rustc_hir_typeck/
expr.rs

1// ignore-tidy-filelength
2// FIXME: we should move the field error reporting code somewhere else.
3
4//! Type checking expressions.
5//!
6//! See [`rustc_hir_analysis::check`] for more context on type checking in general.
7
8use rustc_abi::{FIRST_VARIANT, FieldIdx};
9use rustc_data_structures::fx::{FxHashMap, FxHashSet};
10use rustc_data_structures::stack::ensure_sufficient_stack;
11use rustc_data_structures::unord::UnordMap;
12use rustc_errors::codes::*;
13use rustc_errors::{
14    Applicability, Diag, ErrorGuaranteed, MultiSpan, StashKey, Subdiagnostic, listify, pluralize,
15    struct_span_code_err,
16};
17use rustc_hir::def::{CtorKind, DefKind, Res};
18use rustc_hir::def_id::DefId;
19use rustc_hir::intravisit::Visitor;
20use rustc_hir::lang_items::LangItem;
21use rustc_hir::{ExprKind, HirId, QPath};
22use rustc_hir_analysis::hir_ty_lowering::{FeedConstTy, HirTyLowerer as _};
23use rustc_infer::infer;
24use rustc_infer::infer::{DefineOpaqueTypes, InferOk};
25use rustc_infer::traits::query::NoSolution;
26use rustc_middle::ty::adjustment::{Adjust, Adjustment, AllowTwoPhase};
27use rustc_middle::ty::error::{ExpectedFound, TypeError};
28use rustc_middle::ty::{self, AdtKind, GenericArgsRef, Ty, TypeVisitableExt};
29use rustc_middle::{bug, span_bug};
30use rustc_session::errors::ExprParenthesesNeeded;
31use rustc_session::parse::feature_err;
32use rustc_span::edit_distance::find_best_match_for_name;
33use rustc_span::hygiene::DesugaringKind;
34use rustc_span::source_map::Spanned;
35use rustc_span::{Ident, Span, Symbol, kw, sym};
36use rustc_trait_selection::infer::InferCtxtExt;
37use rustc_trait_selection::traits::{self, ObligationCauseCode, ObligationCtxt};
38use tracing::{debug, instrument, trace};
39use {rustc_ast as ast, rustc_hir as hir};
40
41use crate::Expectation::{self, ExpectCastableToType, ExpectHasType, NoExpectation};
42use crate::TupleArgumentsFlag::DontTupleArguments;
43use crate::coercion::{CoerceMany, DynamicCoerceMany};
44use crate::errors::{
45    AddressOfTemporaryTaken, BaseExpressionDoubleDot, BaseExpressionDoubleDotAddExpr,
46    BaseExpressionDoubleDotEnableDefaultFieldValues, BaseExpressionDoubleDotRemove,
47    FieldMultiplySpecifiedInInitializer, FunctionalRecordUpdateOnNonStruct, HelpUseLatestEdition,
48    ReturnLikeStatementKind, ReturnStmtOutsideOfFnBody, StructExprNonExhaustive,
49    TypeMismatchFruTypo, YieldExprOutsideOfCoroutine,
50};
51use crate::{
52    BreakableCtxt, CoroutineTypes, Diverges, FnCtxt, Needs, cast, fatally_break_rust,
53    report_unexpected_variant_res, type_error_struct,
54};
55
56impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
57    /// Check an expr with an expectation type, and also demand that the expr's
58    /// evaluated type is a subtype of the expectation at the end. This is a
59    /// *hard* requirement.
60    pub(crate) fn check_expr_has_type_or_error(
61        &self,
62        expr: &'tcx hir::Expr<'tcx>,
63        expected_ty: Ty<'tcx>,
64        extend_err: impl FnOnce(&mut Diag<'_>),
65    ) -> Ty<'tcx> {
66        let mut ty = self.check_expr_with_expectation(expr, ExpectHasType(expected_ty));
67
68        // While we don't allow *arbitrary* coercions here, we *do* allow
69        // coercions from ! to `expected`.
70        if self.try_structurally_resolve_type(expr.span, ty).is_never()
71            && self.expr_guaranteed_to_constitute_read_for_never(expr)
72        {
73            if let Some(adjustments) = self.typeck_results.borrow().adjustments().get(expr.hir_id) {
74                let reported = self.dcx().span_delayed_bug(
75                    expr.span,
76                    "expression with never type wound up being adjusted",
77                );
78
79                return if let [Adjustment { kind: Adjust::NeverToAny, target }] = &adjustments[..] {
80                    target.to_owned()
81                } else {
82                    Ty::new_error(self.tcx(), reported)
83                };
84            }
85
86            let adj_ty = self.next_ty_var(expr.span);
87            self.apply_adjustments(
88                expr,
89                vec![Adjustment { kind: Adjust::NeverToAny, target: adj_ty }],
90            );
91            ty = adj_ty;
92        }
93
94        if let Err(mut err) = self.demand_suptype_diag(expr.span, expected_ty, ty) {
95            let _ = self.emit_type_mismatch_suggestions(
96                &mut err,
97                expr.peel_drop_temps(),
98                ty,
99                expected_ty,
100                None,
101                None,
102            );
103            extend_err(&mut err);
104            err.emit();
105        }
106        ty
107    }
108
109    /// Check an expr with an expectation type, and also demand that the expr's
110    /// evaluated type is a coercible to the expectation at the end. This is a
111    /// *hard* requirement.
112    pub(super) fn check_expr_coercible_to_type(
113        &self,
114        expr: &'tcx hir::Expr<'tcx>,
115        expected: Ty<'tcx>,
116        expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
117    ) -> Ty<'tcx> {
118        self.check_expr_coercible_to_type_or_error(expr, expected, expected_ty_expr, |_, _| {})
119    }
120
121    pub(crate) fn check_expr_coercible_to_type_or_error(
122        &self,
123        expr: &'tcx hir::Expr<'tcx>,
124        expected: Ty<'tcx>,
125        expected_ty_expr: Option<&'tcx hir::Expr<'tcx>>,
126        extend_err: impl FnOnce(&mut Diag<'_>, Ty<'tcx>),
127    ) -> Ty<'tcx> {
128        let ty = self.check_expr_with_hint(expr, expected);
129        // checks don't need two phase
130        match self.demand_coerce_diag(expr, ty, expected, expected_ty_expr, AllowTwoPhase::No) {
131            Ok(ty) => ty,
132            Err(mut err) => {
133                extend_err(&mut err, ty);
134                err.emit();
135                // Return the original type instead of an error type here, otherwise the type of `x` in
136                // `let x: u32 = ();` will be a type error, causing all subsequent usages of `x` to not
137                // report errors, even though `x` is definitely `u32`.
138                expected
139            }
140        }
141    }
142
143    /// Check an expr with an expectation type. Don't actually enforce that expectation
144    /// is related to the expr's evaluated type via subtyping or coercion. This is
145    /// usually called because we want to do that subtype/coerce call manually for better
146    /// diagnostics.
147    pub(super) fn check_expr_with_hint(
148        &self,
149        expr: &'tcx hir::Expr<'tcx>,
150        expected: Ty<'tcx>,
151    ) -> Ty<'tcx> {
152        self.check_expr_with_expectation(expr, ExpectHasType(expected))
153    }
154
155    /// Check an expr with an expectation type, and also [`Needs`] which will
156    /// prompt typeck to convert any implicit immutable derefs to mutable derefs.
157    fn check_expr_with_expectation_and_needs(
158        &self,
159        expr: &'tcx hir::Expr<'tcx>,
160        expected: Expectation<'tcx>,
161        needs: Needs,
162    ) -> Ty<'tcx> {
163        let ty = self.check_expr_with_expectation(expr, expected);
164
165        // If the expression is used in a place whether mutable place is required
166        // e.g. LHS of assignment, perform the conversion.
167        if let Needs::MutPlace = needs {
168            self.convert_place_derefs_to_mutable(expr);
169        }
170
171        ty
172    }
173
174    /// Check an expr with no expectations.
175    pub(super) fn check_expr(&self, expr: &'tcx hir::Expr<'tcx>) -> Ty<'tcx> {
176        self.check_expr_with_expectation(expr, NoExpectation)
177    }
178
179    /// Check an expr with no expectations, but with [`Needs`] which will
180    /// prompt typeck to convert any implicit immutable derefs to mutable derefs.
181    pub(super) fn check_expr_with_needs(
182        &self,
183        expr: &'tcx hir::Expr<'tcx>,
184        needs: Needs,
185    ) -> Ty<'tcx> {
186        self.check_expr_with_expectation_and_needs(expr, NoExpectation, needs)
187    }
188
189    /// Check an expr with an expectation type which may be used to eagerly
190    /// guide inference when evaluating that expr.
191    #[instrument(skip(self, expr), level = "debug")]
192    pub(super) fn check_expr_with_expectation(
193        &self,
194        expr: &'tcx hir::Expr<'tcx>,
195        expected: Expectation<'tcx>,
196    ) -> Ty<'tcx> {
197        self.check_expr_with_expectation_and_args(expr, expected, None)
198    }
199
200    /// Same as [`Self::check_expr_with_expectation`], but allows us to pass in
201    /// the arguments of a [`ExprKind::Call`] when evaluating its callee that
202    /// is an [`ExprKind::Path`]. We use this to refine the spans for certain
203    /// well-formedness guarantees for the path expr.
204    pub(super) fn check_expr_with_expectation_and_args(
205        &self,
206        expr: &'tcx hir::Expr<'tcx>,
207        expected: Expectation<'tcx>,
208        call_expr_and_args: Option<(&'tcx hir::Expr<'tcx>, &'tcx [hir::Expr<'tcx>])>,
209    ) -> Ty<'tcx> {
210        if self.tcx().sess.verbose_internals() {
211            // make this code only run with -Zverbose-internals because it is probably slow
212            if let Ok(lint_str) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
213                if !lint_str.contains('\n') {
214                    debug!("expr text: {lint_str}");
215                } else {
216                    let mut lines = lint_str.lines();
217                    if let Some(line0) = lines.next() {
218                        let remaining_lines = lines.count();
219                        debug!("expr text: {line0}");
220                        debug!("expr text: ...(and {remaining_lines} more lines)");
221                    }
222                }
223            }
224        }
225
226        // True if `expr` is a `Try::from_ok(())` that is a result of desugaring a try block
227        // without the final expr (e.g. `try { return; }`). We don't want to generate an
228        // unreachable_code lint for it since warnings for autogenerated code are confusing.
229        let is_try_block_generated_unit_expr = match expr.kind {
230            ExprKind::Call(_, [arg]) => {
231                expr.span.is_desugaring(DesugaringKind::TryBlock)
232                    && arg.span.is_desugaring(DesugaringKind::TryBlock)
233            }
234            _ => false,
235        };
236
237        // Warn for expressions after diverging siblings.
238        if !is_try_block_generated_unit_expr {
239            self.warn_if_unreachable(expr.hir_id, expr.span, "expression");
240        }
241
242        // Whether a past expression diverges doesn't affect typechecking of this expression, so we
243        // reset `diverges` while checking `expr`.
244        let old_diverges = self.diverges.replace(Diverges::Maybe);
245
246        if self.is_whole_body.replace(false) {
247            // If this expression is the whole body and the function diverges because of its
248            // arguments, we check this here to ensure the body is considered to diverge.
249            self.diverges.set(self.function_diverges_because_of_empty_arguments.get())
250        };
251
252        let ty = ensure_sufficient_stack(|| match &expr.kind {
253            // Intercept the callee path expr and give it better spans.
254            hir::ExprKind::Path(
255                qpath @ (hir::QPath::Resolved(..) | hir::QPath::TypeRelative(..)),
256            ) => self.check_expr_path(qpath, expr, call_expr_and_args),
257            _ => self.check_expr_kind(expr, expected),
258        });
259        let ty = self.resolve_vars_if_possible(ty);
260
261        // Warn for non-block expressions with diverging children.
262        match expr.kind {
263            ExprKind::Block(..)
264            | ExprKind::If(..)
265            | ExprKind::Let(..)
266            | ExprKind::Loop(..)
267            | ExprKind::Match(..) => {}
268            // If `expr` is a result of desugaring the try block and is an ok-wrapped
269            // diverging expression (e.g. it arose from desugaring of `try { return }`),
270            // we skip issuing a warning because it is autogenerated code.
271            ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::TryBlock) => {}
272            // Likewise, do not lint unreachable code injected via contracts desugaring.
273            ExprKind::Call(..) if expr.span.is_desugaring(DesugaringKind::Contract) => {}
274            ExprKind::Call(callee, _) => self.warn_if_unreachable(expr.hir_id, callee.span, "call"),
275            ExprKind::MethodCall(segment, ..) => {
276                self.warn_if_unreachable(expr.hir_id, segment.ident.span, "call")
277            }
278            _ => self.warn_if_unreachable(expr.hir_id, expr.span, "expression"),
279        }
280
281        // Any expression that produces a value of type `!` must have diverged,
282        // unless it's a place expression that isn't being read from, in which case
283        // diverging would be unsound since we may never actually read the `!`.
284        // e.g. `let _ = *never_ptr;` with `never_ptr: *const !`.
285        if self.try_structurally_resolve_type(expr.span, ty).is_never()
286            && self.expr_guaranteed_to_constitute_read_for_never(expr)
287        {
288            self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
289        }
290
291        // Record the type, which applies it effects.
292        // We need to do this after the warning above, so that
293        // we don't warn for the diverging expression itself.
294        self.write_ty(expr.hir_id, ty);
295
296        // Combine the diverging and has_error flags.
297        self.diverges.set(self.diverges.get() | old_diverges);
298
299        debug!("type of {} is...", self.tcx.hir().node_to_string(expr.hir_id));
300        debug!("... {:?}, expected is {:?}", ty, expected);
301
302        ty
303    }
304
305    /// Whether this expression constitutes a read of value of the type that
306    /// it evaluates to.
307    ///
308    /// This is used to determine if we should consider the block to diverge
309    /// if the expression evaluates to `!`, and if we should insert a `NeverToAny`
310    /// coercion for values of type `!`.
311    ///
312    /// This function generally returns `false` if the expression is a place
313    /// expression and the *parent* expression is the scrutinee of a match or
314    /// the pointee of an `&` addr-of expression, since both of those parent
315    /// expressions take a *place* and not a value.
316    pub(super) fn expr_guaranteed_to_constitute_read_for_never(
317        &self,
318        expr: &'tcx hir::Expr<'tcx>,
319    ) -> bool {
320        // We only care about place exprs. Anything else returns an immediate
321        // which would constitute a read. We don't care about distinguishing
322        // "syntactic" place exprs since if the base of a field projection is
323        // not a place then it would've been UB to read from it anyways since
324        // that constitutes a read.
325        if !expr.is_syntactic_place_expr() {
326            return true;
327        }
328
329        let parent_node = self.tcx.parent_hir_node(expr.hir_id);
330        match parent_node {
331            hir::Node::Expr(parent_expr) => {
332                match parent_expr.kind {
333                    // Addr-of, field projections, and LHS of assignment don't constitute reads.
334                    // Assignment does call `drop_in_place`, though, but its safety
335                    // requirements are not the same.
336                    ExprKind::AddrOf(..) | hir::ExprKind::Field(..) => false,
337
338                    // Place-preserving expressions only constitute reads if their
339                    // parent expression constitutes a read.
340                    ExprKind::Type(..) | ExprKind::UnsafeBinderCast(..) => {
341                        self.expr_guaranteed_to_constitute_read_for_never(expr)
342                    }
343
344                    ExprKind::Assign(lhs, _, _) => {
345                        // Only the LHS does not constitute a read
346                        expr.hir_id != lhs.hir_id
347                    }
348
349                    // See note on `PatKind::Or` below for why this is `all`.
350                    ExprKind::Match(scrutinee, arms, _) => {
351                        assert_eq!(scrutinee.hir_id, expr.hir_id);
352                        arms.iter()
353                            .all(|arm| self.pat_guaranteed_to_constitute_read_for_never(arm.pat))
354                    }
355                    ExprKind::Let(hir::LetExpr { init, pat, .. }) => {
356                        assert_eq!(init.hir_id, expr.hir_id);
357                        self.pat_guaranteed_to_constitute_read_for_never(*pat)
358                    }
359
360                    // Any expression child of these expressions constitute reads.
361                    ExprKind::Array(_)
362                    | ExprKind::Call(_, _)
363                    | ExprKind::MethodCall(_, _, _, _)
364                    | ExprKind::Tup(_)
365                    | ExprKind::Binary(_, _, _)
366                    | ExprKind::Unary(_, _)
367                    | ExprKind::Cast(_, _)
368                    | ExprKind::DropTemps(_)
369                    | ExprKind::If(_, _, _)
370                    | ExprKind::Closure(_)
371                    | ExprKind::Block(_, _)
372                    | ExprKind::AssignOp(_, _, _)
373                    | ExprKind::Index(_, _, _)
374                    | ExprKind::Break(_, _)
375                    | ExprKind::Ret(_)
376                    | ExprKind::Become(_)
377                    | ExprKind::InlineAsm(_)
378                    | ExprKind::Struct(_, _, _)
379                    | ExprKind::Repeat(_, _)
380                    | ExprKind::Yield(_, _) => true,
381
382                    // These expressions have no (direct) sub-exprs.
383                    ExprKind::ConstBlock(_)
384                    | ExprKind::Loop(_, _, _, _)
385                    | ExprKind::Lit(_)
386                    | ExprKind::Path(_)
387                    | ExprKind::Continue(_)
388                    | ExprKind::OffsetOf(_, _)
389                    | ExprKind::Err(_) => unreachable!("no sub-expr expected for {:?}", expr.kind),
390                }
391            }
392
393            // If we have a subpattern that performs a read, we want to consider this
394            // to diverge for compatibility to support something like `let x: () = *never_ptr;`.
395            hir::Node::LetStmt(hir::LetStmt { init: Some(target), pat, .. }) => {
396                assert_eq!(target.hir_id, expr.hir_id);
397                self.pat_guaranteed_to_constitute_read_for_never(*pat)
398            }
399
400            // These nodes (if they have a sub-expr) do constitute a read.
401            hir::Node::Block(_)
402            | hir::Node::Arm(_)
403            | hir::Node::ExprField(_)
404            | hir::Node::AnonConst(_)
405            | hir::Node::ConstBlock(_)
406            | hir::Node::ConstArg(_)
407            | hir::Node::Stmt(_)
408            | hir::Node::Item(hir::Item {
409                kind: hir::ItemKind::Const(..) | hir::ItemKind::Static(..),
410                ..
411            })
412            | hir::Node::TraitItem(hir::TraitItem {
413                kind: hir::TraitItemKind::Const(..), ..
414            })
415            | hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. }) => true,
416
417            hir::Node::TyPat(_) | hir::Node::Pat(_) => {
418                self.dcx().span_delayed_bug(expr.span, "place expr not allowed in pattern");
419                true
420            }
421
422            // These nodes do not have direct sub-exprs.
423            hir::Node::Param(_)
424            | hir::Node::Item(_)
425            | hir::Node::ForeignItem(_)
426            | hir::Node::TraitItem(_)
427            | hir::Node::ImplItem(_)
428            | hir::Node::Variant(_)
429            | hir::Node::Field(_)
430            | hir::Node::PathSegment(_)
431            | hir::Node::Ty(_)
432            | hir::Node::AssocItemConstraint(_)
433            | hir::Node::TraitRef(_)
434            | hir::Node::PatField(_)
435            | hir::Node::PatExpr(_)
436            | hir::Node::LetStmt(_)
437            | hir::Node::Synthetic
438            | hir::Node::Err(_)
439            | hir::Node::Ctor(_)
440            | hir::Node::Lifetime(_)
441            | hir::Node::GenericParam(_)
442            | hir::Node::Crate(_)
443            | hir::Node::Infer(_)
444            | hir::Node::WherePredicate(_)
445            | hir::Node::PreciseCapturingNonLifetimeArg(_)
446            | hir::Node::OpaqueTy(_) => {
447                unreachable!("no sub-expr expected for {parent_node:?}")
448            }
449        }
450    }
451
452    /// Whether this pattern constitutes a read of value of the scrutinee that
453    /// it is matching against. This is used to determine whether we should
454    /// perform `NeverToAny` coercions.
455    ///
456    /// See above for the nuances of what happens when this returns true.
457    pub(super) fn pat_guaranteed_to_constitute_read_for_never(&self, pat: &hir::Pat<'_>) -> bool {
458        match pat.kind {
459            // Does not constitute a read.
460            hir::PatKind::Wild => false,
461
462            // Might not constitute a read, since the condition might be false.
463            hir::PatKind::Guard(_, _) => true,
464
465            // This is unnecessarily restrictive when the pattern that doesn't
466            // constitute a read is unreachable.
467            //
468            // For example `match *never_ptr { value => {}, _ => {} }` or
469            // `match *never_ptr { _ if false => {}, value => {} }`.
470            //
471            // It is however fine to be restrictive here; only returning `true`
472            // can lead to unsoundness.
473            hir::PatKind::Or(subpats) => {
474                subpats.iter().all(|pat| self.pat_guaranteed_to_constitute_read_for_never(pat))
475            }
476
477            // Does constitute a read, since it is equivalent to a discriminant read.
478            hir::PatKind::Never => true,
479
480            // All of these constitute a read, or match on something that isn't `!`,
481            // which would require a `NeverToAny` coercion.
482            hir::PatKind::Binding(_, _, _, _)
483            | hir::PatKind::Struct(_, _, _)
484            | hir::PatKind::TupleStruct(_, _, _)
485            | hir::PatKind::Tuple(_, _)
486            | hir::PatKind::Box(_)
487            | hir::PatKind::Ref(_, _)
488            | hir::PatKind::Deref(_)
489            | hir::PatKind::Expr(_)
490            | hir::PatKind::Range(_, _, _)
491            | hir::PatKind::Slice(_, _, _)
492            | hir::PatKind::Err(_) => true,
493        }
494    }
495
496    #[instrument(skip(self, expr), level = "debug")]
497    fn check_expr_kind(
498        &self,
499        expr: &'tcx hir::Expr<'tcx>,
500        expected: Expectation<'tcx>,
501    ) -> Ty<'tcx> {
502        trace!("expr={:#?}", expr);
503
504        let tcx = self.tcx;
505        match expr.kind {
506            ExprKind::Lit(ref lit) => self.check_expr_lit(lit, expected),
507            ExprKind::Binary(op, lhs, rhs) => self.check_expr_binop(expr, op, lhs, rhs, expected),
508            ExprKind::Assign(lhs, rhs, span) => {
509                self.check_expr_assign(expr, expected, lhs, rhs, span)
510            }
511            ExprKind::AssignOp(op, lhs, rhs) => {
512                self.check_expr_binop_assign(expr, op, lhs, rhs, expected)
513            }
514            ExprKind::Unary(unop, oprnd) => self.check_expr_unop(unop, oprnd, expected, expr),
515            ExprKind::AddrOf(kind, mutbl, oprnd) => {
516                self.check_expr_addr_of(kind, mutbl, oprnd, expected, expr)
517            }
518            ExprKind::Path(QPath::LangItem(lang_item, _)) => {
519                self.check_lang_item_path(lang_item, expr)
520            }
521            ExprKind::Path(ref qpath) => self.check_expr_path(qpath, expr, None),
522            ExprKind::InlineAsm(asm) => {
523                // We defer some asm checks as we may not have resolved the input and output types yet (they may still be infer vars).
524                self.deferred_asm_checks.borrow_mut().push((asm, expr.hir_id));
525                self.check_expr_asm(asm)
526            }
527            ExprKind::OffsetOf(container, fields) => {
528                self.check_expr_offset_of(container, fields, expr)
529            }
530            ExprKind::Break(destination, ref expr_opt) => {
531                self.check_expr_break(destination, expr_opt.as_deref(), expr)
532            }
533            ExprKind::Continue(destination) => {
534                if destination.target_id.is_ok() {
535                    tcx.types.never
536                } else {
537                    // There was an error; make type-check fail.
538                    Ty::new_misc_error(tcx)
539                }
540            }
541            ExprKind::Ret(ref expr_opt) => self.check_expr_return(expr_opt.as_deref(), expr),
542            ExprKind::Become(call) => self.check_expr_become(call, expr),
543            ExprKind::Let(let_expr) => self.check_expr_let(let_expr, expr.hir_id),
544            ExprKind::Loop(body, _, source, _) => {
545                self.check_expr_loop(body, source, expected, expr)
546            }
547            ExprKind::Match(discrim, arms, match_src) => {
548                self.check_expr_match(expr, discrim, arms, expected, match_src)
549            }
550            ExprKind::Closure(closure) => self.check_expr_closure(closure, expr.span, expected),
551            ExprKind::Block(body, _) => self.check_expr_block(body, expected),
552            ExprKind::Call(callee, args) => self.check_expr_call(expr, callee, args, expected),
553            ExprKind::MethodCall(segment, receiver, args, _) => {
554                self.check_expr_method_call(expr, segment, receiver, args, expected)
555            }
556            ExprKind::Cast(e, t) => self.check_expr_cast(e, t, expr),
557            ExprKind::Type(e, t) => {
558                let ascribed_ty = self.lower_ty_saving_user_provided_ty(t);
559                let ty = self.check_expr_with_hint(e, ascribed_ty);
560                self.demand_eqtype(e.span, ascribed_ty, ty);
561                ascribed_ty
562            }
563            ExprKind::If(cond, then_expr, opt_else_expr) => {
564                self.check_expr_if(cond, then_expr, opt_else_expr, expr.span, expected)
565            }
566            ExprKind::DropTemps(e) => self.check_expr_with_expectation(e, expected),
567            ExprKind::Array(args) => self.check_expr_array(args, expected, expr),
568            ExprKind::ConstBlock(ref block) => self.check_expr_const_block(block, expected),
569            ExprKind::Repeat(element, ref count) => {
570                self.check_expr_repeat(element, count, expected, expr)
571            }
572            ExprKind::Tup(elts) => self.check_expr_tuple(elts, expected, expr),
573            ExprKind::Struct(qpath, fields, ref base_expr) => {
574                self.check_expr_struct(expr, expected, qpath, fields, base_expr)
575            }
576            ExprKind::Field(base, field) => self.check_expr_field(expr, base, field, expected),
577            ExprKind::Index(base, idx, brackets_span) => {
578                self.check_expr_index(base, idx, expr, brackets_span)
579            }
580            ExprKind::Yield(value, _) => self.check_expr_yield(value, expr),
581            ExprKind::UnsafeBinderCast(kind, inner_expr, ty) => {
582                self.check_expr_unsafe_binder_cast(expr.span, kind, inner_expr, ty, expected)
583            }
584            ExprKind::Err(guar) => Ty::new_error(tcx, guar),
585        }
586    }
587
588    fn check_expr_unop(
589        &self,
590        unop: hir::UnOp,
591        oprnd: &'tcx hir::Expr<'tcx>,
592        expected: Expectation<'tcx>,
593        expr: &'tcx hir::Expr<'tcx>,
594    ) -> Ty<'tcx> {
595        let tcx = self.tcx;
596        let expected_inner = match unop {
597            hir::UnOp::Not | hir::UnOp::Neg => expected,
598            hir::UnOp::Deref => NoExpectation,
599        };
600        let mut oprnd_t = self.check_expr_with_expectation(oprnd, expected_inner);
601
602        if !oprnd_t.references_error() {
603            oprnd_t = self.structurally_resolve_type(expr.span, oprnd_t);
604            match unop {
605                hir::UnOp::Deref => {
606                    if let Some(ty) = self.lookup_derefing(expr, oprnd, oprnd_t) {
607                        oprnd_t = ty;
608                    } else {
609                        let mut err = type_error_struct!(
610                            self.dcx(),
611                            expr.span,
612                            oprnd_t,
613                            E0614,
614                            "type `{oprnd_t}` cannot be dereferenced",
615                        );
616                        let sp = tcx.sess.source_map().start_point(expr.span).with_parent(None);
617                        if let Some(sp) =
618                            tcx.sess.psess.ambiguous_block_expr_parse.borrow().get(&sp)
619                        {
620                            err.subdiagnostic(ExprParenthesesNeeded::surrounding(*sp));
621                        }
622                        oprnd_t = Ty::new_error(tcx, err.emit());
623                    }
624                }
625                hir::UnOp::Not => {
626                    let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
627                    // If it's builtin, we can reuse the type, this helps inference.
628                    if !(oprnd_t.is_integral() || *oprnd_t.kind() == ty::Bool) {
629                        oprnd_t = result;
630                    }
631                }
632                hir::UnOp::Neg => {
633                    let result = self.check_user_unop(expr, oprnd_t, unop, expected_inner);
634                    // If it's builtin, we can reuse the type, this helps inference.
635                    if !oprnd_t.is_numeric() {
636                        oprnd_t = result;
637                    }
638                }
639            }
640        }
641        oprnd_t
642    }
643
644    fn check_expr_addr_of(
645        &self,
646        kind: hir::BorrowKind,
647        mutbl: hir::Mutability,
648        oprnd: &'tcx hir::Expr<'tcx>,
649        expected: Expectation<'tcx>,
650        expr: &'tcx hir::Expr<'tcx>,
651    ) -> Ty<'tcx> {
652        let hint = expected.only_has_type(self).map_or(NoExpectation, |ty| {
653            match self.try_structurally_resolve_type(expr.span, ty).kind() {
654                ty::Ref(_, ty, _) | ty::RawPtr(ty, _) => {
655                    if oprnd.is_syntactic_place_expr() {
656                        // Places may legitimately have unsized types.
657                        // For example, dereferences of a wide pointer and
658                        // the last field of a struct can be unsized.
659                        ExpectHasType(*ty)
660                    } else {
661                        Expectation::rvalue_hint(self, *ty)
662                    }
663                }
664                _ => NoExpectation,
665            }
666        });
667        let ty =
668            self.check_expr_with_expectation_and_needs(oprnd, hint, Needs::maybe_mut_place(mutbl));
669
670        match kind {
671            _ if ty.references_error() => Ty::new_misc_error(self.tcx),
672            hir::BorrowKind::Raw => {
673                self.check_named_place_expr(oprnd);
674                Ty::new_ptr(self.tcx, ty, mutbl)
675            }
676            hir::BorrowKind::Ref => {
677                // Note: at this point, we cannot say what the best lifetime
678                // is to use for resulting pointer. We want to use the
679                // shortest lifetime possible so as to avoid spurious borrowck
680                // errors. Moreover, the longest lifetime will depend on the
681                // precise details of the value whose address is being taken
682                // (and how long it is valid), which we don't know yet until
683                // type inference is complete.
684                //
685                // Therefore, here we simply generate a region variable. The
686                // region inferencer will then select a suitable value.
687                // Finally, borrowck will infer the value of the region again,
688                // this time with enough precision to check that the value
689                // whose address was taken can actually be made to live as long
690                // as it needs to live.
691                let region = self.next_region_var(infer::BorrowRegion(expr.span));
692                Ty::new_ref(self.tcx, region, ty, mutbl)
693            }
694        }
695    }
696
697    /// Does this expression refer to a place that either:
698    /// * Is based on a local or static.
699    /// * Contains a dereference
700    /// Note that the adjustments for the children of `expr` should already
701    /// have been resolved.
702    fn check_named_place_expr(&self, oprnd: &'tcx hir::Expr<'tcx>) {
703        let is_named = oprnd.is_place_expr(|base| {
704            // Allow raw borrows if there are any deref adjustments.
705            //
706            // const VAL: (i32,) = (0,);
707            // const REF: &(i32,) = &(0,);
708            //
709            // &raw const VAL.0;            // ERROR
710            // &raw const REF.0;            // OK, same as &raw const (*REF).0;
711            //
712            // This is maybe too permissive, since it allows
713            // `let u = &raw const Box::new((1,)).0`, which creates an
714            // immediately dangling raw pointer.
715            self.typeck_results
716                .borrow()
717                .adjustments()
718                .get(base.hir_id)
719                .is_some_and(|x| x.iter().any(|adj| matches!(adj.kind, Adjust::Deref(_))))
720        });
721        if !is_named {
722            self.dcx().emit_err(AddressOfTemporaryTaken { span: oprnd.span });
723        }
724    }
725
726    fn check_lang_item_path(
727        &self,
728        lang_item: hir::LangItem,
729        expr: &'tcx hir::Expr<'tcx>,
730    ) -> Ty<'tcx> {
731        self.resolve_lang_item_path(lang_item, expr.span, expr.hir_id).1
732    }
733
734    pub(crate) fn check_expr_path(
735        &self,
736        qpath: &'tcx hir::QPath<'tcx>,
737        expr: &'tcx hir::Expr<'tcx>,
738        call_expr_and_args: Option<(&'tcx hir::Expr<'tcx>, &'tcx [hir::Expr<'tcx>])>,
739    ) -> Ty<'tcx> {
740        let tcx = self.tcx;
741        let (res, opt_ty, segs) =
742            self.resolve_ty_and_res_fully_qualified_call(qpath, expr.hir_id, expr.span);
743        let ty = match res {
744            Res::Err => {
745                self.suggest_assoc_method_call(segs);
746                let e =
747                    self.dcx().span_delayed_bug(qpath.span(), "`Res::Err` but no error emitted");
748                Ty::new_error(tcx, e)
749            }
750            Res::Def(DefKind::Variant, _) => {
751                let e = report_unexpected_variant_res(
752                    tcx,
753                    res,
754                    Some(expr),
755                    qpath,
756                    expr.span,
757                    E0533,
758                    "value",
759                );
760                Ty::new_error(tcx, e)
761            }
762            _ => {
763                self.instantiate_value_path(
764                    segs,
765                    opt_ty,
766                    res,
767                    call_expr_and_args.map_or(expr.span, |(e, _)| e.span),
768                    expr.span,
769                    expr.hir_id,
770                )
771                .0
772            }
773        };
774
775        if let ty::FnDef(did, _) = *ty.kind() {
776            let fn_sig = ty.fn_sig(tcx);
777
778            if tcx.is_intrinsic(did, sym::transmute) {
779                let Some(from) = fn_sig.inputs().skip_binder().get(0) else {
780                    span_bug!(
781                        tcx.def_span(did),
782                        "intrinsic fn `transmute` defined with no parameters"
783                    );
784                };
785                let to = fn_sig.output().skip_binder();
786                // We defer the transmute to the end of typeck, once all inference vars have
787                // been resolved or we errored. This is important as we can only check transmute
788                // on concrete types, but the output type may not be known yet (it would only
789                // be known if explicitly specified via turbofish).
790                self.deferred_transmute_checks.borrow_mut().push((*from, to, expr.hir_id));
791            }
792            if !tcx.features().unsized_fn_params() {
793                // We want to remove some Sized bounds from std functions,
794                // but don't want to expose the removal to stable Rust.
795                // i.e., we don't want to allow
796                //
797                // ```rust
798                // drop as fn(str);
799                // ```
800                //
801                // to work in stable even if the Sized bound on `drop` is relaxed.
802                for i in 0..fn_sig.inputs().skip_binder().len() {
803                    // We just want to check sizedness, so instead of introducing
804                    // placeholder lifetimes with probing, we just replace higher lifetimes
805                    // with fresh vars.
806                    let span = call_expr_and_args
807                        .and_then(|(_, args)| args.get(i))
808                        .map_or(expr.span, |arg| arg.span);
809                    let input = self.instantiate_binder_with_fresh_vars(
810                        span,
811                        infer::BoundRegionConversionTime::FnCall,
812                        fn_sig.input(i),
813                    );
814                    self.require_type_is_sized_deferred(
815                        input,
816                        span,
817                        ObligationCauseCode::SizedArgumentType(None),
818                    );
819                }
820            }
821            // Here we want to prevent struct constructors from returning unsized types.
822            // There were two cases this happened: fn pointer coercion in stable
823            // and usual function call in presence of unsized_locals.
824            // Also, as we just want to check sizedness, instead of introducing
825            // placeholder lifetimes with probing, we just replace higher lifetimes
826            // with fresh vars.
827            let output = self.instantiate_binder_with_fresh_vars(
828                expr.span,
829                infer::BoundRegionConversionTime::FnCall,
830                fn_sig.output(),
831            );
832            self.require_type_is_sized_deferred(
833                output,
834                call_expr_and_args.map_or(expr.span, |(e, _)| e.span),
835                ObligationCauseCode::SizedCallReturnType,
836            );
837        }
838
839        // We always require that the type provided as the value for
840        // a type parameter outlives the moment of instantiation.
841        let args = self.typeck_results.borrow().node_args(expr.hir_id);
842        self.add_wf_bounds(args, expr.span);
843
844        ty
845    }
846
847    fn check_expr_break(
848        &self,
849        destination: hir::Destination,
850        expr_opt: Option<&'tcx hir::Expr<'tcx>>,
851        expr: &'tcx hir::Expr<'tcx>,
852    ) -> Ty<'tcx> {
853        let tcx = self.tcx;
854        if let Ok(target_id) = destination.target_id {
855            let (e_ty, cause);
856            if let Some(e) = expr_opt {
857                // If this is a break with a value, we need to type-check
858                // the expression. Get an expected type from the loop context.
859                let opt_coerce_to = {
860                    // We should release `enclosing_breakables` before the `check_expr_with_hint`
861                    // below, so can't move this block of code to the enclosing scope and share
862                    // `ctxt` with the second `enclosing_breakables` borrow below.
863                    let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
864                    match enclosing_breakables.opt_find_breakable(target_id) {
865                        Some(ctxt) => ctxt.coerce.as_ref().map(|coerce| coerce.expected_ty()),
866                        None => {
867                            // Avoid ICE when `break` is inside a closure (#65383).
868                            return Ty::new_error_with_message(
869                                tcx,
870                                expr.span,
871                                "break was outside loop, but no error was emitted",
872                            );
873                        }
874                    }
875                };
876
877                // If the loop context is not a `loop { }`, then break with
878                // a value is illegal, and `opt_coerce_to` will be `None`.
879                // Set expectation to error in that case and set tainted
880                // by error (#114529)
881                let coerce_to = opt_coerce_to.unwrap_or_else(|| {
882                    let guar = self.dcx().span_delayed_bug(
883                        expr.span,
884                        "illegal break with value found but no error reported",
885                    );
886                    self.set_tainted_by_errors(guar);
887                    Ty::new_error(tcx, guar)
888                });
889
890                // Recurse without `enclosing_breakables` borrowed.
891                e_ty = self.check_expr_with_hint(e, coerce_to);
892                cause = self.misc(e.span);
893            } else {
894                // Otherwise, this is a break *without* a value. That's
895                // always legal, and is equivalent to `break ()`.
896                e_ty = tcx.types.unit;
897                cause = self.misc(expr.span);
898            }
899
900            // Now that we have type-checked `expr_opt`, borrow
901            // the `enclosing_loops` field and let's coerce the
902            // type of `expr_opt` into what is expected.
903            let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
904            let Some(ctxt) = enclosing_breakables.opt_find_breakable(target_id) else {
905                // Avoid ICE when `break` is inside a closure (#65383).
906                return Ty::new_error_with_message(
907                    tcx,
908                    expr.span,
909                    "break was outside loop, but no error was emitted",
910                );
911            };
912
913            if let Some(ref mut coerce) = ctxt.coerce {
914                if let Some(e) = expr_opt {
915                    coerce.coerce(self, &cause, e, e_ty);
916                } else {
917                    assert!(e_ty.is_unit());
918                    let ty = coerce.expected_ty();
919                    coerce.coerce_forced_unit(
920                        self,
921                        &cause,
922                        |mut err| {
923                            self.suggest_missing_semicolon(&mut err, expr, e_ty, false);
924                            self.suggest_mismatched_types_on_tail(
925                                &mut err, expr, ty, e_ty, target_id,
926                            );
927                            let error =
928                                Some(TypeError::Sorts(ExpectedFound { expected: ty, found: e_ty }));
929                            self.annotate_loop_expected_due_to_inference(err, expr, error);
930                            if let Some(val) =
931                                self.err_ctxt().ty_kind_suggestion(self.param_env, ty)
932                            {
933                                err.span_suggestion_verbose(
934                                    expr.span.shrink_to_hi(),
935                                    "give the `break` a value of the expected type",
936                                    format!(" {val}"),
937                                    Applicability::HasPlaceholders,
938                                );
939                            }
940                        },
941                        false,
942                    );
943                }
944            } else {
945                // If `ctxt.coerce` is `None`, we can just ignore
946                // the type of the expression. This is because
947                // either this was a break *without* a value, in
948                // which case it is always a legal type (`()`), or
949                // else an error would have been flagged by the
950                // `loops` pass for using break with an expression
951                // where you are not supposed to.
952                assert!(expr_opt.is_none() || self.tainted_by_errors().is_some());
953            }
954
955            // If we encountered a `break`, then (no surprise) it may be possible to break from the
956            // loop... unless the value being returned from the loop diverges itself, e.g.
957            // `break return 5` or `break loop {}`.
958            ctxt.may_break |= !self.diverges.get().is_always();
959
960            // the type of a `break` is always `!`, since it diverges
961            tcx.types.never
962        } else {
963            // Otherwise, we failed to find the enclosing loop;
964            // this can only happen if the `break` was not
965            // inside a loop at all, which is caught by the
966            // loop-checking pass.
967            let err = Ty::new_error_with_message(
968                self.tcx,
969                expr.span,
970                "break was outside loop, but no error was emitted",
971            );
972
973            // We still need to assign a type to the inner expression to
974            // prevent the ICE in #43162.
975            if let Some(e) = expr_opt {
976                self.check_expr_with_hint(e, err);
977
978                // ... except when we try to 'break rust;'.
979                // ICE this expression in particular (see #43162).
980                if let ExprKind::Path(QPath::Resolved(_, path)) = e.kind {
981                    if let [segment] = path.segments
982                        && segment.ident.name == sym::rust
983                    {
984                        fatally_break_rust(self.tcx, expr.span);
985                    }
986                }
987            }
988
989            // There was an error; make type-check fail.
990            err
991        }
992    }
993
994    fn check_expr_return(
995        &self,
996        expr_opt: Option<&'tcx hir::Expr<'tcx>>,
997        expr: &'tcx hir::Expr<'tcx>,
998    ) -> Ty<'tcx> {
999        if self.ret_coercion.is_none() {
1000            self.emit_return_outside_of_fn_body(expr, ReturnLikeStatementKind::Return);
1001
1002            if let Some(e) = expr_opt {
1003                // We still have to type-check `e` (issue #86188), but calling
1004                // `check_return_expr` only works inside fn bodies.
1005                self.check_expr(e);
1006            }
1007        } else if let Some(e) = expr_opt {
1008            if self.ret_coercion_span.get().is_none() {
1009                self.ret_coercion_span.set(Some(e.span));
1010            }
1011            self.check_return_or_body_tail(e, true);
1012        } else {
1013            let mut coercion = self.ret_coercion.as_ref().unwrap().borrow_mut();
1014            if self.ret_coercion_span.get().is_none() {
1015                self.ret_coercion_span.set(Some(expr.span));
1016            }
1017            let cause = self.cause(expr.span, ObligationCauseCode::ReturnNoExpression);
1018            if let Some((_, fn_decl)) = self.get_fn_decl(expr.hir_id) {
1019                coercion.coerce_forced_unit(
1020                    self,
1021                    &cause,
1022                    |db| {
1023                        let span = fn_decl.output.span();
1024                        if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
1025                            db.span_label(
1026                                span,
1027                                format!("expected `{snippet}` because of this return type"),
1028                            );
1029                        }
1030                    },
1031                    true,
1032                );
1033            } else {
1034                coercion.coerce_forced_unit(self, &cause, |_| (), true);
1035            }
1036        }
1037        self.tcx.types.never
1038    }
1039
1040    fn check_expr_become(
1041        &self,
1042        call: &'tcx hir::Expr<'tcx>,
1043        expr: &'tcx hir::Expr<'tcx>,
1044    ) -> Ty<'tcx> {
1045        match &self.ret_coercion {
1046            Some(ret_coercion) => {
1047                let ret_ty = ret_coercion.borrow().expected_ty();
1048                let call_expr_ty = self.check_expr_with_hint(call, ret_ty);
1049
1050                // N.B. don't coerce here, as tail calls can't support most/all coercions
1051                // FIXME(explicit_tail_calls): add a diagnostic note that `become` doesn't allow coercions
1052                self.demand_suptype(expr.span, ret_ty, call_expr_ty);
1053            }
1054            None => {
1055                self.emit_return_outside_of_fn_body(expr, ReturnLikeStatementKind::Become);
1056
1057                // Fallback to simply type checking `call` without hint/demanding the right types.
1058                // Best effort to highlight more errors.
1059                self.check_expr(call);
1060            }
1061        }
1062
1063        self.tcx.types.never
1064    }
1065
1066    /// Check an expression that _is being returned_.
1067    /// For example, this is called with `return_expr: $expr` when `return $expr`
1068    /// is encountered.
1069    ///
1070    /// Note that this function must only be called in function bodies.
1071    ///
1072    /// `explicit_return` is `true` if we're checking an explicit `return expr`,
1073    /// and `false` if we're checking a trailing expression.
1074    pub(super) fn check_return_or_body_tail(
1075        &self,
1076        return_expr: &'tcx hir::Expr<'tcx>,
1077        explicit_return: bool,
1078    ) {
1079        let ret_coercion = self.ret_coercion.as_ref().unwrap_or_else(|| {
1080            span_bug!(return_expr.span, "check_return_expr called outside fn body")
1081        });
1082
1083        let ret_ty = ret_coercion.borrow().expected_ty();
1084        let return_expr_ty = self.check_expr_with_hint(return_expr, ret_ty);
1085        let mut span = return_expr.span;
1086        let mut hir_id = return_expr.hir_id;
1087        // Use the span of the trailing expression for our cause,
1088        // not the span of the entire function
1089        if !explicit_return
1090            && let ExprKind::Block(body, _) = return_expr.kind
1091            && let Some(last_expr) = body.expr
1092        {
1093            span = last_expr.span;
1094            hir_id = last_expr.hir_id;
1095        }
1096        ret_coercion.borrow_mut().coerce(
1097            self,
1098            &self.cause(span, ObligationCauseCode::ReturnValue(return_expr.hir_id)),
1099            return_expr,
1100            return_expr_ty,
1101        );
1102
1103        if let Some(fn_sig) = self.body_fn_sig()
1104            && fn_sig.output().has_opaque_types()
1105        {
1106            // Point any obligations that were registered due to opaque type
1107            // inference at the return expression.
1108            self.select_obligations_where_possible(|errors| {
1109                self.point_at_return_for_opaque_ty_error(
1110                    errors,
1111                    hir_id,
1112                    span,
1113                    return_expr_ty,
1114                    return_expr.span,
1115                );
1116            });
1117        }
1118    }
1119
1120    /// Emit an error because `return` or `become` is used outside of a function body.
1121    ///
1122    /// `expr` is the `return` (`become`) "statement", `kind` is the kind of the statement
1123    /// either `Return` or `Become`.
1124    fn emit_return_outside_of_fn_body(&self, expr: &hir::Expr<'_>, kind: ReturnLikeStatementKind) {
1125        let mut err = ReturnStmtOutsideOfFnBody {
1126            span: expr.span,
1127            encl_body_span: None,
1128            encl_fn_span: None,
1129            statement_kind: kind,
1130        };
1131
1132        let encl_item_id = self.tcx.hir().get_parent_item(expr.hir_id);
1133
1134        if let hir::Node::Item(hir::Item {
1135            kind: hir::ItemKind::Fn { .. },
1136            span: encl_fn_span,
1137            ..
1138        })
1139        | hir::Node::TraitItem(hir::TraitItem {
1140            kind: hir::TraitItemKind::Fn(_, hir::TraitFn::Provided(_)),
1141            span: encl_fn_span,
1142            ..
1143        })
1144        | hir::Node::ImplItem(hir::ImplItem {
1145            kind: hir::ImplItemKind::Fn(..),
1146            span: encl_fn_span,
1147            ..
1148        }) = self.tcx.hir_node_by_def_id(encl_item_id.def_id)
1149        {
1150            // We are inside a function body, so reporting "return statement
1151            // outside of function body" needs an explanation.
1152
1153            let encl_body_owner_id = self.tcx.hir().enclosing_body_owner(expr.hir_id);
1154
1155            // If this didn't hold, we would not have to report an error in
1156            // the first place.
1157            assert_ne!(encl_item_id.def_id, encl_body_owner_id);
1158
1159            let encl_body = self.tcx.hir().body_owned_by(encl_body_owner_id);
1160
1161            err.encl_body_span = Some(encl_body.value.span);
1162            err.encl_fn_span = Some(*encl_fn_span);
1163        }
1164
1165        self.dcx().emit_err(err);
1166    }
1167
1168    fn point_at_return_for_opaque_ty_error(
1169        &self,
1170        errors: &mut Vec<traits::FulfillmentError<'tcx>>,
1171        hir_id: HirId,
1172        span: Span,
1173        return_expr_ty: Ty<'tcx>,
1174        return_span: Span,
1175    ) {
1176        // Don't point at the whole block if it's empty
1177        if span == return_span {
1178            return;
1179        }
1180        for err in errors {
1181            let cause = &mut err.obligation.cause;
1182            if let ObligationCauseCode::OpaqueReturnType(None) = cause.code() {
1183                let new_cause = self.cause(
1184                    cause.span,
1185                    ObligationCauseCode::OpaqueReturnType(Some((return_expr_ty, hir_id))),
1186                );
1187                *cause = new_cause;
1188            }
1189        }
1190    }
1191
1192    pub(crate) fn check_lhs_assignable(
1193        &self,
1194        lhs: &'tcx hir::Expr<'tcx>,
1195        code: ErrCode,
1196        op_span: Span,
1197        adjust_err: impl FnOnce(&mut Diag<'_>),
1198    ) {
1199        if lhs.is_syntactic_place_expr() {
1200            return;
1201        }
1202
1203        let mut err = self.dcx().struct_span_err(op_span, "invalid left-hand side of assignment");
1204        err.code(code);
1205        err.span_label(lhs.span, "cannot assign to this expression");
1206
1207        self.comes_from_while_condition(lhs.hir_id, |expr| {
1208            err.span_suggestion_verbose(
1209                expr.span.shrink_to_lo(),
1210                "you might have meant to use pattern destructuring",
1211                "let ",
1212                Applicability::MachineApplicable,
1213            );
1214        });
1215        self.check_for_missing_semi(lhs, &mut err);
1216
1217        adjust_err(&mut err);
1218
1219        err.emit();
1220    }
1221
1222    /// Check if the expression that could not be assigned to was a typoed expression that
1223    pub(crate) fn check_for_missing_semi(
1224        &self,
1225        expr: &'tcx hir::Expr<'tcx>,
1226        err: &mut Diag<'_>,
1227    ) -> bool {
1228        if let hir::ExprKind::Binary(binop, lhs, rhs) = expr.kind
1229            && let hir::BinOpKind::Mul = binop.node
1230            && self.tcx.sess.source_map().is_multiline(lhs.span.between(rhs.span))
1231            && rhs.is_syntactic_place_expr()
1232        {
1233            //      v missing semicolon here
1234            // foo()
1235            // *bar = baz;
1236            // (#80446).
1237            err.span_suggestion_verbose(
1238                lhs.span.shrink_to_hi(),
1239                "you might have meant to write a semicolon here",
1240                ";",
1241                Applicability::MachineApplicable,
1242            );
1243            return true;
1244        }
1245        false
1246    }
1247
1248    // Check if an expression `original_expr_id` comes from the condition of a while loop,
1249    /// as opposed from the body of a while loop, which we can naively check by iterating
1250    /// parents until we find a loop...
1251    pub(super) fn comes_from_while_condition(
1252        &self,
1253        original_expr_id: HirId,
1254        then: impl FnOnce(&hir::Expr<'_>),
1255    ) {
1256        let mut parent = self.tcx.parent_hir_id(original_expr_id);
1257        loop {
1258            let node = self.tcx.hir_node(parent);
1259            match node {
1260                hir::Node::Expr(hir::Expr {
1261                    kind:
1262                        hir::ExprKind::Loop(
1263                            hir::Block {
1264                                expr:
1265                                    Some(hir::Expr {
1266                                        kind:
1267                                            hir::ExprKind::Match(expr, ..) | hir::ExprKind::If(expr, ..),
1268                                        ..
1269                                    }),
1270                                ..
1271                            },
1272                            _,
1273                            hir::LoopSource::While,
1274                            _,
1275                        ),
1276                    ..
1277                }) => {
1278                    // Check if our original expression is a child of the condition of a while loop.
1279                    // If it is, then we have a situation like `while Some(0) = value.get(0) {`,
1280                    // where `while let` was more likely intended.
1281                    if self.tcx.hir().parent_id_iter(original_expr_id).any(|id| id == expr.hir_id) {
1282                        then(expr);
1283                    }
1284                    break;
1285                }
1286                hir::Node::Item(_)
1287                | hir::Node::ImplItem(_)
1288                | hir::Node::TraitItem(_)
1289                | hir::Node::Crate(_) => break,
1290                _ => {
1291                    parent = self.tcx.parent_hir_id(parent);
1292                }
1293            }
1294        }
1295    }
1296
1297    // A generic function for checking the 'then' and 'else' clauses in an 'if'
1298    // or 'if-else' expression.
1299    fn check_expr_if(
1300        &self,
1301        cond_expr: &'tcx hir::Expr<'tcx>,
1302        then_expr: &'tcx hir::Expr<'tcx>,
1303        opt_else_expr: Option<&'tcx hir::Expr<'tcx>>,
1304        sp: Span,
1305        orig_expected: Expectation<'tcx>,
1306    ) -> Ty<'tcx> {
1307        let cond_ty = self.check_expr_has_type_or_error(cond_expr, self.tcx.types.bool, |_| {});
1308
1309        self.warn_if_unreachable(
1310            cond_expr.hir_id,
1311            then_expr.span,
1312            "block in `if` or `while` expression",
1313        );
1314
1315        let cond_diverges = self.diverges.get();
1316        self.diverges.set(Diverges::Maybe);
1317
1318        let expected = orig_expected.try_structurally_resolve_and_adjust_for_branches(self, sp);
1319        let then_ty = self.check_expr_with_expectation(then_expr, expected);
1320        let then_diverges = self.diverges.get();
1321        self.diverges.set(Diverges::Maybe);
1322
1323        // We've already taken the expected type's preferences
1324        // into account when typing the `then` branch. To figure
1325        // out the initial shot at a LUB, we thus only consider
1326        // `expected` if it represents a *hard* constraint
1327        // (`only_has_type`); otherwise, we just go with a
1328        // fresh type variable.
1329        let coerce_to_ty = expected.coercion_target_type(self, sp);
1330        let mut coerce: DynamicCoerceMany<'_> = CoerceMany::new(coerce_to_ty);
1331
1332        coerce.coerce(self, &self.misc(sp), then_expr, then_ty);
1333
1334        if let Some(else_expr) = opt_else_expr {
1335            let else_ty = self.check_expr_with_expectation(else_expr, expected);
1336            let else_diverges = self.diverges.get();
1337
1338            let tail_defines_return_position_impl_trait =
1339                self.return_position_impl_trait_from_match_expectation(orig_expected);
1340            let if_cause = self.if_cause(
1341                sp,
1342                cond_expr.span,
1343                then_expr,
1344                else_expr,
1345                then_ty,
1346                else_ty,
1347                tail_defines_return_position_impl_trait,
1348            );
1349
1350            coerce.coerce(self, &if_cause, else_expr, else_ty);
1351
1352            // We won't diverge unless both branches do (or the condition does).
1353            self.diverges.set(cond_diverges | then_diverges & else_diverges);
1354        } else {
1355            self.if_fallback_coercion(sp, cond_expr, then_expr, &mut coerce);
1356
1357            // If the condition is false we can't diverge.
1358            self.diverges.set(cond_diverges);
1359        }
1360
1361        let result_ty = coerce.complete(self);
1362        if let Err(guar) = cond_ty.error_reported() {
1363            Ty::new_error(self.tcx, guar)
1364        } else {
1365            result_ty
1366        }
1367    }
1368
1369    /// Type check assignment expression `expr` of form `lhs = rhs`.
1370    /// The expected type is `()` and is passed to the function for the purposes of diagnostics.
1371    fn check_expr_assign(
1372        &self,
1373        expr: &'tcx hir::Expr<'tcx>,
1374        expected: Expectation<'tcx>,
1375        lhs: &'tcx hir::Expr<'tcx>,
1376        rhs: &'tcx hir::Expr<'tcx>,
1377        span: Span,
1378    ) -> Ty<'tcx> {
1379        let expected_ty = expected.only_has_type(self);
1380        if expected_ty == Some(self.tcx.types.bool) {
1381            let guar = self.expr_assign_expected_bool_error(expr, lhs, rhs, span);
1382            return Ty::new_error(self.tcx, guar);
1383        }
1384
1385        let lhs_ty = self.check_expr_with_needs(lhs, Needs::MutPlace);
1386
1387        let suggest_deref_binop = |err: &mut Diag<'_>, rhs_ty: Ty<'tcx>| {
1388            if let Some(lhs_deref_ty) = self.deref_once_mutably_for_diagnostic(lhs_ty) {
1389                // Can only assign if the type is sized, so if `DerefMut` yields a type that is
1390                // unsized, do not suggest dereferencing it.
1391                let lhs_deref_ty_is_sized = self
1392                    .infcx
1393                    .type_implements_trait(
1394                        self.tcx.require_lang_item(LangItem::Sized, None),
1395                        [lhs_deref_ty],
1396                        self.param_env,
1397                    )
1398                    .may_apply();
1399                if lhs_deref_ty_is_sized && self.may_coerce(rhs_ty, lhs_deref_ty) {
1400                    err.span_suggestion_verbose(
1401                        lhs.span.shrink_to_lo(),
1402                        "consider dereferencing here to assign to the mutably borrowed value",
1403                        "*",
1404                        Applicability::MachineApplicable,
1405                    );
1406                }
1407            }
1408        };
1409
1410        // This is (basically) inlined `check_expr_coercible_to_type`, but we want
1411        // to suggest an additional fixup here in `suggest_deref_binop`.
1412        let rhs_ty = self.check_expr_with_hint(rhs, lhs_ty);
1413        if let Err(mut diag) =
1414            self.demand_coerce_diag(rhs, rhs_ty, lhs_ty, Some(lhs), AllowTwoPhase::No)
1415        {
1416            suggest_deref_binop(&mut diag, rhs_ty);
1417            diag.emit();
1418        }
1419
1420        self.check_lhs_assignable(lhs, E0070, span, |err| {
1421            if let Some(rhs_ty) = self.typeck_results.borrow().expr_ty_opt(rhs) {
1422                suggest_deref_binop(err, rhs_ty);
1423            }
1424        });
1425
1426        self.require_type_is_sized(lhs_ty, lhs.span, ObligationCauseCode::AssignmentLhsSized);
1427
1428        if let Err(guar) = (lhs_ty, rhs_ty).error_reported() {
1429            Ty::new_error(self.tcx, guar)
1430        } else {
1431            self.tcx.types.unit
1432        }
1433    }
1434
1435    /// The expected type is `bool` but this will result in `()` so we can reasonably
1436    /// say that the user intended to write `lhs == rhs` instead of `lhs = rhs`.
1437    /// The likely cause of this is `if foo = bar { .. }`.
1438    fn expr_assign_expected_bool_error(
1439        &self,
1440        expr: &'tcx hir::Expr<'tcx>,
1441        lhs: &'tcx hir::Expr<'tcx>,
1442        rhs: &'tcx hir::Expr<'tcx>,
1443        span: Span,
1444    ) -> ErrorGuaranteed {
1445        let actual_ty = self.tcx.types.unit;
1446        let expected_ty = self.tcx.types.bool;
1447        let mut err = self.demand_suptype_diag(expr.span, expected_ty, actual_ty).unwrap_err();
1448        let lhs_ty = self.check_expr(lhs);
1449        let rhs_ty = self.check_expr(rhs);
1450        let refs_can_coerce = |lhs: Ty<'tcx>, rhs: Ty<'tcx>| {
1451            let lhs = Ty::new_imm_ref(self.tcx, self.tcx.lifetimes.re_erased, lhs.peel_refs());
1452            let rhs = Ty::new_imm_ref(self.tcx, self.tcx.lifetimes.re_erased, rhs.peel_refs());
1453            self.may_coerce(rhs, lhs)
1454        };
1455        let (applicability, eq) = if self.may_coerce(rhs_ty, lhs_ty) {
1456            (Applicability::MachineApplicable, true)
1457        } else if refs_can_coerce(rhs_ty, lhs_ty) {
1458            // The lhs and rhs are likely missing some references in either side. Subsequent
1459            // suggestions will show up.
1460            (Applicability::MaybeIncorrect, true)
1461        } else if let ExprKind::Binary(
1462            Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
1463            _,
1464            rhs_expr,
1465        ) = lhs.kind
1466        {
1467            // if x == 1 && y == 2 { .. }
1468            //                 +
1469            let actual_lhs = self.check_expr(rhs_expr);
1470            let may_eq = self.may_coerce(rhs_ty, actual_lhs) || refs_can_coerce(rhs_ty, actual_lhs);
1471            (Applicability::MaybeIncorrect, may_eq)
1472        } else if let ExprKind::Binary(
1473            Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
1474            lhs_expr,
1475            _,
1476        ) = rhs.kind
1477        {
1478            // if x == 1 && y == 2 { .. }
1479            //       +
1480            let actual_rhs = self.check_expr(lhs_expr);
1481            let may_eq = self.may_coerce(actual_rhs, lhs_ty) || refs_can_coerce(actual_rhs, lhs_ty);
1482            (Applicability::MaybeIncorrect, may_eq)
1483        } else {
1484            (Applicability::MaybeIncorrect, false)
1485        };
1486
1487        if !lhs.is_syntactic_place_expr()
1488            && lhs.is_approximately_pattern()
1489            && !matches!(lhs.kind, hir::ExprKind::Lit(_))
1490        {
1491            // Do not suggest `if let x = y` as `==` is way more likely to be the intention.
1492            if let hir::Node::Expr(hir::Expr { kind: ExprKind::If { .. }, .. }) =
1493                self.tcx.parent_hir_node(expr.hir_id)
1494            {
1495                err.span_suggestion_verbose(
1496                    expr.span.shrink_to_lo(),
1497                    "you might have meant to use pattern matching",
1498                    "let ",
1499                    applicability,
1500                );
1501            };
1502        }
1503        if eq {
1504            err.span_suggestion_verbose(
1505                span.shrink_to_hi(),
1506                "you might have meant to compare for equality",
1507                '=',
1508                applicability,
1509            );
1510        }
1511
1512        // If the assignment expression itself is ill-formed, don't
1513        // bother emitting another error
1514        err.emit_unless(lhs_ty.references_error() || rhs_ty.references_error())
1515    }
1516
1517    pub(super) fn check_expr_let(
1518        &self,
1519        let_expr: &'tcx hir::LetExpr<'tcx>,
1520        hir_id: HirId,
1521    ) -> Ty<'tcx> {
1522        // for let statements, this is done in check_stmt
1523        let init = let_expr.init;
1524        self.warn_if_unreachable(init.hir_id, init.span, "block in `let` expression");
1525        // otherwise check exactly as a let statement
1526        self.check_decl((let_expr, hir_id).into());
1527        // but return a bool, for this is a boolean expression
1528        if let ast::Recovered::Yes(error_guaranteed) = let_expr.recovered {
1529            self.set_tainted_by_errors(error_guaranteed);
1530            Ty::new_error(self.tcx, error_guaranteed)
1531        } else {
1532            self.tcx.types.bool
1533        }
1534    }
1535
1536    fn check_expr_loop(
1537        &self,
1538        body: &'tcx hir::Block<'tcx>,
1539        source: hir::LoopSource,
1540        expected: Expectation<'tcx>,
1541        expr: &'tcx hir::Expr<'tcx>,
1542    ) -> Ty<'tcx> {
1543        let coerce = match source {
1544            // you can only use break with a value from a normal `loop { }`
1545            hir::LoopSource::Loop => {
1546                let coerce_to = expected.coercion_target_type(self, body.span);
1547                Some(CoerceMany::new(coerce_to))
1548            }
1549
1550            hir::LoopSource::While | hir::LoopSource::ForLoop => None,
1551        };
1552
1553        let ctxt = BreakableCtxt {
1554            coerce,
1555            may_break: false, // Will get updated if/when we find a `break`.
1556        };
1557
1558        let (ctxt, ()) = self.with_breakable_ctxt(expr.hir_id, ctxt, || {
1559            self.check_block_no_value(body);
1560        });
1561
1562        if ctxt.may_break {
1563            // No way to know whether it's diverging because
1564            // of a `break` or an outer `break` or `return`.
1565            self.diverges.set(Diverges::Maybe);
1566        } else {
1567            self.diverges.set(self.diverges.get() | Diverges::always(expr.span));
1568        }
1569
1570        // If we permit break with a value, then result type is
1571        // the LUB of the breaks (possibly ! if none); else, it
1572        // is nil. This makes sense because infinite loops
1573        // (which would have type !) are only possible iff we
1574        // permit break with a value.
1575        if ctxt.coerce.is_none() && !ctxt.may_break {
1576            self.dcx().span_bug(body.span, "no coercion, but loop may not break");
1577        }
1578        ctxt.coerce.map(|c| c.complete(self)).unwrap_or_else(|| self.tcx.types.unit)
1579    }
1580
1581    /// Checks a method call.
1582    fn check_expr_method_call(
1583        &self,
1584        expr: &'tcx hir::Expr<'tcx>,
1585        segment: &'tcx hir::PathSegment<'tcx>,
1586        rcvr: &'tcx hir::Expr<'tcx>,
1587        args: &'tcx [hir::Expr<'tcx>],
1588        expected: Expectation<'tcx>,
1589    ) -> Ty<'tcx> {
1590        let rcvr_t = self.check_expr(rcvr);
1591        // no need to check for bot/err -- callee does that
1592        let rcvr_t = self.structurally_resolve_type(rcvr.span, rcvr_t);
1593
1594        let method = match self.lookup_method(rcvr_t, segment, segment.ident.span, expr, rcvr, args)
1595        {
1596            Ok(method) => {
1597                // We could add a "consider `foo::<params>`" suggestion here, but I wasn't able to
1598                // trigger this codepath causing `structurally_resolve_type` to emit an error.
1599                self.write_method_call_and_enforce_effects(expr.hir_id, expr.span, method);
1600                Ok(method)
1601            }
1602            Err(error) => {
1603                if segment.ident.name == kw::Empty {
1604                    span_bug!(rcvr.span, "empty method name")
1605                } else {
1606                    Err(self.report_method_error(expr.hir_id, rcvr_t, error, expected, false))
1607                }
1608            }
1609        };
1610
1611        // Call the generic checker.
1612        self.check_method_argument_types(
1613            segment.ident.span,
1614            expr,
1615            method,
1616            args,
1617            DontTupleArguments,
1618            expected,
1619        )
1620    }
1621
1622    fn check_expr_cast(
1623        &self,
1624        e: &'tcx hir::Expr<'tcx>,
1625        t: &'tcx hir::Ty<'tcx>,
1626        expr: &'tcx hir::Expr<'tcx>,
1627    ) -> Ty<'tcx> {
1628        // Find the type of `e`. Supply hints based on the type we are casting to,
1629        // if appropriate.
1630        let t_cast = self.lower_ty_saving_user_provided_ty(t);
1631        let t_cast = self.resolve_vars_if_possible(t_cast);
1632        let t_expr = self.check_expr_with_expectation(e, ExpectCastableToType(t_cast));
1633        let t_expr = self.resolve_vars_if_possible(t_expr);
1634
1635        // Eagerly check for some obvious errors.
1636        if let Err(guar) = (t_expr, t_cast).error_reported() {
1637            Ty::new_error(self.tcx, guar)
1638        } else {
1639            // Defer other checks until we're done type checking.
1640            let mut deferred_cast_checks = self.deferred_cast_checks.borrow_mut();
1641            match cast::CastCheck::new(self, e, t_expr, t_cast, t.span, expr.span) {
1642                Ok(cast_check) => {
1643                    debug!(
1644                        "check_expr_cast: deferring cast from {:?} to {:?}: {:?}",
1645                        t_cast, t_expr, cast_check,
1646                    );
1647                    deferred_cast_checks.push(cast_check);
1648                    t_cast
1649                }
1650                Err(guar) => Ty::new_error(self.tcx, guar),
1651            }
1652        }
1653    }
1654
1655    fn check_expr_unsafe_binder_cast(
1656        &self,
1657        span: Span,
1658        kind: hir::UnsafeBinderCastKind,
1659        inner_expr: &'tcx hir::Expr<'tcx>,
1660        hir_ty: Option<&'tcx hir::Ty<'tcx>>,
1661        expected: Expectation<'tcx>,
1662    ) -> Ty<'tcx> {
1663        match kind {
1664            hir::UnsafeBinderCastKind::Wrap => {
1665                let ascribed_ty =
1666                    hir_ty.map(|hir_ty| self.lower_ty_saving_user_provided_ty(hir_ty));
1667                let expected_ty = expected.only_has_type(self);
1668                let binder_ty = match (ascribed_ty, expected_ty) {
1669                    (Some(ascribed_ty), Some(expected_ty)) => {
1670                        self.demand_eqtype(inner_expr.span, expected_ty, ascribed_ty);
1671                        expected_ty
1672                    }
1673                    (Some(ty), None) | (None, Some(ty)) => ty,
1674                    // This will always cause a structural resolve error, but we do it
1675                    // so we don't need to manually report an E0282 both on this codepath
1676                    // and in the others; it all happens in `structurally_resolve_type`.
1677                    (None, None) => self.next_ty_var(inner_expr.span),
1678                };
1679
1680                let binder_ty = self.structurally_resolve_type(inner_expr.span, binder_ty);
1681                let hint_ty = match *binder_ty.kind() {
1682                    ty::UnsafeBinder(binder) => self.instantiate_binder_with_fresh_vars(
1683                        inner_expr.span,
1684                        infer::BoundRegionConversionTime::HigherRankedType,
1685                        binder.into(),
1686                    ),
1687                    ty::Error(e) => Ty::new_error(self.tcx, e),
1688                    _ => {
1689                        let guar = self
1690                            .dcx()
1691                            .struct_span_err(
1692                                hir_ty.map_or(span, |hir_ty| hir_ty.span),
1693                                format!(
1694                                    "`wrap_binder!()` can only wrap into unsafe binder, not {}",
1695                                    binder_ty.sort_string(self.tcx)
1696                                ),
1697                            )
1698                            .with_note("unsafe binders are the only valid output of wrap")
1699                            .emit();
1700                        Ty::new_error(self.tcx, guar)
1701                    }
1702                };
1703
1704                self.check_expr_has_type_or_error(inner_expr, hint_ty, |_| {});
1705
1706                binder_ty
1707            }
1708            hir::UnsafeBinderCastKind::Unwrap => {
1709                let ascribed_ty =
1710                    hir_ty.map(|hir_ty| self.lower_ty_saving_user_provided_ty(hir_ty));
1711                let hint_ty = ascribed_ty.unwrap_or_else(|| self.next_ty_var(inner_expr.span));
1712                // FIXME(unsafe_binders): coerce here if needed?
1713                let binder_ty = self.check_expr_has_type_or_error(inner_expr, hint_ty, |_| {});
1714
1715                // Unwrap the binder. This will be ambiguous if it's an infer var, and will error
1716                // if it's not an unsafe binder.
1717                let binder_ty = self.structurally_resolve_type(inner_expr.span, binder_ty);
1718                match *binder_ty.kind() {
1719                    ty::UnsafeBinder(binder) => self.instantiate_binder_with_fresh_vars(
1720                        inner_expr.span,
1721                        infer::BoundRegionConversionTime::HigherRankedType,
1722                        binder.into(),
1723                    ),
1724                    ty::Error(e) => Ty::new_error(self.tcx, e),
1725                    _ => {
1726                        let guar = self
1727                            .dcx()
1728                            .struct_span_err(
1729                                hir_ty.map_or(inner_expr.span, |hir_ty| hir_ty.span),
1730                                format!(
1731                                    "expected unsafe binder, found {} as input of \
1732                                    `unwrap_binder!()`",
1733                                    binder_ty.sort_string(self.tcx)
1734                                ),
1735                            )
1736                            .with_note("only an unsafe binder type can be unwrapped")
1737                            .emit();
1738                        Ty::new_error(self.tcx, guar)
1739                    }
1740                }
1741            }
1742        }
1743    }
1744
1745    fn check_expr_array(
1746        &self,
1747        args: &'tcx [hir::Expr<'tcx>],
1748        expected: Expectation<'tcx>,
1749        expr: &'tcx hir::Expr<'tcx>,
1750    ) -> Ty<'tcx> {
1751        let element_ty = if !args.is_empty() {
1752            let coerce_to = expected
1753                .to_option(self)
1754                .and_then(|uty| match *self.try_structurally_resolve_type(expr.span, uty).kind() {
1755                    ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1756                    _ => None,
1757                })
1758                .unwrap_or_else(|| self.next_ty_var(expr.span));
1759            let mut coerce = CoerceMany::with_coercion_sites(coerce_to, args);
1760            assert_eq!(self.diverges.get(), Diverges::Maybe);
1761            for e in args {
1762                let e_ty = self.check_expr_with_hint(e, coerce_to);
1763                let cause = self.misc(e.span);
1764                coerce.coerce(self, &cause, e, e_ty);
1765            }
1766            coerce.complete(self)
1767        } else {
1768            self.next_ty_var(expr.span)
1769        };
1770        let array_len = args.len() as u64;
1771        self.suggest_array_len(expr, array_len);
1772        Ty::new_array(self.tcx, element_ty, array_len)
1773    }
1774
1775    fn suggest_array_len(&self, expr: &'tcx hir::Expr<'tcx>, array_len: u64) {
1776        let parent_node = self.tcx.hir().parent_iter(expr.hir_id).find(|(_, node)| {
1777            !matches!(node, hir::Node::Expr(hir::Expr { kind: hir::ExprKind::AddrOf(..), .. }))
1778        });
1779        let Some((_, hir::Node::LetStmt(hir::LetStmt { ty: Some(ty), .. }))) = parent_node else {
1780            return;
1781        };
1782        if let hir::TyKind::Array(_, ct) = ty.peel_refs().kind {
1783            let span = ct.span();
1784            self.dcx().try_steal_modify_and_emit_err(
1785                span,
1786                StashKey::UnderscoreForArrayLengths,
1787                |err| {
1788                    err.span_suggestion(
1789                        span,
1790                        "consider specifying the array length",
1791                        array_len,
1792                        Applicability::MaybeIncorrect,
1793                    );
1794                },
1795            );
1796        }
1797    }
1798
1799    pub(super) fn check_expr_const_block(
1800        &self,
1801        block: &'tcx hir::ConstBlock,
1802        expected: Expectation<'tcx>,
1803    ) -> Ty<'tcx> {
1804        let body = self.tcx.hir().body(block.body);
1805
1806        // Create a new function context.
1807        let def_id = block.def_id;
1808        let fcx = FnCtxt::new(self, self.param_env, def_id);
1809        crate::GatherLocalsVisitor::new(&fcx).visit_body(body);
1810
1811        let ty = fcx.check_expr_with_expectation(body.value, expected);
1812        fcx.require_type_is_sized(ty, body.value.span, ObligationCauseCode::ConstSized);
1813        fcx.write_ty(block.hir_id, ty);
1814        ty
1815    }
1816
1817    fn check_expr_repeat(
1818        &self,
1819        element: &'tcx hir::Expr<'tcx>,
1820        count: &'tcx hir::ConstArg<'tcx>,
1821        expected: Expectation<'tcx>,
1822        expr: &'tcx hir::Expr<'tcx>,
1823    ) -> Ty<'tcx> {
1824        let tcx = self.tcx;
1825        let count_span = count.span();
1826        let count = self.try_structurally_resolve_const(
1827            count_span,
1828            self.normalize(count_span, self.lower_const_arg(count, FeedConstTy::No)),
1829        );
1830
1831        if let Some(count) = count.try_to_target_usize(tcx) {
1832            self.suggest_array_len(expr, count);
1833        }
1834
1835        let uty = match expected {
1836            ExpectHasType(uty) => match *uty.kind() {
1837                ty::Array(ty, _) | ty::Slice(ty) => Some(ty),
1838                _ => None,
1839            },
1840            _ => None,
1841        };
1842
1843        let (element_ty, t) = match uty {
1844            Some(uty) => {
1845                self.check_expr_coercible_to_type(element, uty, None);
1846                (uty, uty)
1847            }
1848            None => {
1849                let ty = self.next_ty_var(element.span);
1850                let element_ty = self.check_expr_has_type_or_error(element, ty, |_| {});
1851                (element_ty, ty)
1852            }
1853        };
1854
1855        if let Err(guar) = element_ty.error_reported() {
1856            return Ty::new_error(tcx, guar);
1857        }
1858
1859        // If the length is 0, we don't create any elements, so we don't copy any.
1860        // If the length is 1, we don't copy that one element, we move it. Only check
1861        // for `Copy` if the length is larger, or unevaluated.
1862        // FIXME(min_const_generic_exprs): We could perhaps defer this check so that
1863        // we don't require `<?0t as Tr>::CONST` doesn't unnecessarily require `Copy`.
1864        if count.try_to_target_usize(tcx).is_none_or(|x| x > 1) {
1865            self.enforce_repeat_element_needs_copy_bound(element, element_ty);
1866        }
1867
1868        let ty = Ty::new_array_with_const_len(tcx, t, count);
1869        self.register_wf_obligation(ty.into(), expr.span, ObligationCauseCode::WellFormed(None));
1870        ty
1871    }
1872
1873    /// Requires that `element_ty` is `Copy` (unless it's a const expression itself).
1874    fn enforce_repeat_element_needs_copy_bound(
1875        &self,
1876        element: &hir::Expr<'_>,
1877        element_ty: Ty<'tcx>,
1878    ) {
1879        let tcx = self.tcx;
1880        // Actual constants as the repeat element get inserted repeatedly instead of getting copied via Copy.
1881        match &element.kind {
1882            hir::ExprKind::ConstBlock(..) => return,
1883            hir::ExprKind::Path(qpath) => {
1884                let res = self.typeck_results.borrow().qpath_res(qpath, element.hir_id);
1885                if let Res::Def(DefKind::Const | DefKind::AssocConst | DefKind::AnonConst, _) = res
1886                {
1887                    return;
1888                }
1889            }
1890            _ => {}
1891        }
1892        // If someone calls a const fn or constructs a const value, they can extract that
1893        // out into a separate constant (or a const block in the future), so we check that
1894        // to tell them that in the diagnostic. Does not affect typeck.
1895        let is_constable = match element.kind {
1896            hir::ExprKind::Call(func, _args) => match *self.node_ty(func.hir_id).kind() {
1897                ty::FnDef(def_id, _) if tcx.is_stable_const_fn(def_id) => traits::IsConstable::Fn,
1898                _ => traits::IsConstable::No,
1899            },
1900            hir::ExprKind::Path(qpath) => {
1901                match self.typeck_results.borrow().qpath_res(&qpath, element.hir_id) {
1902                    Res::Def(DefKind::Ctor(_, CtorKind::Const), _) => traits::IsConstable::Ctor,
1903                    _ => traits::IsConstable::No,
1904                }
1905            }
1906            _ => traits::IsConstable::No,
1907        };
1908
1909        let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
1910        let code =
1911            traits::ObligationCauseCode::RepeatElementCopy { is_constable, elt_span: element.span };
1912        self.require_type_meets(element_ty, element.span, code, lang_item);
1913    }
1914
1915    fn check_expr_tuple(
1916        &self,
1917        elts: &'tcx [hir::Expr<'tcx>],
1918        expected: Expectation<'tcx>,
1919        expr: &'tcx hir::Expr<'tcx>,
1920    ) -> Ty<'tcx> {
1921        let flds = expected.only_has_type(self).and_then(|ty| {
1922            let ty = self.try_structurally_resolve_type(expr.span, ty);
1923            match ty.kind() {
1924                ty::Tuple(flds) => Some(&flds[..]),
1925                _ => None,
1926            }
1927        });
1928
1929        let elt_ts_iter = elts.iter().enumerate().map(|(i, e)| match flds {
1930            Some(fs) if i < fs.len() => {
1931                let ety = fs[i];
1932                self.check_expr_coercible_to_type(e, ety, None);
1933                ety
1934            }
1935            _ => self.check_expr_with_expectation(e, NoExpectation),
1936        });
1937        let tuple = Ty::new_tup_from_iter(self.tcx, elt_ts_iter);
1938        if let Err(guar) = tuple.error_reported() {
1939            Ty::new_error(self.tcx, guar)
1940        } else {
1941            self.require_type_is_sized(
1942                tuple,
1943                expr.span,
1944                ObligationCauseCode::TupleInitializerSized,
1945            );
1946            tuple
1947        }
1948    }
1949
1950    fn check_expr_struct(
1951        &self,
1952        expr: &hir::Expr<'tcx>,
1953        expected: Expectation<'tcx>,
1954        qpath: &'tcx QPath<'tcx>,
1955        fields: &'tcx [hir::ExprField<'tcx>],
1956        base_expr: &'tcx hir::StructTailExpr<'tcx>,
1957    ) -> Ty<'tcx> {
1958        // Find the relevant variant
1959        let (variant, adt_ty) = match self.check_struct_path(qpath, expr.hir_id) {
1960            Ok(data) => data,
1961            Err(guar) => {
1962                self.check_struct_fields_on_error(fields, base_expr);
1963                return Ty::new_error(self.tcx, guar);
1964            }
1965        };
1966
1967        // Prohibit struct expressions when non-exhaustive flag is set.
1968        let adt = adt_ty.ty_adt_def().expect("`check_struct_path` returned non-ADT type");
1969        if !adt.did().is_local() && variant.is_field_list_non_exhaustive() {
1970            self.dcx()
1971                .emit_err(StructExprNonExhaustive { span: expr.span, what: adt.variant_descr() });
1972        }
1973
1974        self.check_expr_struct_fields(
1975            adt_ty,
1976            expected,
1977            expr,
1978            qpath.span(),
1979            variant,
1980            fields,
1981            base_expr,
1982        );
1983
1984        self.require_type_is_sized(adt_ty, expr.span, ObligationCauseCode::StructInitializerSized);
1985        adt_ty
1986    }
1987
1988    fn check_expr_struct_fields(
1989        &self,
1990        adt_ty: Ty<'tcx>,
1991        expected: Expectation<'tcx>,
1992        expr: &hir::Expr<'_>,
1993        path_span: Span,
1994        variant: &'tcx ty::VariantDef,
1995        hir_fields: &'tcx [hir::ExprField<'tcx>],
1996        base_expr: &'tcx hir::StructTailExpr<'tcx>,
1997    ) {
1998        let tcx = self.tcx;
1999
2000        let adt_ty = self.try_structurally_resolve_type(path_span, adt_ty);
2001        let adt_ty_hint = expected.only_has_type(self).and_then(|expected| {
2002            self.fudge_inference_if_ok(|| {
2003                let ocx = ObligationCtxt::new(self);
2004                ocx.sup(&self.misc(path_span), self.param_env, expected, adt_ty)?;
2005                if !ocx.select_where_possible().is_empty() {
2006                    return Err(TypeError::Mismatch);
2007                }
2008                Ok(self.resolve_vars_if_possible(adt_ty))
2009            })
2010            .ok()
2011        });
2012        if let Some(adt_ty_hint) = adt_ty_hint {
2013            // re-link the variables that the fudging above can create.
2014            self.demand_eqtype(path_span, adt_ty_hint, adt_ty);
2015        }
2016
2017        let ty::Adt(adt, args) = adt_ty.kind() else {
2018            span_bug!(path_span, "non-ADT passed to check_expr_struct_fields");
2019        };
2020        let adt_kind = adt.adt_kind();
2021
2022        let mut remaining_fields = variant
2023            .fields
2024            .iter_enumerated()
2025            .map(|(i, field)| (field.ident(tcx).normalize_to_macros_2_0(), (i, field)))
2026            .collect::<UnordMap<_, _>>();
2027
2028        let mut seen_fields = FxHashMap::default();
2029
2030        let mut error_happened = false;
2031
2032        if variant.fields.len() != remaining_fields.len() {
2033            // Some field is defined more than once. Make sure we don't try to
2034            // instantiate this struct in static/const context.
2035            let guar =
2036                self.dcx().span_delayed_bug(expr.span, "struct fields have non-unique names");
2037            self.set_tainted_by_errors(guar);
2038            error_happened = true;
2039        }
2040
2041        // Type-check each field.
2042        for (idx, field) in hir_fields.iter().enumerate() {
2043            let ident = tcx.adjust_ident(field.ident, variant.def_id);
2044            let field_type = if let Some((i, v_field)) = remaining_fields.remove(&ident) {
2045                seen_fields.insert(ident, field.span);
2046                self.write_field_index(field.hir_id, i);
2047
2048                // We don't look at stability attributes on
2049                // struct-like enums (yet...), but it's definitely not
2050                // a bug to have constructed one.
2051                if adt_kind != AdtKind::Enum {
2052                    tcx.check_stability(v_field.did, Some(expr.hir_id), field.span, None);
2053                }
2054
2055                self.field_ty(field.span, v_field, args)
2056            } else {
2057                error_happened = true;
2058                let guar = if let Some(prev_span) = seen_fields.get(&ident) {
2059                    self.dcx().emit_err(FieldMultiplySpecifiedInInitializer {
2060                        span: field.ident.span,
2061                        prev_span: *prev_span,
2062                        ident,
2063                    })
2064                } else {
2065                    self.report_unknown_field(
2066                        adt_ty,
2067                        variant,
2068                        expr,
2069                        field,
2070                        hir_fields,
2071                        adt.variant_descr(),
2072                    )
2073                };
2074
2075                Ty::new_error(tcx, guar)
2076            };
2077
2078            // Check that the expected field type is WF. Otherwise, we emit no use-site error
2079            // in the case of coercions for non-WF fields, which leads to incorrect error
2080            // tainting. See issue #126272.
2081            self.register_wf_obligation(
2082                field_type.into(),
2083                field.expr.span,
2084                ObligationCauseCode::WellFormed(None),
2085            );
2086
2087            // Make sure to give a type to the field even if there's
2088            // an error, so we can continue type-checking.
2089            let ty = self.check_expr_with_hint(field.expr, field_type);
2090            let diag = self.demand_coerce_diag(field.expr, ty, field_type, None, AllowTwoPhase::No);
2091
2092            if let Err(diag) = diag {
2093                if idx == hir_fields.len() - 1 {
2094                    if remaining_fields.is_empty() {
2095                        self.suggest_fru_from_range_and_emit(field, variant, args, diag);
2096                    } else {
2097                        diag.stash(field.span, StashKey::MaybeFruTypo);
2098                    }
2099                } else {
2100                    diag.emit();
2101                }
2102            }
2103        }
2104
2105        // Make sure the programmer specified correct number of fields.
2106        if adt_kind == AdtKind::Union && hir_fields.len() != 1 {
2107            struct_span_code_err!(
2108                self.dcx(),
2109                path_span,
2110                E0784,
2111                "union expressions should have exactly one field",
2112            )
2113            .emit();
2114        }
2115
2116        // If check_expr_struct_fields hit an error, do not attempt to populate
2117        // the fields with the base_expr. This could cause us to hit errors later
2118        // when certain fields are assumed to exist that in fact do not.
2119        if error_happened {
2120            if let hir::StructTailExpr::Base(base_expr) = base_expr {
2121                self.check_expr(base_expr);
2122            }
2123            return;
2124        }
2125
2126        if let hir::StructTailExpr::DefaultFields(span) = *base_expr {
2127            let mut missing_mandatory_fields = Vec::new();
2128            let mut missing_optional_fields = Vec::new();
2129            for f in &variant.fields {
2130                let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
2131                if let Some(_) = remaining_fields.remove(&ident) {
2132                    if f.value.is_none() {
2133                        missing_mandatory_fields.push(ident);
2134                    } else {
2135                        missing_optional_fields.push(ident);
2136                    }
2137                }
2138            }
2139            if !self.tcx.features().default_field_values() {
2140                let sugg = self.tcx.crate_level_attribute_injection_span(expr.hir_id);
2141                self.dcx().emit_err(BaseExpressionDoubleDot {
2142                    span: span.shrink_to_hi(),
2143                    // We only mention enabling the feature if this is a nightly rustc *and* the
2144                    // expression would make sense with the feature enabled.
2145                    default_field_values_suggestion: if self.tcx.sess.is_nightly_build()
2146                        && missing_mandatory_fields.is_empty()
2147                        && !missing_optional_fields.is_empty()
2148                        && sugg.is_some()
2149                    {
2150                        sugg
2151                    } else {
2152                        None
2153                    },
2154                    default_field_values_help: if self.tcx.sess.is_nightly_build()
2155                        && missing_mandatory_fields.is_empty()
2156                        && !missing_optional_fields.is_empty()
2157                        && sugg.is_none()
2158                    {
2159                        Some(BaseExpressionDoubleDotEnableDefaultFieldValues)
2160                    } else {
2161                        None
2162                    },
2163                    add_expr: if !missing_mandatory_fields.is_empty()
2164                        || !missing_optional_fields.is_empty()
2165                    {
2166                        Some(BaseExpressionDoubleDotAddExpr { span: span.shrink_to_hi() })
2167                    } else {
2168                        None
2169                    },
2170                    remove_dots: if missing_mandatory_fields.is_empty()
2171                        && missing_optional_fields.is_empty()
2172                    {
2173                        Some(BaseExpressionDoubleDotRemove { span })
2174                    } else {
2175                        None
2176                    },
2177                });
2178                return;
2179            }
2180            if variant.fields.is_empty() {
2181                let mut err = self.dcx().struct_span_err(
2182                    span,
2183                    format!(
2184                        "`{adt_ty}` has no fields, `..` needs at least one default field in the \
2185                         struct definition",
2186                    ),
2187                );
2188                err.span_label(path_span, "this type has no fields");
2189                err.emit();
2190            }
2191            if !missing_mandatory_fields.is_empty() {
2192                let s = pluralize!(missing_mandatory_fields.len());
2193                let fields = listify(&missing_mandatory_fields, |f| format!("`{f}`")).unwrap();
2194                self.dcx()
2195                    .struct_span_err(
2196                        span.shrink_to_hi(),
2197                        format!("missing mandatory field{s} {fields}"),
2198                    )
2199                    .emit();
2200                return;
2201            }
2202            let fru_tys = match adt_ty.kind() {
2203                ty::Adt(adt, args) if adt.is_struct() => variant
2204                    .fields
2205                    .iter()
2206                    .map(|f| self.normalize(span, f.ty(self.tcx, args)))
2207                    .collect(),
2208                ty::Adt(adt, args) if adt.is_enum() => variant
2209                    .fields
2210                    .iter()
2211                    .map(|f| self.normalize(span, f.ty(self.tcx, args)))
2212                    .collect(),
2213                _ => {
2214                    self.dcx().emit_err(FunctionalRecordUpdateOnNonStruct { span });
2215                    return;
2216                }
2217            };
2218            self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr.hir_id, fru_tys);
2219        } else if let hir::StructTailExpr::Base(base_expr) = base_expr {
2220            // FIXME: We are currently creating two branches here in order to maintain
2221            // consistency. But they should be merged as much as possible.
2222            let fru_tys = if self.tcx.features().type_changing_struct_update() {
2223                if adt.is_struct() {
2224                    // Make some fresh generic parameters for our ADT type.
2225                    let fresh_args = self.fresh_args_for_item(base_expr.span, adt.did());
2226                    // We do subtyping on the FRU fields first, so we can
2227                    // learn exactly what types we expect the base expr
2228                    // needs constrained to be compatible with the struct
2229                    // type we expect from the expectation value.
2230                    let fru_tys = variant
2231                        .fields
2232                        .iter()
2233                        .map(|f| {
2234                            let fru_ty = self
2235                                .normalize(expr.span, self.field_ty(base_expr.span, f, fresh_args));
2236                            let ident = self.tcx.adjust_ident(f.ident(self.tcx), variant.def_id);
2237                            if let Some(_) = remaining_fields.remove(&ident) {
2238                                let target_ty = self.field_ty(base_expr.span, f, args);
2239                                let cause = self.misc(base_expr.span);
2240                                match self.at(&cause, self.param_env).sup(
2241                                    // We're already using inference variables for any params, and don't allow converting
2242                                    // between different structs, so there is no way this ever actually defines an opaque type.
2243                                    // Thus choosing `Yes` is fine.
2244                                    DefineOpaqueTypes::Yes,
2245                                    target_ty,
2246                                    fru_ty,
2247                                ) {
2248                                    Ok(InferOk { obligations, value: () }) => {
2249                                        self.register_predicates(obligations)
2250                                    }
2251                                    Err(_) => {
2252                                        span_bug!(
2253                                            cause.span,
2254                                            "subtyping remaining fields of type changing FRU failed: {target_ty} != {fru_ty}: {}::{}",
2255                                            variant.name,
2256                                            ident.name,
2257                                        );
2258                                    }
2259                                }
2260                            }
2261                            self.resolve_vars_if_possible(fru_ty)
2262                        })
2263                        .collect();
2264                    // The use of fresh args that we have subtyped against
2265                    // our base ADT type's fields allows us to guide inference
2266                    // along so that, e.g.
2267                    // ```
2268                    // MyStruct<'a, F1, F2, const C: usize> {
2269                    //     f: F1,
2270                    //     // Other fields that reference `'a`, `F2`, and `C`
2271                    // }
2272                    //
2273                    // let x = MyStruct {
2274                    //    f: 1usize,
2275                    //    ..other_struct
2276                    // };
2277                    // ```
2278                    // will have the `other_struct` expression constrained to
2279                    // `MyStruct<'a, _, F2, C>`, as opposed to just `_`...
2280                    // This is important to allow coercions to happen in
2281                    // `other_struct` itself. See `coerce-in-base-expr.rs`.
2282                    let fresh_base_ty = Ty::new_adt(self.tcx, *adt, fresh_args);
2283                    self.check_expr_has_type_or_error(
2284                        base_expr,
2285                        self.resolve_vars_if_possible(fresh_base_ty),
2286                        |_| {},
2287                    );
2288                    fru_tys
2289                } else {
2290                    // Check the base_expr, regardless of a bad expected adt_ty, so we can get
2291                    // type errors on that expression, too.
2292                    self.check_expr(base_expr);
2293                    self.dcx().emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
2294                    return;
2295                }
2296            } else {
2297                self.check_expr_has_type_or_error(base_expr, adt_ty, |_| {
2298                    let base_ty = self.typeck_results.borrow().expr_ty(*base_expr);
2299                    let same_adt = matches!((adt_ty.kind(), base_ty.kind()),
2300                        (ty::Adt(adt, _), ty::Adt(base_adt, _)) if adt == base_adt);
2301                    if self.tcx.sess.is_nightly_build() && same_adt {
2302                        feature_err(
2303                            &self.tcx.sess,
2304                            sym::type_changing_struct_update,
2305                            base_expr.span,
2306                            "type changing struct updating is experimental",
2307                        )
2308                        .emit();
2309                    }
2310                });
2311                match adt_ty.kind() {
2312                    ty::Adt(adt, args) if adt.is_struct() => variant
2313                        .fields
2314                        .iter()
2315                        .map(|f| self.normalize(expr.span, f.ty(self.tcx, args)))
2316                        .collect(),
2317                    _ => {
2318                        self.dcx()
2319                            .emit_err(FunctionalRecordUpdateOnNonStruct { span: base_expr.span });
2320                        return;
2321                    }
2322                }
2323            };
2324            self.typeck_results.borrow_mut().fru_field_types_mut().insert(expr.hir_id, fru_tys);
2325        } else if adt_kind != AdtKind::Union && !remaining_fields.is_empty() {
2326            debug!(?remaining_fields);
2327            let private_fields: Vec<&ty::FieldDef> = variant
2328                .fields
2329                .iter()
2330                .filter(|field| !field.vis.is_accessible_from(tcx.parent_module(expr.hir_id), tcx))
2331                .collect();
2332
2333            if !private_fields.is_empty() {
2334                self.report_private_fields(
2335                    adt_ty,
2336                    path_span,
2337                    expr.span,
2338                    private_fields,
2339                    hir_fields,
2340                );
2341            } else {
2342                self.report_missing_fields(
2343                    adt_ty,
2344                    path_span,
2345                    expr.span,
2346                    remaining_fields,
2347                    variant,
2348                    hir_fields,
2349                    args,
2350                );
2351            }
2352        }
2353    }
2354
2355    fn check_struct_fields_on_error(
2356        &self,
2357        fields: &'tcx [hir::ExprField<'tcx>],
2358        base_expr: &'tcx hir::StructTailExpr<'tcx>,
2359    ) {
2360        for field in fields {
2361            self.check_expr(field.expr);
2362        }
2363        if let hir::StructTailExpr::Base(base) = *base_expr {
2364            self.check_expr(base);
2365        }
2366    }
2367
2368    /// Report an error for a struct field expression when there are fields which aren't provided.
2369    ///
2370    /// ```text
2371    /// error: missing field `you_can_use_this_field` in initializer of `foo::Foo`
2372    ///  --> src/main.rs:8:5
2373    ///   |
2374    /// 8 |     foo::Foo {};
2375    ///   |     ^^^^^^^^ missing `you_can_use_this_field`
2376    ///
2377    /// error: aborting due to 1 previous error
2378    /// ```
2379    fn report_missing_fields(
2380        &self,
2381        adt_ty: Ty<'tcx>,
2382        span: Span,
2383        full_span: Span,
2384        remaining_fields: UnordMap<Ident, (FieldIdx, &ty::FieldDef)>,
2385        variant: &'tcx ty::VariantDef,
2386        hir_fields: &'tcx [hir::ExprField<'tcx>],
2387        args: GenericArgsRef<'tcx>,
2388    ) {
2389        let len = remaining_fields.len();
2390
2391        let displayable_field_names: Vec<&str> =
2392            remaining_fields.items().map(|(ident, _)| ident.as_str()).into_sorted_stable_ord();
2393
2394        let mut truncated_fields_error = String::new();
2395        let remaining_fields_names = match &displayable_field_names[..] {
2396            [field1] => format!("`{field1}`"),
2397            [field1, field2] => format!("`{field1}` and `{field2}`"),
2398            [field1, field2, field3] => format!("`{field1}`, `{field2}` and `{field3}`"),
2399            _ => {
2400                truncated_fields_error =
2401                    format!(" and {} other field{}", len - 3, pluralize!(len - 3));
2402                displayable_field_names
2403                    .iter()
2404                    .take(3)
2405                    .map(|n| format!("`{n}`"))
2406                    .collect::<Vec<_>>()
2407                    .join(", ")
2408            }
2409        };
2410
2411        let mut err = struct_span_code_err!(
2412            self.dcx(),
2413            span,
2414            E0063,
2415            "missing field{} {}{} in initializer of `{}`",
2416            pluralize!(len),
2417            remaining_fields_names,
2418            truncated_fields_error,
2419            adt_ty
2420        );
2421        err.span_label(span, format!("missing {remaining_fields_names}{truncated_fields_error}"));
2422
2423        if remaining_fields.items().all(|(_, (_, field))| field.value.is_some())
2424            && self.tcx.sess.is_nightly_build()
2425        {
2426            let msg = format!(
2427                "all remaining fields have default values, {you_can} use those values with `..`",
2428                you_can = if self.tcx.features().default_field_values() {
2429                    "you can"
2430                } else {
2431                    "if you added `#![feature(default_field_values)]` to your crate you could"
2432                },
2433            );
2434            if let Some(hir_field) = hir_fields.last() {
2435                err.span_suggestion_verbose(
2436                    hir_field.span.shrink_to_hi(),
2437                    msg,
2438                    ", ..".to_string(),
2439                    Applicability::MachineApplicable,
2440                );
2441            } else if hir_fields.is_empty() {
2442                err.span_suggestion_verbose(
2443                    span.shrink_to_hi().with_hi(full_span.hi()),
2444                    msg,
2445                    " { .. }".to_string(),
2446                    Applicability::MachineApplicable,
2447                );
2448            }
2449        }
2450
2451        if let Some(hir_field) = hir_fields.last() {
2452            self.suggest_fru_from_range_and_emit(hir_field, variant, args, err);
2453        } else {
2454            err.emit();
2455        }
2456    }
2457
2458    /// If the last field is a range literal, but it isn't supposed to be, then they probably
2459    /// meant to use functional update syntax.
2460    fn suggest_fru_from_range_and_emit(
2461        &self,
2462        last_expr_field: &hir::ExprField<'tcx>,
2463        variant: &ty::VariantDef,
2464        args: GenericArgsRef<'tcx>,
2465        mut err: Diag<'_>,
2466    ) {
2467        // I don't use 'is_range_literal' because only double-sided, half-open ranges count.
2468        if let ExprKind::Struct(QPath::LangItem(LangItem::Range, ..), [range_start, range_end], _) =
2469            last_expr_field.expr.kind
2470            && let variant_field =
2471                variant.fields.iter().find(|field| field.ident(self.tcx) == last_expr_field.ident)
2472            && let range_def_id = self.tcx.lang_items().range_struct()
2473            && variant_field
2474                .and_then(|field| field.ty(self.tcx, args).ty_adt_def())
2475                .map(|adt| adt.did())
2476                != range_def_id
2477        {
2478            // Use a (somewhat arbitrary) filtering heuristic to avoid printing
2479            // expressions that are either too long, or have control character
2480            // such as newlines in them.
2481            let expr = self
2482                .tcx
2483                .sess
2484                .source_map()
2485                .span_to_snippet(range_end.expr.span)
2486                .ok()
2487                .filter(|s| s.len() < 25 && !s.contains(|c: char| c.is_control()));
2488
2489            let fru_span = self
2490                .tcx
2491                .sess
2492                .source_map()
2493                .span_extend_while_whitespace(range_start.span)
2494                .shrink_to_hi()
2495                .to(range_end.span);
2496
2497            err.subdiagnostic(TypeMismatchFruTypo { expr_span: range_start.span, fru_span, expr });
2498
2499            // Suppress any range expr type mismatches
2500            self.dcx().try_steal_replace_and_emit_err(
2501                last_expr_field.span,
2502                StashKey::MaybeFruTypo,
2503                err,
2504            );
2505        } else {
2506            err.emit();
2507        }
2508    }
2509
2510    /// Report an error for a struct field expression when there are invisible fields.
2511    ///
2512    /// ```text
2513    /// error: cannot construct `Foo` with struct literal syntax due to private fields
2514    ///  --> src/main.rs:8:5
2515    ///   |
2516    /// 8 |     foo::Foo {};
2517    ///   |     ^^^^^^^^
2518    ///
2519    /// error: aborting due to 1 previous error
2520    /// ```
2521    fn report_private_fields(
2522        &self,
2523        adt_ty: Ty<'tcx>,
2524        span: Span,
2525        expr_span: Span,
2526        private_fields: Vec<&ty::FieldDef>,
2527        used_fields: &'tcx [hir::ExprField<'tcx>],
2528    ) {
2529        let mut err =
2530            self.dcx().struct_span_err(
2531                span,
2532                format!(
2533                    "cannot construct `{adt_ty}` with struct literal syntax due to private fields",
2534                ),
2535            );
2536        let (used_private_fields, remaining_private_fields): (
2537            Vec<(Symbol, Span, bool)>,
2538            Vec<(Symbol, Span, bool)>,
2539        ) = private_fields
2540            .iter()
2541            .map(|field| {
2542                match used_fields.iter().find(|used_field| field.name == used_field.ident.name) {
2543                    Some(used_field) => (field.name, used_field.span, true),
2544                    None => (field.name, self.tcx.def_span(field.did), false),
2545                }
2546            })
2547            .partition(|field| field.2);
2548        err.span_labels(used_private_fields.iter().map(|(_, span, _)| *span), "private field");
2549        if !remaining_private_fields.is_empty() {
2550            let names = if remaining_private_fields.len() > 6 {
2551                String::new()
2552            } else {
2553                format!(
2554                    "{} ",
2555                    listify(&remaining_private_fields, |(name, _, _)| format!("`{name}`"))
2556                        .expect("expected at least one private field to report")
2557                )
2558            };
2559            err.note(format!(
2560                "{}private field{s} {names}that {were} not provided",
2561                if used_fields.is_empty() { "" } else { "...and other " },
2562                s = pluralize!(remaining_private_fields.len()),
2563                were = pluralize!("was", remaining_private_fields.len()),
2564            ));
2565        }
2566
2567        if let ty::Adt(def, _) = adt_ty.kind() {
2568            let def_id = def.did();
2569            let mut items = self
2570                .tcx
2571                .inherent_impls(def_id)
2572                .into_iter()
2573                .flat_map(|i| self.tcx.associated_items(i).in_definition_order())
2574                // Only assoc fn with no receivers.
2575                .filter(|item| {
2576                    matches!(item.kind, ty::AssocKind::Fn) && !item.fn_has_self_parameter
2577                })
2578                .filter_map(|item| {
2579                    // Only assoc fns that return `Self`
2580                    let fn_sig = self.tcx.fn_sig(item.def_id).skip_binder();
2581                    let ret_ty = fn_sig.output();
2582                    let ret_ty = self.tcx.normalize_erasing_late_bound_regions(
2583                        self.typing_env(self.param_env),
2584                        ret_ty,
2585                    );
2586                    if !self.can_eq(self.param_env, ret_ty, adt_ty) {
2587                        return None;
2588                    }
2589                    let input_len = fn_sig.inputs().skip_binder().len();
2590                    let order = !item.name.as_str().starts_with("new");
2591                    Some((order, item.name, input_len))
2592                })
2593                .collect::<Vec<_>>();
2594            items.sort_by_key(|(order, _, _)| *order);
2595            let suggestion = |name, args| {
2596                format!(
2597                    "::{name}({})",
2598                    std::iter::repeat("_").take(args).collect::<Vec<_>>().join(", ")
2599                )
2600            };
2601            match &items[..] {
2602                [] => {}
2603                [(_, name, args)] => {
2604                    err.span_suggestion_verbose(
2605                        span.shrink_to_hi().with_hi(expr_span.hi()),
2606                        format!("you might have meant to use the `{name}` associated function"),
2607                        suggestion(name, *args),
2608                        Applicability::MaybeIncorrect,
2609                    );
2610                }
2611                _ => {
2612                    err.span_suggestions(
2613                        span.shrink_to_hi().with_hi(expr_span.hi()),
2614                        "you might have meant to use an associated function to build this type",
2615                        items.iter().map(|(_, name, args)| suggestion(name, *args)),
2616                        Applicability::MaybeIncorrect,
2617                    );
2618                }
2619            }
2620            if let Some(default_trait) = self.tcx.get_diagnostic_item(sym::Default)
2621                && self
2622                    .infcx
2623                    .type_implements_trait(default_trait, [adt_ty], self.param_env)
2624                    .may_apply()
2625            {
2626                err.multipart_suggestion(
2627                    "consider using the `Default` trait",
2628                    vec![
2629                        (span.shrink_to_lo(), "<".to_string()),
2630                        (
2631                            span.shrink_to_hi().with_hi(expr_span.hi()),
2632                            " as std::default::Default>::default()".to_string(),
2633                        ),
2634                    ],
2635                    Applicability::MaybeIncorrect,
2636                );
2637            }
2638        }
2639
2640        err.emit();
2641    }
2642
2643    fn report_unknown_field(
2644        &self,
2645        ty: Ty<'tcx>,
2646        variant: &'tcx ty::VariantDef,
2647        expr: &hir::Expr<'_>,
2648        field: &hir::ExprField<'_>,
2649        skip_fields: &[hir::ExprField<'_>],
2650        kind_name: &str,
2651    ) -> ErrorGuaranteed {
2652        // we don't care to report errors for a struct if the struct itself is tainted
2653        if let Err(guar) = variant.has_errors() {
2654            return guar;
2655        }
2656        let mut err = self.err_ctxt().type_error_struct_with_diag(
2657            field.ident.span,
2658            |actual| match ty.kind() {
2659                ty::Adt(adt, ..) if adt.is_enum() => struct_span_code_err!(
2660                    self.dcx(),
2661                    field.ident.span,
2662                    E0559,
2663                    "{} `{}::{}` has no field named `{}`",
2664                    kind_name,
2665                    actual,
2666                    variant.name,
2667                    field.ident
2668                ),
2669                _ => struct_span_code_err!(
2670                    self.dcx(),
2671                    field.ident.span,
2672                    E0560,
2673                    "{} `{}` has no field named `{}`",
2674                    kind_name,
2675                    actual,
2676                    field.ident
2677                ),
2678            },
2679            ty,
2680        );
2681
2682        let variant_ident_span = self.tcx.def_ident_span(variant.def_id).unwrap();
2683        match variant.ctor {
2684            Some((CtorKind::Fn, def_id)) => match ty.kind() {
2685                ty::Adt(adt, ..) if adt.is_enum() => {
2686                    err.span_label(
2687                        variant_ident_span,
2688                        format!(
2689                            "`{adt}::{variant}` defined here",
2690                            adt = ty,
2691                            variant = variant.name,
2692                        ),
2693                    );
2694                    err.span_label(field.ident.span, "field does not exist");
2695                    let fn_sig = self.tcx.fn_sig(def_id).instantiate_identity();
2696                    let inputs = fn_sig.inputs().skip_binder();
2697                    let fields = format!(
2698                        "({})",
2699                        inputs.iter().map(|i| format!("/* {i} */")).collect::<Vec<_>>().join(", ")
2700                    );
2701                    let (replace_span, sugg) = match expr.kind {
2702                        hir::ExprKind::Struct(qpath, ..) => {
2703                            (qpath.span().shrink_to_hi().with_hi(expr.span.hi()), fields)
2704                        }
2705                        _ => {
2706                            (expr.span, format!("{ty}::{variant}{fields}", variant = variant.name))
2707                        }
2708                    };
2709                    err.span_suggestion_verbose(
2710                        replace_span,
2711                        format!(
2712                            "`{adt}::{variant}` is a tuple {kind_name}, use the appropriate syntax",
2713                            adt = ty,
2714                            variant = variant.name,
2715                        ),
2716                        sugg,
2717                        Applicability::HasPlaceholders,
2718                    );
2719                }
2720                _ => {
2721                    err.span_label(variant_ident_span, format!("`{ty}` defined here"));
2722                    err.span_label(field.ident.span, "field does not exist");
2723                    let fn_sig = self.tcx.fn_sig(def_id).instantiate_identity();
2724                    let inputs = fn_sig.inputs().skip_binder();
2725                    let fields = format!(
2726                        "({})",
2727                        inputs.iter().map(|i| format!("/* {i} */")).collect::<Vec<_>>().join(", ")
2728                    );
2729                    err.span_suggestion_verbose(
2730                        expr.span,
2731                        format!("`{ty}` is a tuple {kind_name}, use the appropriate syntax",),
2732                        format!("{ty}{fields}"),
2733                        Applicability::HasPlaceholders,
2734                    );
2735                }
2736            },
2737            _ => {
2738                // prevent all specified fields from being suggested
2739                let available_field_names = self.available_field_names(variant, expr, skip_fields);
2740                if let Some(field_name) =
2741                    find_best_match_for_name(&available_field_names, field.ident.name, None)
2742                {
2743                    err.span_label(field.ident.span, "unknown field");
2744                    err.span_suggestion_verbose(
2745                        field.ident.span,
2746                        "a field with a similar name exists",
2747                        field_name,
2748                        Applicability::MaybeIncorrect,
2749                    );
2750                } else {
2751                    match ty.kind() {
2752                        ty::Adt(adt, ..) => {
2753                            if adt.is_enum() {
2754                                err.span_label(
2755                                    field.ident.span,
2756                                    format!("`{}::{}` does not have this field", ty, variant.name),
2757                                );
2758                            } else {
2759                                err.span_label(
2760                                    field.ident.span,
2761                                    format!("`{ty}` does not have this field"),
2762                                );
2763                            }
2764                            if available_field_names.is_empty() {
2765                                err.note("all struct fields are already assigned");
2766                            } else {
2767                                err.note(format!(
2768                                    "available fields are: {}",
2769                                    self.name_series_display(available_field_names)
2770                                ));
2771                            }
2772                        }
2773                        _ => bug!("non-ADT passed to report_unknown_field"),
2774                    }
2775                };
2776            }
2777        }
2778        err.emit()
2779    }
2780
2781    fn available_field_names(
2782        &self,
2783        variant: &'tcx ty::VariantDef,
2784        expr: &hir::Expr<'_>,
2785        skip_fields: &[hir::ExprField<'_>],
2786    ) -> Vec<Symbol> {
2787        variant
2788            .fields
2789            .iter()
2790            .filter(|field| {
2791                skip_fields.iter().all(|&skip| skip.ident.name != field.name)
2792                    && self.is_field_suggestable(field, expr.hir_id, expr.span)
2793            })
2794            .map(|field| field.name)
2795            .collect()
2796    }
2797
2798    fn name_series_display(&self, names: Vec<Symbol>) -> String {
2799        // dynamic limit, to never omit just one field
2800        let limit = if names.len() == 6 { 6 } else { 5 };
2801        let mut display =
2802            names.iter().take(limit).map(|n| format!("`{n}`")).collect::<Vec<_>>().join(", ");
2803        if names.len() > limit {
2804            display = format!("{} ... and {} others", display, names.len() - limit);
2805        }
2806        display
2807    }
2808
2809    /// Find the position of a field named `ident` in `base_def`, accounting for unnammed fields.
2810    /// Return whether such a field has been found. The path to it is stored in `nested_fields`.
2811    /// `ident` must have been adjusted beforehand.
2812    fn find_adt_field(
2813        &self,
2814        base_def: ty::AdtDef<'tcx>,
2815        ident: Ident,
2816    ) -> Option<(FieldIdx, &'tcx ty::FieldDef)> {
2817        // No way to find a field in an enum.
2818        if base_def.is_enum() {
2819            return None;
2820        }
2821
2822        for (field_idx, field) in base_def.non_enum_variant().fields.iter_enumerated() {
2823            if field.ident(self.tcx).normalize_to_macros_2_0() == ident {
2824                // We found the field we wanted.
2825                return Some((field_idx, field));
2826            }
2827        }
2828
2829        None
2830    }
2831
2832    /// Check field access expressions, this works for both structs and tuples.
2833    /// Returns the Ty of the field.
2834    ///
2835    /// ```ignore (illustrative)
2836    /// base.field
2837    /// ^^^^^^^^^^ expr
2838    /// ^^^^       base
2839    ///      ^^^^^ field
2840    /// ```
2841    fn check_expr_field(
2842        &self,
2843        expr: &'tcx hir::Expr<'tcx>,
2844        base: &'tcx hir::Expr<'tcx>,
2845        field: Ident,
2846        // The expected type hint of the field.
2847        expected: Expectation<'tcx>,
2848    ) -> Ty<'tcx> {
2849        debug!("check_field(expr: {:?}, base: {:?}, field: {:?})", expr, base, field);
2850        let base_ty = self.check_expr(base);
2851        let base_ty = self.structurally_resolve_type(base.span, base_ty);
2852
2853        // Whether we are trying to access a private field. Used for error reporting.
2854        let mut private_candidate = None;
2855
2856        // Field expressions automatically deref
2857        let mut autoderef = self.autoderef(expr.span, base_ty);
2858        while let Some((deref_base_ty, _)) = autoderef.next() {
2859            debug!("deref_base_ty: {:?}", deref_base_ty);
2860            match deref_base_ty.kind() {
2861                ty::Adt(base_def, args) if !base_def.is_enum() => {
2862                    debug!("struct named {:?}", deref_base_ty);
2863                    // we don't care to report errors for a struct if the struct itself is tainted
2864                    if let Err(guar) = base_def.non_enum_variant().has_errors() {
2865                        return Ty::new_error(self.tcx(), guar);
2866                    }
2867
2868                    let fn_body_hir_id = self.tcx.local_def_id_to_hir_id(self.body_id);
2869                    let (ident, def_scope) =
2870                        self.tcx.adjust_ident_and_get_scope(field, base_def.did(), fn_body_hir_id);
2871
2872                    if let Some((idx, field)) = self.find_adt_field(*base_def, ident) {
2873                        self.write_field_index(expr.hir_id, idx);
2874
2875                        let adjustments = self.adjust_steps(&autoderef);
2876                        if field.vis.is_accessible_from(def_scope, self.tcx) {
2877                            self.apply_adjustments(base, adjustments);
2878                            self.register_predicates(autoderef.into_obligations());
2879
2880                            self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
2881                            return self.field_ty(expr.span, field, args);
2882                        }
2883
2884                        // The field is not accessible, fall through to error reporting.
2885                        private_candidate = Some((adjustments, base_def.did()));
2886                    }
2887                }
2888                ty::Tuple(tys) => {
2889                    if let Ok(index) = field.as_str().parse::<usize>() {
2890                        if field.name == sym::integer(index) {
2891                            if let Some(&field_ty) = tys.get(index) {
2892                                let adjustments = self.adjust_steps(&autoderef);
2893                                self.apply_adjustments(base, adjustments);
2894                                self.register_predicates(autoderef.into_obligations());
2895
2896                                self.write_field_index(expr.hir_id, FieldIdx::from_usize(index));
2897                                return field_ty;
2898                            }
2899                        }
2900                    }
2901                }
2902                _ => {}
2903            }
2904        }
2905        // We failed to check the expression, report an error.
2906
2907        // Emits an error if we deref an infer variable, like calling `.field` on a base type of &_.
2908        self.structurally_resolve_type(autoderef.span(), autoderef.final_ty(false));
2909
2910        if let Some((adjustments, did)) = private_candidate {
2911            // (#90483) apply adjustments to avoid ExprUseVisitor from
2912            // creating erroneous projection.
2913            self.apply_adjustments(base, adjustments);
2914            let guar = self.ban_private_field_access(
2915                expr,
2916                base_ty,
2917                field,
2918                did,
2919                expected.only_has_type(self),
2920            );
2921            return Ty::new_error(self.tcx(), guar);
2922        }
2923
2924        let guar = if field.name == kw::Empty {
2925            self.dcx().span_delayed_bug(field.span, "field name with no name")
2926        } else if self.method_exists_for_diagnostic(
2927            field,
2928            base_ty,
2929            expr.hir_id,
2930            expected.only_has_type(self),
2931        ) {
2932            // If taking a method instead of calling it
2933            self.ban_take_value_of_method(expr, base_ty, field)
2934        } else if !base_ty.is_primitive_ty() {
2935            self.ban_nonexisting_field(field, base, expr, base_ty)
2936        } else {
2937            let field_name = field.to_string();
2938            let mut err = type_error_struct!(
2939                self.dcx(),
2940                field.span,
2941                base_ty,
2942                E0610,
2943                "`{base_ty}` is a primitive type and therefore doesn't have fields",
2944            );
2945            let is_valid_suffix = |field: &str| {
2946                if field == "f32" || field == "f64" {
2947                    return true;
2948                }
2949                let mut chars = field.chars().peekable();
2950                match chars.peek() {
2951                    Some('e') | Some('E') => {
2952                        chars.next();
2953                        if let Some(c) = chars.peek()
2954                            && !c.is_numeric()
2955                            && *c != '-'
2956                            && *c != '+'
2957                        {
2958                            return false;
2959                        }
2960                        while let Some(c) = chars.peek() {
2961                            if !c.is_numeric() {
2962                                break;
2963                            }
2964                            chars.next();
2965                        }
2966                    }
2967                    _ => (),
2968                }
2969                let suffix = chars.collect::<String>();
2970                suffix.is_empty() || suffix == "f32" || suffix == "f64"
2971            };
2972            let maybe_partial_suffix = |field: &str| -> Option<&str> {
2973                let first_chars = ['f', 'l'];
2974                if field.len() >= 1
2975                    && field.to_lowercase().starts_with(first_chars)
2976                    && field[1..].chars().all(|c| c.is_ascii_digit())
2977                {
2978                    if field.to_lowercase().starts_with(['f']) { Some("f32") } else { Some("f64") }
2979                } else {
2980                    None
2981                }
2982            };
2983            if let ty::Infer(ty::IntVar(_)) = base_ty.kind()
2984                && let ExprKind::Lit(Spanned {
2985                    node: ast::LitKind::Int(_, ast::LitIntType::Unsuffixed),
2986                    ..
2987                }) = base.kind
2988                && !base.span.from_expansion()
2989            {
2990                if is_valid_suffix(&field_name) {
2991                    err.span_suggestion_verbose(
2992                        field.span.shrink_to_lo(),
2993                        "if intended to be a floating point literal, consider adding a `0` after the period",
2994                        '0',
2995                        Applicability::MaybeIncorrect,
2996                    );
2997                } else if let Some(correct_suffix) = maybe_partial_suffix(&field_name) {
2998                    err.span_suggestion_verbose(
2999                        field.span,
3000                        format!("if intended to be a floating point literal, consider adding a `0` after the period and a `{correct_suffix}` suffix"),
3001                        format!("0{correct_suffix}"),
3002                        Applicability::MaybeIncorrect,
3003                    );
3004                }
3005            }
3006            err.emit()
3007        };
3008
3009        Ty::new_error(self.tcx(), guar)
3010    }
3011
3012    fn suggest_await_on_field_access(
3013        &self,
3014        err: &mut Diag<'_>,
3015        field_ident: Ident,
3016        base: &'tcx hir::Expr<'tcx>,
3017        ty: Ty<'tcx>,
3018    ) {
3019        let Some(output_ty) = self.err_ctxt().get_impl_future_output_ty(ty) else {
3020            err.span_label(field_ident.span, "unknown field");
3021            return;
3022        };
3023        let ty::Adt(def, _) = output_ty.kind() else {
3024            err.span_label(field_ident.span, "unknown field");
3025            return;
3026        };
3027        // no field access on enum type
3028        if def.is_enum() {
3029            err.span_label(field_ident.span, "unknown field");
3030            return;
3031        }
3032        if !def.non_enum_variant().fields.iter().any(|field| field.ident(self.tcx) == field_ident) {
3033            err.span_label(field_ident.span, "unknown field");
3034            return;
3035        }
3036        err.span_label(
3037            field_ident.span,
3038            "field not available in `impl Future`, but it is available in its `Output`",
3039        );
3040        match self.tcx.coroutine_kind(self.body_id) {
3041            Some(hir::CoroutineKind::Desugared(hir::CoroutineDesugaring::Async, _)) => {
3042                err.span_suggestion_verbose(
3043                    base.span.shrink_to_hi(),
3044                    "consider `await`ing on the `Future` to access the field",
3045                    ".await",
3046                    Applicability::MaybeIncorrect,
3047                );
3048            }
3049            _ => {
3050                let mut span: MultiSpan = base.span.into();
3051                span.push_span_label(self.tcx.def_span(self.body_id), "this is not `async`");
3052                err.span_note(
3053                    span,
3054                    "this implements `Future` and its output type has the field, \
3055                    but the future cannot be awaited in a synchronous function",
3056                );
3057            }
3058        }
3059    }
3060
3061    fn ban_nonexisting_field(
3062        &self,
3063        ident: Ident,
3064        base: &'tcx hir::Expr<'tcx>,
3065        expr: &'tcx hir::Expr<'tcx>,
3066        base_ty: Ty<'tcx>,
3067    ) -> ErrorGuaranteed {
3068        debug!(
3069            "ban_nonexisting_field: field={:?}, base={:?}, expr={:?}, base_ty={:?}",
3070            ident, base, expr, base_ty
3071        );
3072        let mut err = self.no_such_field_err(ident, base_ty, base.hir_id);
3073
3074        match *base_ty.peel_refs().kind() {
3075            ty::Array(_, len) => {
3076                self.maybe_suggest_array_indexing(&mut err, base, ident, len);
3077            }
3078            ty::RawPtr(..) => {
3079                self.suggest_first_deref_field(&mut err, base, ident);
3080            }
3081            ty::Param(param_ty) => {
3082                err.span_label(ident.span, "unknown field");
3083                self.point_at_param_definition(&mut err, param_ty);
3084            }
3085            ty::Alias(ty::Opaque, _) => {
3086                self.suggest_await_on_field_access(&mut err, ident, base, base_ty.peel_refs());
3087            }
3088            _ => {
3089                err.span_label(ident.span, "unknown field");
3090            }
3091        }
3092
3093        self.suggest_fn_call(&mut err, base, base_ty, |output_ty| {
3094            if let ty::Adt(def, _) = output_ty.kind()
3095                && !def.is_enum()
3096            {
3097                def.non_enum_variant().fields.iter().any(|field| {
3098                    field.ident(self.tcx) == ident
3099                        && field.vis.is_accessible_from(expr.hir_id.owner.def_id, self.tcx)
3100                })
3101            } else if let ty::Tuple(tys) = output_ty.kind()
3102                && let Ok(idx) = ident.as_str().parse::<usize>()
3103            {
3104                idx < tys.len()
3105            } else {
3106                false
3107            }
3108        });
3109
3110        if ident.name == kw::Await {
3111            // We know by construction that `<expr>.await` is either on Rust 2015
3112            // or results in `ExprKind::Await`. Suggest switching the edition to 2018.
3113            err.note("to `.await` a `Future`, switch to Rust 2018 or later");
3114            HelpUseLatestEdition::new().add_to_diag(&mut err);
3115        }
3116
3117        err.emit()
3118    }
3119
3120    fn ban_private_field_access(
3121        &self,
3122        expr: &hir::Expr<'tcx>,
3123        expr_t: Ty<'tcx>,
3124        field: Ident,
3125        base_did: DefId,
3126        return_ty: Option<Ty<'tcx>>,
3127    ) -> ErrorGuaranteed {
3128        let mut err = self.private_field_err(field, base_did);
3129
3130        // Also check if an accessible method exists, which is often what is meant.
3131        if self.method_exists_for_diagnostic(field, expr_t, expr.hir_id, return_ty)
3132            && !self.expr_in_place(expr.hir_id)
3133        {
3134            self.suggest_method_call(
3135                &mut err,
3136                format!("a method `{field}` also exists, call it with parentheses"),
3137                field,
3138                expr_t,
3139                expr,
3140                None,
3141            );
3142        }
3143        err.emit()
3144    }
3145
3146    fn ban_take_value_of_method(
3147        &self,
3148        expr: &hir::Expr<'tcx>,
3149        expr_t: Ty<'tcx>,
3150        field: Ident,
3151    ) -> ErrorGuaranteed {
3152        let mut err = type_error_struct!(
3153            self.dcx(),
3154            field.span,
3155            expr_t,
3156            E0615,
3157            "attempted to take value of method `{field}` on type `{expr_t}`",
3158        );
3159        err.span_label(field.span, "method, not a field");
3160        let expr_is_call =
3161            if let hir::Node::Expr(hir::Expr { kind: ExprKind::Call(callee, _args), .. }) =
3162                self.tcx.parent_hir_node(expr.hir_id)
3163            {
3164                expr.hir_id == callee.hir_id
3165            } else {
3166                false
3167            };
3168        let expr_snippet =
3169            self.tcx.sess.source_map().span_to_snippet(expr.span).unwrap_or_default();
3170        let is_wrapped = expr_snippet.starts_with('(') && expr_snippet.ends_with(')');
3171        let after_open = expr.span.lo() + rustc_span::BytePos(1);
3172        let before_close = expr.span.hi() - rustc_span::BytePos(1);
3173
3174        if expr_is_call && is_wrapped {
3175            err.multipart_suggestion(
3176                "remove wrapping parentheses to call the method",
3177                vec![
3178                    (expr.span.with_hi(after_open), String::new()),
3179                    (expr.span.with_lo(before_close), String::new()),
3180                ],
3181                Applicability::MachineApplicable,
3182            );
3183        } else if !self.expr_in_place(expr.hir_id) {
3184            // Suggest call parentheses inside the wrapping parentheses
3185            let span = if is_wrapped {
3186                expr.span.with_lo(after_open).with_hi(before_close)
3187            } else {
3188                expr.span
3189            };
3190            self.suggest_method_call(
3191                &mut err,
3192                "use parentheses to call the method",
3193                field,
3194                expr_t,
3195                expr,
3196                Some(span),
3197            );
3198        } else if let ty::RawPtr(ptr_ty, _) = expr_t.kind()
3199            && let ty::Adt(adt_def, _) = ptr_ty.kind()
3200            && let ExprKind::Field(base_expr, _) = expr.kind
3201            && let [variant] = &adt_def.variants().raw
3202            && variant.fields.iter().any(|f| f.ident(self.tcx) == field)
3203        {
3204            err.multipart_suggestion(
3205                "to access the field, dereference first",
3206                vec![
3207                    (base_expr.span.shrink_to_lo(), "(*".to_string()),
3208                    (base_expr.span.shrink_to_hi(), ")".to_string()),
3209                ],
3210                Applicability::MaybeIncorrect,
3211            );
3212        } else {
3213            err.help("methods are immutable and cannot be assigned to");
3214        }
3215
3216        // See `StashKey::GenericInFieldExpr` for more info
3217        self.dcx().try_steal_replace_and_emit_err(field.span, StashKey::GenericInFieldExpr, err)
3218    }
3219
3220    fn point_at_param_definition(&self, err: &mut Diag<'_>, param: ty::ParamTy) {
3221        let generics = self.tcx.generics_of(self.body_id);
3222        let generic_param = generics.type_param(param, self.tcx);
3223        if let ty::GenericParamDefKind::Type { synthetic: true, .. } = generic_param.kind {
3224            return;
3225        }
3226        let param_def_id = generic_param.def_id;
3227        let param_hir_id = match param_def_id.as_local() {
3228            Some(x) => self.tcx.local_def_id_to_hir_id(x),
3229            None => return,
3230        };
3231        let param_span = self.tcx.hir().span(param_hir_id);
3232        let param_name = self.tcx.hir().ty_param_name(param_def_id.expect_local());
3233
3234        err.span_label(param_span, format!("type parameter '{param_name}' declared here"));
3235    }
3236
3237    fn maybe_suggest_array_indexing(
3238        &self,
3239        err: &mut Diag<'_>,
3240        base: &hir::Expr<'_>,
3241        field: Ident,
3242        len: ty::Const<'tcx>,
3243    ) {
3244        err.span_label(field.span, "unknown field");
3245        if let (Some(len), Ok(user_index)) = (
3246            self.try_structurally_resolve_const(base.span, len).try_to_target_usize(self.tcx),
3247            field.as_str().parse::<u64>(),
3248        ) {
3249            let help = "instead of using tuple indexing, use array indexing";
3250            let applicability = if len < user_index {
3251                Applicability::MachineApplicable
3252            } else {
3253                Applicability::MaybeIncorrect
3254            };
3255            err.multipart_suggestion(
3256                help,
3257                vec![
3258                    (base.span.between(field.span), "[".to_string()),
3259                    (field.span.shrink_to_hi(), "]".to_string()),
3260                ],
3261                applicability,
3262            );
3263        }
3264    }
3265
3266    fn suggest_first_deref_field(&self, err: &mut Diag<'_>, base: &hir::Expr<'_>, field: Ident) {
3267        err.span_label(field.span, "unknown field");
3268        let val = if let Ok(base) = self.tcx.sess.source_map().span_to_snippet(base.span)
3269            && base.len() < 20
3270        {
3271            format!("`{base}`")
3272        } else {
3273            "the value".to_string()
3274        };
3275        err.multipart_suggestion(
3276            format!("{val} is a raw pointer; try dereferencing it"),
3277            vec![
3278                (base.span.shrink_to_lo(), "(*".to_string()),
3279                (base.span.shrink_to_hi(), ")".to_string()),
3280            ],
3281            Applicability::MaybeIncorrect,
3282        );
3283    }
3284
3285    fn no_such_field_err(&self, field: Ident, expr_t: Ty<'tcx>, id: HirId) -> Diag<'_> {
3286        let span = field.span;
3287        debug!("no_such_field_err(span: {:?}, field: {:?}, expr_t: {:?})", span, field, expr_t);
3288
3289        let mut err = type_error_struct!(
3290            self.dcx(),
3291            span,
3292            expr_t,
3293            E0609,
3294            "no field `{field}` on type `{expr_t}`",
3295        );
3296
3297        // try to add a suggestion in case the field is a nested field of a field of the Adt
3298        let mod_id = self.tcx.parent_module(id).to_def_id();
3299        let (ty, unwrap) = if let ty::Adt(def, args) = expr_t.kind()
3300            && (self.tcx.is_diagnostic_item(sym::Result, def.did())
3301                || self.tcx.is_diagnostic_item(sym::Option, def.did()))
3302            && let Some(arg) = args.get(0)
3303            && let Some(ty) = arg.as_type()
3304        {
3305            (ty, "unwrap().")
3306        } else {
3307            (expr_t, "")
3308        };
3309        for (found_fields, args) in
3310            self.get_field_candidates_considering_privacy_for_diag(span, ty, mod_id, id)
3311        {
3312            let field_names = found_fields.iter().map(|field| field.name).collect::<Vec<_>>();
3313            let mut candidate_fields: Vec<_> = found_fields
3314                .into_iter()
3315                .filter_map(|candidate_field| {
3316                    self.check_for_nested_field_satisfying_condition_for_diag(
3317                        span,
3318                        &|candidate_field, _| candidate_field.ident(self.tcx()) == field,
3319                        candidate_field,
3320                        args,
3321                        vec![],
3322                        mod_id,
3323                        id,
3324                    )
3325                })
3326                .map(|mut field_path| {
3327                    field_path.pop();
3328                    field_path.iter().map(|id| format!("{}.", id)).collect::<String>()
3329                })
3330                .collect::<Vec<_>>();
3331            candidate_fields.sort();
3332
3333            let len = candidate_fields.len();
3334            if len > 0 {
3335                err.span_suggestions(
3336                    field.span.shrink_to_lo(),
3337                    format!(
3338                        "{} of the expressions' fields {} a field of the same name",
3339                        if len > 1 { "some" } else { "one" },
3340                        if len > 1 { "have" } else { "has" },
3341                    ),
3342                    candidate_fields.iter().map(|path| format!("{unwrap}{path}")),
3343                    Applicability::MaybeIncorrect,
3344                );
3345            } else if let Some(field_name) =
3346                find_best_match_for_name(&field_names, field.name, None)
3347            {
3348                err.span_suggestion_verbose(
3349                    field.span,
3350                    "a field with a similar name exists",
3351                    format!("{unwrap}{}", field_name),
3352                    Applicability::MaybeIncorrect,
3353                );
3354            } else if !field_names.is_empty() {
3355                let is = if field_names.len() == 1 { " is" } else { "s are" };
3356                err.note(
3357                    format!("available field{is}: {}", self.name_series_display(field_names),),
3358                );
3359            }
3360        }
3361        err
3362    }
3363
3364    fn private_field_err(&self, field: Ident, base_did: DefId) -> Diag<'_> {
3365        let struct_path = self.tcx().def_path_str(base_did);
3366        let kind_name = self.tcx().def_descr(base_did);
3367        struct_span_code_err!(
3368            self.dcx(),
3369            field.span,
3370            E0616,
3371            "field `{field}` of {kind_name} `{struct_path}` is private",
3372        )
3373        .with_span_label(field.span, "private field")
3374    }
3375
3376    pub(crate) fn get_field_candidates_considering_privacy_for_diag(
3377        &self,
3378        span: Span,
3379        base_ty: Ty<'tcx>,
3380        mod_id: DefId,
3381        hir_id: HirId,
3382    ) -> Vec<(Vec<&'tcx ty::FieldDef>, GenericArgsRef<'tcx>)> {
3383        debug!("get_field_candidates(span: {:?}, base_t: {:?}", span, base_ty);
3384
3385        let mut autoderef = self.autoderef(span, base_ty).silence_errors();
3386        let deref_chain: Vec<_> = autoderef.by_ref().collect();
3387
3388        // Don't probe if we hit the recursion limit, since it may result in
3389        // quadratic blowup if we then try to further deref the results of this
3390        // function. This is a best-effort method, after all.
3391        if autoderef.reached_recursion_limit() {
3392            return vec![];
3393        }
3394
3395        deref_chain
3396            .into_iter()
3397            .filter_map(move |(base_t, _)| {
3398                match base_t.kind() {
3399                    ty::Adt(base_def, args) if !base_def.is_enum() => {
3400                        let tcx = self.tcx;
3401                        let fields = &base_def.non_enum_variant().fields;
3402                        // Some struct, e.g. some that impl `Deref`, have all private fields
3403                        // because you're expected to deref them to access the _real_ fields.
3404                        // This, for example, will help us suggest accessing a field through a `Box<T>`.
3405                        if fields.iter().all(|field| !field.vis.is_accessible_from(mod_id, tcx)) {
3406                            return None;
3407                        }
3408                        return Some((
3409                            fields
3410                                .iter()
3411                                .filter(move |field| {
3412                                    field.vis.is_accessible_from(mod_id, tcx)
3413                                        && self.is_field_suggestable(field, hir_id, span)
3414                                })
3415                                // For compile-time reasons put a limit on number of fields we search
3416                                .take(100)
3417                                .collect::<Vec<_>>(),
3418                            *args,
3419                        ));
3420                    }
3421                    _ => None,
3422                }
3423            })
3424            .collect()
3425    }
3426
3427    /// This method is called after we have encountered a missing field error to recursively
3428    /// search for the field
3429    pub(crate) fn check_for_nested_field_satisfying_condition_for_diag(
3430        &self,
3431        span: Span,
3432        matches: &impl Fn(&ty::FieldDef, Ty<'tcx>) -> bool,
3433        candidate_field: &ty::FieldDef,
3434        subst: GenericArgsRef<'tcx>,
3435        mut field_path: Vec<Ident>,
3436        mod_id: DefId,
3437        hir_id: HirId,
3438    ) -> Option<Vec<Ident>> {
3439        debug!(
3440            "check_for_nested_field_satisfying(span: {:?}, candidate_field: {:?}, field_path: {:?}",
3441            span, candidate_field, field_path
3442        );
3443
3444        if field_path.len() > 3 {
3445            // For compile-time reasons and to avoid infinite recursion we only check for fields
3446            // up to a depth of three
3447            None
3448        } else {
3449            field_path.push(candidate_field.ident(self.tcx).normalize_to_macros_2_0());
3450            let field_ty = candidate_field.ty(self.tcx, subst);
3451            if matches(candidate_field, field_ty) {
3452                return Some(field_path);
3453            } else {
3454                for (nested_fields, subst) in self
3455                    .get_field_candidates_considering_privacy_for_diag(
3456                        span, field_ty, mod_id, hir_id,
3457                    )
3458                {
3459                    // recursively search fields of `candidate_field` if it's a ty::Adt
3460                    for field in nested_fields {
3461                        if let Some(field_path) = self
3462                            .check_for_nested_field_satisfying_condition_for_diag(
3463                                span,
3464                                matches,
3465                                field,
3466                                subst,
3467                                field_path.clone(),
3468                                mod_id,
3469                                hir_id,
3470                            )
3471                        {
3472                            return Some(field_path);
3473                        }
3474                    }
3475                }
3476            }
3477            None
3478        }
3479    }
3480
3481    fn check_expr_index(
3482        &self,
3483        base: &'tcx hir::Expr<'tcx>,
3484        idx: &'tcx hir::Expr<'tcx>,
3485        expr: &'tcx hir::Expr<'tcx>,
3486        brackets_span: Span,
3487    ) -> Ty<'tcx> {
3488        let base_t = self.check_expr(base);
3489        let idx_t = self.check_expr(idx);
3490
3491        if base_t.references_error() {
3492            base_t
3493        } else if idx_t.references_error() {
3494            idx_t
3495        } else {
3496            let base_t = self.structurally_resolve_type(base.span, base_t);
3497            match self.lookup_indexing(expr, base, base_t, idx, idx_t) {
3498                Some((index_ty, element_ty)) => {
3499                    // two-phase not needed because index_ty is never mutable
3500                    self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
3501                    self.select_obligations_where_possible(|errors| {
3502                        self.point_at_index(errors, idx.span);
3503                    });
3504                    element_ty
3505                }
3506                None => {
3507                    // Attempt to *shallowly* search for an impl which matches,
3508                    // but has nested obligations which are unsatisfied.
3509                    for (base_t, _) in self.autoderef(base.span, base_t).silence_errors() {
3510                        if let Some((_, index_ty, element_ty)) =
3511                            self.find_and_report_unsatisfied_index_impl(base, base_t)
3512                        {
3513                            self.demand_coerce(idx, idx_t, index_ty, None, AllowTwoPhase::No);
3514                            return element_ty;
3515                        }
3516                    }
3517
3518                    let mut err = type_error_struct!(
3519                        self.dcx(),
3520                        brackets_span,
3521                        base_t,
3522                        E0608,
3523                        "cannot index into a value of type `{base_t}`",
3524                    );
3525                    // Try to give some advice about indexing tuples.
3526                    if let ty::Tuple(types) = base_t.kind() {
3527                        let mut needs_note = true;
3528                        // If the index is an integer, we can show the actual
3529                        // fixed expression:
3530                        if let ExprKind::Lit(lit) = idx.kind
3531                            && let ast::LitKind::Int(i, ast::LitIntType::Unsuffixed) = lit.node
3532                            && i.get()
3533                                < types
3534                                    .len()
3535                                    .try_into()
3536                                    .expect("expected tuple index to be < usize length")
3537                        {
3538                            err.span_suggestion(
3539                                brackets_span,
3540                                "to access tuple elements, use",
3541                                format!(".{i}"),
3542                                Applicability::MachineApplicable,
3543                            );
3544                            needs_note = false;
3545                        } else if let ExprKind::Path(..) = idx.peel_borrows().kind {
3546                            err.span_label(
3547                                idx.span,
3548                                "cannot access tuple elements at a variable index",
3549                            );
3550                        }
3551                        if needs_note {
3552                            err.help(
3553                                "to access tuple elements, use tuple indexing \
3554                                        syntax (e.g., `tuple.0`)",
3555                            );
3556                        }
3557                    }
3558
3559                    if base_t.is_raw_ptr() && idx_t.is_integral() {
3560                        err.multipart_suggestion(
3561                            "consider using `wrapping_add` or `add` for indexing into raw pointer",
3562                            vec![
3563                                (base.span.between(idx.span), ".wrapping_add(".to_owned()),
3564                                (
3565                                    idx.span.shrink_to_hi().until(expr.span.shrink_to_hi()),
3566                                    ")".to_owned(),
3567                                ),
3568                            ],
3569                            Applicability::MaybeIncorrect,
3570                        );
3571                    }
3572
3573                    let reported = err.emit();
3574                    Ty::new_error(self.tcx, reported)
3575                }
3576            }
3577        }
3578    }
3579
3580    /// Try to match an implementation of `Index` against a self type, and report
3581    /// the unsatisfied predicates that result from confirming this impl.
3582    ///
3583    /// Given an index expression, sometimes the `Self` type shallowly but does not
3584    /// deeply satisfy an impl predicate. Instead of simply saying that the type
3585    /// does not support being indexed, we want to point out exactly what nested
3586    /// predicates cause this to be, so that the user can add them to fix their code.
3587    fn find_and_report_unsatisfied_index_impl(
3588        &self,
3589        base_expr: &hir::Expr<'_>,
3590        base_ty: Ty<'tcx>,
3591    ) -> Option<(ErrorGuaranteed, Ty<'tcx>, Ty<'tcx>)> {
3592        let index_trait_def_id = self.tcx.lang_items().index_trait()?;
3593        let index_trait_output_def_id = self.tcx.get_diagnostic_item(sym::IndexOutput)?;
3594
3595        let mut relevant_impls = vec![];
3596        self.tcx.for_each_relevant_impl(index_trait_def_id, base_ty, |impl_def_id| {
3597            relevant_impls.push(impl_def_id);
3598        });
3599        let [impl_def_id] = relevant_impls[..] else {
3600            // Only report unsatisfied impl predicates if there's one impl
3601            return None;
3602        };
3603
3604        self.commit_if_ok(|snapshot| {
3605            let outer_universe = self.universe();
3606
3607            let ocx = ObligationCtxt::new_with_diagnostics(self);
3608            let impl_args = self.fresh_args_for_item(base_expr.span, impl_def_id);
3609            let impl_trait_ref =
3610                self.tcx.impl_trait_ref(impl_def_id).unwrap().instantiate(self.tcx, impl_args);
3611            let cause = self.misc(base_expr.span);
3612
3613            // Match the impl self type against the base ty. If this fails,
3614            // we just skip this impl, since it's not particularly useful.
3615            let impl_trait_ref = ocx.normalize(&cause, self.param_env, impl_trait_ref);
3616            ocx.eq(&cause, self.param_env, base_ty, impl_trait_ref.self_ty())?;
3617
3618            // Register the impl's predicates. One of these predicates
3619            // must be unsatisfied, or else we wouldn't have gotten here
3620            // in the first place.
3621            ocx.register_obligations(traits::predicates_for_generics(
3622                |idx, span| {
3623                    cause.clone().derived_cause(
3624                        ty::Binder::dummy(ty::TraitPredicate {
3625                            trait_ref: impl_trait_ref,
3626                            polarity: ty::PredicatePolarity::Positive,
3627                        }),
3628                        |derived| {
3629                            ObligationCauseCode::ImplDerived(Box::new(traits::ImplDerivedCause {
3630                                derived,
3631                                impl_or_alias_def_id: impl_def_id,
3632                                impl_def_predicate_index: Some(idx),
3633                                span,
3634                            }))
3635                        },
3636                    )
3637                },
3638                self.param_env,
3639                self.tcx.predicates_of(impl_def_id).instantiate(self.tcx, impl_args),
3640            ));
3641
3642            // Normalize the output type, which we can use later on as the
3643            // return type of the index expression...
3644            let element_ty = ocx.normalize(
3645                &cause,
3646                self.param_env,
3647                Ty::new_projection_from_args(
3648                    self.tcx,
3649                    index_trait_output_def_id,
3650                    impl_trait_ref.args,
3651                ),
3652            );
3653
3654            let true_errors = ocx.select_where_possible();
3655
3656            // Do a leak check -- we can't really report a useful error here,
3657            // but it at least avoids an ICE when the error has to do with higher-ranked
3658            // lifetimes.
3659            self.leak_check(outer_universe, Some(snapshot))?;
3660
3661            // Bail if we have ambiguity errors, which we can't report in a useful way.
3662            let ambiguity_errors = ocx.select_all_or_error();
3663            if true_errors.is_empty() && !ambiguity_errors.is_empty() {
3664                return Err(NoSolution);
3665            }
3666
3667            // There should be at least one error reported. If not, we
3668            // will still delay a span bug in `report_fulfillment_errors`.
3669            Ok::<_, NoSolution>((
3670                self.err_ctxt().report_fulfillment_errors(true_errors),
3671                impl_trait_ref.args.type_at(1),
3672                element_ty,
3673            ))
3674        })
3675        .ok()
3676    }
3677
3678    fn point_at_index(&self, errors: &mut Vec<traits::FulfillmentError<'tcx>>, span: Span) {
3679        let mut seen_preds = FxHashSet::default();
3680        // We re-sort here so that the outer most root obligations comes first, as we have the
3681        // subsequent weird logic to identify *every* relevant obligation for proper deduplication
3682        // of diagnostics.
3683        errors.sort_by_key(|error| error.root_obligation.recursion_depth);
3684        for error in errors {
3685            match (
3686                error.root_obligation.predicate.kind().skip_binder(),
3687                error.obligation.predicate.kind().skip_binder(),
3688            ) {
3689                (ty::PredicateKind::Clause(ty::ClauseKind::Trait(predicate)), _)
3690                    if self.tcx.is_lang_item(predicate.trait_ref.def_id, LangItem::Index) =>
3691                {
3692                    seen_preds.insert(error.obligation.predicate.kind().skip_binder());
3693                }
3694                (_, ty::PredicateKind::Clause(ty::ClauseKind::Trait(predicate)))
3695                    if self.tcx.is_diagnostic_item(sym::SliceIndex, predicate.trait_ref.def_id) =>
3696                {
3697                    seen_preds.insert(error.obligation.predicate.kind().skip_binder());
3698                }
3699                (root, pred) if seen_preds.contains(&pred) || seen_preds.contains(&root) => {}
3700                _ => continue,
3701            }
3702            error.obligation.cause.span = span;
3703        }
3704    }
3705
3706    fn check_expr_yield(
3707        &self,
3708        value: &'tcx hir::Expr<'tcx>,
3709        expr: &'tcx hir::Expr<'tcx>,
3710    ) -> Ty<'tcx> {
3711        match self.coroutine_types {
3712            Some(CoroutineTypes { resume_ty, yield_ty }) => {
3713                self.check_expr_coercible_to_type(value, yield_ty, None);
3714
3715                resume_ty
3716            }
3717            _ => {
3718                self.dcx().emit_err(YieldExprOutsideOfCoroutine { span: expr.span });
3719                // Avoid expressions without types during writeback (#78653).
3720                self.check_expr(value);
3721                self.tcx.types.unit
3722            }
3723        }
3724    }
3725
3726    fn check_expr_asm_operand(&self, expr: &'tcx hir::Expr<'tcx>, is_input: bool) {
3727        let needs = if is_input { Needs::None } else { Needs::MutPlace };
3728        let ty = self.check_expr_with_needs(expr, needs);
3729        self.require_type_is_sized(ty, expr.span, ObligationCauseCode::InlineAsmSized);
3730
3731        if !is_input && !expr.is_syntactic_place_expr() {
3732            self.dcx()
3733                .struct_span_err(expr.span, "invalid asm output")
3734                .with_span_label(expr.span, "cannot assign to this expression")
3735                .emit();
3736        }
3737
3738        // If this is an input value, we require its type to be fully resolved
3739        // at this point. This allows us to provide helpful coercions which help
3740        // pass the type candidate list in a later pass.
3741        //
3742        // We don't require output types to be resolved at this point, which
3743        // allows them to be inferred based on how they are used later in the
3744        // function.
3745        if is_input {
3746            let ty = self.structurally_resolve_type(expr.span, ty);
3747            match *ty.kind() {
3748                ty::FnDef(..) => {
3749                    let fnptr_ty = Ty::new_fn_ptr(self.tcx, ty.fn_sig(self.tcx));
3750                    self.demand_coerce(expr, ty, fnptr_ty, None, AllowTwoPhase::No);
3751                }
3752                ty::Ref(_, base_ty, mutbl) => {
3753                    let ptr_ty = Ty::new_ptr(self.tcx, base_ty, mutbl);
3754                    self.demand_coerce(expr, ty, ptr_ty, None, AllowTwoPhase::No);
3755                }
3756                _ => {}
3757            }
3758        }
3759    }
3760
3761    fn check_expr_asm(&self, asm: &'tcx hir::InlineAsm<'tcx>) -> Ty<'tcx> {
3762        let mut diverge = asm.asm_macro.diverges(asm.options);
3763
3764        for (op, _op_sp) in asm.operands {
3765            match op {
3766                hir::InlineAsmOperand::In { expr, .. } => {
3767                    self.check_expr_asm_operand(expr, true);
3768                }
3769                hir::InlineAsmOperand::Out { expr: Some(expr), .. }
3770                | hir::InlineAsmOperand::InOut { expr, .. } => {
3771                    self.check_expr_asm_operand(expr, false);
3772                }
3773                hir::InlineAsmOperand::Out { expr: None, .. } => {}
3774                hir::InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
3775                    self.check_expr_asm_operand(in_expr, true);
3776                    if let Some(out_expr) = out_expr {
3777                        self.check_expr_asm_operand(out_expr, false);
3778                    }
3779                }
3780                // `AnonConst`s have their own body and is type-checked separately.
3781                // As they don't flow into the type system we don't need them to
3782                // be well-formed.
3783                hir::InlineAsmOperand::Const { .. } | hir::InlineAsmOperand::SymFn { .. } => {}
3784                hir::InlineAsmOperand::SymStatic { .. } => {}
3785                hir::InlineAsmOperand::Label { block } => {
3786                    let previous_diverges = self.diverges.get();
3787
3788                    // The label blocks should have unit return value or diverge.
3789                    let ty = self.check_expr_block(block, ExpectHasType(self.tcx.types.unit));
3790                    if !ty.is_never() {
3791                        self.demand_suptype(block.span, self.tcx.types.unit, ty);
3792                        diverge = false;
3793                    }
3794
3795                    // We need this to avoid false unreachable warning when a label diverges.
3796                    self.diverges.set(previous_diverges);
3797                }
3798            }
3799        }
3800
3801        if diverge { self.tcx.types.never } else { self.tcx.types.unit }
3802    }
3803
3804    fn check_expr_offset_of(
3805        &self,
3806        container: &'tcx hir::Ty<'tcx>,
3807        fields: &[Ident],
3808        expr: &'tcx hir::Expr<'tcx>,
3809    ) -> Ty<'tcx> {
3810        let container = self.lower_ty(container).normalized;
3811
3812        let mut field_indices = Vec::with_capacity(fields.len());
3813        let mut current_container = container;
3814        let mut fields = fields.into_iter();
3815
3816        while let Some(&field) = fields.next() {
3817            let container = self.structurally_resolve_type(expr.span, current_container);
3818
3819            match container.kind() {
3820                ty::Adt(container_def, args) if container_def.is_enum() => {
3821                    let block = self.tcx.local_def_id_to_hir_id(self.body_id);
3822                    let (ident, _def_scope) =
3823                        self.tcx.adjust_ident_and_get_scope(field, container_def.did(), block);
3824
3825                    if !self.tcx.features().offset_of_enum() {
3826                        rustc_session::parse::feature_err(
3827                            &self.tcx.sess,
3828                            sym::offset_of_enum,
3829                            ident.span,
3830                            "using enums in offset_of is experimental",
3831                        )
3832                        .emit();
3833                    }
3834
3835                    let Some((index, variant)) = container_def
3836                        .variants()
3837                        .iter_enumerated()
3838                        .find(|(_, v)| v.ident(self.tcx).normalize_to_macros_2_0() == ident)
3839                    else {
3840                        type_error_struct!(
3841                            self.dcx(),
3842                            ident.span,
3843                            container,
3844                            E0599,
3845                            "no variant named `{ident}` found for enum `{container}`",
3846                        )
3847                        .with_span_label(field.span, "variant not found")
3848                        .emit();
3849                        break;
3850                    };
3851                    let Some(&subfield) = fields.next() else {
3852                        type_error_struct!(
3853                            self.dcx(),
3854                            ident.span,
3855                            container,
3856                            E0795,
3857                            "`{ident}` is an enum variant; expected field at end of `offset_of`",
3858                        )
3859                        .with_span_label(field.span, "enum variant")
3860                        .emit();
3861                        break;
3862                    };
3863                    let (subident, sub_def_scope) =
3864                        self.tcx.adjust_ident_and_get_scope(subfield, variant.def_id, block);
3865
3866                    let Some((subindex, field)) = variant
3867                        .fields
3868                        .iter_enumerated()
3869                        .find(|(_, f)| f.ident(self.tcx).normalize_to_macros_2_0() == subident)
3870                    else {
3871                        type_error_struct!(
3872                            self.dcx(),
3873                            ident.span,
3874                            container,
3875                            E0609,
3876                            "no field named `{subfield}` on enum variant `{container}::{ident}`",
3877                        )
3878                        .with_span_label(field.span, "this enum variant...")
3879                        .with_span_label(subident.span, "...does not have this field")
3880                        .emit();
3881                        break;
3882                    };
3883
3884                    let field_ty = self.field_ty(expr.span, field, args);
3885
3886                    // Enums are anyway always sized. But just to safeguard against future
3887                    // language extensions, let's double-check.
3888                    self.require_type_is_sized(
3889                        field_ty,
3890                        expr.span,
3891                        ObligationCauseCode::FieldSized {
3892                            adt_kind: AdtKind::Enum,
3893                            span: self.tcx.def_span(field.did),
3894                            last: false,
3895                        },
3896                    );
3897
3898                    if field.vis.is_accessible_from(sub_def_scope, self.tcx) {
3899                        self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
3900                    } else {
3901                        self.private_field_err(ident, container_def.did()).emit();
3902                    }
3903
3904                    // Save the index of all fields regardless of their visibility in case
3905                    // of error recovery.
3906                    field_indices.push((index, subindex));
3907                    current_container = field_ty;
3908
3909                    continue;
3910                }
3911                ty::Adt(container_def, args) => {
3912                    let block = self.tcx.local_def_id_to_hir_id(self.body_id);
3913                    let (ident, def_scope) =
3914                        self.tcx.adjust_ident_and_get_scope(field, container_def.did(), block);
3915
3916                    let fields = &container_def.non_enum_variant().fields;
3917                    if let Some((index, field)) = fields
3918                        .iter_enumerated()
3919                        .find(|(_, f)| f.ident(self.tcx).normalize_to_macros_2_0() == ident)
3920                    {
3921                        let field_ty = self.field_ty(expr.span, field, args);
3922
3923                        if self.tcx.features().offset_of_slice() {
3924                            self.require_type_has_static_alignment(field_ty, expr.span);
3925                        } else {
3926                            self.require_type_is_sized(
3927                                field_ty,
3928                                expr.span,
3929                                ObligationCauseCode::Misc,
3930                            );
3931                        }
3932
3933                        if field.vis.is_accessible_from(def_scope, self.tcx) {
3934                            self.tcx.check_stability(field.did, Some(expr.hir_id), expr.span, None);
3935                        } else {
3936                            self.private_field_err(ident, container_def.did()).emit();
3937                        }
3938
3939                        // Save the index of all fields regardless of their visibility in case
3940                        // of error recovery.
3941                        field_indices.push((FIRST_VARIANT, index));
3942                        current_container = field_ty;
3943
3944                        continue;
3945                    }
3946                }
3947                ty::Tuple(tys) => {
3948                    if let Ok(index) = field.as_str().parse::<usize>()
3949                        && field.name == sym::integer(index)
3950                    {
3951                        if let Some(&field_ty) = tys.get(index) {
3952                            if self.tcx.features().offset_of_slice() {
3953                                self.require_type_has_static_alignment(field_ty, expr.span);
3954                            } else {
3955                                self.require_type_is_sized(
3956                                    field_ty,
3957                                    expr.span,
3958                                    ObligationCauseCode::Misc,
3959                                );
3960                            }
3961
3962                            field_indices.push((FIRST_VARIANT, index.into()));
3963                            current_container = field_ty;
3964
3965                            continue;
3966                        }
3967                    }
3968                }
3969                _ => (),
3970            };
3971
3972            self.no_such_field_err(field, container, expr.hir_id).emit();
3973
3974            break;
3975        }
3976
3977        self.typeck_results
3978            .borrow_mut()
3979            .offset_of_data_mut()
3980            .insert(expr.hir_id, (container, field_indices));
3981
3982        self.tcx.types.usize
3983    }
3984}