rustc_next_trait_solver/solve/eval_ctxt/canonical.rs
1//! Canonicalization is used to separate some goal from its context,
2//! throwing away unnecessary information in the process.
3//!
4//! This is necessary to cache goals containing inference variables
5//! and placeholders without restricting them to the current `InferCtxt`.
6//!
7//! Canonicalization is fairly involved, for more details see the relevant
8//! section of the [rustc-dev-guide][c].
9//!
10//! [c]: https://rustc-dev-guide.rust-lang.org/solve/canonicalization.html
11
12use std::iter;
13
14use rustc_index::IndexVec;
15use rustc_type_ir::data_structures::HashSet;
16use rustc_type_ir::inherent::*;
17use rustc_type_ir::relate::solver_relating::RelateExt;
18use rustc_type_ir::{
19 self as ty, Canonical, CanonicalVarKind, CanonicalVarValues, InferCtxtLike, Interner,
20 TypeFoldable,
21};
22use tracing::{debug, instrument, trace};
23
24use crate::canonicalizer::Canonicalizer;
25use crate::delegate::SolverDelegate;
26use crate::resolve::eager_resolve_vars;
27use crate::solve::eval_ctxt::CurrentGoalKind;
28use crate::solve::{
29 CanonicalInput, CanonicalResponse, Certainty, EvalCtxt, ExternalConstraintsData, Goal,
30 MaybeCause, NestedNormalizationGoals, NoSolution, PredefinedOpaquesData, QueryInput,
31 QueryResult, Response, inspect, response_no_constraints_raw,
32};
33
34trait ResponseT<I: Interner> {
35 fn var_values(&self) -> CanonicalVarValues<I>;
36}
37
38impl<I: Interner> ResponseT<I> for Response<I> {
39 fn var_values(&self) -> CanonicalVarValues<I> {
40 self.var_values
41 }
42}
43
44impl<I: Interner, T> ResponseT<I> for inspect::State<I, T> {
45 fn var_values(&self) -> CanonicalVarValues<I> {
46 self.var_values
47 }
48}
49
50impl<D, I> EvalCtxt<'_, D>
51where
52 D: SolverDelegate<Interner = I>,
53 I: Interner,
54{
55 /// Canonicalizes the goal remembering the original values
56 /// for each bound variable.
57 ///
58 /// This expects `goal` and `opaque_types` to be eager resolved.
59 pub(super) fn canonicalize_goal(
60 delegate: &D,
61 goal: Goal<I, I::Predicate>,
62 opaque_types: Vec<(ty::OpaqueTypeKey<I>, I::Ty)>,
63 ) -> (Vec<I::GenericArg>, CanonicalInput<I, I::Predicate>) {
64 let mut orig_values = Default::default();
65 let canonical = Canonicalizer::canonicalize_input(
66 delegate,
67 &mut orig_values,
68 QueryInput {
69 goal,
70 predefined_opaques_in_body: delegate
71 .cx()
72 .mk_predefined_opaques_in_body(PredefinedOpaquesData { opaque_types }),
73 },
74 );
75 let query_input =
76 ty::CanonicalQueryInput { canonical, typing_mode: delegate.typing_mode() };
77 (orig_values, query_input)
78 }
79
80 /// To return the constraints of a canonical query to the caller, we canonicalize:
81 ///
82 /// - `var_values`: a map from bound variables in the canonical goal to
83 /// the values inferred while solving the instantiated goal.
84 /// - `external_constraints`: additional constraints which aren't expressible
85 /// using simple unification of inference variables.
86 ///
87 /// This takes the `shallow_certainty` which represents whether we're confident
88 /// that the final result of the current goal only depends on the nested goals.
89 ///
90 /// In case this is `Certainty::Maybe`, there may still be additional nested goals
91 /// or inference constraints required for this candidate to be hold. The candidate
92 /// always requires all already added constraints and nested goals.
93 #[instrument(level = "trace", skip(self), ret)]
94 pub(in crate::solve) fn evaluate_added_goals_and_make_canonical_response(
95 &mut self,
96 shallow_certainty: Certainty,
97 ) -> QueryResult<I> {
98 self.inspect.make_canonical_response(shallow_certainty);
99
100 let goals_certainty = self.try_evaluate_added_goals()?;
101 assert_eq!(
102 self.tainted,
103 Ok(()),
104 "EvalCtxt is tainted -- nested goals may have been dropped in a \
105 previous call to `try_evaluate_added_goals!`"
106 );
107
108 // We only check for leaks from universes which were entered inside
109 // of the query.
110 self.delegate.leak_check(self.max_input_universe).map_err(|NoSolution| {
111 trace!("failed the leak check");
112 NoSolution
113 })?;
114
115 let (certainty, normalization_nested_goals) =
116 match (self.current_goal_kind, shallow_certainty) {
117 // When normalizing, we've replaced the expected term with an unconstrained
118 // inference variable. This means that we dropped information which could
119 // have been important. We handle this by instead returning the nested goals
120 // to the caller, where they are then handled. We only do so if we do not
121 // need to recompute the `NormalizesTo` goal afterwards to avoid repeatedly
122 // uplifting its nested goals. This is the case if the `shallow_certainty` is
123 // `Certainty::Yes`.
124 (CurrentGoalKind::NormalizesTo, Certainty::Yes) => {
125 let goals = std::mem::take(&mut self.nested_goals);
126 // As we return all ambiguous nested goals, we can ignore the certainty
127 // returned by `self.try_evaluate_added_goals()`.
128 if goals.is_empty() {
129 assert!(matches!(goals_certainty, Certainty::Yes));
130 }
131 (
132 Certainty::Yes,
133 NestedNormalizationGoals(
134 goals.into_iter().map(|(s, g, _)| (s, g)).collect(),
135 ),
136 )
137 }
138 _ => {
139 let certainty = shallow_certainty.and(goals_certainty);
140 (certainty, NestedNormalizationGoals::empty())
141 }
142 };
143
144 if let Certainty::Maybe(cause @ MaybeCause::Overflow { keep_constraints: false, .. }) =
145 certainty
146 {
147 // If we have overflow, it's probable that we're substituting a type
148 // into itself infinitely and any partial substitutions in the query
149 // response are probably not useful anyways, so just return an empty
150 // query response.
151 //
152 // This may prevent us from potentially useful inference, e.g.
153 // 2 candidates, one ambiguous and one overflow, which both
154 // have the same inference constraints.
155 //
156 // Changing this to retain some constraints in the future
157 // won't be a breaking change, so this is good enough for now.
158 return Ok(self.make_ambiguous_response_no_constraints(cause));
159 }
160
161 let external_constraints =
162 self.compute_external_query_constraints(certainty, normalization_nested_goals);
163 let (var_values, mut external_constraints) =
164 eager_resolve_vars(self.delegate, (self.var_values, external_constraints));
165
166 // Remove any trivial or duplicated region constraints once we've resolved regions
167 let mut unique = HashSet::default();
168 external_constraints.region_constraints.retain(|outlives| {
169 outlives.0.as_region().is_none_or(|re| re != outlives.1) && unique.insert(*outlives)
170 });
171
172 let canonical = Canonicalizer::canonicalize_response(
173 self.delegate,
174 self.max_input_universe,
175 &mut Default::default(),
176 Response {
177 var_values,
178 certainty,
179 external_constraints: self.cx().mk_external_constraints(external_constraints),
180 },
181 );
182
183 // HACK: We bail with overflow if the response would have too many non-region
184 // inference variables. This tends to only happen if we encounter a lot of
185 // ambiguous alias types which get replaced with fresh inference variables
186 // during generalization. This prevents hangs caused by an exponential blowup,
187 // see tests/ui/traits/next-solver/coherence-alias-hang.rs.
188 match self.current_goal_kind {
189 // We don't do so for `NormalizesTo` goals as we erased the expected term and
190 // bailing with overflow here would prevent us from detecting a type-mismatch,
191 // causing a coherence error in diesel, see #131969. We still bail with overflow
192 // when later returning from the parent AliasRelate goal.
193 CurrentGoalKind::NormalizesTo => {}
194 CurrentGoalKind::Misc | CurrentGoalKind::CoinductiveTrait => {
195 let num_non_region_vars = canonical
196 .variables
197 .iter()
198 .filter(|c| !c.is_region() && c.is_existential())
199 .count();
200 if num_non_region_vars > self.cx().recursion_limit() {
201 debug!(?num_non_region_vars, "too many inference variables -> overflow");
202 return Ok(self.make_ambiguous_response_no_constraints(MaybeCause::Overflow {
203 suggest_increasing_limit: true,
204 keep_constraints: false,
205 }));
206 }
207 }
208 }
209
210 Ok(canonical)
211 }
212
213 /// Constructs a totally unconstrained, ambiguous response to a goal.
214 ///
215 /// Take care when using this, since often it's useful to respond with
216 /// ambiguity but return constrained variables to guide inference.
217 pub(in crate::solve) fn make_ambiguous_response_no_constraints(
218 &self,
219 maybe_cause: MaybeCause,
220 ) -> CanonicalResponse<I> {
221 response_no_constraints_raw(
222 self.cx(),
223 self.max_input_universe,
224 self.variables,
225 Certainty::Maybe(maybe_cause),
226 )
227 }
228
229 /// Computes the region constraints and *new* opaque types registered when
230 /// proving a goal.
231 ///
232 /// If an opaque was already constrained before proving this goal, then the
233 /// external constraints do not need to record that opaque, since if it is
234 /// further constrained by inference, that will be passed back in the var
235 /// values.
236 #[instrument(level = "trace", skip(self), ret)]
237 fn compute_external_query_constraints(
238 &self,
239 certainty: Certainty,
240 normalization_nested_goals: NestedNormalizationGoals<I>,
241 ) -> ExternalConstraintsData<I> {
242 // We only return region constraints once the certainty is `Yes`. This
243 // is necessary as we may drop nested goals on ambiguity, which may result
244 // in unconstrained inference variables in the region constraints. It also
245 // prevents us from emitting duplicate region constraints, avoiding some
246 // unnecessary work. This slightly weakens the leak check in case it uses
247 // region constraints from an ambiguous nested goal. This is tested in both
248 // `tests/ui/higher-ranked/leak-check/leak-check-in-selection-5-ambig.rs` and
249 // `tests/ui/higher-ranked/leak-check/leak-check-in-selection-6-ambig-unify.rs`.
250 let region_constraints = if certainty == Certainty::Yes {
251 self.delegate.make_deduplicated_outlives_constraints()
252 } else {
253 Default::default()
254 };
255
256 // We only return *newly defined* opaque types from canonical queries.
257 //
258 // Constraints for any existing opaque types are already tracked by changes
259 // to the `var_values`.
260 let opaque_types = self
261 .delegate
262 .clone_opaque_types_added_since(self.initial_opaque_types_storage_num_entries);
263
264 ExternalConstraintsData { region_constraints, opaque_types, normalization_nested_goals }
265 }
266
267 /// After calling a canonical query, we apply the constraints returned
268 /// by the query using this function.
269 ///
270 /// This happens in three steps:
271 /// - we instantiate the bound variables of the query response
272 /// - we unify the `var_values` of the response with the `original_values`
273 /// - we apply the `external_constraints` returned by the query, returning
274 /// the `normalization_nested_goals`
275 pub(super) fn instantiate_and_apply_query_response(
276 delegate: &D,
277 param_env: I::ParamEnv,
278 original_values: &[I::GenericArg],
279 response: CanonicalResponse<I>,
280 span: I::Span,
281 ) -> (NestedNormalizationGoals<I>, Certainty) {
282 let instantiation = Self::compute_query_response_instantiation_values(
283 delegate,
284 &original_values,
285 &response,
286 span,
287 );
288
289 let Response { var_values, external_constraints, certainty } =
290 delegate.instantiate_canonical(response, instantiation);
291
292 Self::unify_query_var_values(delegate, param_env, &original_values, var_values, span);
293
294 let ExternalConstraintsData {
295 region_constraints,
296 opaque_types,
297 normalization_nested_goals,
298 } = &*external_constraints;
299
300 Self::register_region_constraints(delegate, region_constraints, span);
301 Self::register_new_opaque_types(delegate, opaque_types, span);
302
303 (normalization_nested_goals.clone(), certainty)
304 }
305
306 /// This returns the canonical variable values to instantiate the bound variables of
307 /// the canonical response. This depends on the `original_values` for the
308 /// bound variables.
309 fn compute_query_response_instantiation_values<T: ResponseT<I>>(
310 delegate: &D,
311 original_values: &[I::GenericArg],
312 response: &Canonical<I, T>,
313 span: I::Span,
314 ) -> CanonicalVarValues<I> {
315 // FIXME: Longterm canonical queries should deal with all placeholders
316 // created inside of the query directly instead of returning them to the
317 // caller.
318 let prev_universe = delegate.universe();
319 let universes_created_in_query = response.max_universe.index();
320 for _ in 0..universes_created_in_query {
321 delegate.create_next_universe();
322 }
323
324 let var_values = response.value.var_values();
325 assert_eq!(original_values.len(), var_values.len());
326
327 // If the query did not make progress with constraining inference variables,
328 // we would normally create a new inference variables for bound existential variables
329 // only then unify this new inference variable with the inference variable from
330 // the input.
331 //
332 // We therefore instantiate the existential variable in the canonical response with the
333 // inference variable of the input right away, which is more performant.
334 let mut opt_values = IndexVec::from_elem_n(None, response.variables.len());
335 for (original_value, result_value) in
336 iter::zip(original_values, var_values.var_values.iter())
337 {
338 match result_value.kind() {
339 ty::GenericArgKind::Type(t) => {
340 // We disable the instantiation guess for inference variables
341 // and only use it for placeholders. We need to handle the
342 // `sub_root` of type inference variables which would make this
343 // more involved. They are also a lot rarer than region variables.
344 if let ty::Bound(debruijn, b) = t.kind()
345 && !matches!(
346 response.variables.get(b.var().as_usize()).unwrap(),
347 CanonicalVarKind::Ty { .. }
348 )
349 {
350 assert_eq!(debruijn, ty::INNERMOST);
351 opt_values[b.var()] = Some(*original_value);
352 }
353 }
354 ty::GenericArgKind::Lifetime(r) => {
355 if let ty::ReBound(debruijn, br) = r.kind() {
356 assert_eq!(debruijn, ty::INNERMOST);
357 opt_values[br.var()] = Some(*original_value);
358 }
359 }
360 ty::GenericArgKind::Const(c) => {
361 if let ty::ConstKind::Bound(debruijn, bv) = c.kind() {
362 assert_eq!(debruijn, ty::INNERMOST);
363 opt_values[bv.var()] = Some(*original_value);
364 }
365 }
366 }
367 }
368 CanonicalVarValues::instantiate(delegate.cx(), response.variables, |var_values, kind| {
369 if kind.universe() != ty::UniverseIndex::ROOT {
370 // A variable from inside a binder of the query. While ideally these shouldn't
371 // exist at all (see the FIXME at the start of this method), we have to deal with
372 // them for now.
373 delegate.instantiate_canonical_var(kind, span, &var_values, |idx| {
374 prev_universe + idx.index()
375 })
376 } else if kind.is_existential() {
377 // As an optimization we sometimes avoid creating a new inference variable here.
378 //
379 // All new inference variables we create start out in the current universe of the caller.
380 // This is conceptually wrong as these inference variables would be able to name
381 // more placeholders then they should be able to. However the inference variables have
382 // to "come from somewhere", so by equating them with the original values of the caller
383 // later on, we pull them down into their correct universe again.
384 if let Some(v) = opt_values[ty::BoundVar::from_usize(var_values.len())] {
385 v
386 } else {
387 delegate.instantiate_canonical_var(kind, span, &var_values, |_| prev_universe)
388 }
389 } else {
390 // For placeholders which were already part of the input, we simply map this
391 // universal bound variable back the placeholder of the input.
392 original_values[kind.expect_placeholder_index()]
393 }
394 })
395 }
396
397 /// Unify the `original_values` with the `var_values` returned by the canonical query..
398 ///
399 /// This assumes that this unification will always succeed. This is the case when
400 /// applying a query response right away. However, calling a canonical query, doing any
401 /// other kind of trait solving, and only then instantiating the result of the query
402 /// can cause the instantiation to fail. This is not supported and we ICE in this case.
403 ///
404 /// We always structurally instantiate aliases. Relating aliases needs to be different
405 /// depending on whether the alias is *rigid* or not. We're only really able to tell
406 /// whether an alias is rigid by using the trait solver. When instantiating a response
407 /// from the solver we assume that the solver correctly handled aliases and therefore
408 /// always relate them structurally here.
409 #[instrument(level = "trace", skip(delegate))]
410 fn unify_query_var_values(
411 delegate: &D,
412 param_env: I::ParamEnv,
413 original_values: &[I::GenericArg],
414 var_values: CanonicalVarValues<I>,
415 span: I::Span,
416 ) {
417 assert_eq!(original_values.len(), var_values.len());
418
419 for (&orig, response) in iter::zip(original_values, var_values.var_values.iter()) {
420 let goals =
421 delegate.eq_structurally_relating_aliases(param_env, orig, response, span).unwrap();
422 assert!(goals.is_empty());
423 }
424 }
425
426 fn register_region_constraints(
427 delegate: &D,
428 outlives: &[ty::OutlivesPredicate<I, I::GenericArg>],
429 span: I::Span,
430 ) {
431 for &ty::OutlivesPredicate(lhs, rhs) in outlives {
432 match lhs.kind() {
433 ty::GenericArgKind::Lifetime(lhs) => delegate.sub_regions(rhs, lhs, span),
434 ty::GenericArgKind::Type(lhs) => delegate.register_ty_outlives(lhs, rhs, span),
435 ty::GenericArgKind::Const(_) => panic!("const outlives: {lhs:?}: {rhs:?}"),
436 }
437 }
438 }
439
440 fn register_new_opaque_types(
441 delegate: &D,
442 opaque_types: &[(ty::OpaqueTypeKey<I>, I::Ty)],
443 span: I::Span,
444 ) {
445 for &(key, ty) in opaque_types {
446 let prev = delegate.register_hidden_type_in_storage(key, ty, span);
447 // We eagerly resolve inference variables when computing the query response.
448 // This can cause previously distinct opaque type keys to now be structurally equal.
449 //
450 // To handle this, we store any duplicate entries in a separate list to check them
451 // at the end of typeck/borrowck. We could alternatively eagerly equate the hidden
452 // types here. However, doing so is difficult as it may result in nested goals and
453 // any errors may make it harder to track the control flow for diagnostics.
454 if let Some(prev) = prev {
455 delegate.add_duplicate_opaque_type(key, prev, span);
456 }
457 }
458 }
459}
460
461/// Used by proof trees to be able to recompute intermediate actions while
462/// evaluating a goal. The `var_values` not only include the bound variables
463/// of the query input, but also contain all unconstrained inference vars
464/// created while evaluating this goal.
465pub(in crate::solve) fn make_canonical_state<D, T, I>(
466 delegate: &D,
467 var_values: &[I::GenericArg],
468 max_input_universe: ty::UniverseIndex,
469 data: T,
470) -> inspect::CanonicalState<I, T>
471where
472 D: SolverDelegate<Interner = I>,
473 I: Interner,
474 T: TypeFoldable<I>,
475{
476 let var_values = CanonicalVarValues { var_values: delegate.cx().mk_args(var_values) };
477 let state = inspect::State { var_values, data };
478 let state = eager_resolve_vars(delegate, state);
479 Canonicalizer::canonicalize_response(delegate, max_input_universe, &mut vec![], state)
480}
481
482// FIXME: needs to be pub to be accessed by downstream
483// `rustc_trait_selection::solve::inspect::analyse`.
484pub fn instantiate_canonical_state<D, I, T: TypeFoldable<I>>(
485 delegate: &D,
486 span: I::Span,
487 param_env: I::ParamEnv,
488 orig_values: &mut Vec<I::GenericArg>,
489 state: inspect::CanonicalState<I, T>,
490) -> T
491where
492 D: SolverDelegate<Interner = I>,
493 I: Interner,
494{
495 // In case any fresh inference variables have been created between `state`
496 // and the previous instantiation, extend `orig_values` for it.
497 orig_values.extend(
498 state.value.var_values.var_values.as_slice()[orig_values.len()..]
499 .iter()
500 .map(|&arg| delegate.fresh_var_for_kind_with_span(arg, span)),
501 );
502
503 let instantiation =
504 EvalCtxt::compute_query_response_instantiation_values(delegate, orig_values, &state, span);
505
506 let inspect::State { var_values, data } = delegate.instantiate_canonical(state, instantiation);
507
508 EvalCtxt::unify_query_var_values(delegate, param_env, orig_values, var_values, span);
509 data
510}