rustc_type_ir/
visit.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
//! A visiting traversal mechanism for complex data structures that contain type
//! information.
//!
//! This is a read-only traversal of the data structure.
//!
//! This traversal has limited flexibility. Only a small number of "types of
//! interest" within the complex data structures can receive custom
//! visitation. These are the ones containing the most important type-related
//! information, such as `Ty`, `Predicate`, `Region`, and `Const`.
//!
//! There are three traits involved in each traversal.
//! - `TypeVisitable`. This is implemented once for many types, including:
//!   - Types of interest, for which the methods delegate to the visitor.
//!   - All other types, including generic containers like `Vec` and `Option`.
//!     It defines a "skeleton" of how they should be visited.
//! - `TypeSuperVisitable`. This is implemented only for recursive types of
//!   interest, and defines the visiting "skeleton" for these types. (This
//!   excludes `Region` because it is non-recursive, i.e. it never contains
//!   other types of interest.)
//! - `TypeVisitor`. This is implemented for each visitor. This defines how
//!   types of interest are visited.
//!
//! This means each visit is a mixture of (a) generic visiting operations, and (b)
//! custom visit operations that are specific to the visitor.
//! - The `TypeVisitable` impls handle most of the traversal, and call into
//!   `TypeVisitor` when they encounter a type of interest.
//! - A `TypeVisitor` may call into another `TypeVisitable` impl, because some of
//!   the types of interest are recursive and can contain other types of interest.
//! - A `TypeVisitor` may also call into a `TypeSuperVisitable` impl, because each
//!   visitor might provide custom handling only for some types of interest, or
//!   only for some variants of each type of interest, and then use default
//!   traversal for the remaining cases.
//!
//! For example, if you have `struct S(Ty, U)` where `S: TypeVisitable` and `U:
//! TypeVisitable`, and an instance `s = S(ty, u)`, it would be visited like so:
//! ```text
//! s.visit_with(visitor) calls
//! - ty.visit_with(visitor) calls
//!   - visitor.visit_ty(ty) may call
//!     - ty.super_visit_with(visitor)
//! - u.visit_with(visitor)
//! ```

use std::fmt;
use std::ops::ControlFlow;

use rustc_ast_ir::visit::VisitorResult;
use rustc_ast_ir::{try_visit, walk_visitable_list};
use rustc_index::{Idx, IndexVec};

use crate::data_structures::Lrc;
use crate::inherent::*;
use crate::{self as ty, Interner, TypeFlags};

/// This trait is implemented for every type that can be visited,
/// providing the skeleton of the traversal.
///
/// To implement this conveniently, use the derive macro located in
/// `rustc_macros`.
pub trait TypeVisitable<I: Interner>: fmt::Debug + Clone {
    /// The entry point for visiting. To visit a value `t` with a visitor `v`
    /// call: `t.visit_with(v)`.
    ///
    /// For most types, this just traverses the value, calling `visit_with` on
    /// each field/element.
    ///
    /// For types of interest (such as `Ty`), the implementation of this method
    /// that calls a visitor method specifically for that type (such as
    /// `V::visit_ty`). This is where control transfers from `TypeVisitable` to
    /// `TypeVisitor`.
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result;
}

// This trait is implemented for types of interest.
pub trait TypeSuperVisitable<I: Interner>: TypeVisitable<I> {
    /// Provides a default visit for a recursive type of interest. This should
    /// only be called within `TypeVisitor` methods, when a non-custom
    /// traversal is desired for the value of the type of interest passed to
    /// that method. For example, in `MyVisitor::visit_ty(ty)`, it is valid to
    /// call `ty.super_visit_with(self)`, but any other visiting should be done
    /// with `xyz.visit_with(self)`.
    fn super_visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result;
}

/// This trait is implemented for every visiting traversal. There is a visit
/// method defined for every type of interest. Each such method has a default
/// that recurses into the type's fields in a non-custom fashion.
pub trait TypeVisitor<I: Interner>: Sized {
    #[cfg(feature = "nightly")]
    type Result: VisitorResult = ();

    #[cfg(not(feature = "nightly"))]
    type Result: VisitorResult;

    fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &ty::Binder<I, T>) -> Self::Result {
        t.super_visit_with(self)
    }

    fn visit_ty(&mut self, t: I::Ty) -> Self::Result {
        t.super_visit_with(self)
    }

    // The default region visitor is a no-op because `Region` is non-recursive
    // and has no `super_visit_with` method to call.
    fn visit_region(&mut self, r: I::Region) -> Self::Result {
        if let ty::ReError(guar) = r.kind() {
            self.visit_error(guar)
        } else {
            Self::Result::output()
        }
    }

    fn visit_const(&mut self, c: I::Const) -> Self::Result {
        c.super_visit_with(self)
    }

    fn visit_predicate(&mut self, p: I::Predicate) -> Self::Result {
        p.super_visit_with(self)
    }

    fn visit_clauses(&mut self, p: I::Clauses) -> Self::Result {
        p.super_visit_with(self)
    }

    fn visit_error(&mut self, _guar: I::ErrorGuaranteed) -> Self::Result {
        Self::Result::output()
    }
}

///////////////////////////////////////////////////////////////////////////
// Traversal implementations.

impl<I: Interner, T: TypeVisitable<I>, U: TypeVisitable<I>> TypeVisitable<I> for (T, U) {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        try_visit!(self.0.visit_with(visitor));
        self.1.visit_with(visitor)
    }
}

impl<I: Interner, A: TypeVisitable<I>, B: TypeVisitable<I>, C: TypeVisitable<I>> TypeVisitable<I>
    for (A, B, C)
{
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        try_visit!(self.0.visit_with(visitor));
        try_visit!(self.1.visit_with(visitor));
        self.2.visit_with(visitor)
    }
}

impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Option<T> {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        match self {
            Some(v) => v.visit_with(visitor),
            None => V::Result::output(),
        }
    }
}

impl<I: Interner, T: TypeVisitable<I>, E: TypeVisitable<I>> TypeVisitable<I> for Result<T, E> {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        match self {
            Ok(v) => v.visit_with(visitor),
            Err(e) => e.visit_with(visitor),
        }
    }
}

impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Lrc<T> {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        (**self).visit_with(visitor)
    }
}

impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Box<T> {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        (**self).visit_with(visitor)
    }
}

impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Vec<T> {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        walk_visitable_list!(visitor, self.iter());
        V::Result::output()
    }
}

// `TypeFoldable` isn't impl'd for `&[T]`. It doesn't make sense in the general
// case, because we can't return a new slice. But note that there are a couple
// of trivial impls of `TypeFoldable` for specific slice types elsewhere.
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for &[T] {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        walk_visitable_list!(visitor, self.iter());
        V::Result::output()
    }
}

impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Box<[T]> {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        walk_visitable_list!(visitor, self.iter());
        V::Result::output()
    }
}

impl<I: Interner, T: TypeVisitable<I>, Ix: Idx> TypeVisitable<I> for IndexVec<Ix, T> {
    fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
        walk_visitable_list!(visitor, self.iter());
        V::Result::output()
    }
}

pub trait Flags {
    fn flags(&self) -> TypeFlags;
    fn outer_exclusive_binder(&self) -> ty::DebruijnIndex;
}

pub trait TypeVisitableExt<I: Interner>: TypeVisitable<I> {
    fn has_type_flags(&self, flags: TypeFlags) -> bool;

    /// Returns `true` if `self` has any late-bound regions that are either
    /// bound by `binder` or bound by some binder outside of `binder`.
    /// If `binder` is `ty::INNERMOST`, this indicates whether
    /// there are any late-bound regions that appear free.
    fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool;

    /// Returns `true` if this type has any regions that escape `binder` (and
    /// hence are not bound by it).
    fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
        self.has_vars_bound_at_or_above(binder.shifted_in(1))
    }

    /// Return `true` if this type has regions that are not a part of the type.
    /// For example, `for<'a> fn(&'a i32)` return `false`, while `fn(&'a i32)`
    /// would return `true`. The latter can occur when traversing through the
    /// former.
    ///
    /// See [`HasEscapingVarsVisitor`] for more information.
    fn has_escaping_bound_vars(&self) -> bool {
        self.has_vars_bound_at_or_above(ty::INNERMOST)
    }

    fn has_aliases(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_ALIAS)
    }

    fn has_opaque_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_OPAQUE)
    }

    fn has_coroutines(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_COROUTINE)
    }

    fn references_error(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_ERROR)
    }

    fn error_reported(&self) -> Result<(), I::ErrorGuaranteed>;

    fn has_non_region_param(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_PARAM - TypeFlags::HAS_RE_PARAM)
    }

    fn has_infer_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_INFER)
    }

    fn has_infer_types(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_TY_INFER)
    }

    fn has_non_region_infer(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_INFER - TypeFlags::HAS_RE_INFER)
    }

    fn has_infer(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_INFER)
    }

    fn has_placeholders(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_PLACEHOLDER)
    }

    fn has_non_region_placeholders(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_PLACEHOLDER - TypeFlags::HAS_RE_PLACEHOLDER)
    }

    fn has_param(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_PARAM)
    }

    /// "Free" regions in this context means that it has any region
    /// that is not (a) erased or (b) late-bound.
    fn has_free_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
    }

    fn has_erased_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_ERASED)
    }

    /// True if there are any un-erased free regions.
    fn has_erasable_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
    }

    /// Indicates whether this value references only 'global'
    /// generic parameters that are the same regardless of what fn we are
    /// in. This is used for caching.
    fn is_global(&self) -> bool {
        !self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
    }

    /// True if there are any late-bound regions
    fn has_bound_regions(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_RE_BOUND)
    }
    /// True if there are any late-bound non-region variables
    fn has_non_region_bound_vars(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_BOUND_VARS - TypeFlags::HAS_RE_BOUND)
    }
    /// True if there are any bound variables
    fn has_bound_vars(&self) -> bool {
        self.has_type_flags(TypeFlags::HAS_BOUND_VARS)
    }

    /// Indicates whether this value still has parameters/placeholders/inference variables
    /// which could be replaced later, in a way that would change the results of `impl`
    /// specialization.
    fn still_further_specializable(&self) -> bool {
        self.has_type_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE)
    }
}

impl<I: Interner, T: TypeVisitable<I>> TypeVisitableExt<I> for T {
    fn has_type_flags(&self, flags: TypeFlags) -> bool {
        let res =
            self.visit_with(&mut HasTypeFlagsVisitor { flags }) == ControlFlow::Break(FoundFlags);
        res
    }

    fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
        self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder }).is_break()
    }

    fn error_reported(&self) -> Result<(), I::ErrorGuaranteed> {
        if self.references_error() {
            if let ControlFlow::Break(guar) = self.visit_with(&mut HasErrorVisitor) {
                Err(guar)
            } else {
                panic!("type flags said there was an error, but now there is not")
            }
        } else {
            Ok(())
        }
    }
}

#[derive(Debug, PartialEq, Eq, Copy, Clone)]
struct FoundFlags;

// FIXME: Optimize for checking for infer flags
struct HasTypeFlagsVisitor {
    flags: ty::TypeFlags,
}

impl std::fmt::Debug for HasTypeFlagsVisitor {
    fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        self.flags.fmt(fmt)
    }
}

// Note: this visitor traverses values down to the level of
// `Ty`/`Const`/`Predicate`, but not within those types. This is because the
// type flags at the outer layer are enough. So it's faster than it first
// looks, particular for `Ty`/`Predicate` where it's just a field access.
//
// N.B. The only case where this isn't totally true is binders, which also
// add `HAS_{RE,TY,CT}_LATE_BOUND` flag depending on the *bound variables* that
// are present, regardless of whether those bound variables are used. This
// is important for anonymization of binders in `TyCtxt::erase_regions`. We
// specifically detect this case in `visit_binder`.
impl<I: Interner> TypeVisitor<I> for HasTypeFlagsVisitor {
    type Result = ControlFlow<FoundFlags>;

    fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &ty::Binder<I, T>) -> Self::Result {
        // If we're looking for the HAS_BINDER_VARS flag, check if the
        // binder has vars. This won't be present in the binder's bound
        // value, so we need to check here too.
        if self.flags.intersects(TypeFlags::HAS_BINDER_VARS) && !t.bound_vars().is_empty() {
            return ControlFlow::Break(FoundFlags);
        }

        t.super_visit_with(self)
    }

    #[inline]
    fn visit_ty(&mut self, t: I::Ty) -> Self::Result {
        // Note: no `super_visit_with` call.
        let flags = t.flags();
        if flags.intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::Continue(())
        }
    }

    #[inline]
    fn visit_region(&mut self, r: I::Region) -> Self::Result {
        // Note: no `super_visit_with` call, as usual for `Region`.
        let flags = r.flags();
        if flags.intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::Continue(())
        }
    }

    #[inline]
    fn visit_const(&mut self, c: I::Const) -> Self::Result {
        // Note: no `super_visit_with` call.
        if c.flags().intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::Continue(())
        }
    }

    #[inline]
    fn visit_predicate(&mut self, predicate: I::Predicate) -> Self::Result {
        // Note: no `super_visit_with` call.
        if predicate.flags().intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::Continue(())
        }
    }

    #[inline]
    fn visit_clauses(&mut self, clauses: I::Clauses) -> Self::Result {
        // Note: no `super_visit_with` call.
        if clauses.flags().intersects(self.flags) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::Continue(())
        }
    }

    #[inline]
    fn visit_error(&mut self, _guar: <I as Interner>::ErrorGuaranteed) -> Self::Result {
        if self.flags.intersects(TypeFlags::HAS_ERROR) {
            ControlFlow::Break(FoundFlags)
        } else {
            ControlFlow::Continue(())
        }
    }
}

#[derive(Debug, PartialEq, Eq, Copy, Clone)]
struct FoundEscapingVars;

/// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
/// bound region or a bound type.
///
/// So, for example, consider a type like the following, which has two binders:
///
///    for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
///    ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
///                  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~  inner scope
///
/// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
/// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
/// fn type*, that type has an escaping region: `'a`.
///
/// Note that what I'm calling an "escaping var" is often just called a "free var". However,
/// we already use the term "free var". It refers to the regions or types that we use to represent
/// bound regions or type params on a fn definition while we are type checking its body.
///
/// To clarify, conceptually there is no particular difference between
/// an "escaping" var and a "free" var. However, there is a big
/// difference in practice. Basically, when "entering" a binding
/// level, one is generally required to do some sort of processing to
/// a bound var, such as replacing it with a fresh/placeholder
/// var, or making an entry in the environment to represent the
/// scope to which it is attached, etc. An escaping var represents
/// a bound var for which this processing has not yet been done.
struct HasEscapingVarsVisitor {
    /// Anything bound by `outer_index` or "above" is escaping.
    outer_index: ty::DebruijnIndex,
}

impl<I: Interner> TypeVisitor<I> for HasEscapingVarsVisitor {
    type Result = ControlFlow<FoundEscapingVars>;

    fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &ty::Binder<I, T>) -> Self::Result {
        self.outer_index.shift_in(1);
        let result = t.super_visit_with(self);
        self.outer_index.shift_out(1);
        result
    }

    #[inline]
    fn visit_ty(&mut self, t: I::Ty) -> Self::Result {
        // If the outer-exclusive-binder is *strictly greater* than
        // `outer_index`, that means that `t` contains some content
        // bound at `outer_index` or above (because
        // `outer_exclusive_binder` is always 1 higher than the
        // content in `t`). Therefore, `t` has some escaping vars.
        if t.outer_exclusive_binder() > self.outer_index {
            ControlFlow::Break(FoundEscapingVars)
        } else {
            ControlFlow::Continue(())
        }
    }

    #[inline]
    fn visit_region(&mut self, r: I::Region) -> Self::Result {
        // If the region is bound by `outer_index` or anything outside
        // of outer index, then it escapes the binders we have
        // visited.
        if r.outer_exclusive_binder() > self.outer_index {
            ControlFlow::Break(FoundEscapingVars)
        } else {
            ControlFlow::Continue(())
        }
    }

    fn visit_const(&mut self, ct: I::Const) -> Self::Result {
        // If the outer-exclusive-binder is *strictly greater* than
        // `outer_index`, that means that `ct` contains some content
        // bound at `outer_index` or above (because
        // `outer_exclusive_binder` is always 1 higher than the
        // content in `t`). Therefore, `t` has some escaping vars.
        if ct.outer_exclusive_binder() > self.outer_index {
            ControlFlow::Break(FoundEscapingVars)
        } else {
            ControlFlow::Continue(())
        }
    }

    #[inline]
    fn visit_predicate(&mut self, predicate: I::Predicate) -> Self::Result {
        if predicate.outer_exclusive_binder() > self.outer_index {
            ControlFlow::Break(FoundEscapingVars)
        } else {
            ControlFlow::Continue(())
        }
    }

    #[inline]
    fn visit_clauses(&mut self, clauses: I::Clauses) -> Self::Result {
        if clauses.outer_exclusive_binder() > self.outer_index {
            ControlFlow::Break(FoundEscapingVars)
        } else {
            ControlFlow::Continue(())
        }
    }
}

struct HasErrorVisitor;

impl<I: Interner> TypeVisitor<I> for HasErrorVisitor {
    type Result = ControlFlow<I::ErrorGuaranteed>;

    fn visit_error(&mut self, guar: <I as Interner>::ErrorGuaranteed) -> Self::Result {
        ControlFlow::Break(guar)
    }
}