rustc_infer/infer/relate/
lattice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
//! # Lattice variables
//!
//! Generic code for operating on [lattices] of inference variables
//! that are characterized by an upper- and lower-bound.
//!
//! The code is defined quite generically so that it can be
//! applied both to type variables, which represent types being inferred,
//! and fn variables, which represent function types being inferred.
//! (It may eventually be applied to their types as well.)
//! In some cases, the functions are also generic with respect to the
//! operation on the lattice (GLB vs LUB).
//!
//! ## Note
//!
//! Although all the functions are generic, for simplicity, comments in the source code
//! generally refer to type variables and the LUB operation.
//!
//! [lattices]: https://en.wikipedia.org/wiki/Lattice_(order)

use rustc_middle::traits::solve::Goal;
use rustc_middle::ty::relate::combine::{super_combine_consts, super_combine_tys};
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
use rustc_middle::ty::{self, Ty, TyCtxt, TyVar, TypeVisitableExt};
use rustc_span::Span;
use tracing::{debug, instrument};

use super::StructurallyRelateAliases;
use super::combine::PredicateEmittingRelation;
use crate::infer::{DefineOpaqueTypes, InferCtxt, SubregionOrigin, TypeTrace};
use crate::traits::{Obligation, PredicateObligation};

#[derive(Clone, Copy)]
pub(crate) enum LatticeOpKind {
    Glb,
    Lub,
}

impl LatticeOpKind {
    fn invert(self) -> Self {
        match self {
            LatticeOpKind::Glb => LatticeOpKind::Lub,
            LatticeOpKind::Lub => LatticeOpKind::Glb,
        }
    }
}

/// A greatest lower bound" (common subtype) or least upper bound (common supertype).
pub(crate) struct LatticeOp<'infcx, 'tcx> {
    infcx: &'infcx InferCtxt<'tcx>,
    // Immutable fields
    trace: TypeTrace<'tcx>,
    param_env: ty::ParamEnv<'tcx>,
    // Mutable fields
    kind: LatticeOpKind,
    obligations: Vec<PredicateObligation<'tcx>>,
}

impl<'infcx, 'tcx> LatticeOp<'infcx, 'tcx> {
    pub(crate) fn new(
        infcx: &'infcx InferCtxt<'tcx>,
        trace: TypeTrace<'tcx>,
        param_env: ty::ParamEnv<'tcx>,
        kind: LatticeOpKind,
    ) -> LatticeOp<'infcx, 'tcx> {
        LatticeOp { infcx, trace, param_env, kind, obligations: vec![] }
    }

    pub(crate) fn into_obligations(self) -> Vec<PredicateObligation<'tcx>> {
        self.obligations
    }
}

impl<'tcx> TypeRelation<TyCtxt<'tcx>> for LatticeOp<'_, 'tcx> {
    fn cx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    fn relate_with_variance<T: Relate<TyCtxt<'tcx>>>(
        &mut self,
        variance: ty::Variance,
        _info: ty::VarianceDiagInfo<TyCtxt<'tcx>>,
        a: T,
        b: T,
    ) -> RelateResult<'tcx, T> {
        match variance {
            ty::Invariant => {
                self.obligations.extend(
                    self.infcx
                        .at(&self.trace.cause, self.param_env)
                        .eq_trace(DefineOpaqueTypes::Yes, self.trace.clone(), a, b)?
                        .into_obligations(),
                );
                Ok(a)
            }
            ty::Covariant => self.relate(a, b),
            // FIXME(#41044) -- not correct, need test
            ty::Bivariant => Ok(a),
            ty::Contravariant => {
                self.kind = self.kind.invert();
                let res = self.relate(a, b);
                self.kind = self.kind.invert();
                res
            }
        }
    }

    /// Relates two types using a given lattice.
    #[instrument(skip(self), level = "trace")]
    fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
        if a == b {
            return Ok(a);
        }

        let infcx = self.infcx;

        let a = infcx.shallow_resolve(a);
        let b = infcx.shallow_resolve(b);

        match (a.kind(), b.kind()) {
            // If one side is known to be a variable and one is not,
            // create a variable (`v`) to represent the LUB. Make sure to
            // relate `v` to the non-type-variable first (by passing it
            // first to `relate_bound`). Otherwise, we would produce a
            // subtype obligation that must then be processed.
            //
            // Example: if the LHS is a type variable, and RHS is
            // `Box<i32>`, then we current compare `v` to the RHS first,
            // which will instantiate `v` with `Box<i32>`. Then when `v`
            // is compared to the LHS, we instantiate LHS with `Box<i32>`.
            // But if we did in reverse order, we would create a `v <:
            // LHS` (or vice versa) constraint and then instantiate
            // `v`. This would require further processing to achieve same
            // end-result; in particular, this screws up some of the logic
            // in coercion, which expects LUB to figure out that the LHS
            // is (e.g.) `Box<i32>`. A more obvious solution might be to
            // iterate on the subtype obligations that are returned, but I
            // think this suffices. -nmatsakis
            (&ty::Infer(TyVar(..)), _) => {
                let v = infcx.next_ty_var(self.trace.cause.span);
                self.relate_bound(v, b, a)?;
                Ok(v)
            }
            (_, &ty::Infer(TyVar(..))) => {
                let v = infcx.next_ty_var(self.trace.cause.span);
                self.relate_bound(v, a, b)?;
                Ok(v)
            }

            (
                &ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
                &ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
            ) if a_def_id == b_def_id => super_combine_tys(infcx, self, a, b),

            (&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
            | (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
                if def_id.is_local() && !infcx.next_trait_solver() =>
            {
                self.register_goals(infcx.handle_opaque_type(
                    a,
                    b,
                    self.span(),
                    self.param_env(),
                )?);
                Ok(a)
            }

            _ => super_combine_tys(infcx, self, a, b),
        }
    }

    #[instrument(skip(self), level = "trace")]
    fn regions(
        &mut self,
        a: ty::Region<'tcx>,
        b: ty::Region<'tcx>,
    ) -> RelateResult<'tcx, ty::Region<'tcx>> {
        let origin = SubregionOrigin::Subtype(Box::new(self.trace.clone()));
        let mut inner = self.infcx.inner.borrow_mut();
        let mut constraints = inner.unwrap_region_constraints();
        Ok(match self.kind {
            // GLB(&'static u8, &'a u8) == &RegionLUB('static, 'a) u8 == &'static u8
            LatticeOpKind::Glb => constraints.lub_regions(self.cx(), origin, a, b),

            // LUB(&'static u8, &'a u8) == &RegionGLB('static, 'a) u8 == &'a u8
            LatticeOpKind::Lub => constraints.glb_regions(self.cx(), origin, a, b),
        })
    }

    #[instrument(skip(self), level = "trace")]
    fn consts(
        &mut self,
        a: ty::Const<'tcx>,
        b: ty::Const<'tcx>,
    ) -> RelateResult<'tcx, ty::Const<'tcx>> {
        super_combine_consts(self.infcx, self, a, b)
    }

    fn binders<T>(
        &mut self,
        a: ty::Binder<'tcx, T>,
        b: ty::Binder<'tcx, T>,
    ) -> RelateResult<'tcx, ty::Binder<'tcx, T>>
    where
        T: Relate<TyCtxt<'tcx>>,
    {
        // GLB/LUB of a binder and itself is just itself
        if a == b {
            return Ok(a);
        }

        debug!("binders(a={:?}, b={:?})", a, b);
        if a.skip_binder().has_escaping_bound_vars() || b.skip_binder().has_escaping_bound_vars() {
            // When higher-ranked types are involved, computing the GLB/LUB is
            // very challenging, switch to invariance. This is obviously
            // overly conservative but works ok in practice.
            self.relate_with_variance(ty::Invariant, ty::VarianceDiagInfo::default(), a, b)?;
            Ok(a)
        } else {
            Ok(ty::Binder::dummy(self.relate(a.skip_binder(), b.skip_binder())?))
        }
    }
}

impl<'infcx, 'tcx> LatticeOp<'infcx, 'tcx> {
    // Relates the type `v` to `a` and `b` such that `v` represents
    // the LUB/GLB of `a` and `b` as appropriate.
    //
    // Subtle hack: ordering *may* be significant here. This method
    // relates `v` to `a` first, which may help us to avoid unnecessary
    // type variable obligations. See caller for details.
    fn relate_bound(&mut self, v: Ty<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, ()> {
        let at = self.infcx.at(&self.trace.cause, self.param_env);
        match self.kind {
            LatticeOpKind::Glb => {
                self.obligations.extend(at.sub(DefineOpaqueTypes::Yes, v, a)?.into_obligations());
                self.obligations.extend(at.sub(DefineOpaqueTypes::Yes, v, b)?.into_obligations());
            }
            LatticeOpKind::Lub => {
                self.obligations.extend(at.sub(DefineOpaqueTypes::Yes, a, v)?.into_obligations());
                self.obligations.extend(at.sub(DefineOpaqueTypes::Yes, b, v)?.into_obligations());
            }
        }
        Ok(())
    }
}

impl<'tcx> PredicateEmittingRelation<InferCtxt<'tcx>> for LatticeOp<'_, 'tcx> {
    fn span(&self) -> Span {
        self.trace.span()
    }

    fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
        StructurallyRelateAliases::No
    }

    fn param_env(&self) -> ty::ParamEnv<'tcx> {
        self.param_env
    }

    fn register_predicates(
        &mut self,
        preds: impl IntoIterator<Item: ty::Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>>>,
    ) {
        self.obligations.extend(preds.into_iter().map(|pred| {
            Obligation::new(self.infcx.tcx, self.trace.cause.clone(), self.param_env, pred)
        }))
    }

    fn register_goals(&mut self, goals: impl IntoIterator<Item = Goal<'tcx, ty::Predicate<'tcx>>>) {
        self.obligations.extend(goals.into_iter().map(|goal| {
            Obligation::new(
                self.infcx.tcx,
                self.trace.cause.clone(),
                goal.param_env,
                goal.predicate,
            )
        }))
    }

    fn register_alias_relate_predicate(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) {
        self.register_predicates([ty::Binder::dummy(ty::PredicateKind::AliasRelate(
            a.into(),
            b.into(),
            // FIXME(deferred_projection_equality): This isn't right, I think?
            ty::AliasRelationDirection::Equate,
        ))]);
    }
}