consider dereferencing here to assign to the mutably borrowed value",
1444 "*",
1445 Applicability::MachineApplicable,
1446 );
1447 }
1448 }
1449 };
1450
1451 let rhs_ty = self.check_expr_with_hint(rhs, lhs_ty);
1454 if let Err(mut diag) =
1455 self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
1456 {
1457 suggest_deref_binop(&mut diag, rhs_ty);
1458 diag.emit();
1459 }
1460
1461 self.check_lhs_assignable(lhs, E0070, span, |err| {
1462 if let Some(rhs_ty) = self.typeck_results.borrow().expr_ty_opt(rhs) {
1463 suggest_deref_binop(err, rhs_ty);
1464 }
1465 });
1466
1467 self.require_type_is_sized(lhs_ty, lhs.span, ObligationCauseCode::AssignmentLhsSized);
1468
1469 if let Err(guar) = (lhs_ty, rhs_ty).error_reported() {
1470 Ty::new_error(self.tcx, guar)
1471 } else {
1472 self.tcx.types.unit
1473 }
1474 }
1475
1476 fn expr_assign_expected_bool_error(
1480 &self,
1481 expr: &'tcx hir::Expr<'tcx>,
1482 lhs: &'tcx hir::Expr<'tcx>,
1483 rhs: &'tcx hir::Expr<'tcx>,
1484 span: Span,
1485 ) -> ErrorGuaranteed {
1486 let actual_ty = self.tcx.types.unit;
1487 let expected_ty = self.tcx.types.bool;
1488 let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap_err();
1489 let lhs_ty = self.check_expr(lhs);
1490 let rhs_ty = self.check_expr(rhs);
1491 let refs_can_coerce = |lhs: Ty<'tcx>, rhs: Ty<'tcx>| {
1492 let lhs = Ty::new_imm_ref(self.tcx, self.tcx.lifetimes.re_erased, lhs.peel_refs());
1493 let rhs = Ty::new_imm_ref(self.tcx, self.tcx.lifetimes.re_erased, rhs.peel_refs());
1494 self.may_coerce(rhs, lhs)
1495 };
1496 let (applicability, eq) = if self.may_coerce(rhs_ty, lhs_ty) {
1497 (Applicability::MachineApplicable, true)
1498 } else if refs_can_coerce(rhs_ty, lhs_ty) {
1499 (Applicability::MaybeIncorrect, true)
1502 } else if let ExprKind::Binary(
1503 Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
1504 _,
1505 rhs_expr,
1506 ) = lhs.kind
1507 {
1508 let actual_lhs = self.check_expr(rhs_expr);
1511 let may_eq = self.may_coerce(rhs_ty, actual_lhs) || refs_can_coerce(rhs_ty, actual_lhs);
1512 (Applicability::MaybeIncorrect, may_eq)
1513 } else if let ExprKind::Binary(
1514 Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
1515 lhs_expr,
1516 _,
1517 ) = rhs.kind
1518 {
1519 let actual_rhs = self.check_expr(lhs_expr);
1522 let may_eq = self.may_coerce(actual_rhs, lhs_ty) || refs_can_coerce(actual_rhs, lhs_ty);
1523 (Applicability::MaybeIncorrect, may_eq)
1524 } else {
1525 (Applicability::MaybeIncorrect, false)
1526 };
1527
1528 if !lhs.is_syntactic_place_expr()
1529 && lhs.is_approximately_pattern()
1530 && !matches!(lhs.kind, hir::ExprKind::Lit(_))
1531 {
1532 if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
1534 self.tcx.parent_hir_node(expr.hir_id)
1535 {
1536 err.span_suggestion_verbose(
1537 expr.span.shrink_to_lo(),
1538 "you might have meant to use pattern matching",
1539 "let ",
1540 applicability,
1541 );
1542 };
1543 }
1544 if eq {
1545 err.span_suggestion_verbose(
1546 span.shrink_to_hi(),
1547 "you might have meant to compare for equality",
1548 '=',
1549 applicability,
1550 );
1551 }
1552
1553 err.emit_unless_delay(lhs_ty.references_error() || rhs_ty.references_error())
1556 }
1557
1558 pub(super) fn check_expr_let(
1559 &self,
1560 let_expr: &'tcx hir::LetExpr<'tcx>,
1561 hir_id: HirId,
1562 ) -> Ty<'tcx> {
1563 GatherLocalsVisitor::gather_from_let_expr(self, let_expr, hir_id);
1564
1565 let init = let_expr.init;
1567 self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
1568
1569 self.check_decl((let_expr, hir_id).into());
1571
1572 if let ast::Recovered::Yes(error_guaranteed) = let_expr.recovered {
1574 self.set_tainted_by_errors(error_guaranteed);
1575 Ty::new_error(self.tcx, error_guaranteed)
1576 } else {
1577 self.tcx.types.bool
1578 }
1579 }
1580
1581 fn check_expr_loop(
1582 &self,
1583 body: &'tcx hir::Block<'tcx>,
1584 source: hir::LoopSource,
1585 expected: Expectation<'tcx>,
1586 expr: &'tcx hir::Expr<'tcx>,
1587 ) -> Ty<'tcx> {
1588 let coerce = match source {
1589 hir::LoopSource::Loop => {
1591 let coerce_to = expected.coercion_target_type(self, body.span);
1592 Some(CoerceMany::new(coerce_to))
1593 }
1594
1595 hir::LoopSource::While | hir::LoopSource::ForLoop => None,
1596 };
1597
1598 let ctxt = BreakableCtxt {
1599 coerce,
1600 may_break: false, };
1602
1603 let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
1604 self.check_block_no_value(body);
1605 });
1606
1607 if ctxt.may_break {
1608 self.diverges.set(Diverges::Maybe);
1611 } else {
1612 self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
1613 }
1614
1615 if ctxt.coerce.is_none() && !ctxt.may_break {
1621 self.dcx().span_bug(body.span, "no coercion, but loop may not break");
1622 }
1623 ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.types.unit)
1624 }
1625
1626 fn check_expr_method_call(
1628 &self,
1629 expr: &'tcx hir::Expr<'tcx>,
1630 segment: &'tcx hir::PathSegment<'tcx>,
1631 rcvr: &'tcx hir::Expr<'tcx>,
1632 args: &'tcx [hir::Expr<'tcx>],
1633 expected: Expectation<'tcx>,
1634 ) -> Ty<'tcx> {
1635 let rcvr_t = self.check_expr(rcvr);
1636 let rcvr_t = self.structurally_resolve_type(rcvr.span, rcvr_t);
1638
1639 match self.lookup_method(rcvr_t, segment, segment.ident.span, expr, rcvr, args) {
1640 Ok(method) => {
1641 self.write_method_call_and_enforce_effects(expr.hir_id, expr.span, method);
1642
1643 self.check_argument_types(
1644 segment.ident.span,
1645 expr,
1646 &method.sig.inputs()[1..],
1647 method.sig.output(),
1648 expected,
1649 args,
1650 method.sig.c_variadic,
1651 TupleArgumentsFlag::DontTupleArguments,
1652 Some(method.def_id),
1653 );
1654
1655 self.check_call_abi(method.sig.abi, expr.span);
1656
1657 method.sig.output()
1658 }
1659 Err(error) => {
1660 let guar = self.report_method_error(expr.hir_id, rcvr_t, error, expected, false);
1661
1662 let err_inputs = self.err_args(args.len(), guar);
1663 let err_output = Ty::new_error(self.tcx, guar);
1664
1665 self.check_argument_types(
1666 segment.ident.span,
1667 expr,
1668 &err_inputs,
1669 err_output,
1670 NoExpectation,
1671 args,
1672 false,
1673 TupleArgumentsFlag::DontTupleArguments,
1674 None,
1675 );
1676
1677 err_output
1678 }
1679 }
1680 }
1681
1682 fn check_expr_use(
1684 &self,
1685 used_expr: &'tcx hir::Expr<'tcx>,
1686 expected: Expectation<'tcx>,
1687 ) -> Ty<'tcx> {
1688 self.check_expr_with_expectation(used_expr, expected)
1689 }
1690
1691 fn check_expr_cast(
1692 &self,
1693 e: &'tcx hir::Expr<'tcx>,
1694 t: &'tcx hir::Ty<'tcx>,
1695 expr: &'tcx hir::Expr<'tcx>,
1696 ) -> Ty<'tcx> {
1697 let t_cast = self.lower_ty_saving_user_provided_ty(t);
1700 let t_cast = self.resolve_vars_if_possible(t_cast);
1701 let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
1702 let t_expr = self.resolve_vars_if_possible(t_expr);
1703
1704 if let Err(guar) = (t_expr, t_cast).error_reported() {
1706 Ty::new_error(self.tcx, guar)
1707 } else {
1708 let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
1710 match cast::CastCheck::new(self, e, t_expr, t_cast, t.span, expr.span) {
1711 Ok(cast_check) => {
1712 debug!(
1713 "check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
1714 t_cast, t_expr, cast_check,
1715 );
1716 deferred_cast_checks.push(cast_check);
1717 t_cast
1718 }
1719 Err(guar) => Ty::new_error(self.tcx, guar),
1720 }
1721 }
1722 }
1723
1724 fn check_expr_unsafe_binder_cast(
1725 &self,
1726 span: Span,
1727 kind: ast::UnsafeBinderCastKind,
1728 inner_expr: &'tcx hir::Expr<'tcx>,
1729 hir_ty: Option<&'tcx hir::Ty<'tcx>>,
1730 expected: Expectation<'tcx>,
1731 ) -> Ty<'tcx> {
1732 match kind {
1733 ast::UnsafeBinderCastKind::Wrap => {
1734 let ascribed_ty =
1735 hir_ty.map(|hir_ty| self.lower_ty_saving_user_provided_ty(hir_ty));
1736 let expected_ty = expected.only_has_type(self);
1737 let binder_ty = match (ascribed_ty, expected_ty) {
1738 (Some(ascribed_ty), Some(expected_ty)) => {
1739 self.demand_eqtype(inner_expr.span, expected_ty, ascribed_ty);
1740 expected_ty
1741 }
1742 (Some(ty), None) | (None, Some(ty)) => ty,
1743 (None, None) => self.next_ty_var(inner_expr.span),
1747 };
1748
1749 let binder_ty = self.structurally_resolve_type(inner_expr.span, binder_ty);
1750 let hint_ty = match *binder_ty.kind() {
1751 ty::UnsafeBinder(binder) => self.instantiate_binder_with_fresh_vars(
1752 inner_expr.span,
1753 infer::BoundRegionConversionTime::HigherRankedType,
1754 binder.into(),
1755 ),
1756 ty::Error(e) => Ty::new_error(self.tcx, e),
1757 _ => {
1758 let guar = self
1759 .dcx()
1760 .struct_span_err(
1761 hir_ty.map_or(span, |hir_ty| hir_ty.span),
1762 format!(
1763 "`wrap_binder!()` can only wrap into unsafe binder, not {}",
1764 binder_ty.sort_string(self.tcx)
1765 ),
1766 )
1767 .with_note("unsafe binders are the only valid output of wrap")
1768 .emit();
1769 Ty::new_error(self.tcx, guar)
1770 }
1771 };
1772
1773 self.check_expr_has_type_or_error(inner_expr, hint_ty, |_| {});
1774
1775 binder_ty
1776 }
1777 ast::UnsafeBinderCastKind::Unwrap => {
1778 let ascribed_ty =
1779 hir_ty.map(|hir_ty| self.lower_ty_saving_user_provided_ty(hir_ty));
1780 let hint_ty = ascribed_ty.unwrap_or_else(|| self.next_ty_var(inner_expr.span));
1781 let binder_ty = self.check_expr_has_type_or_error(inner_expr, hint_ty, |_| {});
1783
1784 let binder_ty = self.structurally_resolve_type(inner_expr.span, binder_ty);
1787 match *binder_ty.kind() {
1788 ty::UnsafeBinder(binder) => self.instantiate_binder_with_fresh_vars(
1789 inner_expr.span,
1790 infer::BoundRegionConversionTime::HigherRankedType,
1791 binder.into(),
1792 ),
1793 ty::Error(e) => Ty::new_error(self.tcx, e),
1794 _ => {
1795 let guar = self
1796 .dcx()
1797 .struct_span_err(
1798 hir_ty.map_or(inner_expr.span, |hir_ty| hir_ty.span),
1799 format!(
1800 "expected unsafe binder, found {} as input of \
1801 `unwrap_binder!()`",
1802 binder_ty.sort_string(self.tcx)
1803 ),
1804 )
1805 .with_note("only an unsafe binder type can be unwrapped")
1806 .emit();
1807 Ty::new_error(self.tcx, guar)
1808 }
1809 }
1810 }
1811 }
1812 }
1813
1814 fn check_expr_array(
1815 &self,
1816 args: &'tcx [hir::Expr<'tcx>],
1817 expected: Expectation<'tcx>,
1818 expr: &'tcx hir::Expr<'tcx>,
1819 ) -> Ty<'tcx> {
1820 let element_ty = if !args.is_empty() {
1821 let coerce_to = expected
1822 .to_option(self)
1823 .and_then(|uty| self.try_structurally_resolve_type(expr.span, uty).builtin_index())
1824 .unwrap_or_else(|| self.next_ty_var(expr.span));
1825 let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
1826 assert_eq!(self.diverges.get(), Diverges::Maybe);
1827 for e in args {
1828 let e_ty = self.check_expr_with_hint(e, coerce_to);
1829 let cause = self.misc(e.span);
1830 coerce.coerce(self, &cause, e, e_ty);
1831 }
1832 coerce.complete(self)
1833 } else {
1834 self.next_ty_var(expr.span)
1835 };
1836 let array_len = args.len() as u64;
1837 self.suggest_array_len(expr, array_len);
1838 Ty::new_array(self.tcx, element_ty, array_len)
1839 }
1840
1841 fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
1842 let parent_node = self.tcx.hir_parent_iter(expr.hir_id).find(|(_, node)| {
1843 !matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
1844 });
1845 let Some((_, hir::Node::LetStmt(hir::LetStmt { ty: Some(ty), .. }))) = parent_node else {
1846 return;
1847 };
1848 if let hir::TyKind::Array(_, ct) = ty.peel_refs().kind {
1849 let span = ct.span();
1850 self.dcx().try_steal_modify_and_emit_err(
1851 span,
1852 StashKey::UnderscoreForArrayLengths,
1853 |err| {
1854 err.span_suggestion(
1855 span,
1856 "consider specifying the array length",
1857 array_len,
1858 Applicability::MaybeIncorrect,
1859 );
1860 },
1861 );
1862 }
1863 }
1864
1865 pub(super) fn check_expr_const_block(
1866 &self,
1867 block: &'tcx hir::ConstBlock,
1868 expected: Expectation<'tcx>,
1869 ) -> Ty<'tcx> {
1870 let body = self.tcx.hir_body(block.body);
1871
1872 let def_id = block.def_id;
1874 let fcx = FnCtxt::new(self, self.param_env, def_id);
1875
1876 let ty = fcx.check_expr_with_expectation(body.value, expected);
1877 fcx.require_type_is_sized(ty, body.value.span, ObligationCauseCode::SizedConstOrStatic);
1878 fcx.write_ty(block.hir_id, ty);
1879 ty
1880 }
1881
1882 fn check_expr_repeat(
1883 &self,
1884 element: &'tcx hir::Expr<'tcx>,
1885 count: &'tcx hir::ConstArg<'tcx>,
1886 expected: Expectation<'tcx>,
1887 expr: &'tcx hir::Expr<'tcx>,
1888 ) -> Ty<'tcx> {
1889 let tcx = self.tcx;
1890 let count_span = count.span();
1891 let count = self.try_structurally_resolve_const(
1892 count_span,
1893 self.normalize(count_span, self.lower_const_arg(count, FeedConstTy::No)),
1894 );
1895
1896 if let Some(count) = count.try_to_target_usize(tcx) {
1897 self.suggest_array_len(expr, count);
1898 }
1899
1900 let uty = match expected {
1901 ExpectHasType(uty) => uty.builtin_index(),
1902 _ => None,
1903 };
1904
1905 let (element_ty, t) = match uty {
1906 Some(uty) => {
1907 self.check_expr_coercible_to_type(element, uty, None);
1908 (uty, uty)
1909 }
1910 None => {
1911 let ty = self.next_ty_var(element.span);
1912 let element_ty = self.check_expr_has_type_or_error(element, ty, |_| {});
1913 (element_ty, ty)
1914 }
1915 };
1916
1917 if let Err(guar) = element_ty.error_reported() {
1918 return Ty::new_error(tcx, guar);
1919 }
1920
1921 self.deferred_repeat_expr_checks.borrow_mut().push((element, element_ty, count));
1925
1926 let ty = Ty::new_array_with_const_len(tcx, t, count);
1927 self.register_wf_obligation(ty.into(), expr.span, ObligationCauseCode::WellFormed(None));
1928 ty
1929 }
1930
1931 fn check_expr_tuple(
1932 &self,
1933 elts: &'tcx [hir::Expr<'tcx>],
1934 expected: Expectation<'tcx>,
1935 expr: &'tcx hir::Expr<'tcx>,
1936 ) -> Ty<'tcx> {
1937 let flds = expected.only_has_type(self).and_then(|ty| {
1938 let ty = self.try_structurally_resolve_type(expr.span, ty);
1939 match ty.kind() {
1940 ty::Tuple(flds) => Some(&flds[..]),
1941 _ => None,
1942 }
1943 });
1944
1945 let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
1946 Some(fs) if i < fs.len() => {
1947 let ety = fs[i];
1948 self.check_expr_coercible_to_type(e, ety, None);
1949 ety
1950 }
1951 _ => self.check_expr_with_expectation(e, NoExpectation),
1952 });
1953 let tuple = Ty::new_tup_from_iter(self.tcx, elt_ts_iter);
1954 if let Err(guar) = tuple.error_reported() {
1955 Ty::new_error(self.tcx, guar)
1956 } else {
1957 self.require_type_is_sized(
1958 tuple,
1959 expr.span,
1960 ObligationCauseCode::TupleInitializerSized,
1961 );
1962 tuple
1963 }
1964 }
1965
1966 fn check_expr_struct(
1967 &self,
1968 expr: &hir::Expr<'tcx>,
1969 expected: Expectation<'tcx>,
1970 qpath: &'tcx QPath<'tcx>,
1971 fields: &'tcx [hir::ExprField<'tcx>],
1972 base_expr: &'tcx hir::StructTailExpr<'tcx>,
1973 ) -> Ty<'tcx> {
1974 let (variant, adt_ty) = match self.check_struct_path(qpath, expr.hir_id) {
1976 Ok(data) => data,
1977 Err(guar) => {
1978 self.check_struct_fields_on_error(fields, base_expr);
1979 return Ty::new_error(self.tcx, guar);
1980 }
1981 };
1982
1983 let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
1985 if variant.field_list_has_applicable_non_exhaustive() {
1986 self.dcx()
1987 .emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
1988 }
1989
1990 self.check_expr_struct_fields(
1991 adt_ty,
1992 expected,
1993 expr,
1994 qpath.span(),
1995 variant,
1996 fields,
1997 base_expr,
1998 );
1999
2000 self.require_type_is_sized(adt_ty, expr.span, ObligationCauseCode::StructInitializerSized);
2001 adt_ty
2002 }
2003
2004 fn check_expr_struct_fields(
2005 &self,
2006 adt_ty: Ty<'tcx>,
2007 expected: Expectation<'tcx>,
2008 expr: &hir::Expr<'_>,
2009 path_span: Span,
2010 variant: &'tcx ty::VariantDef,
2011 hir_fields: &'tcx [hir::ExprField<'tcx>],
2012 base_expr: &'tcx hir::StructTailExpr<'tcx>,
2013 ) {
2014 let tcx = self.tcx;
2015
2016 let adt_ty = self.try_structurally_resolve_type(path_span, adt_ty);
2017 let adt_ty_hint = expected.only_has_type(self).and_then(|expected| {
2018 self.fudge_inference_if_ok(|| {
2019 let ocx = ObligationCtxt::new(self);
2020 ocx.sup(&self.misc(path_span), self.param_env, expected, adt_ty)?;
2021 if !ocx.select_where_possible().is_empty() {
2022 return Err(TypeError::Mismatch);
2023 }
2024 Ok(self.resolve_vars_if_possible(adt_ty))
2025 })
2026 .ok()
2027 });
2028 if let Some(adt_ty_hint) = adt_ty_hint {
2029 self.demand_eqtype(path_span, adt_ty_hint, adt_ty);
2031 }
2032
2033 let ty::Adt(adt, args) = adt_ty.kind() else {
2034 span_bug!(path_span, "non-ADT passed to check_expr_struct_fields");
2035 };
2036 let adt_kind = adt.adt_kind();
2037
2038 let mut remaining_fields = variant
2039 .fields
2040 .iter_enumerated()
2041 .map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
2042 .collect::<UnordMap<_, _>>();
2043
2044 let mut seen_fields = FxHashMap::default();
2045
2046 let mut error_happened = false;
2047
2048 if variant.fields.len() != remaining_fields.len() {
2049 let guar =
2052 self.dcx().span_delayed_bug(expr.span, "struct fields have non-unique names");
2053 self.set_tainted_by_errors(guar);
2054 error_happened = true;
2055 }
2056
2057 for (idx, field) in hir_fields.iter().enumerate() {
2059 let ident = tcx.adjust_ident(field.ident, variant.def_id);
2060 let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
2061 seen_fields.insert(ident, field.span);
2062 self.write_field_index(field.hir_id, i);
2063
2064 if adt_kind != AdtKind::Enum {
2068 tcx.check_stability(v_field.did, Some(field.hir_id), field.span, None);
2069 }
2070
2071 self.field_ty(field.span, v_field, args)
2072 } else {
2073 error_happened = true;
2074 let guar = if let Some(prev_span) = seen_fields.get(&ident) {
2075 self.dcx().emit_err(FieldMultiplySpecifiedInInitializer {
2076 span: field.ident.span,
2077 prev_span: *prev_span,
2078 ident,
2079 })
2080 } else {
2081 self.report_unknown_field(
2082 adt_ty,
2083 variant,
2084 expr,
2085 field,
2086 hir_fields,
2087 adt.variant_descr(),
2088 )
2089 };
2090
2091 Ty::new_error(tcx, guar)
2092 };
2093
2094 self.register_wf_obligation(
2098 field_type.into(),
2099 field.expr.span,
2100 ObligationCauseCode::WellFormed(None),
2101 );
2102
2103 let ty = self.check_expr_with_hint(field.expr, field_type);
2106 let diag = self.demand_coerce_diag(field.expr, ty, field_type, None, AllowTwoPhase::No);
2107
2108 if let Err(diag) = diag {
2109 if idx == hir_fields.len() - 1 {
2110 if remaining_fields.is_empty() {
2111 self.suggest_fru_from_range_and_emit(field, variant, args, diag);
2112 } else {
2113 diag.stash(field.span, StashKey::MaybeFruTypo);
2114 }
2115 } else {
2116 diag.emit();
2117 }
2118 }
2119 }
2120
2121 if adt_kind == AdtKind::Union && hir_fields.len() != 1 {
2123 struct_span_code_err!(
2124 self.dcx(),
2125 path_span,
2126 E0784,
2127 "union expressions should have exactly one field",
2128 )
2129 .emit();
2130 }
2131
2132 if error_happened {
2136 if let hir::StructTailExpr::Base(base_expr) = base_expr {
2137 self.check_expr(base_expr);
2138 }
2139 return;
2140 }
2141
2142 if let hir::StructTailExpr::DefaultFields(span) = *base_expr {
2143 let mut missing_mandatory_fields = Vec::new();
2144 let mut missing_optional_fields = Vec::new();
2145 for f in &variant.fields {
2146 let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
2147 if let Some(_) = remaining_fields.remove(&ident) {
2148 if f.value.is_none() {
2149 missing_mandatory_fields.push(ident);
2150 } else {
2151 missing_optional_fields.push(ident);
2152 }
2153 }
2154 }
2155 if !self.tcx.features().default_field_values() {
2156 let sugg = self.tcx.crate_level_attribute_injection_span();
2157 self.dcx().emit_err(BaseExpressionDoubleDot {
2158 span: span.shrink_to_hi(),
2159 default_field_values_suggestion: if self.tcx.sess.is_nightly_build()
2162 && missing_mandatory_fields.is_empty()
2163 && !missing_optional_fields.is_empty()
2164 {
2165 Some(sugg)
2166 } else {
2167 None
2168 },
2169 add_expr: if !missing_mandatory_fields.is_empty()
2170 || !missing_optional_fields.is_empty()
2171 {
2172 Some(BaseExpressionDoubleDotAddExpr { span: span.shrink_to_hi() })
2173 } else {
2174 None
2175 },
2176 remove_dots: if missing_mandatory_fields.is_empty()
2177 && missing_optional_fields.is_empty()
2178 {
2179 Some(BaseExpressionDoubleDotRemove { span })
2180 } else {
2181 None
2182 },
2183 });
2184 return;
2185 }
2186 if variant.fields.is_empty() {
2187 let mut err = self.dcx().struct_span_err(
2188 span,
2189 format!(
2190 "`{adt_ty}` has no fields, `..` needs at least one default field in the \
2191 struct definition",
2192 ),
2193 );
2194 err.span_label(path_span, "this type has no fields");
2195 err.emit();
2196 }
2197 if !missing_mandatory_fields.is_empty() {
2198 let s = pluralize!(missing_mandatory_fields.len());
2199 let fields = listify(&missing_mandatory_fields, |f| format!("`{f}`")).unwrap();
2200 self.dcx()
2201 .struct_span_err(
2202 span.shrink_to_lo(),
2203 format!("missing field{s} {fields} in initializer"),
2204 )
2205 .with_span_label(
2206 span.shrink_to_lo(),
2207 "fields that do not have a defaulted value must be provided explicitly",
2208 )
2209 .emit();
2210 return;
2211 }
2212 let fru_tys = match adt_ty.kind() {
2213 ty::Adt(adt, args) if adt.is_struct() => variant
2214 .fields
2215 .iter()
2216 .map(|f| self.normalize(span, f.ty(self.tcx, args)))
2217 .collect(),
2218 ty::Adt(adt, args) if adt.is_enum() => variant
2219 .fields
2220 .iter()
2221 .map(|f| self.normalize(span, f.ty(self.tcx, args)))
2222 .collect(),
2223 _ => {
2224 self.dcx().emit_err(FunctionalRecordUpdateOnNonStruct { span });
2225 return;
2226 }
2227 };
2228 self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr.hir_id, fru_tys);
2229 } else if let hir::StructTailExpr::Base(base_expr) = base_expr {
2230 let fru_tys = if self.tcx.features().type_changing_struct_update() {
2233 if adt.is_struct() {
2234 let fresh_args = self.fresh_args_for_item(base_expr.span, adt.did());
2236 let fru_tys = variant
2241 .fields
2242 .iter()
2243 .map(|f| {
2244 let fru_ty = self
2245 .normalize(expr.span, self.field_ty(base_expr.span, f, fresh_args));
2246 let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
2247 if let Some(_) = remaining_fields.remove(&ident) {
2248 let target_ty = self.field_ty(base_expr.span, f, args);
2249 let cause = self.misc(base_expr.span);
2250 match self.at(&cause, self.param_env).sup(
2251 DefineOpaqueTypes::Yes,
2255 target_ty,
2256 fru_ty,
2257 ) {
2258 Ok(InferOk { obligations, value: () }) => {
2259 self.register_predicates(obligations)
2260 }
2261 Err(_) => {
2262 span_bug!(
2263 cause.span,
2264 "subtyping remaining fields of type changing FRU failed: {target_ty} != {fru_ty}: {}::{}",
2265 variant.name,
2266 ident.name,
2267 );
2268 }
2269 }
2270 }
2271 self.resolve_vars_if_possible(fru_ty)
2272 })
2273 .collect();
2274 let fresh_base_ty = Ty::new_adt(self.tcx, *adt, fresh_args);
2293 self.check_expr_has_type_or_error(
2294 base_expr,
2295 self.resolve_vars_if_possible(fresh_base_ty),
2296 |_| {},
2297 );
2298 fru_tys
2299 } else {
2300 self.check_expr(base_expr);
2303 self.dcx().emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
2304 return;
2305 }
2306 } else {
2307 self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
2308 let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
2309 let same_adt = matches!((adt_ty.kind(), base_ty.kind()),
2310 (ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt);
2311 if self.tcx.sess.is_nightly_build() && same_adt {
2312 feature_err(
2313 &self.tcx.sess,
2314 sym::type_changing_struct_update,
2315 base_expr.span,
2316 "type changing struct updating is experimental",
2317 )
2318 .emit();
2319 }
2320 });
2321 match adt_ty.kind() {
2322 ty::Adt(adt, args) if adt.is_struct() => variant
2323 .fields
2324 .iter()
2325 .map(|f| self.normalize(expr.span, f.ty(self.tcx, args)))
2326 .collect(),
2327 _ => {
2328 self.dcx()
2329 .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
2330 return;
2331 }
2332 }
2333 };
2334 self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr.hir_id, fru_tys);
2335 } else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
2336 debug!(?remaining_fields);
2337 let private_fields: Vec<&ty::FieldDef> = variant
2338 .fields
2339 .iter()
2340 .filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr.hir_id), tcx))
2341 .collect();
2342
2343 if !private_fields.is_empty() {
2344 self.report_private_fields(
2345 adt_ty,
2346 path_span,
2347 expr.span,
2348 private_fields,
2349 hir_fields,
2350 );
2351 } else {
2352 self.report_missing_fields(
2353 adt_ty,
2354 path_span,
2355 expr.span,
2356 remaining_fields,
2357 variant,
2358 hir_fields,
2359 args,
2360 );
2361 }
2362 }
2363 }
2364
2365 fn check_struct_fields_on_error(
2366 &self,
2367 fields: &'tcx [hir::ExprField<'tcx>],
2368 base_expr: &'tcx hir::StructTailExpr<'tcx>,
2369 ) {
2370 for field in fields {
2371 self.check_expr(field.expr);
2372 }
2373 if let hir::StructTailExpr::Base(base) = *base_expr {
2374 self.check_expr(base);
2375 }
2376 }
2377
2378 fn report_missing_fields(
2390 &self,
2391 adt_ty: Ty<'tcx>,
2392 span: Span,
2393 full_span: Span,
2394 remaining_fields: UnordMap<Ident, (FieldIdx, &ty::FieldDef)>,
2395 variant: &'tcx ty::VariantDef,
2396 hir_fields: &'tcx [hir::ExprField<'tcx>],
2397 args: GenericArgsRef<'tcx>,
2398 ) {
2399 let len = remaining_fields.len();
2400
2401 let displayable_field_names: Vec<&str> =
2402 remaining_fields.items().map(|(ident, _)| ident.as_str()).into_sorted_stable_ord();
2403
2404 let mut truncated_fields_error = String::new();
2405 let remaining_fields_names = match &displayable_field_names[..] {
2406 [field1] => format!("`{field1}`"),
2407 [field1, field2] => format!("`{field1}` and `{field2}`"),
2408 [field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
2409 _ => {
2410 truncated_fields_error =
2411 format!(" and {} other field{}", len - 3, pluralize!(len - 3));
2412 displayable_field_names
2413 .iter()
2414 .take(3)
2415 .map(|n| format!("`{n}`"))
2416 .collect::<Vec<_>>()
2417 .join(", ")
2418 }
2419 };
2420
2421 let mut err = struct_span_code_err!(
2422 self.dcx(),
2423 span,
2424 E0063,
2425 "missing field{} {}{} in initializer of `{}`",
2426 pluralize!(len),
2427 remaining_fields_names,
2428 truncated_fields_error,
2429 adt_ty
2430 );
2431 err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
2432
2433 if remaining_fields.items().all(|(_, (_, field))| field.value.is_some())
2434 && self.tcx.sess.is_nightly_build()
2435 {
2436 let msg = format!(
2437 "all remaining fields have default values, {you_can} use those values with `..`",
2438 you_can = if self.tcx.features().default_field_values() {
2439 "you can"
2440 } else {
2441 "if you added `#![feature(default_field_values)]` to your crate you could"
2442 },
2443 );
2444 if let Some(hir_field) = hir_fields.last() {
2445 err.span_suggestion_verbose(
2446 hir_field.span.shrink_to_hi(),
2447 msg,
2448 ", ..".to_string(),
2449 Applicability::MachineApplicable,
2450 );
2451 } else if hir_fields.is_empty() {
2452 err.span_suggestion_verbose(
2453 span.shrink_to_hi().with_hi(full_span.hi()),
2454 msg,
2455 " { .. }".to_string(),
2456 Applicability::MachineApplicable,
2457 );
2458 }
2459 }
2460
2461 if let Some(hir_field) = hir_fields.last() {
2462 self.suggest_fru_from_range_and_emit(hir_field, variant, args, err);
2463 } else {
2464 err.emit();
2465 }
2466 }
2467
2468 fn suggest_fru_from_range_and_emit(
2471 &self,
2472 last_expr_field: &hir::ExprField<'tcx>,
2473 variant: &ty::VariantDef,
2474 args: GenericArgsRef<'tcx>,
2475 mut err: Diag<'_>,
2476 ) {
2477 if let ExprKind::Struct(QPath::LangItem(LangItem::Range, ..), [range_start, range_end], _) =
2479 last_expr_field.expr.kind
2480 && let variant_field =
2481 variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
2482 && let range_def_id = self.tcx.lang_items().range_struct()
2483 && variant_field
2484 .and_then(|field| field.ty(self.tcx, args).ty_adt_def())
2485 .map(|adt| adt.did())
2486 != range_def_id
2487 {
2488 let expr = self
2492 .tcx
2493 .sess
2494 .source_map()
2495 .span_to_snippet(range_end.expr.span)
2496 .ok()
2497 .filter(|s| s.len() < 25 && !s.contains(|c: char| c.is_control()));
2498
2499 let fru_span = self
2500 .tcx
2501 .sess
2502 .source_map()
2503 .span_extend_while_whitespace(range_start.span)
2504 .shrink_to_hi()
2505 .to(range_end.span);
2506
2507 err.subdiagnostic(TypeMismatchFruTypo { expr_span: range_start.span, fru_span, expr });
2508
2509 self.dcx().try_steal_replace_and_emit_err(
2511 last_expr_field.span,
2512 StashKey::MaybeFruTypo,
2513 err,
2514 );
2515 } else {
2516 err.emit();
2517 }
2518 }
2519
2520 fn report_private_fields(
2532 &self,
2533 adt_ty: Ty<'tcx>,
2534 span: Span,
2535 expr_span: Span,
2536 private_fields: Vec<&ty::FieldDef>,
2537 used_fields: &'tcx [hir::ExprField<'tcx>],
2538 ) {
2539 let mut err =
2540 self.dcx().struct_span_err(
2541 span,
2542 format!(
2543 "cannot construct `{adt_ty}` with struct literal syntax due to private fields",
2544 ),
2545 );
2546 let (used_private_fields, remaining_private_fields): (
2547 Vec<(Symbol, Span, bool)>,
2548 Vec<(Symbol, Span, bool)>,
2549 ) = private_fields
2550 .iter()
2551 .map(|field| {
2552 match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
2553 Some(used_field) => (field.name, used_field.span, true),
2554 None => (field.name, self.tcx.def_span(field.did), false),
2555 }
2556 })
2557 .partition(|field| field.2);
2558 err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
2559 if !remaining_private_fields.is_empty() {
2560 let names = if remaining_private_fields.len() > 6 {
2561 String::new()
2562 } else {
2563 format!(
2564 "{} ",
2565 listify(&remaining_private_fields, |(name, _, _)| format!("`{name}`"))
2566 .expect("expected at least one private field to report")
2567 )
2568 };
2569 err.note(format!(
2570 "{}private field{s} {names}that {were} not provided",
2571 if used_fields.is_empty() { "" } else { "...and other " },
2572 s = pluralize!(remaining_private_fields.len()),
2573 were = pluralize!("was", remaining_private_fields.len()),
2574 ));
2575 }
2576
2577 if let ty::Adt(def, _) = adt_ty.kind() {
2578 let def_id = def.did();
2579 let mut items = self
2580 .tcx
2581 .inherent_impls(def_id)
2582 .into_iter()
2583 .flat_map(|i| self.tcx.associated_items(i).in_definition_order())
2584 .filter(|item| item.is_fn() && !item.is_method())
2586 .filter_map(|item| {
2587 let fn_sig = self
2589 .tcx
2590 .fn_sig(item.def_id)
2591 .instantiate(self.tcx, self.fresh_args_for_item(span, item.def_id));
2592 let ret_ty = self.tcx.instantiate_bound_regions_with_erased(fn_sig.output());
2593 if !self.can_eq(self.param_env, ret_ty, adt_ty) {
2594 return None;
2595 }
2596 let input_len = fn_sig.inputs().skip_binder().len();
2597 let name = item.name();
2598 let order = !name.as_str().starts_with("new");
2599 Some((order, name, input_len))
2600 })
2601 .collect::<Vec<_>>();
2602 items.sort_by_key(|(order, _, _)| *order);
2603 let suggestion = |name, args| {
2604 format!(
2605 "::{name}({})",
2606 std::iter::repeat("_").take(args).collect::<Vec<_>>().join(", ")
2607 )
2608 };
2609 match &items[..] {
2610 [] => {}
2611 [(_, name, args)] => {
2612 err.span_suggestion_verbose(
2613 span.shrink_to_hi().with_hi(expr_span.hi()),
2614 format!("you might have meant to use the `{name}` associated function"),
2615 suggestion(name, *args),
2616 Applicability::MaybeIncorrect,
2617 );
2618 }
2619 _ => {
2620 err.span_suggestions(
2621 span.shrink_to_hi().with_hi(expr_span.hi()),
2622 "you might have meant to use an associated function to build this type",
2623 items.iter().map(|(_, name, args)| suggestion(name, *args)),
2624 Applicability::MaybeIncorrect,
2625 );
2626 }
2627 }
2628 if let Some(default_trait) = self.tcx.get_diagnostic_item(sym::Default)
2629 && self
2630 .infcx
2631 .type_implements_trait(default_trait, [adt_ty], self.param_env)
2632 .may_apply()
2633 {
2634 err.multipart_suggestion(
2635 "consider using the `Default` trait",
2636 vec![
2637 (span.shrink_to_lo(), "<".to_string()),
2638 (
2639 span.shrink_to_hi().with_hi(expr_span.hi()),
2640 " as std::default::Default>::default()".to_string(),
2641 ),
2642 ],
2643 Applicability::MaybeIncorrect,
2644 );
2645 }
2646 }
2647
2648 err.emit();
2649 }
2650
2651 fn report_unknown_field(
2652 &self,
2653 ty: Ty<'tcx>,
2654 variant: &'tcx ty::VariantDef,
2655 expr: &hir::Expr<'_>,
2656 field: &hir::ExprField<'_>,
2657 skip_fields: &[hir::ExprField<'_>],
2658 kind_name: &str,
2659 ) -> ErrorGuaranteed {
2660 if let Err(guar) = variant.has_errors() {
2662 return guar;
2663 }
2664 let mut err = self.err_ctxt().type_error_struct_with_diag(
2665 field.ident.span,
2666 |actual| match ty.kind() {
2667 ty::Adt(adt, ..) if adt.is_enum() => struct_span_code_err!(
2668 self.dcx(),
2669 field.ident.span,
2670 E0559,
2671 "{} `{}::{}` has no field named `{}`",
2672 kind_name,
2673 actual,
2674 variant.name,
2675 field.ident
2676 ),
2677 _ => struct_span_code_err!(
2678 self.dcx(),
2679 field.ident.span,
2680 E0560,
2681 "{} `{}` has no field named `{}`",
2682 kind_name,
2683 actual,
2684 field.ident
2685 ),
2686 },
2687 ty,
2688 );
2689
2690 let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
2691 match variant.ctor {
2692 Some((CtorKind::Fn, def_id)) => match ty.kind() {
2693 ty::Adt(adt, ..) if adt.is_enum() => {
2694 err.span_label(
2695 variant_ident_span,
2696 format!(
2697 "`{adt}::{variant}` defined here",
2698 adt = ty,
2699 variant = variant.name,
2700 ),
2701 );
2702 err.span_label(field.ident.span, "field does not exist");
2703 let fn_sig = self.tcx.fn_sig(def_id).instantiate_identity();
2704 let inputs = fn_sig.inputs().skip_binder();
2705 let fields = format!(
2706 "({})",
2707 inputs.iter().map(|i| format!("/* {i} */")).collect::<Vec<_>>().join(", ")
2708 );
2709 let (replace_span, sugg) = match expr.kind {
2710 hir::ExprKind::Struct(qpath, ..) => {
2711 (qpath.span().shrink_to_hi().with_hi(expr.span.hi()), fields)
2712 }
2713 _ => {
2714 (expr.span, format!("{ty}::{variant}{fields}", variant = variant.name))
2715 }
2716 };
2717 err.span_suggestion_verbose(
2718 replace_span,
2719 format!(
2720 "`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
2721 adt = ty,
2722 variant = variant.name,
2723 ),
2724 sugg,
2725 Applicability::HasPlaceholders,
2726 );
2727 }
2728 _ => {
2729 err.span_label(variant_ident_span, format!("`{ty}` defined here"));
2730 err.span_label(field.ident.span, "field does not exist");
2731 let fn_sig = self.tcx.fn_sig(def_id).instantiate_identity();
2732 let inputs = fn_sig.inputs().skip_binder();
2733 let fields = format!(
2734 "({})",
2735 inputs.iter().map(|i| format!("/* {i} */")).collect::<Vec<_>>().join(", ")
2736 );
2737 err.span_suggestion_verbose(
2738 expr.span,
2739 format!("`{ty}` is a tuple {kind_name}, use the appropriate syntax",),
2740 format!("{ty}{fields}"),
2741 Applicability::HasPlaceholders,
2742 );
2743 }
2744 },
2745 _ => {
2746 let available_field_names = self.available_field_names(variant, expr, skip_fields);
2748 if let Some(field_name) =
2749 find_best_match_for_name(&available_field_names, field.ident.name, None)
2750 && !(field.ident.name.as_str().parse::<usize>().is_ok()
2751 && field_name.as_str().parse::<usize>().is_ok())
2752 {
2753 err.span_label(field.ident.span, "unknown field");
2754 err.span_suggestion_verbose(
2755 field.ident.span,
2756 "a field with a similar name exists",
2757 field_name,
2758 Applicability::MaybeIncorrect,
2759 );
2760 } else {
2761 match ty.kind() {
2762 ty::Adt(adt, ..) => {
2763 if adt.is_enum() {
2764 err.span_label(
2765 field.ident.span,
2766 format!("`{}::{}` does not have this field", ty, variant.name),
2767 );
2768 } else {
2769 err.span_label(
2770 field.ident.span,
2771 format!("`{ty}` does not have this field"),
2772 );
2773 }
2774 if available_field_names.is_empty() {
2775 err.note("all struct fields are already assigned");
2776 } else {
2777 err.note(format!(
2778 "available fields are: {}",
2779 self.name_series_display(available_field_names)
2780 ));
2781 }
2782 }
2783 _ => bug!("non-ADT passed to report_unknown_field"),
2784 }
2785 };
2786 }
2787 }
2788 err.emit()
2789 }
2790
2791 fn available_field_names(
2792 &self,
2793 variant: &'tcx ty::VariantDef,
2794 expr: &hir::Expr<'_>,
2795 skip_fields: &[hir::ExprField<'_>],
2796 ) -> Vec<Symbol> {
2797 variant
2798 .fields
2799 .iter()
2800 .filter(|field| {
2801 skip_fields.iter().all(|&skip| skip.ident.name != field.name)
2802 && self.is_field_suggestable(field, expr.hir_id, expr.span)
2803 })
2804 .map(|field| field.name)
2805 .collect()
2806 }
2807
2808 fn name_series_display(&self, names: Vec<Symbol>) -> String {
2809 let limit = if names.len() == 6 { 6 } else { 5 };
2811 let mut display =
2812 names.iter().take(limit).map(|n| format!("`{n}`")).collect::<Vec<_>>().join(", ");
2813 if names.len() > limit {
2814 display = format!("{} ... and {} others", display, names.len() - limit);
2815 }
2816 display
2817 }
2818
2819 fn find_adt_field(
2823 &self,
2824 base_def: ty::AdtDef<'tcx>,
2825 ident: Ident,
2826 ) -> Option<(FieldIdx, &'tcx ty::FieldDef)> {
2827 if base_def.is_enum() {
2829 return None;
2830 }
2831
2832 for (field_idx, field) in base_def.non_enum_variant().fields.iter_enumerated() {
2833 if field.ident(self.tcx).normalize_to_macros_2_0() == ident {
2834 return Some((field_idx, field));
2836 }
2837 }
2838
2839 None
2840 }
2841
2842 fn check_expr_field(
2852 &self,
2853 expr: &'tcx hir::Expr<'tcx>,
2854 base: &'tcx hir::Expr<'tcx>,
2855 field: Ident,
2856 expected: Expectation<'tcx>,
2858 ) -> Ty<'tcx> {
2859 debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
2860 let base_ty = self.check_expr(base);
2861 let base_ty = self.structurally_resolve_type(base.span, base_ty);
2862
2863 let mut private_candidate = None;
2865
2866 let mut autoderef = self.autoderef(expr.span, base_ty);
2868 while let Some((deref_base_ty, _)) = autoderef.next() {
2869 debug!("deref_base_ty: {:?}", deref_base_ty);
2870 match deref_base_ty.kind() {
2871 ty::Adt(base_def, args) if !base_def.is_enum() => {
2872 debug!("struct named {:?}", deref_base_ty);
2873 if let Err(guar) = base_def.non_enum_variant().has_errors() {
2875 return Ty::new_error(self.tcx(), guar);
2876 }
2877
2878 let fn_body_hir_id = self.tcx.local_def_id_to_hir_id(self.body_id);
2879 let (ident, def_scope) =
2880 self.tcx.adjust_ident_and_get_scope(field, base_def.did(), fn_body_hir_id);
2881
2882 if let Some((idx, field)) = self.find_adt_field(*base_def, ident) {
2883 self.write_field_index(expr.hir_id, idx);
2884
2885 let adjustments = self.adjust_steps(&autoderef);
2886 if field.vis.is_accessible_from(def_scope, self.tcx) {
2887 self.apply_adjustments(base, adjustments);
2888 self.register_predicates(autoderef.into_obligations());
2889
2890 self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
2891 return self.field_ty(expr.span, field, args);
2892 }
2893
2894 private_candidate = Some((adjustments, base_def.did()));
2896 }
2897 }
2898 ty::Tuple(tys) => {
2899 if let Ok(index) = field.as_str().parse::<usize>() {
2900 if field.name == sym::integer(index) {
2901 if let Some(&field_ty) = tys.get(index) {
2902 let adjustments = self.adjust_steps(&autoderef);
2903 self.apply_adjustments(base, adjustments);
2904 self.register_predicates(autoderef.into_obligations());
2905
2906 self.write_field_index(expr.hir_id, FieldIdx::from_usize(index));
2907 return field_ty;
2908 }
2909 }
2910 }
2911 }
2912 _ => {}
2913 }
2914 }
2915 let final_ty = self.structurally_resolve_type(autoderef.span(), autoderef.final_ty());
2921 if let ty::Error(_) = final_ty.kind() {
2922 return final_ty;
2923 }
2924
2925 if let Some((adjustments, did)) = private_candidate {
2926 self.apply_adjustments(base, adjustments);
2929 let guar = self.ban_private_field_access(
2930 expr,
2931 base_ty,
2932 field,
2933 did,
2934 expected.only_has_type(self),
2935 );
2936 return Ty::new_error(self.tcx(), guar);
2937 }
2938
2939 let guar = if self.method_exists_for_diagnostic(
2940 field,
2941 base_ty,
2942 expr.hir_id,
2943 expected.only_has_type(self),
2944 ) {
2945 self.ban_take_value_of_method(expr, base_ty, field)
2947 } else if !base_ty.is_primitive_ty() {
2948 self.ban_nonexisting_field(field, base, expr, base_ty)
2949 } else {
2950 let field_name = field.to_string();
2951 let mut err = type_error_struct!(
2952 self.dcx(),
2953 field.span,
2954 base_ty,
2955 E0610,
2956 "`{base_ty}` is a primitive type and therefore doesn't have fields",
2957 );
2958 let is_valid_suffix = |field: &str| {
2959 if field == "f32" || field == "f64" {
2960 return true;
2961 }
2962 let mut chars = field.chars().peekable();
2963 match chars.peek() {
2964 Some('e') | Some('E') => {
2965 chars.next();
2966 if let Some(c) = chars.peek()
2967 && !c.is_numeric()
2968 && *c != '-'
2969 && *c != '+'
2970 {
2971 return false;
2972 }
2973 while let Some(c) = chars.peek() {
2974 if !c.is_numeric() {
2975 break;
2976 }
2977 chars.next();
2978 }
2979 }
2980 _ => (),
2981 }
2982 let suffix = chars.collect::<String>();
2983 suffix.is_empty() || suffix == "f32" || suffix == "f64"
2984 };
2985 let maybe_partial_suffix = |field: &str| -> Option<&str> {
2986 let first_chars = ['f', 'l'];
2987 if field.len() >= 1
2988 && field.to_lowercase().starts_with(first_chars)
2989 && field[1..].chars().all(|c| c.is_ascii_digit())
2990 {
2991 if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
2992 } else {
2993 None
2994 }
2995 };
2996 if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
2997 && let ExprKind::Lit(Spanned {
2998 node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
2999 ..
3000 }) = base.kind
3001 && !base.span.from_expansion()
3002 {
3003 if is_valid_suffix(&field_name) {
3004 err.span_suggestion_verbose(
3005 field.span.shrink_to_lo(),
3006 "if intended to be a floating point literal, consider adding a `0` after the period",
3007 '0',
3008 Applicability::MaybeIncorrect,
3009 );
3010 } else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
3011 err.span_suggestion_verbose(
3012 field.span,
3013 format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
3014 format!("0{correct_suffix}"),
3015 Applicability::MaybeIncorrect,
3016 );
3017 }
3018 }
3019 err.emit()
3020 };
3021
3022 Ty::new_error(self.tcx(), guar)
3023 }
3024
3025 fn suggest_await_on_field_access(
3026 &self,
3027 err: &mut Diag<'_>,
3028 field_ident: Ident,
3029 base: &'tcx hir::Expr<'tcx>,
3030 ty: Ty<'tcx>,
3031 ) {
3032 let Some(output_ty) = self.err_ctxt().get_impl_future_output_ty(ty) else {
3033 err.span_label(field_ident.span, "unknown field");
3034 return;
3035 };
3036 let ty::Adt(def, _) = output_ty.kind() else {
3037 err.span_label(field_ident.span, "unknown field");
3038 return;
3039 };
3040 if def.is_enum() {
3042 err.span_label(field_ident.span, "unknown field");
3043 return;
3044 }
3045 if !def.non_enum_variant().fields.iter().any(|field| field.ident(self.tcx) == field_ident) {
3046 err.span_label(field_ident.span, "unknown field");
3047 return;
3048 }
3049 err.span_label(
3050 field_ident.span,
3051 "field not available in `impl Future`, but it is available in its `Output`",
3052 );
3053 match self.tcx.coroutine_kind(self.body_id) {
3054 Some(hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _)) => {
3055 err.span_suggestion_verbose(
3056 base.span.shrink_to_hi(),
3057 "consider `await`ing on the `Future` to access the field",
3058 ".await",
3059 Applicability::MaybeIncorrect,
3060 );
3061 }
3062 _ => {
3063 let mut span: MultiSpan = base.span.into();
3064 span.push_span_label(self.tcx.def_span(self.body_id), "this is not `async`");
3065 err.span_note(
3066 span,
3067 "this implements `Future` and its output type has the field, \
3068 but the future cannot be awaited in a synchronous function",
3069 );
3070 }
3071 }
3072 }
3073
3074 fn ban_nonexisting_field(
3075 &self,
3076 ident: Ident,
3077 base: &'tcx hir::Expr<'tcx>,
3078 expr: &'tcx hir::Expr<'tcx>,
3079 base_ty: Ty<'tcx>,
3080 ) -> ErrorGuaranteed {
3081 debug!(
3082 "ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
3083 ident, base, expr, base_ty
3084 );
3085 let mut err = self.no_such_field_err(ident, base_ty, expr);
3086
3087 match *base_ty.peel_refs().kind() {
3088 ty::Array(_, len) => {
3089 self.maybe_suggest_array_indexing(&mut err, base, ident, len);
3090 }
3091 ty::RawPtr(..) => {
3092 self.suggest_first_deref_field(&mut err, base, ident);
3093 }
3094 ty::Param(param_ty) => {
3095 err.span_label(ident.span, "unknown field");
3096 self.point_at_param_definition(&mut err, param_ty);
3097 }
3098 ty::Alias(ty::Opaque, _) => {
3099 self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
3100 }
3101 _ => {
3102 err.span_label(ident.span, "unknown field");
3103 }
3104 }
3105
3106 self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
3107 if let ty::Adt(def, _) = output_ty.kind()
3108 && !def.is_enum()
3109 {
3110 def.non_enum_variant().fields.iter().any(|field| {
3111 field.ident(self.tcx) == ident
3112 && field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
3113 })
3114 } else if let ty::Tuple(tys) = output_ty.kind()
3115 && let Ok(idx) = ident.as_str().parse::<usize>()
3116 {
3117 idx < tys.len()
3118 } else {
3119 false
3120 }
3121 });
3122
3123 if ident.name == kw::Await {
3124 err.note("to `.await` a `Future`, switch to Rust 2018 or later");
3127 HelpUseLatestEdition::new().add_to_diag(&mut err);
3128 }
3129
3130 err.emit()
3131 }
3132
3133 fn ban_private_field_access(
3134 &self,
3135 expr: &hir::Expr<'tcx>,
3136 expr_t: Ty<'tcx>,
3137 field: Ident,
3138 base_did: DefId,
3139 return_ty: Option<Ty<'tcx>>,
3140 ) -> ErrorGuaranteed {
3141 let mut err = self.private_field_err(field, base_did);
3142
3143 if self.method_exists_for_diagnostic(field, expr_t, expr.hir_id, return_ty)
3145 && !self.expr_in_place(expr.hir_id)
3146 {
3147 self.suggest_method_call(
3148 &mut err,
3149 format!("a method `{field}` also exists, call it with parentheses"),
3150 field,
3151 expr_t,
3152 expr,
3153 None,
3154 );
3155 }
3156 err.emit()
3157 }
3158
3159 fn ban_take_value_of_method(
3160 &self,
3161 expr: &hir::Expr<'tcx>,
3162 expr_t: Ty<'tcx>,
3163 field: Ident,
3164 ) -> ErrorGuaranteed {
3165 let mut err = type_error_struct!(
3166 self.dcx(),
3167 field.span,
3168 expr_t,
3169 E0615,
3170 "attempted to take value of method `{field}` on type `{expr_t}`",
3171 );
3172 err.span_label(field.span, "method, not a field");
3173 let expr_is_call =
3174 if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
3175 self.tcx.parent_hir_node(expr.hir_id)
3176 {
3177 expr.hir_id == callee.hir_id
3178 } else {
3179 false
3180 };
3181 let expr_snippet =
3182 self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
3183 let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
3184 let after_open = expr.span.lo() + rustc_span::BytePos(1);
3185 let before_close = expr.span.hi() - rustc_span::BytePos(1);
3186
3187 if expr_is_call && is_wrapped {
3188 err.multipart_suggestion(
3189 "remove wrapping parentheses to call the method",
3190 vec![
3191 (expr.span.with_hi(after_open), String::new()),
3192 (expr.span.with_lo(before_close), String::new()),
3193 ],
3194 Applicability::MachineApplicable,
3195 );
3196 } else if !self.expr_in_place(expr.hir_id) {
3197 let span = if is_wrapped {
3199 expr.span.with_lo(after_open).with_hi(before_close)
3200 } else {
3201 expr.span
3202 };
3203 self.suggest_method_call(
3204 &mut err,
3205 "use parentheses to call the method",
3206 field,
3207 expr_t,
3208 expr,
3209 Some(span),
3210 );
3211 } else if let ty::RawPtr(ptr_ty, _) = expr_t.kind()
3212 && let ty::Adt(adt_def, _) = ptr_ty.kind()
3213 && let ExprKind::Field(base_expr, _) = expr.kind
3214 && let [variant] = &adt_def.variants().raw
3215 && variant.fields.iter().any(|f| f.ident(self.tcx) == field)
3216 {
3217 err.multipart_suggestion(
3218 "to access the field, dereference first",
3219 vec![
3220 (base_expr.span.shrink_to_lo(), "(*".to_string()),
3221 (base_expr.span.shrink_to_hi(), ")".to_string()),
3222 ],
3223 Applicability::MaybeIncorrect,
3224 );
3225 } else {
3226 err.help("methods are immutable and cannot be assigned to");
3227 }
3228
3229 self.dcx().try_steal_replace_and_emit_err(field.span, StashKey::GenericInFieldExpr, err)
3231 }
3232
3233 fn point_at_param_definition(&self, err: &mut Diag<'_>, param: ty::ParamTy) {
3234 let generics = self.tcx.generics_of(self.body_id);
3235 let generic_param = generics.type_param(param, self.tcx);
3236 if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
3237 return;
3238 }
3239 let param_def_id = generic_param.def_id;
3240 let param_hir_id = match param_def_id.as_local() {
3241 Some(x) => self.tcx.local_def_id_to_hir_id(x),
3242 None => return,
3243 };
3244 let param_span = self.tcx.hir_span(param_hir_id);
3245 let param_name = self.tcx.hir_ty_param_name(param_def_id.expect_local());
3246
3247 err.span_label(param_span, format!("type parameter '{param_name}' declared here"));
3248 }
3249
3250 fn maybe_suggest_array_indexing(
3251 &self,
3252 err: &mut Diag<'_>,
3253 base: &hir::Expr<'_>,
3254 field: Ident,
3255 len: ty::Const<'tcx>,
3256 ) {
3257 err.span_label(field.span, "unknown field");
3258 if let (Some(len), Ok(user_index)) = (
3259 self.try_structurally_resolve_const(base.span, len).try_to_target_usize(self.tcx),
3260 field.as_str().parse::<u64>(),
3261 ) {
3262 let help = "instead of using tuple indexing, use array indexing";
3263 let applicability = if len < user_index {
3264 Applicability::MachineApplicable
3265 } else {
3266 Applicability::MaybeIncorrect
3267 };
3268 err.multipart_suggestion(
3269 help,
3270 vec![
3271 (base.span.between(field.span), "[".to_string()),
3272 (field.span.shrink_to_hi(), "]".to_string()),
3273 ],
3274 applicability,
3275 );
3276 }
3277 }
3278
3279 fn suggest_first_deref_field(&self, err: &mut Diag<'_>, base: &hir::Expr<'_>, field: Ident) {
3280 err.span_label(field.span, "unknown field");
3281 let val = if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
3282 && base.len() < 20
3283 {
3284 format!("`{base}`")
3285 } else {
3286 "the value".to_string()
3287 };
3288 err.multipart_suggestion(
3289 format!("{val} is a raw pointer; try dereferencing it"),
3290 vec![
3291 (base.span.shrink_to_lo(), "(*".into()),
3292 (base.span.between(field.span), format!(").")),
3293 ],
3294 Applicability::MaybeIncorrect,
3295 );
3296 }
3297
3298 fn no_such_field_err(
3299 &self,
3300 field: Ident,
3301 base_ty: Ty<'tcx>,
3302 expr: &hir::Expr<'tcx>,
3303 ) -> Diag<'_> {
3304 let span = field.span;
3305 debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, base_ty);
3306
3307 let mut err = self.dcx().create_err(NoFieldOnType { span, ty: base_ty, field });
3308 if base_ty.references_error() {
3309 err.downgrade_to_delayed_bug();
3310 }
3311
3312 if let Some(within_macro_span) = span.within_macro(expr.span, self.tcx.sess.source_map()) {
3313 err.span_label(within_macro_span, "due to this macro variable");
3314 }
3315
3316 let mod_id = self.tcx.parent_module(expr.hir_id).to_def_id();
3318 let (ty, unwrap) = if let ty::Adt(def, args) = base_ty.kind()
3319 && (self.tcx.is_diagnostic_item(sym::Result, def.did())
3320 || self.tcx.is_diagnostic_item(sym::Option, def.did()))
3321 && let Some(arg) = args.get(0)
3322 && let Some(ty) = arg.as_type()
3323 {
3324 (ty, "unwrap().")
3325 } else {
3326 (base_ty, "")
3327 };
3328 for found_fields in
3329 self.get_field_candidates_considering_privacy_for_diag(span, ty, mod_id, expr.hir_id)
3330 {
3331 let field_names = found_fields.iter().map(|field| field.0.name).collect::<Vec<_>>();
3332 let mut candidate_fields: Vec<_> = found_fields
3333 .into_iter()
3334 .filter_map(|candidate_field| {
3335 self.check_for_nested_field_satisfying_condition_for_diag(
3336 span,
3337 &|candidate_field, _| candidate_field == field,
3338 candidate_field,
3339 vec![],
3340 mod_id,
3341 expr.hir_id,
3342 )
3343 })
3344 .map(|mut field_path| {
3345 field_path.pop();
3346 field_path.iter().map(|id| format!("{}.", id)).collect::<String>()
3347 })
3348 .collect::<Vec<_>>();
3349 candidate_fields.sort();
3350
3351 let len = candidate_fields.len();
3352 if len > 0 && expr.span.eq_ctxt(field.span) {
3355 err.span_suggestions(
3356 field.span.shrink_to_lo(),
3357 format!(
3358 "{} of the expressions' fields {} a field of the same name",
3359 if len > 1 { "some" } else { "one" },
3360 if len > 1 { "have" } else { "has" },
3361 ),
3362 candidate_fields.iter().map(|path| format!("{unwrap}{path}")),
3363 Applicability::MaybeIncorrect,
3364 );
3365 } else if let Some(field_name) =
3366 find_best_match_for_name(&field_names, field.name, None)
3367 && !(field.name.as_str().parse::<usize>().is_ok()
3368 && field_name.as_str().parse::<usize>().is_ok())
3369 {
3370 err.span_suggestion_verbose(
3371 field.span,
3372 "a field with a similar name exists",
3373 format!("{unwrap}{}", field_name),
3374 Applicability::MaybeIncorrect,
3375 );
3376 } else if !field_names.is_empty() {
3377 let is = if field_names.len() == 1 { " is" } else { "s are" };
3378 err.note(
3379 format!("available field{is}: {}", self.name_series_display(field_names),),
3380 );
3381 }
3382 }
3383 err
3384 }
3385
3386 fn private_field_err(&self, field: Ident, base_did: DefId) -> Diag<'_> {
3387 let struct_path = self.tcx().def_path_str(base_did);
3388 let kind_name = self.tcx().def_descr(base_did);
3389 struct_span_code_err!(
3390 self.dcx(),
3391 field.span,
3392 E0616,
3393 "field `{field}` of {kind_name} `{struct_path}` is private",
3394 )
3395 .with_span_label(field.span, "private field")
3396 }
3397
3398 pub(crate) fn get_field_candidates_considering_privacy_for_diag(
3399 &self,
3400 span: Span,
3401 base_ty: Ty<'tcx>,
3402 mod_id: DefId,
3403 hir_id: HirId,
3404 ) -> Vec<Vec<(Ident, Ty<'tcx>)>> {
3405 debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);
3406
3407 let mut autoderef = self.autoderef(span, base_ty).silence_errors();
3408 let deref_chain: Vec<_> = autoderef.by_ref().collect();
3409
3410 if autoderef.reached_recursion_limit() {
3414 return vec![];
3415 }
3416
3417 deref_chain
3418 .into_iter()
3419 .filter_map(move |(base_t, _)| {
3420 match base_t.kind() {
3421 ty::Adt(base_def, args) if !base_def.is_enum() => {
3422 let tcx = self.tcx;
3423 let fields = &base_def.non_enum_variant().fields;
3424 if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
3428 return None;
3429 }
3430 return Some(
3431 fields
3432 .iter()
3433 .filter(move |field| {
3434 field.vis.is_accessible_from(mod_id, tcx)
3435 && self.is_field_suggestable(field, hir_id, span)
3436 })
3437 .take(100)
3439 .map(|field_def| {
3440 (
3441 field_def.ident(self.tcx).normalize_to_macros_2_0(),
3442 field_def.ty(self.tcx, args),
3443 )
3444 })
3445 .collect::<Vec<_>>(),
3446 );
3447 }
3448 ty::Tuple(types) => {
3449 return Some(
3450 types
3451 .iter()
3452 .enumerate()
3453 .take(100)
3455 .map(|(i, ty)| (Ident::from_str(&i.to_string()), ty))
3456 .collect::<Vec<_>>(),
3457 );
3458 }
3459 _ => None,
3460 }
3461 })
3462 .collect()
3463 }
3464
3465 #[instrument(skip(self, matches, mod_id, hir_id), level = "debug")]
3468 pub(crate) fn check_for_nested_field_satisfying_condition_for_diag(
3469 &self,
3470 span: Span,
3471 matches: &impl Fn(Ident, Ty<'tcx>) -> bool,
3472 (candidate_name, candidate_ty): (Ident, Ty<'tcx>),
3473 mut field_path: Vec<Ident>,
3474 mod_id: DefId,
3475 hir_id: HirId,
3476 ) -> Option<Vec<Ident>> {
3477 if field_path.len() > 3 {
3478 return None;
3481 }
3482 field_path.push(candidate_name);
3483 if matches(candidate_name, candidate_ty) {
3484 return Some(field_path);
3485 }
3486 for nested_fields in self.get_field_candidates_considering_privacy_for_diag(
3487 span,
3488 candidate_ty,
3489 mod_id,
3490 hir_id,
3491 ) {
3492 for field in nested_fields {
3494 if let Some(field_path) = self.check_for_nested_field_satisfying_condition_for_diag(
3495 span,
3496 matches,
3497 field,
3498 field_path.clone(),
3499 mod_id,
3500 hir_id,
3501 ) {
3502 return Some(field_path);
3503 }
3504 }
3505 }
3506 None
3507 }
3508
3509 fn check_expr_index(
3510 &self,
3511 base: &'tcx hir::Expr<'tcx>,
3512 idx: &'tcx hir::Expr<'tcx>,
3513 expr: &'tcx hir::Expr<'tcx>,
3514 brackets_span: Span,
3515 ) -> Ty<'tcx> {
3516 let base_t = self.check_expr(base);
3517 let idx_t = self.check_expr(idx);
3518
3519 if base_t.references_error() {
3520 base_t
3521 } else if idx_t.references_error() {
3522 idx_t
3523 } else {
3524 let base_t = self.structurally_resolve_type(base.span, base_t);
3525 match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
3526 Some((index_ty, element_ty)) => {
3527 self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
3529 self.select_obligations_where_possible(|errors| {
3530 self.point_at_index(errors, idx.span);
3531 });
3532 element_ty
3533 }
3534 None => {
3535 for (base_t, _) in self.autoderef(base.span, base_t).silence_errors() {
3538 if let Some((_, index_ty, element_ty)) =
3539 self.find_and_report_unsatisfied_index_impl(base, base_t)
3540 {
3541 self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
3542 return element_ty;
3543 }
3544 }
3545
3546 let mut err = type_error_struct!(
3547 self.dcx(),
3548 brackets_span,
3549 base_t,
3550 E0608,
3551 "cannot index into a value of type `{base_t}`",
3552 );
3553 if let ty::Tuple(types) = base_t.kind() {
3555 let mut needs_note = true;
3556 if let ExprKind::Lit(lit) = idx.kind
3559 && let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node
3560 && i.get()
3561 < types
3562 .len()
3563 .try_into()
3564 .expect("expected tuple index to be < usize length")
3565 {
3566 err.span_suggestion(
3567 brackets_span,
3568 "to access tuple elements, use",
3569 format!(".{i}"),
3570 Applicability::MachineApplicable,
3571 );
3572 needs_note = false;
3573 } else if let ExprKind::Path(..) = idx.peel_borrows().kind {
3574 err.span_label(
3575 idx.span,
3576 "cannot access tuple elements at a variable index",
3577 );
3578 }
3579 if needs_note {
3580 err.help(
3581 "to access tuple elements, use tuple indexing \
3582 syntax (e.g., `tuple.0`)",
3583 );
3584 }
3585 }
3586
3587 if base_t.is_raw_ptr() && idx_t.is_integral() {
3588 err.multipart_suggestion(
3589 "consider using `wrapping_add` or `add` for indexing into raw pointer",
3590 vec![
3591 (base.span.between(idx.span), ".wrapping_add(".to_owned()),
3592 (
3593 idx.span.shrink_to_hi().until(expr.span.shrink_to_hi()),
3594 ")".to_owned(),
3595 ),
3596 ],
3597 Applicability::MaybeIncorrect,
3598 );
3599 }
3600
3601 let reported = err.emit();
3602 Ty::new_error(self.tcx, reported)
3603 }
3604 }
3605 }
3606 }
3607
3608 fn find_and_report_unsatisfied_index_impl(
3616 &self,
3617 base_expr: &hir::Expr<'_>,
3618 base_ty: Ty<'tcx>,
3619 ) -> Option<(ErrorGuaranteed, Ty<'tcx>, Ty<'tcx>)> {
3620 let index_trait_def_id = self.tcx.lang_items().index_trait()?;
3621 let index_trait_output_def_id = self.tcx.get_diagnostic_item(sym::IndexOutput)?;
3622
3623 let mut relevant_impls = vec![];
3624 self.tcx.for_each_relevant_impl(index_trait_def_id, base_ty, |impl_def_id| {
3625 relevant_impls.push(impl_def_id);
3626 });
3627 let [impl_def_id] = relevant_impls[..] else {
3628 return None;
3630 };
3631
3632 self.commit_if_ok(|snapshot| {
3633 let outer_universe = self.universe();
3634
3635 let ocx = ObligationCtxt::new_with_diagnostics(self);
3636 let impl_args = self.fresh_args_for_item(base_expr.span, impl_def_id);
3637 let impl_trait_ref =
3638 self.tcx.impl_trait_ref(impl_def_id).unwrap().instantiate(self.tcx, impl_args);
3639 let cause = self.misc(base_expr.span);
3640
3641 let impl_trait_ref = ocx.normalize(&cause, self.param_env, impl_trait_ref);
3644 ocx.eq(&cause, self.param_env, base_ty, impl_trait_ref.self_ty())?;
3645
3646 ocx.register_obligations(traits::predicates_for_generics(
3650 |idx, span| {
3651 cause.clone().derived_cause(
3652 ty::Binder::dummy(ty::TraitPredicate {
3653 trait_ref: impl_trait_ref,
3654 polarity: ty::PredicatePolarity::Positive,
3655 }),
3656 |derived| {
3657 ObligationCauseCode::ImplDerived(Box::new(traits::ImplDerivedCause {
3658 derived,
3659 impl_or_alias_def_id: impl_def_id,
3660 impl_def_predicate_index: Some(idx),
3661 span,
3662 }))
3663 },
3664 )
3665 },
3666 self.param_env,
3667 self.tcx.predicates_of(impl_def_id).instantiate(self.tcx, impl_args),
3668 ));
3669
3670 let element_ty = ocx.normalize(
3673 &cause,
3674 self.param_env,
3675 Ty::new_projection_from_args(
3676 self.tcx,
3677 index_trait_output_def_id,
3678 impl_trait_ref.args,
3679 ),
3680 );
3681
3682 let true_errors = ocx.select_where_possible();
3683
3684 self.leak_check(outer_universe, Some(snapshot))?;
3688
3689 let ambiguity_errors = ocx.select_all_or_error();
3691 if true_errors.is_empty() && !ambiguity_errors.is_empty() {
3692 return Err(NoSolution);
3693 }
3694
3695 Ok::<_, NoSolution>((
3698 self.err_ctxt().report_fulfillment_errors(true_errors),
3699 impl_trait_ref.args.type_at(1),
3700 element_ty,
3701 ))
3702 })
3703 .ok()
3704 }
3705
3706 fn point_at_index(&self, errors: &mut Vec<traits::FulfillmentError<'tcx>>, span: Span) {
3707 let mut seen_preds = FxHashSet::default();
3708 errors.sort_by_key(|error| error.root_obligation.recursion_depth);
3712 for error in errors {
3713 match (
3714 error.root_obligation.predicate.kind().skip_binder(),
3715 error.obligation.predicate.kind().skip_binder(),
3716 ) {
3717 (ty::PredicateKind::Clause(ty::ClauseKind::Trait(predicate)), _)
3718 if self.tcx.is_lang_item(predicate.trait_ref.def_id, LangItem::Index) =>
3719 {
3720 seen_preds.insert(error.obligation.predicate.kind().skip_binder());
3721 }
3722 (_, ty::PredicateKind::Clause(ty::ClauseKind::Trait(predicate)))
3723 if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) =>
3724 {
3725 seen_preds.insert(error.obligation.predicate.kind().skip_binder());
3726 }
3727 (root, pred) if seen_preds.contains(&pred) || seen_preds.contains(&root) => {}
3728 _ => continue,
3729 }
3730 error.obligation.cause.span = span;
3731 }
3732 }
3733
3734 fn check_expr_yield(
3735 &self,
3736 value: &'tcx hir::Expr<'tcx>,
3737 expr: &'tcx hir::Expr<'tcx>,
3738 ) -> Ty<'tcx> {
3739 match self.coroutine_types {
3740 Some(CoroutineTypes { resume_ty, yield_ty }) => {
3741 self.check_expr_coercible_to_type(value, yield_ty, None);
3742
3743 resume_ty
3744 }
3745 _ => {
3746 self.dcx().emit_err(YieldExprOutsideOfCoroutine { span: expr.span });
3747 self.check_expr(value);
3749 self.tcx.types.unit
3750 }
3751 }
3752 }
3753
3754 fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
3755 let needs = if is_input { Needs::None } else { Needs::MutPlace };
3756 let ty = self.check_expr_with_needs(expr, needs);
3757 self.require_type_is_sized(ty, expr.span, ObligationCauseCode::InlineAsmSized);
3758
3759 if !is_input && !expr.is_syntactic_place_expr() {
3760 self.dcx()
3761 .struct_span_err(expr.span, "invalid asm output")
3762 .with_span_label(expr.span, "cannot assign to this expression")
3763 .emit();
3764 }
3765
3766 if is_input {
3774 let ty = self.structurally_resolve_type(expr.span, ty);
3775 match *ty.kind() {
3776 ty::FnDef(..) => {
3777 let fnptr_ty = Ty::new_fn_ptr(self.tcx, ty.fn_sig(self.tcx));
3778 self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
3779 }
3780 ty::Ref(_, base_ty, mutbl) => {
3781 let ptr_ty = Ty::new_ptr(self.tcx, base_ty, mutbl);
3782 self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
3783 }
3784 _ => {}
3785 }
3786 }
3787 }
3788
3789 fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>, span: Span) -> Ty<'tcx> {
3790 if let rustc_ast::AsmMacro::NakedAsm = asm.asm_macro {
3791 if !find_attr!(self.tcx.get_all_attrs(self.body_id), AttributeKind::Naked(..)) {
3792 self.tcx.dcx().emit_err(NakedAsmOutsideNakedFn { span });
3793 }
3794 }
3795
3796 let mut diverge = asm.asm_macro.diverges(asm.options);
3797
3798 for (op, _op_sp) in asm.operands {
3799 match *op {
3800 hir::InlineAsmOperand::In { expr, .. } => {
3801 self.check_expr_asm_operand(expr, true);
3802 }
3803 hir::InlineAsmOperand::Out { expr: Some(expr), .. }
3804 | hir::InlineAsmOperand::InOut { expr, .. } => {
3805 self.check_expr_asm_operand(expr, false);
3806 }
3807 hir::InlineAsmOperand::Out { expr: None, .. } => {}
3808 hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
3809 self.check_expr_asm_operand(in_expr, true);
3810 if let Some(out_expr) = out_expr {
3811 self.check_expr_asm_operand(out_expr, false);
3812 }
3813 }
3814 hir::InlineAsmOperand::Const { ref anon_const } => {
3815 self.check_expr_const_block(anon_const, Expectation::NoExpectation);
3816 }
3817 hir::InlineAsmOperand::SymFn { expr } => {
3818 self.check_expr(expr);
3819 }
3820 hir::InlineAsmOperand::SymStatic { .. } => {}
3821 hir::InlineAsmOperand::Label { block } => {
3822 let previous_diverges = self.diverges.get();
3823
3824 let ty = self.check_expr_block(block, ExpectHasType(self.tcx.types.unit));
3826 if !ty.is_never() {
3827 self.demand_suptype(block.span, self.tcx.types.unit, ty);
3828 diverge = false;
3829 }
3830
3831 self.diverges.set(previous_diverges);
3833 }
3834 }
3835 }
3836
3837 if diverge { self.tcx.types.never } else { self.tcx.types.unit }
3838 }
3839
3840 fn check_expr_offset_of(
3841 &self,
3842 container: &'tcx hir::Ty<'tcx>,
3843 fields: &[Ident],
3844 expr: &'tcx hir::Expr<'tcx>,
3845 ) -> Ty<'tcx> {
3846 let container = self.lower_ty(container).normalized;
3847
3848 let mut field_indices = Vec::with_capacity(fields.len());
3849 let mut current_container = container;
3850 let mut fields = fields.into_iter();
3851
3852 while let Some(&field) = fields.next() {
3853 let container = self.structurally_resolve_type(expr.span, current_container);
3854
3855 match container.kind() {
3856 ty::Adt(container_def, args) if container_def.is_enum() => {
3857 let block = self.tcx.local_def_id_to_hir_id(self.body_id);
3858 let (ident, _def_scope) =
3859 self.tcx.adjust_ident_and_get_scope(field, container_def.did(), block);
3860
3861 if !self.tcx.features().offset_of_enum() {
3862 rustc_session::parse::feature_err(
3863 &self.tcx.sess,
3864 sym::offset_of_enum,
3865 ident.span,
3866 "using enums in offset_of is experimental",
3867 )
3868 .emit();
3869 }
3870
3871 let Some((index, variant)) = container_def
3872 .variants()
3873 .iter_enumerated()
3874 .find(|(_, v)| v.ident(self.tcx).normalize_to_macros_2_0() == ident)
3875 else {
3876 self.dcx()
3877 .create_err(NoVariantNamed { span: ident.span, ident, ty: container })
3878 .with_span_label(field.span, "variant not found")
3879 .emit_unless_delay(container.references_error());
3880 break;
3881 };
3882 let Some(&subfield) = fields.next() else {
3883 type_error_struct!(
3884 self.dcx(),
3885 ident.span,
3886 container,
3887 E0795,
3888 "`{ident}` is an enum variant; expected field at end of `offset_of`",
3889 )
3890 .with_span_label(field.span, "enum variant")
3891 .emit();
3892 break;
3893 };
3894 let (subident, sub_def_scope) =
3895 self.tcx.adjust_ident_and_get_scope(subfield, variant.def_id, block);
3896
3897 let Some((subindex, field)) = variant
3898 .fields
3899 .iter_enumerated()
3900 .find(|(_, f)| f.ident(self.tcx).normalize_to_macros_2_0() == subident)
3901 else {
3902 self.dcx()
3903 .create_err(NoFieldOnVariant {
3904 span: ident.span,
3905 container,
3906 ident,
3907 field: subfield,
3908 enum_span: field.span,
3909 field_span: subident.span,
3910 })
3911 .emit_unless_delay(container.references_error());
3912 break;
3913 };
3914
3915 let field_ty = self.field_ty(expr.span, field, args);
3916
3917 self.require_type_is_sized(
3920 field_ty,
3921 expr.span,
3922 ObligationCauseCode::FieldSized {
3923 adt_kind: AdtKind::Enum,
3924 span: self.tcx.def_span(field.did),
3925 last: false,
3926 },
3927 );
3928
3929 if field.vis.is_accessible_from(sub_def_scope, self.tcx) {
3930 self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
3931 } else {
3932 self.private_field_err(ident, container_def.did()).emit();
3933 }
3934
3935 field_indices.push((index, subindex));
3938 current_container = field_ty;
3939
3940 continue;
3941 }
3942 ty::Adt(container_def, args) => {
3943 let block = self.tcx.local_def_id_to_hir_id(self.body_id);
3944 let (ident, def_scope) =
3945 self.tcx.adjust_ident_and_get_scope(field, container_def.did(), block);
3946
3947 let fields = &container_def.non_enum_variant().fields;
3948 if let Some((index, field)) = fields
3949 .iter_enumerated()
3950 .find(|(_, f)| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
3951 {
3952 let field_ty = self.field_ty(expr.span, field, args);
3953
3954 if self.tcx.features().offset_of_slice() {
3955 self.require_type_has_static_alignment(field_ty, expr.span);
3956 } else {
3957 self.require_type_is_sized(
3958 field_ty,
3959 expr.span,
3960 ObligationCauseCode::Misc,
3961 );
3962 }
3963
3964 if field.vis.is_accessible_from(def_scope, self.tcx) {
3965 self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
3966 } else {
3967 self.private_field_err(ident, container_def.did()).emit();
3968 }
3969
3970 field_indices.push((FIRST_VARIANT, index));
3973 current_container = field_ty;
3974
3975 continue;
3976 }
3977 }
3978 ty::Tuple(tys) => {
3979 if let Ok(index) = field.as_str().parse::<usize>()
3980 && field.name == sym::integer(index)
3981 {
3982 if let Some(&field_ty) = tys.get(index) {
3983 if self.tcx.features().offset_of_slice() {
3984 self.require_type_has_static_alignment(field_ty, expr.span);
3985 } else {
3986 self.require_type_is_sized(
3987 field_ty,
3988 expr.span,
3989 ObligationCauseCode::Misc,
3990 );
3991 }
3992
3993 field_indices.push((FIRST_VARIANT, index.into()));
3994 current_container = field_ty;
3995
3996 continue;
3997 }
3998 }
3999 }
4000 _ => (),
4001 };
4002
4003 self.no_such_field_err(field, container, expr).emit();
4004
4005 break;
4006 }
4007
4008 self.typeck_results
4009 .borrow_mut()
4010 .offset_of_data_mut()
4011 .insert(expr.hir_id, (container, field_indices));
4012
4013 self.tcx.types.usize
4014 }
4015}