rustc_type_ir/visit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
//! A visiting traversal mechanism for complex data structures that contain type
//! information.
//!
//! This is a read-only traversal of the data structure.
//!
//! This traversal has limited flexibility. Only a small number of "types of
//! interest" within the complex data structures can receive custom
//! visitation. These are the ones containing the most important type-related
//! information, such as `Ty`, `Predicate`, `Region`, and `Const`.
//!
//! There are three traits involved in each traversal.
//! - `TypeVisitable`. This is implemented once for many types, including:
//! - Types of interest, for which the methods delegate to the visitor.
//! - All other types, including generic containers like `Vec` and `Option`.
//! It defines a "skeleton" of how they should be visited.
//! - `TypeSuperVisitable`. This is implemented only for recursive types of
//! interest, and defines the visiting "skeleton" for these types. (This
//! excludes `Region` because it is non-recursive, i.e. it never contains
//! other types of interest.)
//! - `TypeVisitor`. This is implemented for each visitor. This defines how
//! types of interest are visited.
//!
//! This means each visit is a mixture of (a) generic visiting operations, and (b)
//! custom visit operations that are specific to the visitor.
//! - The `TypeVisitable` impls handle most of the traversal, and call into
//! `TypeVisitor` when they encounter a type of interest.
//! - A `TypeVisitor` may call into another `TypeVisitable` impl, because some of
//! the types of interest are recursive and can contain other types of interest.
//! - A `TypeVisitor` may also call into a `TypeSuperVisitable` impl, because each
//! visitor might provide custom handling only for some types of interest, or
//! only for some variants of each type of interest, and then use default
//! traversal for the remaining cases.
//!
//! For example, if you have `struct S(Ty, U)` where `S: TypeVisitable` and `U:
//! TypeVisitable`, and an instance `s = S(ty, u)`, it would be visited like so:
//! ```text
//! s.visit_with(visitor) calls
//! - ty.visit_with(visitor) calls
//! - visitor.visit_ty(ty) may call
//! - ty.super_visit_with(visitor)
//! - u.visit_with(visitor)
//! ```
use std::fmt;
use std::ops::ControlFlow;
use rustc_ast_ir::visit::VisitorResult;
use rustc_ast_ir::{try_visit, walk_visitable_list};
use rustc_index::{Idx, IndexVec};
use crate::data_structures::Lrc;
use crate::inherent::*;
use crate::{self as ty, Interner, TypeFlags};
/// This trait is implemented for every type that can be visited,
/// providing the skeleton of the traversal.
///
/// To implement this conveniently, use the derive macro located in
/// `rustc_macros`.
pub trait TypeVisitable<I: Interner>: fmt::Debug + Clone {
/// The entry point for visiting. To visit a value `t` with a visitor `v`
/// call: `t.visit_with(v)`.
///
/// For most types, this just traverses the value, calling `visit_with` on
/// each field/element.
///
/// For types of interest (such as `Ty`), the implementation of this method
/// that calls a visitor method specifically for that type (such as
/// `V::visit_ty`). This is where control transfers from `TypeVisitable` to
/// `TypeVisitor`.
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result;
}
// This trait is implemented for types of interest.
pub trait TypeSuperVisitable<I: Interner>: TypeVisitable<I> {
/// Provides a default visit for a recursive type of interest. This should
/// only be called within `TypeVisitor` methods, when a non-custom
/// traversal is desired for the value of the type of interest passed to
/// that method. For example, in `MyVisitor::visit_ty(ty)`, it is valid to
/// call `ty.super_visit_with(self)`, but any other visiting should be done
/// with `xyz.visit_with(self)`.
fn super_visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result;
}
/// This trait is implemented for every visiting traversal. There is a visit
/// method defined for every type of interest. Each such method has a default
/// that recurses into the type's fields in a non-custom fashion.
pub trait TypeVisitor<I: Interner>: Sized {
#[cfg(feature = "nightly")]
type Result: VisitorResult = ();
#[cfg(not(feature = "nightly"))]
type Result: VisitorResult;
fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &ty::Binder<I, T>) -> Self::Result {
t.super_visit_with(self)
}
fn visit_ty(&mut self, t: I::Ty) -> Self::Result {
t.super_visit_with(self)
}
// The default region visitor is a no-op because `Region` is non-recursive
// and has no `super_visit_with` method to call.
fn visit_region(&mut self, r: I::Region) -> Self::Result {
if let ty::ReError(guar) = r.kind() {
self.visit_error(guar)
} else {
Self::Result::output()
}
}
fn visit_const(&mut self, c: I::Const) -> Self::Result {
c.super_visit_with(self)
}
fn visit_predicate(&mut self, p: I::Predicate) -> Self::Result {
p.super_visit_with(self)
}
fn visit_clauses(&mut self, p: I::Clauses) -> Self::Result {
p.super_visit_with(self)
}
fn visit_error(&mut self, _guar: I::ErrorGuaranteed) -> Self::Result {
Self::Result::output()
}
}
///////////////////////////////////////////////////////////////////////////
// Traversal implementations.
impl<I: Interner, T: TypeVisitable<I>, U: TypeVisitable<I>> TypeVisitable<I> for (T, U) {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
try_visit!(self.0.visit_with(visitor));
self.1.visit_with(visitor)
}
}
impl<I: Interner, A: TypeVisitable<I>, B: TypeVisitable<I>, C: TypeVisitable<I>> TypeVisitable<I>
for (A, B, C)
{
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
try_visit!(self.0.visit_with(visitor));
try_visit!(self.1.visit_with(visitor));
self.2.visit_with(visitor)
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Option<T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
match self {
Some(v) => v.visit_with(visitor),
None => V::Result::output(),
}
}
}
impl<I: Interner, T: TypeVisitable<I>, E: TypeVisitable<I>> TypeVisitable<I> for Result<T, E> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
match self {
Ok(v) => v.visit_with(visitor),
Err(e) => e.visit_with(visitor),
}
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Lrc<T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
(**self).visit_with(visitor)
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Box<T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
(**self).visit_with(visitor)
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Vec<T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
walk_visitable_list!(visitor, self.iter());
V::Result::output()
}
}
// `TypeFoldable` isn't impl'd for `&[T]`. It doesn't make sense in the general
// case, because we can't return a new slice. But note that there are a couple
// of trivial impls of `TypeFoldable` for specific slice types elsewhere.
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for &[T] {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
walk_visitable_list!(visitor, self.iter());
V::Result::output()
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Box<[T]> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
walk_visitable_list!(visitor, self.iter());
V::Result::output()
}
}
impl<I: Interner, T: TypeVisitable<I>, Ix: Idx> TypeVisitable<I> for IndexVec<Ix, T> {
fn visit_with<V: TypeVisitor<I>>(&self, visitor: &mut V) -> V::Result {
walk_visitable_list!(visitor, self.iter());
V::Result::output()
}
}
pub trait Flags {
fn flags(&self) -> TypeFlags;
fn outer_exclusive_binder(&self) -> ty::DebruijnIndex;
}
pub trait TypeVisitableExt<I: Interner>: TypeVisitable<I> {
fn has_type_flags(&self, flags: TypeFlags) -> bool;
/// Returns `true` if `self` has any late-bound regions that are either
/// bound by `binder` or bound by some binder outside of `binder`.
/// If `binder` is `ty::INNERMOST`, this indicates whether
/// there are any late-bound regions that appear free.
fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool;
/// Returns `true` if this type has any regions that escape `binder` (and
/// hence are not bound by it).
fn has_vars_bound_above(&self, binder: ty::DebruijnIndex) -> bool {
self.has_vars_bound_at_or_above(binder.shifted_in(1))
}
/// Return `true` if this type has regions that are not a part of the type.
/// For example, `for<'a> fn(&'a i32)` return `false`, while `fn(&'a i32)`
/// would return `true`. The latter can occur when traversing through the
/// former.
///
/// See [`HasEscapingVarsVisitor`] for more information.
fn has_escaping_bound_vars(&self) -> bool {
self.has_vars_bound_at_or_above(ty::INNERMOST)
}
fn has_aliases(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_ALIAS)
}
fn has_opaque_types(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_TY_OPAQUE)
}
fn has_coroutines(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_TY_COROUTINE)
}
fn references_error(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_ERROR)
}
fn error_reported(&self) -> Result<(), I::ErrorGuaranteed>;
fn has_non_region_param(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_PARAM - TypeFlags::HAS_RE_PARAM)
}
fn has_infer_regions(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_RE_INFER)
}
fn has_infer_types(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_TY_INFER)
}
fn has_non_region_infer(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_INFER - TypeFlags::HAS_RE_INFER)
}
fn has_infer(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_INFER)
}
fn has_placeholders(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_PLACEHOLDER)
}
fn has_non_region_placeholders(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_PLACEHOLDER - TypeFlags::HAS_RE_PLACEHOLDER)
}
fn has_param(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_PARAM)
}
/// "Free" regions in this context means that it has any region
/// that is not (a) erased or (b) late-bound.
fn has_free_regions(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
}
fn has_erased_regions(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_RE_ERASED)
}
/// True if there are any un-erased free regions.
fn has_erasable_regions(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_FREE_REGIONS)
}
/// Indicates whether this value references only 'global'
/// generic parameters that are the same regardless of what fn we are
/// in. This is used for caching.
fn is_global(&self) -> bool {
!self.has_type_flags(TypeFlags::HAS_FREE_LOCAL_NAMES)
}
/// True if there are any late-bound regions
fn has_bound_regions(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_RE_BOUND)
}
/// True if there are any late-bound non-region variables
fn has_non_region_bound_vars(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_BOUND_VARS - TypeFlags::HAS_RE_BOUND)
}
/// True if there are any bound variables
fn has_bound_vars(&self) -> bool {
self.has_type_flags(TypeFlags::HAS_BOUND_VARS)
}
/// Indicates whether this value still has parameters/placeholders/inference variables
/// which could be replaced later, in a way that would change the results of `impl`
/// specialization.
fn still_further_specializable(&self) -> bool {
self.has_type_flags(TypeFlags::STILL_FURTHER_SPECIALIZABLE)
}
}
impl<I: Interner, T: TypeVisitable<I>> TypeVisitableExt<I> for T {
fn has_type_flags(&self, flags: TypeFlags) -> bool {
let res =
self.visit_with(&mut HasTypeFlagsVisitor { flags }) == ControlFlow::Break(FoundFlags);
res
}
fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool {
self.visit_with(&mut HasEscapingVarsVisitor { outer_index: binder }).is_break()
}
fn error_reported(&self) -> Result<(), I::ErrorGuaranteed> {
if self.references_error() {
if let ControlFlow::Break(guar) = self.visit_with(&mut HasErrorVisitor) {
Err(guar)
} else {
panic!("type flags said there was an error, but now there is not")
}
} else {
Ok(())
}
}
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
struct FoundFlags;
// FIXME: Optimize for checking for infer flags
struct HasTypeFlagsVisitor {
flags: ty::TypeFlags,
}
impl std::fmt::Debug for HasTypeFlagsVisitor {
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
self.flags.fmt(fmt)
}
}
// Note: this visitor traverses values down to the level of
// `Ty`/`Const`/`Predicate`, but not within those types. This is because the
// type flags at the outer layer are enough. So it's faster than it first
// looks, particular for `Ty`/`Predicate` where it's just a field access.
//
// N.B. The only case where this isn't totally true is binders, which also
// add `HAS_{RE,TY,CT}_LATE_BOUND` flag depending on the *bound variables* that
// are present, regardless of whether those bound variables are used. This
// is important for anonymization of binders in `TyCtxt::erase_regions`. We
// specifically detect this case in `visit_binder`.
impl<I: Interner> TypeVisitor<I> for HasTypeFlagsVisitor {
type Result = ControlFlow<FoundFlags>;
fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &ty::Binder<I, T>) -> Self::Result {
// If we're looking for the HAS_BINDER_VARS flag, check if the
// binder has vars. This won't be present in the binder's bound
// value, so we need to check here too.
if self.flags.intersects(TypeFlags::HAS_BINDER_VARS) && !t.bound_vars().is_empty() {
return ControlFlow::Break(FoundFlags);
}
t.super_visit_with(self)
}
#[inline]
fn visit_ty(&mut self, t: I::Ty) -> Self::Result {
// Note: no `super_visit_with` call.
let flags = t.flags();
if flags.intersects(self.flags) {
ControlFlow::Break(FoundFlags)
} else {
ControlFlow::Continue(())
}
}
#[inline]
fn visit_region(&mut self, r: I::Region) -> Self::Result {
// Note: no `super_visit_with` call, as usual for `Region`.
let flags = r.flags();
if flags.intersects(self.flags) {
ControlFlow::Break(FoundFlags)
} else {
ControlFlow::Continue(())
}
}
#[inline]
fn visit_const(&mut self, c: I::Const) -> Self::Result {
// Note: no `super_visit_with` call.
if c.flags().intersects(self.flags) {
ControlFlow::Break(FoundFlags)
} else {
ControlFlow::Continue(())
}
}
#[inline]
fn visit_predicate(&mut self, predicate: I::Predicate) -> Self::Result {
// Note: no `super_visit_with` call.
if predicate.flags().intersects(self.flags) {
ControlFlow::Break(FoundFlags)
} else {
ControlFlow::Continue(())
}
}
#[inline]
fn visit_clauses(&mut self, clauses: I::Clauses) -> Self::Result {
// Note: no `super_visit_with` call.
if clauses.flags().intersects(self.flags) {
ControlFlow::Break(FoundFlags)
} else {
ControlFlow::Continue(())
}
}
#[inline]
fn visit_error(&mut self, _guar: <I as Interner>::ErrorGuaranteed) -> Self::Result {
if self.flags.intersects(TypeFlags::HAS_ERROR) {
ControlFlow::Break(FoundFlags)
} else {
ControlFlow::Continue(())
}
}
}
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
struct FoundEscapingVars;
/// An "escaping var" is a bound var whose binder is not part of `t`. A bound var can be a
/// bound region or a bound type.
///
/// So, for example, consider a type like the following, which has two binders:
///
/// for<'a> fn(x: for<'b> fn(&'a isize, &'b isize))
/// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ outer scope
/// ^~~~~~~~~~~~~~~~~~~~~~~~~~~~ inner scope
///
/// This type has *bound regions* (`'a`, `'b`), but it does not have escaping regions, because the
/// binders of both `'a` and `'b` are part of the type itself. However, if we consider the *inner
/// fn type*, that type has an escaping region: `'a`.
///
/// Note that what I'm calling an "escaping var" is often just called a "free var". However,
/// we already use the term "free var". It refers to the regions or types that we use to represent
/// bound regions or type params on a fn definition while we are type checking its body.
///
/// To clarify, conceptually there is no particular difference between
/// an "escaping" var and a "free" var. However, there is a big
/// difference in practice. Basically, when "entering" a binding
/// level, one is generally required to do some sort of processing to
/// a bound var, such as replacing it with a fresh/placeholder
/// var, or making an entry in the environment to represent the
/// scope to which it is attached, etc. An escaping var represents
/// a bound var for which this processing has not yet been done.
struct HasEscapingVarsVisitor {
/// Anything bound by `outer_index` or "above" is escaping.
outer_index: ty::DebruijnIndex,
}
impl<I: Interner> TypeVisitor<I> for HasEscapingVarsVisitor {
type Result = ControlFlow<FoundEscapingVars>;
fn visit_binder<T: TypeVisitable<I>>(&mut self, t: &ty::Binder<I, T>) -> Self::Result {
self.outer_index.shift_in(1);
let result = t.super_visit_with(self);
self.outer_index.shift_out(1);
result
}
#[inline]
fn visit_ty(&mut self, t: I::Ty) -> Self::Result {
// If the outer-exclusive-binder is *strictly greater* than
// `outer_index`, that means that `t` contains some content
// bound at `outer_index` or above (because
// `outer_exclusive_binder` is always 1 higher than the
// content in `t`). Therefore, `t` has some escaping vars.
if t.outer_exclusive_binder() > self.outer_index {
ControlFlow::Break(FoundEscapingVars)
} else {
ControlFlow::Continue(())
}
}
#[inline]
fn visit_region(&mut self, r: I::Region) -> Self::Result {
// If the region is bound by `outer_index` or anything outside
// of outer index, then it escapes the binders we have
// visited.
if r.outer_exclusive_binder() > self.outer_index {
ControlFlow::Break(FoundEscapingVars)
} else {
ControlFlow::Continue(())
}
}
fn visit_const(&mut self, ct: I::Const) -> Self::Result {
// If the outer-exclusive-binder is *strictly greater* than
// `outer_index`, that means that `ct` contains some content
// bound at `outer_index` or above (because
// `outer_exclusive_binder` is always 1 higher than the
// content in `t`). Therefore, `t` has some escaping vars.
if ct.outer_exclusive_binder() > self.outer_index {
ControlFlow::Break(FoundEscapingVars)
} else {
ControlFlow::Continue(())
}
}
#[inline]
fn visit_predicate(&mut self, predicate: I::Predicate) -> Self::Result {
if predicate.outer_exclusive_binder() > self.outer_index {
ControlFlow::Break(FoundEscapingVars)
} else {
ControlFlow::Continue(())
}
}
#[inline]
fn visit_clauses(&mut self, clauses: I::Clauses) -> Self::Result {
if clauses.outer_exclusive_binder() > self.outer_index {
ControlFlow::Break(FoundEscapingVars)
} else {
ControlFlow::Continue(())
}
}
}
struct HasErrorVisitor;
impl<I: Interner> TypeVisitor<I> for HasErrorVisitor {
type Result = ControlFlow<I::ErrorGuaranteed>;
fn visit_error(&mut self, guar: <I as Interner>::ErrorGuaranteed) -> Self::Result {
ControlFlow::Break(guar)
}
}