rustc_codegen_llvm/
builder.rs

1use std::borrow::{Borrow, Cow};
2use std::ops::Deref;
3use std::{iter, ptr};
4
5pub(crate) mod autodiff;
6
7use libc::{c_char, c_uint};
8use rustc_abi as abi;
9use rustc_abi::{Align, Size, WrappingRange};
10use rustc_codegen_ssa::MemFlags;
11use rustc_codegen_ssa::common::{IntPredicate, RealPredicate, SynchronizationScope, TypeKind};
12use rustc_codegen_ssa::mir::operand::{OperandRef, OperandValue};
13use rustc_codegen_ssa::mir::place::PlaceRef;
14use rustc_codegen_ssa::traits::*;
15use rustc_data_structures::small_c_str::SmallCStr;
16use rustc_hir::def_id::DefId;
17use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
18use rustc_middle::ty::layout::{
19    FnAbiError, FnAbiOfHelpers, FnAbiRequest, HasTypingEnv, LayoutError, LayoutOfHelpers,
20    TyAndLayout,
21};
22use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
23use rustc_sanitizers::{cfi, kcfi};
24use rustc_session::config::OptLevel;
25use rustc_span::Span;
26use rustc_target::callconv::FnAbi;
27use rustc_target::spec::{HasTargetSpec, SanitizerSet, Target};
28use smallvec::SmallVec;
29use tracing::{debug, instrument};
30
31use crate::abi::FnAbiLlvmExt;
32use crate::attributes;
33use crate::common::Funclet;
34use crate::context::{CodegenCx, SimpleCx};
35use crate::llvm::{self, AtomicOrdering, AtomicRmwBinOp, BasicBlock, False, True};
36use crate::type_::Type;
37use crate::type_of::LayoutLlvmExt;
38use crate::value::Value;
39
40#[must_use]
41pub(crate) struct GenericBuilder<'a, 'll, CX: Borrow<SimpleCx<'ll>>> {
42    pub llbuilder: &'ll mut llvm::Builder<'ll>,
43    pub cx: &'a CX,
44}
45
46pub(crate) type SBuilder<'a, 'll> = GenericBuilder<'a, 'll, SimpleCx<'ll>>;
47pub(crate) type Builder<'a, 'll, 'tcx> = GenericBuilder<'a, 'll, CodegenCx<'ll, 'tcx>>;
48
49impl<'a, 'll, CX: Borrow<SimpleCx<'ll>>> Drop for GenericBuilder<'a, 'll, CX> {
50    fn drop(&mut self) {
51        unsafe {
52            llvm::LLVMDisposeBuilder(&mut *(self.llbuilder as *mut _));
53        }
54    }
55}
56
57impl<'a, 'll> SBuilder<'a, 'll> {
58    fn call(
59        &mut self,
60        llty: &'ll Type,
61        llfn: &'ll Value,
62        args: &[&'ll Value],
63        funclet: Option<&Funclet<'ll>>,
64    ) -> &'ll Value {
65        debug!("call {:?} with args ({:?})", llfn, args);
66
67        let args = self.check_call("call", llty, llfn, args);
68        let funclet_bundle = funclet.map(|funclet| funclet.bundle());
69        let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
70        if let Some(funclet_bundle) = funclet_bundle {
71            bundles.push(funclet_bundle);
72        }
73
74        let call = unsafe {
75            llvm::LLVMBuildCallWithOperandBundles(
76                self.llbuilder,
77                llty,
78                llfn,
79                args.as_ptr() as *const &llvm::Value,
80                args.len() as c_uint,
81                bundles.as_ptr(),
82                bundles.len() as c_uint,
83                c"".as_ptr(),
84            )
85        };
86        call
87    }
88
89    fn with_scx(scx: &'a SimpleCx<'ll>) -> Self {
90        // Create a fresh builder from the simple context.
91        let llbuilder = unsafe { llvm::LLVMCreateBuilderInContext(scx.llcx) };
92        SBuilder { llbuilder, cx: scx }
93    }
94}
95impl<'a, 'll, CX: Borrow<SimpleCx<'ll>>> GenericBuilder<'a, 'll, CX> {
96    pub(crate) fn bitcast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
97        unsafe { llvm::LLVMBuildBitCast(self.llbuilder, val, dest_ty, UNNAMED) }
98    }
99
100    fn ret_void(&mut self) {
101        unsafe {
102            llvm::LLVMBuildRetVoid(self.llbuilder);
103        }
104    }
105
106    fn ret(&mut self, v: &'ll Value) {
107        unsafe {
108            llvm::LLVMBuildRet(self.llbuilder, v);
109        }
110    }
111}
112impl<'a, 'll> SBuilder<'a, 'll> {
113    fn build(cx: &'a SimpleCx<'ll>, llbb: &'ll BasicBlock) -> SBuilder<'a, 'll> {
114        let bx = SBuilder::with_scx(cx);
115        unsafe {
116            llvm::LLVMPositionBuilderAtEnd(bx.llbuilder, llbb);
117        }
118        bx
119    }
120
121    fn check_call<'b>(
122        &mut self,
123        typ: &str,
124        fn_ty: &'ll Type,
125        llfn: &'ll Value,
126        args: &'b [&'ll Value],
127    ) -> Cow<'b, [&'ll Value]> {
128        assert!(
129            self.cx.type_kind(fn_ty) == TypeKind::Function,
130            "builder::{typ} not passed a function, but {fn_ty:?}"
131        );
132
133        let param_tys = self.cx.func_params_types(fn_ty);
134
135        let all_args_match = iter::zip(&param_tys, args.iter().map(|&v| self.cx.val_ty(v)))
136            .all(|(expected_ty, actual_ty)| *expected_ty == actual_ty);
137
138        if all_args_match {
139            return Cow::Borrowed(args);
140        }
141
142        let casted_args: Vec<_> = iter::zip(param_tys, args)
143            .enumerate()
144            .map(|(i, (expected_ty, &actual_val))| {
145                let actual_ty = self.cx.val_ty(actual_val);
146                if expected_ty != actual_ty {
147                    debug!(
148                        "type mismatch in function call of {:?}. \
149                            Expected {:?} for param {}, got {:?}; injecting bitcast",
150                        llfn, expected_ty, i, actual_ty
151                    );
152                    self.bitcast(actual_val, expected_ty)
153                } else {
154                    actual_val
155                }
156            })
157            .collect();
158
159        Cow::Owned(casted_args)
160    }
161}
162
163/// Empty string, to be used where LLVM expects an instruction name, indicating
164/// that the instruction is to be left unnamed (i.e. numbered, in textual IR).
165// FIXME(eddyb) pass `&CStr` directly to FFI once it's a thin pointer.
166const UNNAMED: *const c_char = c"".as_ptr();
167
168impl<'ll, 'tcx> BackendTypes for Builder<'_, 'll, 'tcx> {
169    type Value = <CodegenCx<'ll, 'tcx> as BackendTypes>::Value;
170    type Metadata = <CodegenCx<'ll, 'tcx> as BackendTypes>::Metadata;
171    type Function = <CodegenCx<'ll, 'tcx> as BackendTypes>::Function;
172    type BasicBlock = <CodegenCx<'ll, 'tcx> as BackendTypes>::BasicBlock;
173    type Type = <CodegenCx<'ll, 'tcx> as BackendTypes>::Type;
174    type Funclet = <CodegenCx<'ll, 'tcx> as BackendTypes>::Funclet;
175
176    type DIScope = <CodegenCx<'ll, 'tcx> as BackendTypes>::DIScope;
177    type DILocation = <CodegenCx<'ll, 'tcx> as BackendTypes>::DILocation;
178    type DIVariable = <CodegenCx<'ll, 'tcx> as BackendTypes>::DIVariable;
179}
180
181impl abi::HasDataLayout for Builder<'_, '_, '_> {
182    fn data_layout(&self) -> &abi::TargetDataLayout {
183        self.cx.data_layout()
184    }
185}
186
187impl<'tcx> ty::layout::HasTyCtxt<'tcx> for Builder<'_, '_, 'tcx> {
188    #[inline]
189    fn tcx(&self) -> TyCtxt<'tcx> {
190        self.cx.tcx
191    }
192}
193
194impl<'tcx> ty::layout::HasTypingEnv<'tcx> for Builder<'_, '_, 'tcx> {
195    fn typing_env(&self) -> ty::TypingEnv<'tcx> {
196        self.cx.typing_env()
197    }
198}
199
200impl HasTargetSpec for Builder<'_, '_, '_> {
201    #[inline]
202    fn target_spec(&self) -> &Target {
203        self.cx.target_spec()
204    }
205}
206
207impl<'tcx> LayoutOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
208    #[inline]
209    fn handle_layout_err(&self, err: LayoutError<'tcx>, span: Span, ty: Ty<'tcx>) -> ! {
210        self.cx.handle_layout_err(err, span, ty)
211    }
212}
213
214impl<'tcx> FnAbiOfHelpers<'tcx> for Builder<'_, '_, 'tcx> {
215    #[inline]
216    fn handle_fn_abi_err(
217        &self,
218        err: FnAbiError<'tcx>,
219        span: Span,
220        fn_abi_request: FnAbiRequest<'tcx>,
221    ) -> ! {
222        self.cx.handle_fn_abi_err(err, span, fn_abi_request)
223    }
224}
225
226impl<'ll, 'tcx> Deref for Builder<'_, 'll, 'tcx> {
227    type Target = CodegenCx<'ll, 'tcx>;
228
229    #[inline]
230    fn deref(&self) -> &Self::Target {
231        self.cx
232    }
233}
234
235macro_rules! math_builder_methods {
236    ($($name:ident($($arg:ident),*) => $llvm_capi:ident),+ $(,)?) => {
237        $(fn $name(&mut self, $($arg: &'ll Value),*) -> &'ll Value {
238            unsafe {
239                llvm::$llvm_capi(self.llbuilder, $($arg,)* UNNAMED)
240            }
241        })+
242    }
243}
244
245macro_rules! set_math_builder_methods {
246    ($($name:ident($($arg:ident),*) => ($llvm_capi:ident, $llvm_set_math:ident)),+ $(,)?) => {
247        $(fn $name(&mut self, $($arg: &'ll Value),*) -> &'ll Value {
248            unsafe {
249                let instr = llvm::$llvm_capi(self.llbuilder, $($arg,)* UNNAMED);
250                llvm::$llvm_set_math(instr);
251                instr
252            }
253        })+
254    }
255}
256
257impl<'a, 'll, 'tcx> BuilderMethods<'a, 'tcx> for Builder<'a, 'll, 'tcx> {
258    type CodegenCx = CodegenCx<'ll, 'tcx>;
259
260    fn build(cx: &'a CodegenCx<'ll, 'tcx>, llbb: &'ll BasicBlock) -> Self {
261        let bx = Builder::with_cx(cx);
262        unsafe {
263            llvm::LLVMPositionBuilderAtEnd(bx.llbuilder, llbb);
264        }
265        bx
266    }
267
268    fn cx(&self) -> &CodegenCx<'ll, 'tcx> {
269        self.cx
270    }
271
272    fn llbb(&self) -> &'ll BasicBlock {
273        unsafe { llvm::LLVMGetInsertBlock(self.llbuilder) }
274    }
275
276    fn set_span(&mut self, _span: Span) {}
277
278    fn append_block(cx: &'a CodegenCx<'ll, 'tcx>, llfn: &'ll Value, name: &str) -> &'ll BasicBlock {
279        unsafe {
280            let name = SmallCStr::new(name);
281            llvm::LLVMAppendBasicBlockInContext(cx.llcx, llfn, name.as_ptr())
282        }
283    }
284
285    fn append_sibling_block(&mut self, name: &str) -> &'ll BasicBlock {
286        Self::append_block(self.cx, self.llfn(), name)
287    }
288
289    fn switch_to_block(&mut self, llbb: Self::BasicBlock) {
290        *self = Self::build(self.cx, llbb)
291    }
292
293    fn ret_void(&mut self) {
294        unsafe {
295            llvm::LLVMBuildRetVoid(self.llbuilder);
296        }
297    }
298
299    fn ret(&mut self, v: &'ll Value) {
300        unsafe {
301            llvm::LLVMBuildRet(self.llbuilder, v);
302        }
303    }
304
305    fn br(&mut self, dest: &'ll BasicBlock) {
306        unsafe {
307            llvm::LLVMBuildBr(self.llbuilder, dest);
308        }
309    }
310
311    fn cond_br(
312        &mut self,
313        cond: &'ll Value,
314        then_llbb: &'ll BasicBlock,
315        else_llbb: &'ll BasicBlock,
316    ) {
317        unsafe {
318            llvm::LLVMBuildCondBr(self.llbuilder, cond, then_llbb, else_llbb);
319        }
320    }
321
322    fn switch(
323        &mut self,
324        v: &'ll Value,
325        else_llbb: &'ll BasicBlock,
326        cases: impl ExactSizeIterator<Item = (u128, &'ll BasicBlock)>,
327    ) {
328        let switch =
329            unsafe { llvm::LLVMBuildSwitch(self.llbuilder, v, else_llbb, cases.len() as c_uint) };
330        for (on_val, dest) in cases {
331            let on_val = self.const_uint_big(self.val_ty(v), on_val);
332            unsafe { llvm::LLVMAddCase(switch, on_val, dest) }
333        }
334    }
335
336    fn invoke(
337        &mut self,
338        llty: &'ll Type,
339        fn_attrs: Option<&CodegenFnAttrs>,
340        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
341        llfn: &'ll Value,
342        args: &[&'ll Value],
343        then: &'ll BasicBlock,
344        catch: &'ll BasicBlock,
345        funclet: Option<&Funclet<'ll>>,
346        instance: Option<Instance<'tcx>>,
347    ) -> &'ll Value {
348        debug!("invoke {:?} with args ({:?})", llfn, args);
349
350        let args = self.check_call("invoke", llty, llfn, args);
351        let funclet_bundle = funclet.map(|funclet| funclet.bundle());
352        let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
353        if let Some(funclet_bundle) = funclet_bundle {
354            bundles.push(funclet_bundle);
355        }
356
357        // Emit CFI pointer type membership test
358        self.cfi_type_test(fn_attrs, fn_abi, instance, llfn);
359
360        // Emit KCFI operand bundle
361        let kcfi_bundle = self.kcfi_operand_bundle(fn_attrs, fn_abi, instance, llfn);
362        if let Some(kcfi_bundle) = kcfi_bundle.as_deref() {
363            bundles.push(kcfi_bundle);
364        }
365
366        let invoke = unsafe {
367            llvm::LLVMBuildInvokeWithOperandBundles(
368                self.llbuilder,
369                llty,
370                llfn,
371                args.as_ptr(),
372                args.len() as c_uint,
373                then,
374                catch,
375                bundles.as_ptr(),
376                bundles.len() as c_uint,
377                UNNAMED,
378            )
379        };
380        if let Some(fn_abi) = fn_abi {
381            fn_abi.apply_attrs_callsite(self, invoke);
382        }
383        invoke
384    }
385
386    fn unreachable(&mut self) {
387        unsafe {
388            llvm::LLVMBuildUnreachable(self.llbuilder);
389        }
390    }
391
392    math_builder_methods! {
393        add(a, b) => LLVMBuildAdd,
394        fadd(a, b) => LLVMBuildFAdd,
395        sub(a, b) => LLVMBuildSub,
396        fsub(a, b) => LLVMBuildFSub,
397        mul(a, b) => LLVMBuildMul,
398        fmul(a, b) => LLVMBuildFMul,
399        udiv(a, b) => LLVMBuildUDiv,
400        exactudiv(a, b) => LLVMBuildExactUDiv,
401        sdiv(a, b) => LLVMBuildSDiv,
402        exactsdiv(a, b) => LLVMBuildExactSDiv,
403        fdiv(a, b) => LLVMBuildFDiv,
404        urem(a, b) => LLVMBuildURem,
405        srem(a, b) => LLVMBuildSRem,
406        frem(a, b) => LLVMBuildFRem,
407        shl(a, b) => LLVMBuildShl,
408        lshr(a, b) => LLVMBuildLShr,
409        ashr(a, b) => LLVMBuildAShr,
410        and(a, b) => LLVMBuildAnd,
411        or(a, b) => LLVMBuildOr,
412        xor(a, b) => LLVMBuildXor,
413        neg(x) => LLVMBuildNeg,
414        fneg(x) => LLVMBuildFNeg,
415        not(x) => LLVMBuildNot,
416        unchecked_sadd(x, y) => LLVMBuildNSWAdd,
417        unchecked_uadd(x, y) => LLVMBuildNUWAdd,
418        unchecked_ssub(x, y) => LLVMBuildNSWSub,
419        unchecked_usub(x, y) => LLVMBuildNUWSub,
420        unchecked_smul(x, y) => LLVMBuildNSWMul,
421        unchecked_umul(x, y) => LLVMBuildNUWMul,
422    }
423
424    fn unchecked_suadd(&mut self, a: &'ll Value, b: &'ll Value) -> &'ll Value {
425        unsafe {
426            let add = llvm::LLVMBuildAdd(self.llbuilder, a, b, UNNAMED);
427            if llvm::LLVMIsAInstruction(add).is_some() {
428                llvm::LLVMSetNUW(add, True);
429                llvm::LLVMSetNSW(add, True);
430            }
431            add
432        }
433    }
434    fn unchecked_susub(&mut self, a: &'ll Value, b: &'ll Value) -> &'ll Value {
435        unsafe {
436            let sub = llvm::LLVMBuildSub(self.llbuilder, a, b, UNNAMED);
437            if llvm::LLVMIsAInstruction(sub).is_some() {
438                llvm::LLVMSetNUW(sub, True);
439                llvm::LLVMSetNSW(sub, True);
440            }
441            sub
442        }
443    }
444    fn unchecked_sumul(&mut self, a: &'ll Value, b: &'ll Value) -> &'ll Value {
445        unsafe {
446            let mul = llvm::LLVMBuildMul(self.llbuilder, a, b, UNNAMED);
447            if llvm::LLVMIsAInstruction(mul).is_some() {
448                llvm::LLVMSetNUW(mul, True);
449                llvm::LLVMSetNSW(mul, True);
450            }
451            mul
452        }
453    }
454
455    fn or_disjoint(&mut self, a: &'ll Value, b: &'ll Value) -> &'ll Value {
456        unsafe {
457            let or = llvm::LLVMBuildOr(self.llbuilder, a, b, UNNAMED);
458
459            // If a and b are both values, then `or` is a value, rather than
460            // an instruction, so we need to check before setting the flag.
461            // (See also `LLVMBuildNUWNeg` which also needs a check.)
462            if llvm::LLVMIsAInstruction(or).is_some() {
463                llvm::LLVMSetIsDisjoint(or, True);
464            }
465            or
466        }
467    }
468
469    set_math_builder_methods! {
470        fadd_fast(x, y) => (LLVMBuildFAdd, LLVMRustSetFastMath),
471        fsub_fast(x, y) => (LLVMBuildFSub, LLVMRustSetFastMath),
472        fmul_fast(x, y) => (LLVMBuildFMul, LLVMRustSetFastMath),
473        fdiv_fast(x, y) => (LLVMBuildFDiv, LLVMRustSetFastMath),
474        frem_fast(x, y) => (LLVMBuildFRem, LLVMRustSetFastMath),
475        fadd_algebraic(x, y) => (LLVMBuildFAdd, LLVMRustSetAlgebraicMath),
476        fsub_algebraic(x, y) => (LLVMBuildFSub, LLVMRustSetAlgebraicMath),
477        fmul_algebraic(x, y) => (LLVMBuildFMul, LLVMRustSetAlgebraicMath),
478        fdiv_algebraic(x, y) => (LLVMBuildFDiv, LLVMRustSetAlgebraicMath),
479        frem_algebraic(x, y) => (LLVMBuildFRem, LLVMRustSetAlgebraicMath),
480    }
481
482    fn checked_binop(
483        &mut self,
484        oop: OverflowOp,
485        ty: Ty<'_>,
486        lhs: Self::Value,
487        rhs: Self::Value,
488    ) -> (Self::Value, Self::Value) {
489        use rustc_middle::ty::IntTy::*;
490        use rustc_middle::ty::UintTy::*;
491        use rustc_middle::ty::{Int, Uint};
492
493        let new_kind = match ty.kind() {
494            Int(t @ Isize) => Int(t.normalize(self.tcx.sess.target.pointer_width)),
495            Uint(t @ Usize) => Uint(t.normalize(self.tcx.sess.target.pointer_width)),
496            t @ (Uint(_) | Int(_)) => *t,
497            _ => panic!("tried to get overflow intrinsic for op applied to non-int type"),
498        };
499
500        let name = match oop {
501            OverflowOp::Add => match new_kind {
502                Int(I8) => "llvm.sadd.with.overflow.i8",
503                Int(I16) => "llvm.sadd.with.overflow.i16",
504                Int(I32) => "llvm.sadd.with.overflow.i32",
505                Int(I64) => "llvm.sadd.with.overflow.i64",
506                Int(I128) => "llvm.sadd.with.overflow.i128",
507
508                Uint(U8) => "llvm.uadd.with.overflow.i8",
509                Uint(U16) => "llvm.uadd.with.overflow.i16",
510                Uint(U32) => "llvm.uadd.with.overflow.i32",
511                Uint(U64) => "llvm.uadd.with.overflow.i64",
512                Uint(U128) => "llvm.uadd.with.overflow.i128",
513
514                _ => unreachable!(),
515            },
516            OverflowOp::Sub => match new_kind {
517                Int(I8) => "llvm.ssub.with.overflow.i8",
518                Int(I16) => "llvm.ssub.with.overflow.i16",
519                Int(I32) => "llvm.ssub.with.overflow.i32",
520                Int(I64) => "llvm.ssub.with.overflow.i64",
521                Int(I128) => "llvm.ssub.with.overflow.i128",
522
523                Uint(_) => {
524                    // Emit sub and icmp instead of llvm.usub.with.overflow. LLVM considers these
525                    // to be the canonical form. It will attempt to reform llvm.usub.with.overflow
526                    // in the backend if profitable.
527                    let sub = self.sub(lhs, rhs);
528                    let cmp = self.icmp(IntPredicate::IntULT, lhs, rhs);
529                    return (sub, cmp);
530                }
531
532                _ => unreachable!(),
533            },
534            OverflowOp::Mul => match new_kind {
535                Int(I8) => "llvm.smul.with.overflow.i8",
536                Int(I16) => "llvm.smul.with.overflow.i16",
537                Int(I32) => "llvm.smul.with.overflow.i32",
538                Int(I64) => "llvm.smul.with.overflow.i64",
539                Int(I128) => "llvm.smul.with.overflow.i128",
540
541                Uint(U8) => "llvm.umul.with.overflow.i8",
542                Uint(U16) => "llvm.umul.with.overflow.i16",
543                Uint(U32) => "llvm.umul.with.overflow.i32",
544                Uint(U64) => "llvm.umul.with.overflow.i64",
545                Uint(U128) => "llvm.umul.with.overflow.i128",
546
547                _ => unreachable!(),
548            },
549        };
550
551        let res = self.call_intrinsic(name, &[lhs, rhs]);
552        (self.extract_value(res, 0), self.extract_value(res, 1))
553    }
554
555    fn from_immediate(&mut self, val: Self::Value) -> Self::Value {
556        if self.cx().val_ty(val) == self.cx().type_i1() {
557            self.zext(val, self.cx().type_i8())
558        } else {
559            val
560        }
561    }
562
563    fn to_immediate_scalar(&mut self, val: Self::Value, scalar: abi::Scalar) -> Self::Value {
564        if scalar.is_bool() {
565            return self.trunc(val, self.cx().type_i1());
566        }
567        val
568    }
569
570    fn alloca(&mut self, size: Size, align: Align) -> &'ll Value {
571        let mut bx = Builder::with_cx(self.cx);
572        bx.position_at_start(unsafe { llvm::LLVMGetFirstBasicBlock(self.llfn()) });
573        let ty = self.cx().type_array(self.cx().type_i8(), size.bytes());
574        unsafe {
575            let alloca = llvm::LLVMBuildAlloca(bx.llbuilder, ty, UNNAMED);
576            llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint);
577            // Cast to default addrspace if necessary
578            llvm::LLVMBuildPointerCast(bx.llbuilder, alloca, self.cx().type_ptr(), UNNAMED)
579        }
580    }
581
582    fn dynamic_alloca(&mut self, size: &'ll Value, align: Align) -> &'ll Value {
583        unsafe {
584            let alloca =
585                llvm::LLVMBuildArrayAlloca(self.llbuilder, self.cx().type_i8(), size, UNNAMED);
586            llvm::LLVMSetAlignment(alloca, align.bytes() as c_uint);
587            // Cast to default addrspace if necessary
588            llvm::LLVMBuildPointerCast(self.llbuilder, alloca, self.cx().type_ptr(), UNNAMED)
589        }
590    }
591
592    fn load(&mut self, ty: &'ll Type, ptr: &'ll Value, align: Align) -> &'ll Value {
593        unsafe {
594            let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED);
595            llvm::LLVMSetAlignment(load, align.bytes() as c_uint);
596            load
597        }
598    }
599
600    fn volatile_load(&mut self, ty: &'ll Type, ptr: &'ll Value) -> &'ll Value {
601        unsafe {
602            let load = llvm::LLVMBuildLoad2(self.llbuilder, ty, ptr, UNNAMED);
603            llvm::LLVMSetVolatile(load, llvm::True);
604            load
605        }
606    }
607
608    fn atomic_load(
609        &mut self,
610        ty: &'ll Type,
611        ptr: &'ll Value,
612        order: rustc_codegen_ssa::common::AtomicOrdering,
613        size: Size,
614    ) -> &'ll Value {
615        unsafe {
616            let load = llvm::LLVMRustBuildAtomicLoad(
617                self.llbuilder,
618                ty,
619                ptr,
620                UNNAMED,
621                AtomicOrdering::from_generic(order),
622            );
623            // LLVM requires the alignment of atomic loads to be at least the size of the type.
624            llvm::LLVMSetAlignment(load, size.bytes() as c_uint);
625            load
626        }
627    }
628
629    #[instrument(level = "trace", skip(self))]
630    fn load_operand(&mut self, place: PlaceRef<'tcx, &'ll Value>) -> OperandRef<'tcx, &'ll Value> {
631        if place.layout.is_unsized() {
632            let tail = self.tcx.struct_tail_for_codegen(place.layout.ty, self.typing_env());
633            if matches!(tail.kind(), ty::Foreign(..)) {
634                // Unsized locals and, at least conceptually, even unsized arguments must be copied
635                // around, which requires dynamically determining their size. Therefore, we cannot
636                // allow `extern` types here. Consult t-opsem before removing this check.
637                panic!("unsized locals must not be `extern` types");
638            }
639        }
640        assert_eq!(place.val.llextra.is_some(), place.layout.is_unsized());
641
642        if place.layout.is_zst() {
643            return OperandRef::zero_sized(place.layout);
644        }
645
646        #[instrument(level = "trace", skip(bx))]
647        fn scalar_load_metadata<'a, 'll, 'tcx>(
648            bx: &mut Builder<'a, 'll, 'tcx>,
649            load: &'ll Value,
650            scalar: abi::Scalar,
651            layout: TyAndLayout<'tcx>,
652            offset: Size,
653        ) {
654            if bx.cx.sess().opts.optimize == OptLevel::No {
655                // Don't emit metadata we're not going to use
656                return;
657            }
658
659            if !scalar.is_uninit_valid() {
660                bx.noundef_metadata(load);
661            }
662
663            match scalar.primitive() {
664                abi::Primitive::Int(..) => {
665                    if !scalar.is_always_valid(bx) {
666                        bx.range_metadata(load, scalar.valid_range(bx));
667                    }
668                }
669                abi::Primitive::Pointer(_) => {
670                    if !scalar.valid_range(bx).contains(0) {
671                        bx.nonnull_metadata(load);
672                    }
673
674                    if let Some(pointee) = layout.pointee_info_at(bx, offset) {
675                        if let Some(_) = pointee.safe {
676                            bx.align_metadata(load, pointee.align);
677                        }
678                    }
679                }
680                abi::Primitive::Float(_) => {}
681            }
682        }
683
684        let val = if let Some(_) = place.val.llextra {
685            // FIXME: Merge with the `else` below?
686            OperandValue::Ref(place.val)
687        } else if place.layout.is_llvm_immediate() {
688            let mut const_llval = None;
689            let llty = place.layout.llvm_type(self);
690            unsafe {
691                if let Some(global) = llvm::LLVMIsAGlobalVariable(place.val.llval) {
692                    if llvm::LLVMIsGlobalConstant(global) == llvm::True {
693                        if let Some(init) = llvm::LLVMGetInitializer(global) {
694                            if self.val_ty(init) == llty {
695                                const_llval = Some(init);
696                            }
697                        }
698                    }
699                }
700            }
701            let llval = const_llval.unwrap_or_else(|| {
702                let load = self.load(llty, place.val.llval, place.val.align);
703                if let abi::BackendRepr::Scalar(scalar) = place.layout.backend_repr {
704                    scalar_load_metadata(self, load, scalar, place.layout, Size::ZERO);
705                }
706                load
707            });
708            OperandValue::Immediate(self.to_immediate(llval, place.layout))
709        } else if let abi::BackendRepr::ScalarPair(a, b) = place.layout.backend_repr {
710            let b_offset = a.size(self).align_to(b.align(self).abi);
711
712            let mut load = |i, scalar: abi::Scalar, layout, align, offset| {
713                let llptr = if i == 0 {
714                    place.val.llval
715                } else {
716                    self.inbounds_ptradd(place.val.llval, self.const_usize(b_offset.bytes()))
717                };
718                let llty = place.layout.scalar_pair_element_llvm_type(self, i, false);
719                let load = self.load(llty, llptr, align);
720                scalar_load_metadata(self, load, scalar, layout, offset);
721                self.to_immediate_scalar(load, scalar)
722            };
723
724            OperandValue::Pair(
725                load(0, a, place.layout, place.val.align, Size::ZERO),
726                load(1, b, place.layout, place.val.align.restrict_for_offset(b_offset), b_offset),
727            )
728        } else {
729            OperandValue::Ref(place.val)
730        };
731
732        OperandRef { val, layout: place.layout }
733    }
734
735    fn write_operand_repeatedly(
736        &mut self,
737        cg_elem: OperandRef<'tcx, &'ll Value>,
738        count: u64,
739        dest: PlaceRef<'tcx, &'ll Value>,
740    ) {
741        let zero = self.const_usize(0);
742        let count = self.const_usize(count);
743
744        let header_bb = self.append_sibling_block("repeat_loop_header");
745        let body_bb = self.append_sibling_block("repeat_loop_body");
746        let next_bb = self.append_sibling_block("repeat_loop_next");
747
748        self.br(header_bb);
749
750        let mut header_bx = Self::build(self.cx, header_bb);
751        let i = header_bx.phi(self.val_ty(zero), &[zero], &[self.llbb()]);
752
753        let keep_going = header_bx.icmp(IntPredicate::IntULT, i, count);
754        header_bx.cond_br(keep_going, body_bb, next_bb);
755
756        let mut body_bx = Self::build(self.cx, body_bb);
757        let dest_elem = dest.project_index(&mut body_bx, i);
758        cg_elem.val.store(&mut body_bx, dest_elem);
759
760        let next = body_bx.unchecked_uadd(i, self.const_usize(1));
761        body_bx.br(header_bb);
762        header_bx.add_incoming_to_phi(i, next, body_bb);
763
764        *self = Self::build(self.cx, next_bb);
765    }
766
767    fn range_metadata(&mut self, load: &'ll Value, range: WrappingRange) {
768        if self.cx.sess().opts.optimize == OptLevel::No {
769            // Don't emit metadata we're not going to use
770            return;
771        }
772
773        unsafe {
774            let llty = self.cx.val_ty(load);
775            let md = [
776                llvm::LLVMValueAsMetadata(self.cx.const_uint_big(llty, range.start)),
777                llvm::LLVMValueAsMetadata(self.cx.const_uint_big(llty, range.end.wrapping_add(1))),
778            ];
779            let md = llvm::LLVMMDNodeInContext2(self.cx.llcx, md.as_ptr(), md.len());
780            self.set_metadata(load, llvm::MD_range, md);
781        }
782    }
783
784    fn nonnull_metadata(&mut self, load: &'ll Value) {
785        unsafe {
786            let md = llvm::LLVMMDNodeInContext2(self.cx.llcx, ptr::null(), 0);
787            self.set_metadata(load, llvm::MD_nonnull, md);
788        }
789    }
790
791    fn store(&mut self, val: &'ll Value, ptr: &'ll Value, align: Align) -> &'ll Value {
792        self.store_with_flags(val, ptr, align, MemFlags::empty())
793    }
794
795    fn store_with_flags(
796        &mut self,
797        val: &'ll Value,
798        ptr: &'ll Value,
799        align: Align,
800        flags: MemFlags,
801    ) -> &'ll Value {
802        debug!("Store {:?} -> {:?} ({:?})", val, ptr, flags);
803        assert_eq!(self.cx.type_kind(self.cx.val_ty(ptr)), TypeKind::Pointer);
804        unsafe {
805            let store = llvm::LLVMBuildStore(self.llbuilder, val, ptr);
806            let align =
807                if flags.contains(MemFlags::UNALIGNED) { 1 } else { align.bytes() as c_uint };
808            llvm::LLVMSetAlignment(store, align);
809            if flags.contains(MemFlags::VOLATILE) {
810                llvm::LLVMSetVolatile(store, llvm::True);
811            }
812            if flags.contains(MemFlags::NONTEMPORAL) {
813                // Make sure that the current target architectures supports "sane" non-temporal
814                // stores, i.e., non-temporal stores that are equivalent to regular stores except
815                // for performance. LLVM doesn't seem to care about this, and will happily treat
816                // `!nontemporal` stores as-if they were normal stores (for reordering optimizations
817                // etc) even on x86, despite later lowering them to MOVNT which do *not* behave like
818                // regular stores but require special fences. So we keep a list of architectures
819                // where `!nontemporal` is known to be truly just a hint, and use regular stores
820                // everywhere else. (In the future, we could alternatively ensure that an sfence
821                // gets emitted after a sequence of movnt before any kind of synchronizing
822                // operation. But it's not clear how to do that with LLVM.)
823                // For more context, see <https://github.com/rust-lang/rust/issues/114582> and
824                // <https://github.com/llvm/llvm-project/issues/64521>.
825                const WELL_BEHAVED_NONTEMPORAL_ARCHS: &[&str] =
826                    &["aarch64", "arm", "riscv32", "riscv64"];
827
828                let use_nontemporal =
829                    WELL_BEHAVED_NONTEMPORAL_ARCHS.contains(&&*self.cx.tcx.sess.target.arch);
830                if use_nontemporal {
831                    // According to LLVM [1] building a nontemporal store must
832                    // *always* point to a metadata value of the integer 1.
833                    //
834                    // [1]: https://llvm.org/docs/LangRef.html#store-instruction
835                    let one = llvm::LLVMValueAsMetadata(self.cx.const_i32(1));
836                    let md = llvm::LLVMMDNodeInContext2(self.cx.llcx, &one, 1);
837                    self.set_metadata(store, llvm::MD_nontemporal, md);
838                }
839            }
840            store
841        }
842    }
843
844    fn atomic_store(
845        &mut self,
846        val: &'ll Value,
847        ptr: &'ll Value,
848        order: rustc_codegen_ssa::common::AtomicOrdering,
849        size: Size,
850    ) {
851        debug!("Store {:?} -> {:?}", val, ptr);
852        assert_eq!(self.cx.type_kind(self.cx.val_ty(ptr)), TypeKind::Pointer);
853        unsafe {
854            let store = llvm::LLVMRustBuildAtomicStore(
855                self.llbuilder,
856                val,
857                ptr,
858                AtomicOrdering::from_generic(order),
859            );
860            // LLVM requires the alignment of atomic stores to be at least the size of the type.
861            llvm::LLVMSetAlignment(store, size.bytes() as c_uint);
862        }
863    }
864
865    fn gep(&mut self, ty: &'ll Type, ptr: &'ll Value, indices: &[&'ll Value]) -> &'ll Value {
866        unsafe {
867            llvm::LLVMBuildGEP2(
868                self.llbuilder,
869                ty,
870                ptr,
871                indices.as_ptr(),
872                indices.len() as c_uint,
873                UNNAMED,
874            )
875        }
876    }
877
878    fn inbounds_gep(
879        &mut self,
880        ty: &'ll Type,
881        ptr: &'ll Value,
882        indices: &[&'ll Value],
883    ) -> &'ll Value {
884        unsafe {
885            llvm::LLVMBuildInBoundsGEP2(
886                self.llbuilder,
887                ty,
888                ptr,
889                indices.as_ptr(),
890                indices.len() as c_uint,
891                UNNAMED,
892            )
893        }
894    }
895
896    /* Casts */
897    fn trunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
898        unsafe { llvm::LLVMBuildTrunc(self.llbuilder, val, dest_ty, UNNAMED) }
899    }
900
901    fn sext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
902        unsafe { llvm::LLVMBuildSExt(self.llbuilder, val, dest_ty, UNNAMED) }
903    }
904
905    fn fptoui_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
906        self.fptoint_sat(false, val, dest_ty)
907    }
908
909    fn fptosi_sat(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
910        self.fptoint_sat(true, val, dest_ty)
911    }
912
913    fn fptoui(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
914        // On WebAssembly the `fptoui` and `fptosi` instructions currently have
915        // poor codegen. The reason for this is that the corresponding wasm
916        // instructions, `i32.trunc_f32_s` for example, will trap when the float
917        // is out-of-bounds, infinity, or nan. This means that LLVM
918        // automatically inserts control flow around `fptoui` and `fptosi`
919        // because the LLVM instruction `fptoui` is defined as producing a
920        // poison value, not having UB on out-of-bounds values.
921        //
922        // This method, however, is only used with non-saturating casts that
923        // have UB on out-of-bounds values. This means that it's ok if we use
924        // the raw wasm instruction since out-of-bounds values can do whatever
925        // we like. To ensure that LLVM picks the right instruction we choose
926        // the raw wasm intrinsic functions which avoid LLVM inserting all the
927        // other control flow automatically.
928        if self.sess().target.is_like_wasm {
929            let src_ty = self.cx.val_ty(val);
930            if self.cx.type_kind(src_ty) != TypeKind::Vector {
931                let float_width = self.cx.float_width(src_ty);
932                let int_width = self.cx.int_width(dest_ty);
933                let name = match (int_width, float_width) {
934                    (32, 32) => Some("llvm.wasm.trunc.unsigned.i32.f32"),
935                    (32, 64) => Some("llvm.wasm.trunc.unsigned.i32.f64"),
936                    (64, 32) => Some("llvm.wasm.trunc.unsigned.i64.f32"),
937                    (64, 64) => Some("llvm.wasm.trunc.unsigned.i64.f64"),
938                    _ => None,
939                };
940                if let Some(name) = name {
941                    return self.call_intrinsic(name, &[val]);
942                }
943            }
944        }
945        unsafe { llvm::LLVMBuildFPToUI(self.llbuilder, val, dest_ty, UNNAMED) }
946    }
947
948    fn fptosi(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
949        // see `fptoui` above for why wasm is different here
950        if self.sess().target.is_like_wasm {
951            let src_ty = self.cx.val_ty(val);
952            if self.cx.type_kind(src_ty) != TypeKind::Vector {
953                let float_width = self.cx.float_width(src_ty);
954                let int_width = self.cx.int_width(dest_ty);
955                let name = match (int_width, float_width) {
956                    (32, 32) => Some("llvm.wasm.trunc.signed.i32.f32"),
957                    (32, 64) => Some("llvm.wasm.trunc.signed.i32.f64"),
958                    (64, 32) => Some("llvm.wasm.trunc.signed.i64.f32"),
959                    (64, 64) => Some("llvm.wasm.trunc.signed.i64.f64"),
960                    _ => None,
961                };
962                if let Some(name) = name {
963                    return self.call_intrinsic(name, &[val]);
964                }
965            }
966        }
967        unsafe { llvm::LLVMBuildFPToSI(self.llbuilder, val, dest_ty, UNNAMED) }
968    }
969
970    fn uitofp(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
971        unsafe { llvm::LLVMBuildUIToFP(self.llbuilder, val, dest_ty, UNNAMED) }
972    }
973
974    fn sitofp(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
975        unsafe { llvm::LLVMBuildSIToFP(self.llbuilder, val, dest_ty, UNNAMED) }
976    }
977
978    fn fptrunc(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
979        unsafe { llvm::LLVMBuildFPTrunc(self.llbuilder, val, dest_ty, UNNAMED) }
980    }
981
982    fn fpext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
983        unsafe { llvm::LLVMBuildFPExt(self.llbuilder, val, dest_ty, UNNAMED) }
984    }
985
986    fn ptrtoint(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
987        unsafe { llvm::LLVMBuildPtrToInt(self.llbuilder, val, dest_ty, UNNAMED) }
988    }
989
990    fn inttoptr(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
991        unsafe { llvm::LLVMBuildIntToPtr(self.llbuilder, val, dest_ty, UNNAMED) }
992    }
993
994    fn bitcast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
995        unsafe { llvm::LLVMBuildBitCast(self.llbuilder, val, dest_ty, UNNAMED) }
996    }
997
998    fn intcast(&mut self, val: &'ll Value, dest_ty: &'ll Type, is_signed: bool) -> &'ll Value {
999        unsafe {
1000            llvm::LLVMBuildIntCast2(
1001                self.llbuilder,
1002                val,
1003                dest_ty,
1004                if is_signed { True } else { False },
1005                UNNAMED,
1006            )
1007        }
1008    }
1009
1010    fn pointercast(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1011        unsafe { llvm::LLVMBuildPointerCast(self.llbuilder, val, dest_ty, UNNAMED) }
1012    }
1013
1014    /* Comparisons */
1015    fn icmp(&mut self, op: IntPredicate, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
1016        let op = llvm::IntPredicate::from_generic(op);
1017        unsafe { llvm::LLVMBuildICmp(self.llbuilder, op as c_uint, lhs, rhs, UNNAMED) }
1018    }
1019
1020    fn fcmp(&mut self, op: RealPredicate, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
1021        let op = llvm::RealPredicate::from_generic(op);
1022        unsafe { llvm::LLVMBuildFCmp(self.llbuilder, op as c_uint, lhs, rhs, UNNAMED) }
1023    }
1024
1025    /* Miscellaneous instructions */
1026    fn memcpy(
1027        &mut self,
1028        dst: &'ll Value,
1029        dst_align: Align,
1030        src: &'ll Value,
1031        src_align: Align,
1032        size: &'ll Value,
1033        flags: MemFlags,
1034    ) {
1035        assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memcpy not supported");
1036        let size = self.intcast(size, self.type_isize(), false);
1037        let is_volatile = flags.contains(MemFlags::VOLATILE);
1038        unsafe {
1039            llvm::LLVMRustBuildMemCpy(
1040                self.llbuilder,
1041                dst,
1042                dst_align.bytes() as c_uint,
1043                src,
1044                src_align.bytes() as c_uint,
1045                size,
1046                is_volatile,
1047            );
1048        }
1049    }
1050
1051    fn memmove(
1052        &mut self,
1053        dst: &'ll Value,
1054        dst_align: Align,
1055        src: &'ll Value,
1056        src_align: Align,
1057        size: &'ll Value,
1058        flags: MemFlags,
1059    ) {
1060        assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memmove not supported");
1061        let size = self.intcast(size, self.type_isize(), false);
1062        let is_volatile = flags.contains(MemFlags::VOLATILE);
1063        unsafe {
1064            llvm::LLVMRustBuildMemMove(
1065                self.llbuilder,
1066                dst,
1067                dst_align.bytes() as c_uint,
1068                src,
1069                src_align.bytes() as c_uint,
1070                size,
1071                is_volatile,
1072            );
1073        }
1074    }
1075
1076    fn memset(
1077        &mut self,
1078        ptr: &'ll Value,
1079        fill_byte: &'ll Value,
1080        size: &'ll Value,
1081        align: Align,
1082        flags: MemFlags,
1083    ) {
1084        assert!(!flags.contains(MemFlags::NONTEMPORAL), "non-temporal memset not supported");
1085        let is_volatile = flags.contains(MemFlags::VOLATILE);
1086        unsafe {
1087            llvm::LLVMRustBuildMemSet(
1088                self.llbuilder,
1089                ptr,
1090                align.bytes() as c_uint,
1091                fill_byte,
1092                size,
1093                is_volatile,
1094            );
1095        }
1096    }
1097
1098    fn select(
1099        &mut self,
1100        cond: &'ll Value,
1101        then_val: &'ll Value,
1102        else_val: &'ll Value,
1103    ) -> &'ll Value {
1104        unsafe { llvm::LLVMBuildSelect(self.llbuilder, cond, then_val, else_val, UNNAMED) }
1105    }
1106
1107    fn va_arg(&mut self, list: &'ll Value, ty: &'ll Type) -> &'ll Value {
1108        unsafe { llvm::LLVMBuildVAArg(self.llbuilder, list, ty, UNNAMED) }
1109    }
1110
1111    fn extract_element(&mut self, vec: &'ll Value, idx: &'ll Value) -> &'ll Value {
1112        unsafe { llvm::LLVMBuildExtractElement(self.llbuilder, vec, idx, UNNAMED) }
1113    }
1114
1115    fn vector_splat(&mut self, num_elts: usize, elt: &'ll Value) -> &'ll Value {
1116        unsafe {
1117            let elt_ty = self.cx.val_ty(elt);
1118            let undef = llvm::LLVMGetUndef(self.type_vector(elt_ty, num_elts as u64));
1119            let vec = self.insert_element(undef, elt, self.cx.const_i32(0));
1120            let vec_i32_ty = self.type_vector(self.type_i32(), num_elts as u64);
1121            self.shuffle_vector(vec, undef, self.const_null(vec_i32_ty))
1122        }
1123    }
1124
1125    fn extract_value(&mut self, agg_val: &'ll Value, idx: u64) -> &'ll Value {
1126        assert_eq!(idx as c_uint as u64, idx);
1127        unsafe { llvm::LLVMBuildExtractValue(self.llbuilder, agg_val, idx as c_uint, UNNAMED) }
1128    }
1129
1130    fn insert_value(&mut self, agg_val: &'ll Value, elt: &'ll Value, idx: u64) -> &'ll Value {
1131        assert_eq!(idx as c_uint as u64, idx);
1132        unsafe { llvm::LLVMBuildInsertValue(self.llbuilder, agg_val, elt, idx as c_uint, UNNAMED) }
1133    }
1134
1135    fn set_personality_fn(&mut self, personality: &'ll Value) {
1136        unsafe {
1137            llvm::LLVMSetPersonalityFn(self.llfn(), personality);
1138        }
1139    }
1140
1141    fn cleanup_landing_pad(&mut self, pers_fn: &'ll Value) -> (&'ll Value, &'ll Value) {
1142        let ty = self.type_struct(&[self.type_ptr(), self.type_i32()], false);
1143        let landing_pad = self.landing_pad(ty, pers_fn, 0);
1144        unsafe {
1145            llvm::LLVMSetCleanup(landing_pad, llvm::True);
1146        }
1147        (self.extract_value(landing_pad, 0), self.extract_value(landing_pad, 1))
1148    }
1149
1150    fn filter_landing_pad(&mut self, pers_fn: &'ll Value) -> (&'ll Value, &'ll Value) {
1151        let ty = self.type_struct(&[self.type_ptr(), self.type_i32()], false);
1152        let landing_pad = self.landing_pad(ty, pers_fn, 1);
1153        self.add_clause(landing_pad, self.const_array(self.type_ptr(), &[]));
1154        (self.extract_value(landing_pad, 0), self.extract_value(landing_pad, 1))
1155    }
1156
1157    fn resume(&mut self, exn0: &'ll Value, exn1: &'ll Value) {
1158        let ty = self.type_struct(&[self.type_ptr(), self.type_i32()], false);
1159        let mut exn = self.const_poison(ty);
1160        exn = self.insert_value(exn, exn0, 0);
1161        exn = self.insert_value(exn, exn1, 1);
1162        unsafe {
1163            llvm::LLVMBuildResume(self.llbuilder, exn);
1164        }
1165    }
1166
1167    fn cleanup_pad(&mut self, parent: Option<&'ll Value>, args: &[&'ll Value]) -> Funclet<'ll> {
1168        let ret = unsafe {
1169            llvm::LLVMBuildCleanupPad(
1170                self.llbuilder,
1171                parent,
1172                args.as_ptr(),
1173                args.len() as c_uint,
1174                c"cleanuppad".as_ptr(),
1175            )
1176        };
1177        Funclet::new(ret.expect("LLVM does not have support for cleanuppad"))
1178    }
1179
1180    fn cleanup_ret(&mut self, funclet: &Funclet<'ll>, unwind: Option<&'ll BasicBlock>) {
1181        unsafe {
1182            llvm::LLVMBuildCleanupRet(self.llbuilder, funclet.cleanuppad(), unwind)
1183                .expect("LLVM does not have support for cleanupret");
1184        }
1185    }
1186
1187    fn catch_pad(&mut self, parent: &'ll Value, args: &[&'ll Value]) -> Funclet<'ll> {
1188        let ret = unsafe {
1189            llvm::LLVMBuildCatchPad(
1190                self.llbuilder,
1191                parent,
1192                args.as_ptr(),
1193                args.len() as c_uint,
1194                c"catchpad".as_ptr(),
1195            )
1196        };
1197        Funclet::new(ret.expect("LLVM does not have support for catchpad"))
1198    }
1199
1200    fn catch_switch(
1201        &mut self,
1202        parent: Option<&'ll Value>,
1203        unwind: Option<&'ll BasicBlock>,
1204        handlers: &[&'ll BasicBlock],
1205    ) -> &'ll Value {
1206        let ret = unsafe {
1207            llvm::LLVMBuildCatchSwitch(
1208                self.llbuilder,
1209                parent,
1210                unwind,
1211                handlers.len() as c_uint,
1212                c"catchswitch".as_ptr(),
1213            )
1214        };
1215        let ret = ret.expect("LLVM does not have support for catchswitch");
1216        for handler in handlers {
1217            unsafe {
1218                llvm::LLVMAddHandler(ret, handler);
1219            }
1220        }
1221        ret
1222    }
1223
1224    // Atomic Operations
1225    fn atomic_cmpxchg(
1226        &mut self,
1227        dst: &'ll Value,
1228        cmp: &'ll Value,
1229        src: &'ll Value,
1230        order: rustc_codegen_ssa::common::AtomicOrdering,
1231        failure_order: rustc_codegen_ssa::common::AtomicOrdering,
1232        weak: bool,
1233    ) -> (&'ll Value, &'ll Value) {
1234        let weak = if weak { llvm::True } else { llvm::False };
1235        unsafe {
1236            let value = llvm::LLVMBuildAtomicCmpXchg(
1237                self.llbuilder,
1238                dst,
1239                cmp,
1240                src,
1241                AtomicOrdering::from_generic(order),
1242                AtomicOrdering::from_generic(failure_order),
1243                llvm::False, // SingleThreaded
1244            );
1245            llvm::LLVMSetWeak(value, weak);
1246            let val = self.extract_value(value, 0);
1247            let success = self.extract_value(value, 1);
1248            (val, success)
1249        }
1250    }
1251
1252    fn atomic_rmw(
1253        &mut self,
1254        op: rustc_codegen_ssa::common::AtomicRmwBinOp,
1255        dst: &'ll Value,
1256        mut src: &'ll Value,
1257        order: rustc_codegen_ssa::common::AtomicOrdering,
1258    ) -> &'ll Value {
1259        // The only RMW operation that LLVM supports on pointers is compare-exchange.
1260        let requires_cast_to_int = self.val_ty(src) == self.type_ptr()
1261            && op != rustc_codegen_ssa::common::AtomicRmwBinOp::AtomicXchg;
1262        if requires_cast_to_int {
1263            src = self.ptrtoint(src, self.type_isize());
1264        }
1265        let mut res = unsafe {
1266            llvm::LLVMBuildAtomicRMW(
1267                self.llbuilder,
1268                AtomicRmwBinOp::from_generic(op),
1269                dst,
1270                src,
1271                AtomicOrdering::from_generic(order),
1272                llvm::False, // SingleThreaded
1273            )
1274        };
1275        if requires_cast_to_int {
1276            res = self.inttoptr(res, self.type_ptr());
1277        }
1278        res
1279    }
1280
1281    fn atomic_fence(
1282        &mut self,
1283        order: rustc_codegen_ssa::common::AtomicOrdering,
1284        scope: SynchronizationScope,
1285    ) {
1286        let single_threaded = match scope {
1287            SynchronizationScope::SingleThread => llvm::True,
1288            SynchronizationScope::CrossThread => llvm::False,
1289        };
1290        unsafe {
1291            llvm::LLVMBuildFence(
1292                self.llbuilder,
1293                AtomicOrdering::from_generic(order),
1294                single_threaded,
1295                UNNAMED,
1296            );
1297        }
1298    }
1299
1300    fn set_invariant_load(&mut self, load: &'ll Value) {
1301        unsafe {
1302            let md = llvm::LLVMMDNodeInContext2(self.cx.llcx, ptr::null(), 0);
1303            self.set_metadata(load, llvm::MD_invariant_load, md);
1304        }
1305    }
1306
1307    fn lifetime_start(&mut self, ptr: &'ll Value, size: Size) {
1308        self.call_lifetime_intrinsic("llvm.lifetime.start.p0i8", ptr, size);
1309    }
1310
1311    fn lifetime_end(&mut self, ptr: &'ll Value, size: Size) {
1312        self.call_lifetime_intrinsic("llvm.lifetime.end.p0i8", ptr, size);
1313    }
1314
1315    fn call(
1316        &mut self,
1317        llty: &'ll Type,
1318        fn_attrs: Option<&CodegenFnAttrs>,
1319        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
1320        llfn: &'ll Value,
1321        args: &[&'ll Value],
1322        funclet: Option<&Funclet<'ll>>,
1323        instance: Option<Instance<'tcx>>,
1324    ) -> &'ll Value {
1325        debug!("call {:?} with args ({:?})", llfn, args);
1326
1327        let args = self.check_call("call", llty, llfn, args);
1328        let funclet_bundle = funclet.map(|funclet| funclet.bundle());
1329        let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
1330        if let Some(funclet_bundle) = funclet_bundle {
1331            bundles.push(funclet_bundle);
1332        }
1333
1334        // Emit CFI pointer type membership test
1335        self.cfi_type_test(fn_attrs, fn_abi, instance, llfn);
1336
1337        // Emit KCFI operand bundle
1338        let kcfi_bundle = self.kcfi_operand_bundle(fn_attrs, fn_abi, instance, llfn);
1339        if let Some(kcfi_bundle) = kcfi_bundle.as_deref() {
1340            bundles.push(kcfi_bundle);
1341        }
1342
1343        let call = unsafe {
1344            llvm::LLVMBuildCallWithOperandBundles(
1345                self.llbuilder,
1346                llty,
1347                llfn,
1348                args.as_ptr() as *const &llvm::Value,
1349                args.len() as c_uint,
1350                bundles.as_ptr(),
1351                bundles.len() as c_uint,
1352                c"".as_ptr(),
1353            )
1354        };
1355        if let Some(fn_abi) = fn_abi {
1356            fn_abi.apply_attrs_callsite(self, call);
1357        }
1358        call
1359    }
1360
1361    fn zext(&mut self, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1362        unsafe { llvm::LLVMBuildZExt(self.llbuilder, val, dest_ty, UNNAMED) }
1363    }
1364
1365    fn apply_attrs_to_cleanup_callsite(&mut self, llret: &'ll Value) {
1366        // Cleanup is always the cold path.
1367        let cold_inline = llvm::AttributeKind::Cold.create_attr(self.llcx);
1368        attributes::apply_to_callsite(llret, llvm::AttributePlace::Function, &[cold_inline]);
1369    }
1370}
1371
1372impl<'ll> StaticBuilderMethods for Builder<'_, 'll, '_> {
1373    fn get_static(&mut self, def_id: DefId) -> &'ll Value {
1374        // Forward to the `get_static` method of `CodegenCx`
1375        let s = self.cx().get_static(def_id);
1376        // Cast to default address space if globals are in a different addrspace
1377        self.cx().const_pointercast(s, self.type_ptr())
1378    }
1379}
1380
1381impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
1382    fn build(cx: &'a CodegenCx<'ll, 'tcx>, llbb: &'ll BasicBlock) -> Builder<'a, 'll, 'tcx> {
1383        let bx = Builder::with_cx(cx);
1384        unsafe {
1385            llvm::LLVMPositionBuilderAtEnd(bx.llbuilder, llbb);
1386        }
1387        bx
1388    }
1389
1390    fn with_cx(cx: &'a CodegenCx<'ll, 'tcx>) -> Self {
1391        // Create a fresh builder from the crate context.
1392        let llbuilder = unsafe { llvm::LLVMCreateBuilderInContext(cx.llcx) };
1393        Builder { llbuilder, cx }
1394    }
1395
1396    pub(crate) fn llfn(&self) -> &'ll Value {
1397        unsafe { llvm::LLVMGetBasicBlockParent(self.llbb()) }
1398    }
1399}
1400
1401impl<'a, 'll, CX: Borrow<SimpleCx<'ll>>> GenericBuilder<'a, 'll, CX> {
1402    fn position_at_start(&mut self, llbb: &'ll BasicBlock) {
1403        unsafe {
1404            llvm::LLVMRustPositionBuilderAtStart(self.llbuilder, llbb);
1405        }
1406    }
1407}
1408impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
1409    fn align_metadata(&mut self, load: &'ll Value, align: Align) {
1410        unsafe {
1411            let md = [llvm::LLVMValueAsMetadata(self.cx.const_u64(align.bytes()))];
1412            let md = llvm::LLVMMDNodeInContext2(self.cx.llcx, md.as_ptr(), md.len());
1413            self.set_metadata(load, llvm::MD_align, md);
1414        }
1415    }
1416
1417    fn noundef_metadata(&mut self, load: &'ll Value) {
1418        unsafe {
1419            let md = llvm::LLVMMDNodeInContext2(self.cx.llcx, ptr::null(), 0);
1420            self.set_metadata(load, llvm::MD_noundef, md);
1421        }
1422    }
1423
1424    pub(crate) fn set_unpredictable(&mut self, inst: &'ll Value) {
1425        unsafe {
1426            let md = llvm::LLVMMDNodeInContext2(self.cx.llcx, ptr::null(), 0);
1427            self.set_metadata(inst, llvm::MD_unpredictable, md);
1428        }
1429    }
1430}
1431impl<'a, 'll, CX: Borrow<SimpleCx<'ll>>> GenericBuilder<'a, 'll, CX> {
1432    pub(crate) fn minnum(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
1433        unsafe { llvm::LLVMRustBuildMinNum(self.llbuilder, lhs, rhs) }
1434    }
1435
1436    pub(crate) fn maxnum(&mut self, lhs: &'ll Value, rhs: &'ll Value) -> &'ll Value {
1437        unsafe { llvm::LLVMRustBuildMaxNum(self.llbuilder, lhs, rhs) }
1438    }
1439
1440    pub(crate) fn insert_element(
1441        &mut self,
1442        vec: &'ll Value,
1443        elt: &'ll Value,
1444        idx: &'ll Value,
1445    ) -> &'ll Value {
1446        unsafe { llvm::LLVMBuildInsertElement(self.llbuilder, vec, elt, idx, UNNAMED) }
1447    }
1448
1449    pub(crate) fn shuffle_vector(
1450        &mut self,
1451        v1: &'ll Value,
1452        v2: &'ll Value,
1453        mask: &'ll Value,
1454    ) -> &'ll Value {
1455        unsafe { llvm::LLVMBuildShuffleVector(self.llbuilder, v1, v2, mask, UNNAMED) }
1456    }
1457
1458    pub(crate) fn vector_reduce_fadd(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value {
1459        unsafe { llvm::LLVMRustBuildVectorReduceFAdd(self.llbuilder, acc, src) }
1460    }
1461    pub(crate) fn vector_reduce_fmul(&mut self, acc: &'ll Value, src: &'ll Value) -> &'ll Value {
1462        unsafe { llvm::LLVMRustBuildVectorReduceFMul(self.llbuilder, acc, src) }
1463    }
1464    pub(crate) fn vector_reduce_fadd_reassoc(
1465        &mut self,
1466        acc: &'ll Value,
1467        src: &'ll Value,
1468    ) -> &'ll Value {
1469        unsafe {
1470            let instr = llvm::LLVMRustBuildVectorReduceFAdd(self.llbuilder, acc, src);
1471            llvm::LLVMRustSetAllowReassoc(instr);
1472            instr
1473        }
1474    }
1475    pub(crate) fn vector_reduce_fmul_reassoc(
1476        &mut self,
1477        acc: &'ll Value,
1478        src: &'ll Value,
1479    ) -> &'ll Value {
1480        unsafe {
1481            let instr = llvm::LLVMRustBuildVectorReduceFMul(self.llbuilder, acc, src);
1482            llvm::LLVMRustSetAllowReassoc(instr);
1483            instr
1484        }
1485    }
1486    pub(crate) fn vector_reduce_add(&mut self, src: &'ll Value) -> &'ll Value {
1487        unsafe { llvm::LLVMRustBuildVectorReduceAdd(self.llbuilder, src) }
1488    }
1489    pub(crate) fn vector_reduce_mul(&mut self, src: &'ll Value) -> &'ll Value {
1490        unsafe { llvm::LLVMRustBuildVectorReduceMul(self.llbuilder, src) }
1491    }
1492    pub(crate) fn vector_reduce_and(&mut self, src: &'ll Value) -> &'ll Value {
1493        unsafe { llvm::LLVMRustBuildVectorReduceAnd(self.llbuilder, src) }
1494    }
1495    pub(crate) fn vector_reduce_or(&mut self, src: &'ll Value) -> &'ll Value {
1496        unsafe { llvm::LLVMRustBuildVectorReduceOr(self.llbuilder, src) }
1497    }
1498    pub(crate) fn vector_reduce_xor(&mut self, src: &'ll Value) -> &'ll Value {
1499        unsafe { llvm::LLVMRustBuildVectorReduceXor(self.llbuilder, src) }
1500    }
1501    pub(crate) fn vector_reduce_fmin(&mut self, src: &'ll Value) -> &'ll Value {
1502        unsafe {
1503            llvm::LLVMRustBuildVectorReduceFMin(self.llbuilder, src, /*NoNaNs:*/ false)
1504        }
1505    }
1506    pub(crate) fn vector_reduce_fmax(&mut self, src: &'ll Value) -> &'ll Value {
1507        unsafe {
1508            llvm::LLVMRustBuildVectorReduceFMax(self.llbuilder, src, /*NoNaNs:*/ false)
1509        }
1510    }
1511    pub(crate) fn vector_reduce_min(&mut self, src: &'ll Value, is_signed: bool) -> &'ll Value {
1512        unsafe { llvm::LLVMRustBuildVectorReduceMin(self.llbuilder, src, is_signed) }
1513    }
1514    pub(crate) fn vector_reduce_max(&mut self, src: &'ll Value, is_signed: bool) -> &'ll Value {
1515        unsafe { llvm::LLVMRustBuildVectorReduceMax(self.llbuilder, src, is_signed) }
1516    }
1517
1518    pub(crate) fn add_clause(&mut self, landing_pad: &'ll Value, clause: &'ll Value) {
1519        unsafe {
1520            llvm::LLVMAddClause(landing_pad, clause);
1521        }
1522    }
1523
1524    pub(crate) fn catch_ret(
1525        &mut self,
1526        funclet: &Funclet<'ll>,
1527        unwind: &'ll BasicBlock,
1528    ) -> &'ll Value {
1529        let ret = unsafe { llvm::LLVMBuildCatchRet(self.llbuilder, funclet.cleanuppad(), unwind) };
1530        ret.expect("LLVM does not have support for catchret")
1531    }
1532}
1533
1534impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
1535    fn check_call<'b>(
1536        &mut self,
1537        typ: &str,
1538        fn_ty: &'ll Type,
1539        llfn: &'ll Value,
1540        args: &'b [&'ll Value],
1541    ) -> Cow<'b, [&'ll Value]> {
1542        assert!(
1543            self.cx.type_kind(fn_ty) == TypeKind::Function,
1544            "builder::{typ} not passed a function, but {fn_ty:?}"
1545        );
1546
1547        let param_tys = self.cx.func_params_types(fn_ty);
1548
1549        let all_args_match = iter::zip(&param_tys, args.iter().map(|&v| self.val_ty(v)))
1550            .all(|(expected_ty, actual_ty)| *expected_ty == actual_ty);
1551
1552        if all_args_match {
1553            return Cow::Borrowed(args);
1554        }
1555
1556        let casted_args: Vec<_> = iter::zip(param_tys, args)
1557            .enumerate()
1558            .map(|(i, (expected_ty, &actual_val))| {
1559                let actual_ty = self.val_ty(actual_val);
1560                if expected_ty != actual_ty {
1561                    debug!(
1562                        "type mismatch in function call of {:?}. \
1563                            Expected {:?} for param {}, got {:?}; injecting bitcast",
1564                        llfn, expected_ty, i, actual_ty
1565                    );
1566                    self.bitcast(actual_val, expected_ty)
1567                } else {
1568                    actual_val
1569                }
1570            })
1571            .collect();
1572
1573        Cow::Owned(casted_args)
1574    }
1575}
1576impl<'a, 'll, CX: Borrow<SimpleCx<'ll>>> GenericBuilder<'a, 'll, CX> {
1577    pub(crate) fn va_arg(&mut self, list: &'ll Value, ty: &'ll Type) -> &'ll Value {
1578        unsafe { llvm::LLVMBuildVAArg(self.llbuilder, list, ty, UNNAMED) }
1579    }
1580}
1581impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
1582    pub(crate) fn call_intrinsic(&mut self, intrinsic: &str, args: &[&'ll Value]) -> &'ll Value {
1583        let (ty, f) = self.cx.get_intrinsic(intrinsic);
1584        self.call(ty, None, None, f, args, None, None)
1585    }
1586
1587    fn call_lifetime_intrinsic(&mut self, intrinsic: &str, ptr: &'ll Value, size: Size) {
1588        let size = size.bytes();
1589        if size == 0 {
1590            return;
1591        }
1592
1593        if !self.cx().sess().emit_lifetime_markers() {
1594            return;
1595        }
1596
1597        self.call_intrinsic(intrinsic, &[self.cx.const_u64(size), ptr]);
1598    }
1599}
1600impl<'a, 'll, CX: Borrow<SimpleCx<'ll>>> GenericBuilder<'a, 'll, CX> {
1601    pub(crate) fn phi(
1602        &mut self,
1603        ty: &'ll Type,
1604        vals: &[&'ll Value],
1605        bbs: &[&'ll BasicBlock],
1606    ) -> &'ll Value {
1607        assert_eq!(vals.len(), bbs.len());
1608        let phi = unsafe { llvm::LLVMBuildPhi(self.llbuilder, ty, UNNAMED) };
1609        unsafe {
1610            llvm::LLVMAddIncoming(phi, vals.as_ptr(), bbs.as_ptr(), vals.len() as c_uint);
1611            phi
1612        }
1613    }
1614
1615    fn add_incoming_to_phi(&mut self, phi: &'ll Value, val: &'ll Value, bb: &'ll BasicBlock) {
1616        unsafe {
1617            llvm::LLVMAddIncoming(phi, &val, &bb, 1 as c_uint);
1618        }
1619    }
1620}
1621impl<'a, 'll, 'tcx> Builder<'a, 'll, 'tcx> {
1622    fn fptoint_sat(&mut self, signed: bool, val: &'ll Value, dest_ty: &'ll Type) -> &'ll Value {
1623        let src_ty = self.cx.val_ty(val);
1624        let (float_ty, int_ty, vector_length) = if self.cx.type_kind(src_ty) == TypeKind::Vector {
1625            assert_eq!(self.cx.vector_length(src_ty), self.cx.vector_length(dest_ty));
1626            (
1627                self.cx.element_type(src_ty),
1628                self.cx.element_type(dest_ty),
1629                Some(self.cx.vector_length(src_ty)),
1630            )
1631        } else {
1632            (src_ty, dest_ty, None)
1633        };
1634        let float_width = self.cx.float_width(float_ty);
1635        let int_width = self.cx.int_width(int_ty);
1636
1637        let instr = if signed { "fptosi" } else { "fptoui" };
1638        let name = if let Some(vector_length) = vector_length {
1639            format!("llvm.{instr}.sat.v{vector_length}i{int_width}.v{vector_length}f{float_width}")
1640        } else {
1641            format!("llvm.{instr}.sat.i{int_width}.f{float_width}")
1642        };
1643        let f = self.declare_cfn(&name, llvm::UnnamedAddr::No, self.type_func(&[src_ty], dest_ty));
1644        self.call(self.type_func(&[src_ty], dest_ty), None, None, f, &[val], None, None)
1645    }
1646
1647    pub(crate) fn landing_pad(
1648        &mut self,
1649        ty: &'ll Type,
1650        pers_fn: &'ll Value,
1651        num_clauses: usize,
1652    ) -> &'ll Value {
1653        // Use LLVMSetPersonalityFn to set the personality. It supports arbitrary Consts while,
1654        // LLVMBuildLandingPad requires the argument to be a Function (as of LLVM 12). The
1655        // personality lives on the parent function anyway.
1656        self.set_personality_fn(pers_fn);
1657        unsafe {
1658            llvm::LLVMBuildLandingPad(self.llbuilder, ty, None, num_clauses as c_uint, UNNAMED)
1659        }
1660    }
1661
1662    pub(crate) fn callbr(
1663        &mut self,
1664        llty: &'ll Type,
1665        fn_attrs: Option<&CodegenFnAttrs>,
1666        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
1667        llfn: &'ll Value,
1668        args: &[&'ll Value],
1669        default_dest: &'ll BasicBlock,
1670        indirect_dest: &[&'ll BasicBlock],
1671        funclet: Option<&Funclet<'ll>>,
1672        instance: Option<Instance<'tcx>>,
1673    ) -> &'ll Value {
1674        debug!("invoke {:?} with args ({:?})", llfn, args);
1675
1676        let args = self.check_call("callbr", llty, llfn, args);
1677        let funclet_bundle = funclet.map(|funclet| funclet.bundle());
1678        let mut bundles: SmallVec<[_; 2]> = SmallVec::new();
1679        if let Some(funclet_bundle) = funclet_bundle {
1680            bundles.push(funclet_bundle);
1681        }
1682
1683        // Emit CFI pointer type membership test
1684        self.cfi_type_test(fn_attrs, fn_abi, instance, llfn);
1685
1686        // Emit KCFI operand bundle
1687        let kcfi_bundle = self.kcfi_operand_bundle(fn_attrs, fn_abi, instance, llfn);
1688        if let Some(kcfi_bundle) = kcfi_bundle.as_deref() {
1689            bundles.push(kcfi_bundle);
1690        }
1691
1692        let callbr = unsafe {
1693            llvm::LLVMBuildCallBr(
1694                self.llbuilder,
1695                llty,
1696                llfn,
1697                default_dest,
1698                indirect_dest.as_ptr(),
1699                indirect_dest.len() as c_uint,
1700                args.as_ptr(),
1701                args.len() as c_uint,
1702                bundles.as_ptr(),
1703                bundles.len() as c_uint,
1704                UNNAMED,
1705            )
1706        };
1707        if let Some(fn_abi) = fn_abi {
1708            fn_abi.apply_attrs_callsite(self, callbr);
1709        }
1710        callbr
1711    }
1712
1713    // Emits CFI pointer type membership tests.
1714    fn cfi_type_test(
1715        &mut self,
1716        fn_attrs: Option<&CodegenFnAttrs>,
1717        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
1718        instance: Option<Instance<'tcx>>,
1719        llfn: &'ll Value,
1720    ) {
1721        let is_indirect_call = unsafe { llvm::LLVMRustIsNonGVFunctionPointerTy(llfn) };
1722        if self.tcx.sess.is_sanitizer_cfi_enabled()
1723            && let Some(fn_abi) = fn_abi
1724            && is_indirect_call
1725        {
1726            if let Some(fn_attrs) = fn_attrs
1727                && fn_attrs.no_sanitize.contains(SanitizerSet::CFI)
1728            {
1729                return;
1730            }
1731
1732            let mut options = cfi::TypeIdOptions::empty();
1733            if self.tcx.sess.is_sanitizer_cfi_generalize_pointers_enabled() {
1734                options.insert(cfi::TypeIdOptions::GENERALIZE_POINTERS);
1735            }
1736            if self.tcx.sess.is_sanitizer_cfi_normalize_integers_enabled() {
1737                options.insert(cfi::TypeIdOptions::NORMALIZE_INTEGERS);
1738            }
1739
1740            let typeid = if let Some(instance) = instance {
1741                cfi::typeid_for_instance(self.tcx, instance, options)
1742            } else {
1743                cfi::typeid_for_fnabi(self.tcx, fn_abi, options)
1744            };
1745            let typeid_metadata = self.cx.typeid_metadata(typeid).unwrap();
1746            let dbg_loc = self.get_dbg_loc();
1747
1748            // Test whether the function pointer is associated with the type identifier.
1749            let cond = self.type_test(llfn, typeid_metadata);
1750            let bb_pass = self.append_sibling_block("type_test.pass");
1751            let bb_fail = self.append_sibling_block("type_test.fail");
1752            self.cond_br(cond, bb_pass, bb_fail);
1753
1754            self.switch_to_block(bb_fail);
1755            if let Some(dbg_loc) = dbg_loc {
1756                self.set_dbg_loc(dbg_loc);
1757            }
1758            self.abort();
1759            self.unreachable();
1760
1761            self.switch_to_block(bb_pass);
1762            if let Some(dbg_loc) = dbg_loc {
1763                self.set_dbg_loc(dbg_loc);
1764            }
1765        }
1766    }
1767
1768    // Emits KCFI operand bundles.
1769    fn kcfi_operand_bundle(
1770        &mut self,
1771        fn_attrs: Option<&CodegenFnAttrs>,
1772        fn_abi: Option<&FnAbi<'tcx, Ty<'tcx>>>,
1773        instance: Option<Instance<'tcx>>,
1774        llfn: &'ll Value,
1775    ) -> Option<llvm::OperandBundleOwned<'ll>> {
1776        let is_indirect_call = unsafe { llvm::LLVMRustIsNonGVFunctionPointerTy(llfn) };
1777        let kcfi_bundle = if self.tcx.sess.is_sanitizer_kcfi_enabled()
1778            && let Some(fn_abi) = fn_abi
1779            && is_indirect_call
1780        {
1781            if let Some(fn_attrs) = fn_attrs
1782                && fn_attrs.no_sanitize.contains(SanitizerSet::KCFI)
1783            {
1784                return None;
1785            }
1786
1787            let mut options = kcfi::TypeIdOptions::empty();
1788            if self.tcx.sess.is_sanitizer_cfi_generalize_pointers_enabled() {
1789                options.insert(kcfi::TypeIdOptions::GENERALIZE_POINTERS);
1790            }
1791            if self.tcx.sess.is_sanitizer_cfi_normalize_integers_enabled() {
1792                options.insert(kcfi::TypeIdOptions::NORMALIZE_INTEGERS);
1793            }
1794
1795            let kcfi_typeid = if let Some(instance) = instance {
1796                kcfi::typeid_for_instance(self.tcx, instance, options)
1797            } else {
1798                kcfi::typeid_for_fnabi(self.tcx, fn_abi, options)
1799            };
1800
1801            Some(llvm::OperandBundleOwned::new("kcfi", &[self.const_u32(kcfi_typeid)]))
1802        } else {
1803            None
1804        };
1805        kcfi_bundle
1806    }
1807
1808    /// Emits a call to `llvm.instrprof.increment`. Used by coverage instrumentation.
1809    #[instrument(level = "debug", skip(self))]
1810    pub(crate) fn instrprof_increment(
1811        &mut self,
1812        fn_name: &'ll Value,
1813        hash: &'ll Value,
1814        num_counters: &'ll Value,
1815        index: &'ll Value,
1816    ) {
1817        self.call_intrinsic("llvm.instrprof.increment", &[fn_name, hash, num_counters, index]);
1818    }
1819
1820    /// Emits a call to `llvm.instrprof.mcdc.parameters`.
1821    ///
1822    /// This doesn't produce any code directly, but is used as input by
1823    /// the LLVM pass that handles coverage instrumentation.
1824    ///
1825    /// (See clang's [`CodeGenPGO::emitMCDCParameters`] for comparison.)
1826    ///
1827    /// [`CodeGenPGO::emitMCDCParameters`]:
1828    ///     https://github.com/rust-lang/llvm-project/blob/5399a24/clang/lib/CodeGen/CodeGenPGO.cpp#L1124
1829    #[instrument(level = "debug", skip(self))]
1830    pub(crate) fn mcdc_parameters(
1831        &mut self,
1832        fn_name: &'ll Value,
1833        hash: &'ll Value,
1834        bitmap_bits: &'ll Value,
1835    ) {
1836        assert!(
1837            crate::llvm_util::get_version() >= (19, 0, 0),
1838            "MCDC intrinsics require LLVM 19 or later"
1839        );
1840        self.call_intrinsic("llvm.instrprof.mcdc.parameters", &[fn_name, hash, bitmap_bits]);
1841    }
1842
1843    #[instrument(level = "debug", skip(self))]
1844    pub(crate) fn mcdc_tvbitmap_update(
1845        &mut self,
1846        fn_name: &'ll Value,
1847        hash: &'ll Value,
1848        bitmap_index: &'ll Value,
1849        mcdc_temp: &'ll Value,
1850    ) {
1851        assert!(
1852            crate::llvm_util::get_version() >= (19, 0, 0),
1853            "MCDC intrinsics require LLVM 19 or later"
1854        );
1855        let args = &[fn_name, hash, bitmap_index, mcdc_temp];
1856        self.call_intrinsic("llvm.instrprof.mcdc.tvbitmap.update", args);
1857    }
1858
1859    #[instrument(level = "debug", skip(self))]
1860    pub(crate) fn mcdc_condbitmap_reset(&mut self, mcdc_temp: &'ll Value) {
1861        self.store(self.const_i32(0), mcdc_temp, self.tcx.data_layout.i32_align.abi);
1862    }
1863
1864    #[instrument(level = "debug", skip(self))]
1865    pub(crate) fn mcdc_condbitmap_update(&mut self, cond_index: &'ll Value, mcdc_temp: &'ll Value) {
1866        assert!(
1867            crate::llvm_util::get_version() >= (19, 0, 0),
1868            "MCDC intrinsics require LLVM 19 or later"
1869        );
1870        let align = self.tcx.data_layout.i32_align.abi;
1871        let current_tv_index = self.load(self.cx.type_i32(), mcdc_temp, align);
1872        let new_tv_index = self.add(current_tv_index, cond_index);
1873        self.store(new_tv_index, mcdc_temp, align);
1874    }
1875}