rustc_resolve/
late.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
// ignore-tidy-filelength
//! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
//! It runs when the crate is fully expanded and its module structure is fully built.
//! So it just walks through the crate and resolves all the expressions, types, etc.
//!
//! If you wonder why there's no `early.rs`, that's because it's split into three files -
//! `build_reduced_graph.rs`, `macros.rs` and `imports.rs`.

use std::assert_matches::debug_assert_matches;
use std::borrow::Cow;
use std::collections::BTreeSet;
use std::collections::hash_map::Entry;
use std::mem::{replace, swap, take};

use rustc_ast::ptr::P;
use rustc_ast::visit::{AssocCtxt, BoundKind, FnCtxt, FnKind, Visitor, visit_opt, walk_list};
use rustc_ast::*;
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap};
use rustc_errors::codes::*;
use rustc_errors::{Applicability, DiagArgValue, IntoDiagArg, StashKey, Suggestions};
use rustc_hir::def::Namespace::{self, *};
use rustc_hir::def::{self, CtorKind, DefKind, LifetimeRes, NonMacroAttrKind, PartialRes, PerNS};
use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LOCAL_CRATE, LocalDefId};
use rustc_hir::{MissingLifetimeKind, PrimTy, TraitCandidate};
use rustc_middle::middle::resolve_bound_vars::Set1;
use rustc_middle::ty::DelegationFnSig;
use rustc_middle::{bug, span_bug};
use rustc_session::config::{CrateType, ResolveDocLinks};
use rustc_session::lint::{self, BuiltinLintDiag};
use rustc_session::parse::feature_err;
use rustc_span::source_map::{Spanned, respan};
use rustc_span::symbol::{Ident, Symbol, kw, sym};
use rustc_span::{BytePos, Span, SyntaxContext};
use smallvec::{SmallVec, smallvec};
use tracing::{debug, instrument, trace};

use crate::{
    BindingError, BindingKey, Finalize, LexicalScopeBinding, Module, ModuleOrUniformRoot,
    NameBinding, ParentScope, PathResult, ResolutionError, Resolver, Segment, TyCtxt, UseError,
    Used, errors, path_names_to_string, rustdoc,
};

mod diagnostics;

type Res = def::Res<NodeId>;

type IdentMap<T> = FxHashMap<Ident, T>;

use diagnostics::{ElisionFnParameter, LifetimeElisionCandidate, MissingLifetime};

#[derive(Copy, Clone, Debug)]
struct BindingInfo {
    span: Span,
    annotation: BindingMode,
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub(crate) enum PatternSource {
    Match,
    Let,
    For,
    FnParam,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum IsRepeatExpr {
    No,
    Yes,
}

struct IsNeverPattern;

/// Describes whether an `AnonConst` is a type level const arg or
/// some other form of anon const (i.e. inline consts or enum discriminants)
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum AnonConstKind {
    EnumDiscriminant,
    InlineConst,
    ConstArg(IsRepeatExpr),
}

impl PatternSource {
    fn descr(self) -> &'static str {
        match self {
            PatternSource::Match => "match binding",
            PatternSource::Let => "let binding",
            PatternSource::For => "for binding",
            PatternSource::FnParam => "function parameter",
        }
    }
}

impl IntoDiagArg for PatternSource {
    fn into_diag_arg(self) -> DiagArgValue {
        DiagArgValue::Str(Cow::Borrowed(self.descr()))
    }
}

/// Denotes whether the context for the set of already bound bindings is a `Product`
/// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
/// See those functions for more information.
#[derive(PartialEq)]
enum PatBoundCtx {
    /// A product pattern context, e.g., `Variant(a, b)`.
    Product,
    /// An or-pattern context, e.g., `p_0 | ... | p_n`.
    Or,
}

/// Does this the item (from the item rib scope) allow generic parameters?
#[derive(Copy, Clone, Debug)]
pub(crate) enum HasGenericParams {
    Yes(Span),
    No,
}

/// May this constant have generics?
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub(crate) enum ConstantHasGenerics {
    Yes,
    No(NoConstantGenericsReason),
}

impl ConstantHasGenerics {
    fn force_yes_if(self, b: bool) -> Self {
        if b { Self::Yes } else { self }
    }
}

/// Reason for why an anon const is not allowed to reference generic parameters
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub(crate) enum NoConstantGenericsReason {
    /// Const arguments are only allowed to use generic parameters when:
    /// - `feature(generic_const_exprs)` is enabled
    /// or
    /// - the const argument is a sole const generic parameter, i.e. `foo::<{ N }>()`
    ///
    /// If neither of the above are true then this is used as the cause.
    NonTrivialConstArg,
    /// Enum discriminants are not allowed to reference generic parameters ever, this
    /// is used when an anon const is in the following position:
    ///
    /// ```rust,compile_fail
    /// enum Foo<const N: isize> {
    ///     Variant = { N }, // this anon const is not allowed to use generics
    /// }
    /// ```
    IsEnumDiscriminant,
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub(crate) enum ConstantItemKind {
    Const,
    Static,
}

impl ConstantItemKind {
    pub(crate) fn as_str(&self) -> &'static str {
        match self {
            Self::Const => "const",
            Self::Static => "static",
        }
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum RecordPartialRes {
    Yes,
    No,
}

/// The rib kind restricts certain accesses,
/// e.g. to a `Res::Local` of an outer item.
#[derive(Copy, Clone, Debug)]
pub(crate) enum RibKind<'ra> {
    /// No restriction needs to be applied.
    Normal,

    /// We passed through an impl or trait and are now in one of its
    /// methods or associated types. Allow references to ty params that impl or trait
    /// binds. Disallow any other upvars (including other ty params that are
    /// upvars).
    AssocItem,

    /// We passed through a function, closure or coroutine signature. Disallow labels.
    FnOrCoroutine,

    /// We passed through an item scope. Disallow upvars.
    Item(HasGenericParams, DefKind),

    /// We're in a constant item. Can't refer to dynamic stuff.
    ///
    /// The item may reference generic parameters in trivial constant expressions.
    /// All other constants aren't allowed to use generic params at all.
    ConstantItem(ConstantHasGenerics, Option<(Ident, ConstantItemKind)>),

    /// We passed through a module.
    Module(Module<'ra>),

    /// We passed through a `macro_rules!` statement
    MacroDefinition(DefId),

    /// All bindings in this rib are generic parameters that can't be used
    /// from the default of a generic parameter because they're not declared
    /// before said generic parameter. Also see the `visit_generics` override.
    ForwardGenericParamBan,

    /// We are inside of the type of a const parameter. Can't refer to any
    /// parameters.
    ConstParamTy,

    /// We are inside a `sym` inline assembly operand. Can only refer to
    /// globals.
    InlineAsmSym,
}

impl RibKind<'_> {
    /// Whether this rib kind contains generic parameters, as opposed to local
    /// variables.
    pub(crate) fn contains_params(&self) -> bool {
        match self {
            RibKind::Normal
            | RibKind::FnOrCoroutine
            | RibKind::ConstantItem(..)
            | RibKind::Module(_)
            | RibKind::MacroDefinition(_)
            | RibKind::ConstParamTy
            | RibKind::InlineAsmSym => false,
            RibKind::AssocItem | RibKind::Item(..) | RibKind::ForwardGenericParamBan => true,
        }
    }

    /// This rib forbids referring to labels defined in upwards ribs.
    fn is_label_barrier(self) -> bool {
        match self {
            RibKind::Normal | RibKind::MacroDefinition(..) => false,

            RibKind::AssocItem
            | RibKind::FnOrCoroutine
            | RibKind::Item(..)
            | RibKind::ConstantItem(..)
            | RibKind::Module(..)
            | RibKind::ForwardGenericParamBan
            | RibKind::ConstParamTy
            | RibKind::InlineAsmSym => true,
        }
    }
}

/// A single local scope.
///
/// A rib represents a scope names can live in. Note that these appear in many places, not just
/// around braces. At any place where the list of accessible names (of the given namespace)
/// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
/// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
/// etc.
///
/// Different [rib kinds](enum@RibKind) are transparent for different names.
///
/// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
/// resolving, the name is looked up from inside out.
#[derive(Debug)]
pub(crate) struct Rib<'ra, R = Res> {
    pub bindings: IdentMap<R>,
    pub kind: RibKind<'ra>,
}

impl<'ra, R> Rib<'ra, R> {
    fn new(kind: RibKind<'ra>) -> Rib<'ra, R> {
        Rib { bindings: Default::default(), kind }
    }
}

#[derive(Clone, Copy, Debug)]
enum LifetimeUseSet {
    One { use_span: Span, use_ctxt: visit::LifetimeCtxt },
    Many,
}

#[derive(Copy, Clone, Debug)]
enum LifetimeRibKind {
    // -- Ribs introducing named lifetimes
    //
    /// This rib declares generic parameters.
    /// Only for this kind the `LifetimeRib::bindings` field can be non-empty.
    Generics { binder: NodeId, span: Span, kind: LifetimeBinderKind },

    // -- Ribs introducing unnamed lifetimes
    //
    /// Create a new anonymous lifetime parameter and reference it.
    ///
    /// If `report_in_path`, report an error when encountering lifetime elision in a path:
    /// ```compile_fail
    /// struct Foo<'a> { x: &'a () }
    /// async fn foo(x: Foo) {}
    /// ```
    ///
    /// Note: the error should not trigger when the elided lifetime is in a pattern or
    /// expression-position path:
    /// ```
    /// struct Foo<'a> { x: &'a () }
    /// async fn foo(Foo { x: _ }: Foo<'_>) {}
    /// ```
    AnonymousCreateParameter { binder: NodeId, report_in_path: bool },

    /// Replace all anonymous lifetimes by provided lifetime.
    Elided(LifetimeRes),

    // -- Barrier ribs that stop lifetime lookup, or continue it but produce an error later.
    //
    /// Give a hard error when either `&` or `'_` is written. Used to
    /// rule out things like `where T: Foo<'_>`. Does not imply an
    /// error on default object bounds (e.g., `Box<dyn Foo>`).
    AnonymousReportError,

    /// Resolves elided lifetimes to `'static` if there are no other lifetimes in scope,
    /// otherwise give a warning that the previous behavior of introducing a new early-bound
    /// lifetime is a bug and will be removed (if `emit_lint` is enabled).
    StaticIfNoLifetimeInScope { lint_id: NodeId, emit_lint: bool },

    /// Signal we cannot find which should be the anonymous lifetime.
    ElisionFailure,

    /// This rib forbids usage of generic parameters inside of const parameter types.
    ///
    /// While this is desirable to support eventually, it is difficult to do and so is
    /// currently forbidden. See rust-lang/project-const-generics#28 for more info.
    ConstParamTy,

    /// Usage of generic parameters is forbidden in various positions for anon consts:
    /// - const arguments when `generic_const_exprs` is not enabled
    /// - enum discriminant values
    ///
    /// This rib emits an error when a lifetime would resolve to a lifetime parameter.
    ConcreteAnonConst(NoConstantGenericsReason),

    /// This rib acts as a barrier to forbid reference to lifetimes of a parent item.
    Item,
}

#[derive(Copy, Clone, Debug)]
enum LifetimeBinderKind {
    BareFnType,
    PolyTrait,
    WhereBound,
    Item,
    ConstItem,
    Function,
    Closure,
    ImplBlock,
}

impl LifetimeBinderKind {
    fn descr(self) -> &'static str {
        use LifetimeBinderKind::*;
        match self {
            BareFnType => "type",
            PolyTrait => "bound",
            WhereBound => "bound",
            Item | ConstItem => "item",
            ImplBlock => "impl block",
            Function => "function",
            Closure => "closure",
        }
    }
}

#[derive(Debug)]
struct LifetimeRib {
    kind: LifetimeRibKind,
    // We need to preserve insertion order for async fns.
    bindings: FxIndexMap<Ident, (NodeId, LifetimeRes)>,
}

impl LifetimeRib {
    fn new(kind: LifetimeRibKind) -> LifetimeRib {
        LifetimeRib { bindings: Default::default(), kind }
    }
}

#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub(crate) enum AliasPossibility {
    No,
    Maybe,
}

#[derive(Copy, Clone, Debug)]
pub(crate) enum PathSource<'a> {
    // Type paths `Path`.
    Type,
    // Trait paths in bounds or impls.
    Trait(AliasPossibility),
    // Expression paths `path`, with optional parent context.
    Expr(Option<&'a Expr>),
    // Paths in path patterns `Path`.
    Pat,
    // Paths in struct expressions and patterns `Path { .. }`.
    Struct,
    // Paths in tuple struct patterns `Path(..)`.
    TupleStruct(Span, &'a [Span]),
    // `m::A::B` in `<T as m::A>::B::C`.
    TraitItem(Namespace),
    // Paths in delegation item
    Delegation,
    /// An arg in a `use<'a, N>` precise-capturing bound.
    PreciseCapturingArg(Namespace),
    // Paths that end with `(..)`, for return type notation.
    ReturnTypeNotation,
}

impl<'a> PathSource<'a> {
    fn namespace(self) -> Namespace {
        match self {
            PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
            PathSource::Expr(..)
            | PathSource::Pat
            | PathSource::TupleStruct(..)
            | PathSource::Delegation
            | PathSource::ReturnTypeNotation => ValueNS,
            PathSource::TraitItem(ns) => ns,
            PathSource::PreciseCapturingArg(ns) => ns,
        }
    }

    fn defer_to_typeck(self) -> bool {
        match self {
            PathSource::Type
            | PathSource::Expr(..)
            | PathSource::Pat
            | PathSource::Struct
            | PathSource::TupleStruct(..)
            | PathSource::ReturnTypeNotation => true,
            PathSource::Trait(_)
            | PathSource::TraitItem(..)
            | PathSource::Delegation
            | PathSource::PreciseCapturingArg(..) => false,
        }
    }

    fn descr_expected(self) -> &'static str {
        match &self {
            PathSource::Type => "type",
            PathSource::Trait(_) => "trait",
            PathSource::Pat => "unit struct, unit variant or constant",
            PathSource::Struct => "struct, variant or union type",
            PathSource::TupleStruct(..) => "tuple struct or tuple variant",
            PathSource::TraitItem(ns) => match ns {
                TypeNS => "associated type",
                ValueNS => "method or associated constant",
                MacroNS => bug!("associated macro"),
            },
            PathSource::Expr(parent) => match parent.as_ref().map(|p| &p.kind) {
                // "function" here means "anything callable" rather than `DefKind::Fn`,
                // this is not precise but usually more helpful than just "value".
                Some(ExprKind::Call(call_expr, _)) => match &call_expr.kind {
                    // the case of `::some_crate()`
                    ExprKind::Path(_, path)
                        if let [segment, _] = path.segments.as_slice()
                            && segment.ident.name == kw::PathRoot =>
                    {
                        "external crate"
                    }
                    ExprKind::Path(_, path) => {
                        let mut msg = "function";
                        if let Some(segment) = path.segments.iter().last() {
                            if let Some(c) = segment.ident.to_string().chars().next() {
                                if c.is_uppercase() {
                                    msg = "function, tuple struct or tuple variant";
                                }
                            }
                        }
                        msg
                    }
                    _ => "function",
                },
                _ => "value",
            },
            PathSource::ReturnTypeNotation | PathSource::Delegation => "function",
            PathSource::PreciseCapturingArg(..) => "type or const parameter",
        }
    }

    fn is_call(self) -> bool {
        matches!(self, PathSource::Expr(Some(&Expr { kind: ExprKind::Call(..), .. })))
    }

    pub(crate) fn is_expected(self, res: Res) -> bool {
        match self {
            PathSource::Type => matches!(
                res,
                Res::Def(
                    DefKind::Struct
                        | DefKind::Union
                        | DefKind::Enum
                        | DefKind::Trait
                        | DefKind::TraitAlias
                        | DefKind::TyAlias
                        | DefKind::AssocTy
                        | DefKind::TyParam
                        | DefKind::OpaqueTy
                        | DefKind::ForeignTy,
                    _,
                ) | Res::PrimTy(..)
                    | Res::SelfTyParam { .. }
                    | Res::SelfTyAlias { .. }
            ),
            PathSource::Trait(AliasPossibility::No) => matches!(res, Res::Def(DefKind::Trait, _)),
            PathSource::Trait(AliasPossibility::Maybe) => {
                matches!(res, Res::Def(DefKind::Trait | DefKind::TraitAlias, _))
            }
            PathSource::Expr(..) => matches!(
                res,
                Res::Def(
                    DefKind::Ctor(_, CtorKind::Const | CtorKind::Fn)
                        | DefKind::Const
                        | DefKind::Static { .. }
                        | DefKind::Fn
                        | DefKind::AssocFn
                        | DefKind::AssocConst
                        | DefKind::ConstParam,
                    _,
                ) | Res::Local(..)
                    | Res::SelfCtor(..)
            ),
            PathSource::Pat => {
                res.expected_in_unit_struct_pat()
                    || matches!(res, Res::Def(DefKind::Const | DefKind::AssocConst, _))
            }
            PathSource::TupleStruct(..) => res.expected_in_tuple_struct_pat(),
            PathSource::Struct => matches!(
                res,
                Res::Def(
                    DefKind::Struct
                        | DefKind::Union
                        | DefKind::Variant
                        | DefKind::TyAlias
                        | DefKind::AssocTy,
                    _,
                ) | Res::SelfTyParam { .. }
                    | Res::SelfTyAlias { .. }
            ),
            PathSource::TraitItem(ns) => match res {
                Res::Def(DefKind::AssocConst | DefKind::AssocFn, _) if ns == ValueNS => true,
                Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
                _ => false,
            },
            PathSource::ReturnTypeNotation => match res {
                Res::Def(DefKind::AssocFn, _) => true,
                _ => false,
            },
            PathSource::Delegation => matches!(res, Res::Def(DefKind::Fn | DefKind::AssocFn, _)),
            PathSource::PreciseCapturingArg(ValueNS) => {
                matches!(res, Res::Def(DefKind::ConstParam, _))
            }
            // We allow `SelfTyAlias` here so we can give a more descriptive error later.
            PathSource::PreciseCapturingArg(TypeNS) => matches!(
                res,
                Res::Def(DefKind::TyParam, _) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. }
            ),
            PathSource::PreciseCapturingArg(MacroNS) => false,
        }
    }

    fn error_code(self, has_unexpected_resolution: bool) -> ErrCode {
        match (self, has_unexpected_resolution) {
            (PathSource::Trait(_), true) => E0404,
            (PathSource::Trait(_), false) => E0405,
            (PathSource::Type, true) => E0573,
            (PathSource::Type, false) => E0412,
            (PathSource::Struct, true) => E0574,
            (PathSource::Struct, false) => E0422,
            (PathSource::Expr(..), true) | (PathSource::Delegation, true) => E0423,
            (PathSource::Expr(..), false) | (PathSource::Delegation, false) => E0425,
            (PathSource::Pat | PathSource::TupleStruct(..), true) => E0532,
            (PathSource::Pat | PathSource::TupleStruct(..), false) => E0531,
            (PathSource::TraitItem(..), true) | (PathSource::ReturnTypeNotation, true) => E0575,
            (PathSource::TraitItem(..), false) | (PathSource::ReturnTypeNotation, false) => E0576,
            (PathSource::PreciseCapturingArg(..), true) => E0799,
            (PathSource::PreciseCapturingArg(..), false) => E0800,
        }
    }
}

/// At this point for most items we can answer whether that item is exported or not,
/// but some items like impls require type information to determine exported-ness, so we make a
/// conservative estimate for them (e.g. based on nominal visibility).
#[derive(Clone, Copy)]
enum MaybeExported<'a> {
    Ok(NodeId),
    Impl(Option<DefId>),
    ImplItem(Result<DefId, &'a Visibility>),
    NestedUse(&'a Visibility),
}

impl MaybeExported<'_> {
    fn eval(self, r: &Resolver<'_, '_>) -> bool {
        let def_id = match self {
            MaybeExported::Ok(node_id) => Some(r.local_def_id(node_id)),
            MaybeExported::Impl(Some(trait_def_id)) | MaybeExported::ImplItem(Ok(trait_def_id)) => {
                trait_def_id.as_local()
            }
            MaybeExported::Impl(None) => return true,
            MaybeExported::ImplItem(Err(vis)) | MaybeExported::NestedUse(vis) => {
                return vis.kind.is_pub();
            }
        };
        def_id.map_or(true, |def_id| r.effective_visibilities.is_exported(def_id))
    }
}

/// Used for recording UnnecessaryQualification.
#[derive(Debug)]
pub(crate) struct UnnecessaryQualification<'ra> {
    pub binding: LexicalScopeBinding<'ra>,
    pub node_id: NodeId,
    pub path_span: Span,
    pub removal_span: Span,
}

#[derive(Default)]
struct DiagMetadata<'ast> {
    /// The current trait's associated items' ident, used for diagnostic suggestions.
    current_trait_assoc_items: Option<&'ast [P<AssocItem>]>,

    /// The current self type if inside an impl (used for better errors).
    current_self_type: Option<Ty>,

    /// The current self item if inside an ADT (used for better errors).
    current_self_item: Option<NodeId>,

    /// The current trait (used to suggest).
    current_item: Option<&'ast Item>,

    /// When processing generic arguments and encountering an unresolved ident not found,
    /// suggest introducing a type or const param depending on the context.
    currently_processing_generic_args: bool,

    /// The current enclosing (non-closure) function (used for better errors).
    current_function: Option<(FnKind<'ast>, Span)>,

    /// A list of labels as of yet unused. Labels will be removed from this map when
    /// they are used (in a `break` or `continue` statement)
    unused_labels: FxHashMap<NodeId, Span>,

    /// Only used for better errors on `let x = { foo: bar };`.
    /// In the case of a parse error with `let x = { foo: bar, };`, this isn't needed, it's only
    /// needed for cases where this parses as a correct type ascription.
    current_block_could_be_bare_struct_literal: Option<Span>,

    /// Only used for better errors on `let <pat>: <expr, not type>;`.
    current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,

    current_pat: Option<&'ast Pat>,

    /// Used to detect possible `if let` written without `let` and to provide structured suggestion.
    in_if_condition: Option<&'ast Expr>,

    /// Used to detect possible new binding written without `let` and to provide structured suggestion.
    in_assignment: Option<&'ast Expr>,
    is_assign_rhs: bool,

    /// If we are setting an associated type in trait impl, is it a non-GAT type?
    in_non_gat_assoc_type: Option<bool>,

    /// Used to detect possible `.` -> `..` typo when calling methods.
    in_range: Option<(&'ast Expr, &'ast Expr)>,

    /// If we are currently in a trait object definition. Used to point at the bounds when
    /// encountering a struct or enum.
    current_trait_object: Option<&'ast [ast::GenericBound]>,

    /// Given `where <T as Bar>::Baz: String`, suggest `where T: Bar<Baz = String>`.
    current_where_predicate: Option<&'ast WherePredicate>,

    current_type_path: Option<&'ast Ty>,

    /// The current impl items (used to suggest).
    current_impl_items: Option<&'ast [P<AssocItem>]>,

    /// When processing impl trait
    currently_processing_impl_trait: Option<(TraitRef, Ty)>,

    /// Accumulate the errors due to missed lifetime elision,
    /// and report them all at once for each function.
    current_elision_failures: Vec<MissingLifetime>,
}

struct LateResolutionVisitor<'a, 'ast, 'ra, 'tcx> {
    r: &'a mut Resolver<'ra, 'tcx>,

    /// The module that represents the current item scope.
    parent_scope: ParentScope<'ra>,

    /// The current set of local scopes for types and values.
    ribs: PerNS<Vec<Rib<'ra>>>,

    /// Previous popped `rib`, only used for diagnostic.
    last_block_rib: Option<Rib<'ra>>,

    /// The current set of local scopes, for labels.
    label_ribs: Vec<Rib<'ra, NodeId>>,

    /// The current set of local scopes for lifetimes.
    lifetime_ribs: Vec<LifetimeRib>,

    /// We are looking for lifetimes in an elision context.
    /// The set contains all the resolutions that we encountered so far.
    /// They will be used to determine the correct lifetime for the fn return type.
    /// The `LifetimeElisionCandidate` is used for diagnostics, to suggest introducing named
    /// lifetimes.
    lifetime_elision_candidates: Option<Vec<(LifetimeRes, LifetimeElisionCandidate)>>,

    /// The trait that the current context can refer to.
    current_trait_ref: Option<(Module<'ra>, TraitRef)>,

    /// Fields used to add information to diagnostic errors.
    diag_metadata: Box<DiagMetadata<'ast>>,

    /// State used to know whether to ignore resolution errors for function bodies.
    ///
    /// In particular, rustdoc uses this to avoid giving errors for `cfg()` items.
    /// In most cases this will be `None`, in which case errors will always be reported.
    /// If it is `true`, then it will be updated when entering a nested function or trait body.
    in_func_body: bool,

    /// Count the number of places a lifetime is used.
    lifetime_uses: FxHashMap<LocalDefId, LifetimeUseSet>,
}

/// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
impl<'ra: 'ast, 'ast, 'tcx> Visitor<'ast> for LateResolutionVisitor<'_, 'ast, 'ra, 'tcx> {
    fn visit_attribute(&mut self, _: &'ast Attribute) {
        // We do not want to resolve expressions that appear in attributes,
        // as they do not correspond to actual code.
    }
    fn visit_item(&mut self, item: &'ast Item) {
        let prev = replace(&mut self.diag_metadata.current_item, Some(item));
        // Always report errors in items we just entered.
        let old_ignore = replace(&mut self.in_func_body, false);
        self.with_lifetime_rib(LifetimeRibKind::Item, |this| this.resolve_item(item));
        self.in_func_body = old_ignore;
        self.diag_metadata.current_item = prev;
    }
    fn visit_arm(&mut self, arm: &'ast Arm) {
        self.resolve_arm(arm);
    }
    fn visit_block(&mut self, block: &'ast Block) {
        let old_macro_rules = self.parent_scope.macro_rules;
        self.resolve_block(block);
        self.parent_scope.macro_rules = old_macro_rules;
    }
    fn visit_anon_const(&mut self, _constant: &'ast AnonConst) {
        bug!("encountered anon const without a manual call to `resolve_anon_const`");
    }
    fn visit_expr(&mut self, expr: &'ast Expr) {
        self.resolve_expr(expr, None);
    }
    fn visit_pat(&mut self, p: &'ast Pat) {
        let prev = self.diag_metadata.current_pat;
        self.diag_metadata.current_pat = Some(p);
        visit::walk_pat(self, p);
        self.diag_metadata.current_pat = prev;
    }
    fn visit_local(&mut self, local: &'ast Local) {
        let local_spans = match local.pat.kind {
            // We check for this to avoid tuple struct fields.
            PatKind::Wild => None,
            _ => Some((
                local.pat.span,
                local.ty.as_ref().map(|ty| ty.span),
                local.kind.init().map(|init| init.span),
            )),
        };
        let original = replace(&mut self.diag_metadata.current_let_binding, local_spans);
        self.resolve_local(local);
        self.diag_metadata.current_let_binding = original;
    }
    fn visit_ty(&mut self, ty: &'ast Ty) {
        let prev = self.diag_metadata.current_trait_object;
        let prev_ty = self.diag_metadata.current_type_path;
        match &ty.kind {
            TyKind::Ref(None, _) => {
                // Elided lifetime in reference: we resolve as if there was some lifetime `'_` with
                // NodeId `ty.id`.
                // This span will be used in case of elision failure.
                let span = self.r.tcx.sess.source_map().start_point(ty.span);
                self.resolve_elided_lifetime(ty.id, span);
                visit::walk_ty(self, ty);
            }
            TyKind::Path(qself, path) => {
                self.diag_metadata.current_type_path = Some(ty);

                // If we have a path that ends with `(..)`, then it must be
                // return type notation. Resolve that path in the *value*
                // namespace.
                let source = if let Some(seg) = path.segments.last()
                    && let Some(args) = &seg.args
                    && matches!(**args, GenericArgs::ParenthesizedElided(..))
                {
                    PathSource::ReturnTypeNotation
                } else {
                    PathSource::Type
                };

                self.smart_resolve_path(ty.id, qself, path, source);

                // Check whether we should interpret this as a bare trait object.
                if qself.is_none()
                    && let Some(partial_res) = self.r.partial_res_map.get(&ty.id)
                    && let Some(Res::Def(DefKind::Trait | DefKind::TraitAlias, _)) =
                        partial_res.full_res()
                {
                    // This path is actually a bare trait object. In case of a bare `Fn`-trait
                    // object with anonymous lifetimes, we need this rib to correctly place the
                    // synthetic lifetimes.
                    let span = ty.span.shrink_to_lo().to(path.span.shrink_to_lo());
                    self.with_generic_param_rib(
                        &[],
                        RibKind::Normal,
                        LifetimeRibKind::Generics {
                            binder: ty.id,
                            kind: LifetimeBinderKind::PolyTrait,
                            span,
                        },
                        |this| this.visit_path(path, ty.id),
                    );
                } else {
                    visit::walk_ty(self, ty)
                }
            }
            TyKind::ImplicitSelf => {
                let self_ty = Ident::with_dummy_span(kw::SelfUpper);
                let res = self
                    .resolve_ident_in_lexical_scope(
                        self_ty,
                        TypeNS,
                        Some(Finalize::new(ty.id, ty.span)),
                        None,
                    )
                    .map_or(Res::Err, |d| d.res());
                self.r.record_partial_res(ty.id, PartialRes::new(res));
                visit::walk_ty(self, ty)
            }
            TyKind::ImplTrait(node_id, _) => {
                let candidates = self.lifetime_elision_candidates.take();
                visit::walk_ty(self, ty);
                self.record_lifetime_params_for_impl_trait(*node_id);
                self.lifetime_elision_candidates = candidates;
            }
            TyKind::TraitObject(bounds, ..) => {
                self.diag_metadata.current_trait_object = Some(&bounds[..]);
                visit::walk_ty(self, ty)
            }
            TyKind::BareFn(bare_fn) => {
                let span = ty.span.shrink_to_lo().to(bare_fn.decl_span.shrink_to_lo());
                self.with_generic_param_rib(
                    &bare_fn.generic_params,
                    RibKind::Normal,
                    LifetimeRibKind::Generics {
                        binder: ty.id,
                        kind: LifetimeBinderKind::BareFnType,
                        span,
                    },
                    |this| {
                        this.visit_generic_params(&bare_fn.generic_params, false);
                        this.with_lifetime_rib(
                            LifetimeRibKind::AnonymousCreateParameter {
                                binder: ty.id,
                                report_in_path: false,
                            },
                            |this| {
                                this.resolve_fn_signature(
                                    ty.id,
                                    false,
                                    // We don't need to deal with patterns in parameters, because
                                    // they are not possible for foreign or bodiless functions.
                                    bare_fn
                                        .decl
                                        .inputs
                                        .iter()
                                        .map(|Param { ty, .. }| (None, &**ty)),
                                    &bare_fn.decl.output,
                                )
                            },
                        );
                    },
                )
            }
            TyKind::Array(element_ty, length) => {
                self.visit_ty(element_ty);
                self.resolve_anon_const(length, AnonConstKind::ConstArg(IsRepeatExpr::No));
            }
            TyKind::Typeof(ct) => {
                self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::No))
            }
            _ => visit::walk_ty(self, ty),
        }
        self.diag_metadata.current_trait_object = prev;
        self.diag_metadata.current_type_path = prev_ty;
    }
    fn visit_poly_trait_ref(&mut self, tref: &'ast PolyTraitRef) {
        let span = tref.span.shrink_to_lo().to(tref.trait_ref.path.span.shrink_to_lo());
        self.with_generic_param_rib(
            &tref.bound_generic_params,
            RibKind::Normal,
            LifetimeRibKind::Generics {
                binder: tref.trait_ref.ref_id,
                kind: LifetimeBinderKind::PolyTrait,
                span,
            },
            |this| {
                this.visit_generic_params(&tref.bound_generic_params, false);
                this.smart_resolve_path(
                    tref.trait_ref.ref_id,
                    &None,
                    &tref.trait_ref.path,
                    PathSource::Trait(AliasPossibility::Maybe),
                );
                this.visit_trait_ref(&tref.trait_ref);
            },
        );
    }
    fn visit_foreign_item(&mut self, foreign_item: &'ast ForeignItem) {
        self.resolve_doc_links(&foreign_item.attrs, MaybeExported::Ok(foreign_item.id));
        let def_kind = self.r.local_def_kind(foreign_item.id);
        match foreign_item.kind {
            ForeignItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
                    LifetimeRibKind::Generics {
                        binder: foreign_item.id,
                        kind: LifetimeBinderKind::Item,
                        span: generics.span,
                    },
                    |this| visit::walk_item(this, foreign_item),
                );
            }
            ForeignItemKind::Fn(box Fn { ref generics, .. }) => {
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
                    LifetimeRibKind::Generics {
                        binder: foreign_item.id,
                        kind: LifetimeBinderKind::Function,
                        span: generics.span,
                    },
                    |this| visit::walk_item(this, foreign_item),
                );
            }
            ForeignItemKind::Static(..) => {
                self.with_static_rib(def_kind, |this| visit::walk_item(this, foreign_item))
            }
            ForeignItemKind::MacCall(..) => {
                panic!("unexpanded macro in resolve!")
            }
        }
    }
    fn visit_fn(&mut self, fn_kind: FnKind<'ast>, sp: Span, fn_id: NodeId) {
        let previous_value = self.diag_metadata.current_function;
        match fn_kind {
            // Bail if the function is foreign, and thus cannot validly have
            // a body, or if there's no body for some other reason.
            FnKind::Fn(FnCtxt::Foreign, _, sig, _, generics, _)
            | FnKind::Fn(_, _, sig, _, generics, None) => {
                self.visit_fn_header(&sig.header);
                self.visit_generics(generics);
                self.with_lifetime_rib(
                    LifetimeRibKind::AnonymousCreateParameter {
                        binder: fn_id,
                        report_in_path: false,
                    },
                    |this| {
                        this.resolve_fn_signature(
                            fn_id,
                            sig.decl.has_self(),
                            sig.decl.inputs.iter().map(|Param { ty, .. }| (None, &**ty)),
                            &sig.decl.output,
                        );

                        if let Some((coro_node_id, _)) = sig
                            .header
                            .coroutine_kind
                            .map(|coroutine_kind| coroutine_kind.return_id())
                        {
                            this.record_lifetime_params_for_impl_trait(coro_node_id);
                        }
                    },
                );
                return;
            }
            FnKind::Fn(..) => {
                self.diag_metadata.current_function = Some((fn_kind, sp));
            }
            // Do not update `current_function` for closures: it suggests `self` parameters.
            FnKind::Closure(..) => {}
        };
        debug!("(resolving function) entering function");

        // Create a value rib for the function.
        self.with_rib(ValueNS, RibKind::FnOrCoroutine, |this| {
            // Create a label rib for the function.
            this.with_label_rib(RibKind::FnOrCoroutine, |this| {
                match fn_kind {
                    FnKind::Fn(_, _, sig, _, generics, body) => {
                        this.visit_generics(generics);

                        let declaration = &sig.decl;
                        let coro_node_id = sig
                            .header
                            .coroutine_kind
                            .map(|coroutine_kind| coroutine_kind.return_id());

                        this.with_lifetime_rib(
                            LifetimeRibKind::AnonymousCreateParameter {
                                binder: fn_id,
                                report_in_path: coro_node_id.is_some(),
                            },
                            |this| {
                                this.resolve_fn_signature(
                                    fn_id,
                                    declaration.has_self(),
                                    declaration
                                        .inputs
                                        .iter()
                                        .map(|Param { pat, ty, .. }| (Some(&**pat), &**ty)),
                                    &declaration.output,
                                );

                                if let Some((async_node_id, _)) = coro_node_id {
                                    this.record_lifetime_params_for_impl_trait(async_node_id);
                                }
                            },
                        );

                        if let Some(body) = body {
                            // Ignore errors in function bodies if this is rustdoc
                            // Be sure not to set this until the function signature has been resolved.
                            let previous_state = replace(&mut this.in_func_body, true);
                            // We only care block in the same function
                            this.last_block_rib = None;
                            // Resolve the function body, potentially inside the body of an async closure
                            this.with_lifetime_rib(
                                LifetimeRibKind::Elided(LifetimeRes::Infer),
                                |this| this.visit_block(body),
                            );

                            debug!("(resolving function) leaving function");
                            this.in_func_body = previous_state;
                        }
                    }
                    FnKind::Closure(binder, _, declaration, body) => {
                        this.visit_closure_binder(binder);

                        this.with_lifetime_rib(
                            match binder {
                                // We do not have any explicit generic lifetime parameter.
                                ClosureBinder::NotPresent => {
                                    LifetimeRibKind::AnonymousCreateParameter {
                                        binder: fn_id,
                                        report_in_path: false,
                                    }
                                }
                                ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
                            },
                            // Add each argument to the rib.
                            |this| this.resolve_params(&declaration.inputs),
                        );
                        this.with_lifetime_rib(
                            match binder {
                                ClosureBinder::NotPresent => {
                                    LifetimeRibKind::Elided(LifetimeRes::Infer)
                                }
                                ClosureBinder::For { .. } => LifetimeRibKind::AnonymousReportError,
                            },
                            |this| visit::walk_fn_ret_ty(this, &declaration.output),
                        );

                        // Ignore errors in function bodies if this is rustdoc
                        // Be sure not to set this until the function signature has been resolved.
                        let previous_state = replace(&mut this.in_func_body, true);
                        // Resolve the function body, potentially inside the body of an async closure
                        this.with_lifetime_rib(
                            LifetimeRibKind::Elided(LifetimeRes::Infer),
                            |this| this.visit_expr(body),
                        );

                        debug!("(resolving function) leaving function");
                        this.in_func_body = previous_state;
                    }
                }
            })
        });
        self.diag_metadata.current_function = previous_value;
    }

    fn visit_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
        self.resolve_lifetime(lifetime, use_ctxt)
    }

    fn visit_precise_capturing_arg(&mut self, arg: &'ast PreciseCapturingArg) {
        match arg {
            // Lower the lifetime regularly; we'll resolve the lifetime and check
            // it's a parameter later on in HIR lowering.
            PreciseCapturingArg::Lifetime(_) => {}

            PreciseCapturingArg::Arg(path, id) => {
                // we want `impl use<C>` to try to resolve `C` as both a type parameter or
                // a const parameter. Since the resolver specifically doesn't allow having
                // two generic params with the same name, even if they're a different namespace,
                // it doesn't really matter which we try resolving first, but just like
                // `Ty::Param` we just fall back to the value namespace only if it's missing
                // from the type namespace.
                let mut check_ns = |ns| {
                    self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns).is_some()
                };
                // Like `Ty::Param`, we try resolving this as both a const and a type.
                if !check_ns(TypeNS) && check_ns(ValueNS) {
                    self.smart_resolve_path(
                        *id,
                        &None,
                        path,
                        PathSource::PreciseCapturingArg(ValueNS),
                    );
                } else {
                    self.smart_resolve_path(
                        *id,
                        &None,
                        path,
                        PathSource::PreciseCapturingArg(TypeNS),
                    );
                }
            }
        }

        visit::walk_precise_capturing_arg(self, arg)
    }

    fn visit_generics(&mut self, generics: &'ast Generics) {
        self.visit_generic_params(&generics.params, self.diag_metadata.current_self_item.is_some());
        for p in &generics.where_clause.predicates {
            self.visit_where_predicate(p);
        }
    }

    fn visit_closure_binder(&mut self, b: &'ast ClosureBinder) {
        match b {
            ClosureBinder::NotPresent => {}
            ClosureBinder::For { generic_params, .. } => {
                self.visit_generic_params(
                    generic_params,
                    self.diag_metadata.current_self_item.is_some(),
                );
            }
        }
    }

    fn visit_generic_arg(&mut self, arg: &'ast GenericArg) {
        debug!("visit_generic_arg({:?})", arg);
        let prev = replace(&mut self.diag_metadata.currently_processing_generic_args, true);
        match arg {
            GenericArg::Type(ref ty) => {
                // We parse const arguments as path types as we cannot distinguish them during
                // parsing. We try to resolve that ambiguity by attempting resolution the type
                // namespace first, and if that fails we try again in the value namespace. If
                // resolution in the value namespace succeeds, we have an generic const argument on
                // our hands.
                if let TyKind::Path(None, ref path) = ty.kind {
                    // We cannot disambiguate multi-segment paths right now as that requires type
                    // checking.
                    if path.is_potential_trivial_const_arg() {
                        let mut check_ns = |ns| {
                            self.maybe_resolve_ident_in_lexical_scope(path.segments[0].ident, ns)
                                .is_some()
                        };
                        if !check_ns(TypeNS) && check_ns(ValueNS) {
                            self.resolve_anon_const_manual(
                                true,
                                AnonConstKind::ConstArg(IsRepeatExpr::No),
                                |this| {
                                    this.smart_resolve_path(
                                        ty.id,
                                        &None,
                                        path,
                                        PathSource::Expr(None),
                                    );
                                    this.visit_path(path, ty.id);
                                },
                            );

                            self.diag_metadata.currently_processing_generic_args = prev;
                            return;
                        }
                    }
                }

                self.visit_ty(ty);
            }
            GenericArg::Lifetime(lt) => self.visit_lifetime(lt, visit::LifetimeCtxt::GenericArg),
            GenericArg::Const(ct) => {
                self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::No))
            }
        }
        self.diag_metadata.currently_processing_generic_args = prev;
    }

    fn visit_assoc_item_constraint(&mut self, constraint: &'ast AssocItemConstraint) {
        self.visit_ident(constraint.ident);
        if let Some(ref gen_args) = constraint.gen_args {
            // Forbid anonymous lifetimes in GAT parameters until proper semantics are decided.
            self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
                this.visit_generic_args(gen_args)
            });
        }
        match constraint.kind {
            AssocItemConstraintKind::Equality { ref term } => match term {
                Term::Ty(ty) => self.visit_ty(ty),
                Term::Const(c) => {
                    self.resolve_anon_const(c, AnonConstKind::ConstArg(IsRepeatExpr::No))
                }
            },
            AssocItemConstraintKind::Bound { ref bounds } => {
                self.record_lifetime_params_for_impl_trait(constraint.id);
                walk_list!(self, visit_param_bound, bounds, BoundKind::Bound);
            }
        }
    }

    fn visit_path_segment(&mut self, path_segment: &'ast PathSegment) {
        if let Some(ref args) = path_segment.args {
            match &**args {
                GenericArgs::AngleBracketed(..) => visit::walk_generic_args(self, args),
                GenericArgs::Parenthesized(p_args) => {
                    // Probe the lifetime ribs to know how to behave.
                    for rib in self.lifetime_ribs.iter().rev() {
                        match rib.kind {
                            // We are inside a `PolyTraitRef`. The lifetimes are
                            // to be introduced in that (maybe implicit) `for<>` binder.
                            LifetimeRibKind::Generics {
                                binder,
                                kind: LifetimeBinderKind::PolyTrait,
                                ..
                            } => {
                                self.with_lifetime_rib(
                                    LifetimeRibKind::AnonymousCreateParameter {
                                        binder,
                                        report_in_path: false,
                                    },
                                    |this| {
                                        this.resolve_fn_signature(
                                            binder,
                                            false,
                                            p_args.inputs.iter().map(|ty| (None, &**ty)),
                                            &p_args.output,
                                        )
                                    },
                                );
                                break;
                            }
                            // We have nowhere to introduce generics. Code is malformed,
                            // so use regular lifetime resolution to avoid spurious errors.
                            LifetimeRibKind::Item | LifetimeRibKind::Generics { .. } => {
                                visit::walk_generic_args(self, args);
                                break;
                            }
                            LifetimeRibKind::AnonymousCreateParameter { .. }
                            | LifetimeRibKind::AnonymousReportError
                            | LifetimeRibKind::StaticIfNoLifetimeInScope { .. }
                            | LifetimeRibKind::Elided(_)
                            | LifetimeRibKind::ElisionFailure
                            | LifetimeRibKind::ConcreteAnonConst(_)
                            | LifetimeRibKind::ConstParamTy => {}
                        }
                    }
                }
                GenericArgs::ParenthesizedElided(_) => {}
            }
        }
    }

    fn visit_where_predicate(&mut self, p: &'ast WherePredicate) {
        debug!("visit_where_predicate {:?}", p);
        let previous_value = replace(&mut self.diag_metadata.current_where_predicate, Some(p));
        self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
            if let WherePredicate::BoundPredicate(WhereBoundPredicate {
                ref bounded_ty,
                ref bounds,
                ref bound_generic_params,
                span: predicate_span,
                ..
            }) = p
            {
                let span = predicate_span.shrink_to_lo().to(bounded_ty.span.shrink_to_lo());
                this.with_generic_param_rib(
                    bound_generic_params,
                    RibKind::Normal,
                    LifetimeRibKind::Generics {
                        binder: bounded_ty.id,
                        kind: LifetimeBinderKind::WhereBound,
                        span,
                    },
                    |this| {
                        this.visit_generic_params(bound_generic_params, false);
                        this.visit_ty(bounded_ty);
                        for bound in bounds {
                            this.visit_param_bound(bound, BoundKind::Bound)
                        }
                    },
                );
            } else {
                visit::walk_where_predicate(this, p);
            }
        });
        self.diag_metadata.current_where_predicate = previous_value;
    }

    fn visit_inline_asm(&mut self, asm: &'ast InlineAsm) {
        for (op, _) in &asm.operands {
            match op {
                InlineAsmOperand::In { expr, .. }
                | InlineAsmOperand::Out { expr: Some(expr), .. }
                | InlineAsmOperand::InOut { expr, .. } => self.visit_expr(expr),
                InlineAsmOperand::Out { expr: None, .. } => {}
                InlineAsmOperand::SplitInOut { in_expr, out_expr, .. } => {
                    self.visit_expr(in_expr);
                    if let Some(out_expr) = out_expr {
                        self.visit_expr(out_expr);
                    }
                }
                InlineAsmOperand::Const { anon_const, .. } => {
                    // Although this is `DefKind::AnonConst`, it is allowed to reference outer
                    // generic parameters like an inline const.
                    self.resolve_anon_const(anon_const, AnonConstKind::InlineConst);
                }
                InlineAsmOperand::Sym { sym } => self.visit_inline_asm_sym(sym),
                InlineAsmOperand::Label { block } => self.visit_block(block),
            }
        }
    }

    fn visit_inline_asm_sym(&mut self, sym: &'ast InlineAsmSym) {
        // This is similar to the code for AnonConst.
        self.with_rib(ValueNS, RibKind::InlineAsmSym, |this| {
            this.with_rib(TypeNS, RibKind::InlineAsmSym, |this| {
                this.with_label_rib(RibKind::InlineAsmSym, |this| {
                    this.smart_resolve_path(sym.id, &sym.qself, &sym.path, PathSource::Expr(None));
                    visit::walk_inline_asm_sym(this, sym);
                });
            })
        });
    }

    fn visit_variant(&mut self, v: &'ast Variant) {
        self.resolve_doc_links(&v.attrs, MaybeExported::Ok(v.id));
        visit::walk_variant(self, v)
    }

    fn visit_variant_discr(&mut self, discr: &'ast AnonConst) {
        self.resolve_anon_const(discr, AnonConstKind::EnumDiscriminant);
    }

    fn visit_field_def(&mut self, f: &'ast FieldDef) {
        self.resolve_doc_links(&f.attrs, MaybeExported::Ok(f.id));
        visit::walk_field_def(self, f)
    }
}

impl<'a, 'ast, 'ra: 'ast, 'tcx> LateResolutionVisitor<'a, 'ast, 'ra, 'tcx> {
    fn new(resolver: &'a mut Resolver<'ra, 'tcx>) -> LateResolutionVisitor<'a, 'ast, 'ra, 'tcx> {
        // During late resolution we only track the module component of the parent scope,
        // although it may be useful to track other components as well for diagnostics.
        let graph_root = resolver.graph_root;
        let parent_scope = ParentScope::module(graph_root, resolver);
        let start_rib_kind = RibKind::Module(graph_root);
        LateResolutionVisitor {
            r: resolver,
            parent_scope,
            ribs: PerNS {
                value_ns: vec![Rib::new(start_rib_kind)],
                type_ns: vec![Rib::new(start_rib_kind)],
                macro_ns: vec![Rib::new(start_rib_kind)],
            },
            last_block_rib: None,
            label_ribs: Vec::new(),
            lifetime_ribs: Vec::new(),
            lifetime_elision_candidates: None,
            current_trait_ref: None,
            diag_metadata: Default::default(),
            // errors at module scope should always be reported
            in_func_body: false,
            lifetime_uses: Default::default(),
        }
    }

    fn maybe_resolve_ident_in_lexical_scope(
        &mut self,
        ident: Ident,
        ns: Namespace,
    ) -> Option<LexicalScopeBinding<'ra>> {
        self.r.resolve_ident_in_lexical_scope(
            ident,
            ns,
            &self.parent_scope,
            None,
            &self.ribs[ns],
            None,
        )
    }

    fn resolve_ident_in_lexical_scope(
        &mut self,
        ident: Ident,
        ns: Namespace,
        finalize: Option<Finalize>,
        ignore_binding: Option<NameBinding<'ra>>,
    ) -> Option<LexicalScopeBinding<'ra>> {
        self.r.resolve_ident_in_lexical_scope(
            ident,
            ns,
            &self.parent_scope,
            finalize,
            &self.ribs[ns],
            ignore_binding,
        )
    }

    fn resolve_path(
        &mut self,
        path: &[Segment],
        opt_ns: Option<Namespace>, // `None` indicates a module path in import
        finalize: Option<Finalize>,
    ) -> PathResult<'ra> {
        self.r.resolve_path_with_ribs(
            path,
            opt_ns,
            &self.parent_scope,
            finalize,
            Some(&self.ribs),
            None,
            None,
        )
    }

    // AST resolution
    //
    // We maintain a list of value ribs and type ribs.
    //
    // Simultaneously, we keep track of the current position in the module
    // graph in the `parent_scope.module` pointer. When we go to resolve a name in
    // the value or type namespaces, we first look through all the ribs and
    // then query the module graph. When we resolve a name in the module
    // namespace, we can skip all the ribs (since nested modules are not
    // allowed within blocks in Rust) and jump straight to the current module
    // graph node.
    //
    // Named implementations are handled separately. When we find a method
    // call, we consult the module node to find all of the implementations in
    // scope. This information is lazily cached in the module node. We then
    // generate a fake "implementation scope" containing all the
    // implementations thus found, for compatibility with old resolve pass.

    /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
    fn with_rib<T>(
        &mut self,
        ns: Namespace,
        kind: RibKind<'ra>,
        work: impl FnOnce(&mut Self) -> T,
    ) -> T {
        self.ribs[ns].push(Rib::new(kind));
        let ret = work(self);
        self.ribs[ns].pop();
        ret
    }

    fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
        if let Some(module) = self.r.get_module(self.r.local_def_id(id).to_def_id()) {
            // Move down in the graph.
            let orig_module = replace(&mut self.parent_scope.module, module);
            self.with_rib(ValueNS, RibKind::Module(module), |this| {
                this.with_rib(TypeNS, RibKind::Module(module), |this| {
                    let ret = f(this);
                    this.parent_scope.module = orig_module;
                    ret
                })
            })
        } else {
            f(self)
        }
    }

    fn visit_generic_params(&mut self, params: &'ast [GenericParam], add_self_upper: bool) {
        // For type parameter defaults, we have to ban access
        // to following type parameters, as the GenericArgs can only
        // provide previous type parameters as they're built. We
        // put all the parameters on the ban list and then remove
        // them one by one as they are processed and become available.
        let mut forward_ty_ban_rib = Rib::new(RibKind::ForwardGenericParamBan);
        let mut forward_const_ban_rib = Rib::new(RibKind::ForwardGenericParamBan);
        for param in params.iter() {
            match param.kind {
                GenericParamKind::Type { .. } => {
                    forward_ty_ban_rib
                        .bindings
                        .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
                }
                GenericParamKind::Const { .. } => {
                    forward_const_ban_rib
                        .bindings
                        .insert(Ident::with_dummy_span(param.ident.name), Res::Err);
                }
                GenericParamKind::Lifetime => {}
            }
        }

        // rust-lang/rust#61631: The type `Self` is essentially
        // another type parameter. For ADTs, we consider it
        // well-defined only after all of the ADT type parameters have
        // been provided. Therefore, we do not allow use of `Self`
        // anywhere in ADT type parameter defaults.
        //
        // (We however cannot ban `Self` for defaults on *all* generic
        // lists; e.g. trait generics can usefully refer to `Self`,
        // such as in the case of `trait Add<Rhs = Self>`.)
        if add_self_upper {
            // (`Some` if + only if we are in ADT's generics.)
            forward_ty_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
        }

        self.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
            for param in params {
                match param.kind {
                    GenericParamKind::Lifetime => {
                        for bound in &param.bounds {
                            this.visit_param_bound(bound, BoundKind::Bound);
                        }
                    }
                    GenericParamKind::Type { ref default } => {
                        for bound in &param.bounds {
                            this.visit_param_bound(bound, BoundKind::Bound);
                        }

                        if let Some(ref ty) = default {
                            this.ribs[TypeNS].push(forward_ty_ban_rib);
                            this.ribs[ValueNS].push(forward_const_ban_rib);
                            this.visit_ty(ty);
                            forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
                            forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
                        }

                        // Allow all following defaults to refer to this type parameter.
                        forward_ty_ban_rib
                            .bindings
                            .remove(&Ident::with_dummy_span(param.ident.name));
                    }
                    GenericParamKind::Const { ref ty, kw_span: _, ref default } => {
                        // Const parameters can't have param bounds.
                        assert!(param.bounds.is_empty());

                        this.ribs[TypeNS].push(Rib::new(RibKind::ConstParamTy));
                        this.ribs[ValueNS].push(Rib::new(RibKind::ConstParamTy));
                        this.with_lifetime_rib(LifetimeRibKind::ConstParamTy, |this| {
                            this.visit_ty(ty)
                        });
                        this.ribs[TypeNS].pop().unwrap();
                        this.ribs[ValueNS].pop().unwrap();

                        if let Some(ref expr) = default {
                            this.ribs[TypeNS].push(forward_ty_ban_rib);
                            this.ribs[ValueNS].push(forward_const_ban_rib);
                            this.resolve_anon_const(
                                expr,
                                AnonConstKind::ConstArg(IsRepeatExpr::No),
                            );
                            forward_const_ban_rib = this.ribs[ValueNS].pop().unwrap();
                            forward_ty_ban_rib = this.ribs[TypeNS].pop().unwrap();
                        }

                        // Allow all following defaults to refer to this const parameter.
                        forward_const_ban_rib
                            .bindings
                            .remove(&Ident::with_dummy_span(param.ident.name));
                    }
                }
            }
        })
    }

    #[instrument(level = "debug", skip(self, work))]
    fn with_lifetime_rib<T>(
        &mut self,
        kind: LifetimeRibKind,
        work: impl FnOnce(&mut Self) -> T,
    ) -> T {
        self.lifetime_ribs.push(LifetimeRib::new(kind));
        let outer_elision_candidates = self.lifetime_elision_candidates.take();
        let ret = work(self);
        self.lifetime_elision_candidates = outer_elision_candidates;
        self.lifetime_ribs.pop();
        ret
    }

    #[instrument(level = "debug", skip(self))]
    fn resolve_lifetime(&mut self, lifetime: &'ast Lifetime, use_ctxt: visit::LifetimeCtxt) {
        let ident = lifetime.ident;

        if ident.name == kw::StaticLifetime {
            self.record_lifetime_res(
                lifetime.id,
                LifetimeRes::Static { suppress_elision_warning: false },
                LifetimeElisionCandidate::Named,
            );
            return;
        }

        if ident.name == kw::UnderscoreLifetime {
            return self.resolve_anonymous_lifetime(lifetime, lifetime.id, false);
        }

        let mut lifetime_rib_iter = self.lifetime_ribs.iter().rev();
        while let Some(rib) = lifetime_rib_iter.next() {
            let normalized_ident = ident.normalize_to_macros_2_0();
            if let Some(&(_, res)) = rib.bindings.get(&normalized_ident) {
                self.record_lifetime_res(lifetime.id, res, LifetimeElisionCandidate::Named);

                if let LifetimeRes::Param { param, binder } = res {
                    match self.lifetime_uses.entry(param) {
                        Entry::Vacant(v) => {
                            debug!("First use of {:?} at {:?}", res, ident.span);
                            let use_set = self
                                .lifetime_ribs
                                .iter()
                                .rev()
                                .find_map(|rib| match rib.kind {
                                    // Do not suggest eliding a lifetime where an anonymous
                                    // lifetime would be illegal.
                                    LifetimeRibKind::Item
                                    | LifetimeRibKind::AnonymousReportError
                                    | LifetimeRibKind::StaticIfNoLifetimeInScope { .. }
                                    | LifetimeRibKind::ElisionFailure => Some(LifetimeUseSet::Many),
                                    // An anonymous lifetime is legal here, and bound to the right
                                    // place, go ahead.
                                    LifetimeRibKind::AnonymousCreateParameter {
                                        binder: anon_binder,
                                        ..
                                    } => Some(if binder == anon_binder {
                                        LifetimeUseSet::One { use_span: ident.span, use_ctxt }
                                    } else {
                                        LifetimeUseSet::Many
                                    }),
                                    // Only report if eliding the lifetime would have the same
                                    // semantics.
                                    LifetimeRibKind::Elided(r) => Some(if res == r {
                                        LifetimeUseSet::One { use_span: ident.span, use_ctxt }
                                    } else {
                                        LifetimeUseSet::Many
                                    }),
                                    LifetimeRibKind::Generics { .. }
                                    | LifetimeRibKind::ConstParamTy => None,
                                    LifetimeRibKind::ConcreteAnonConst(_) => {
                                        span_bug!(ident.span, "unexpected rib kind: {:?}", rib.kind)
                                    }
                                })
                                .unwrap_or(LifetimeUseSet::Many);
                            debug!(?use_ctxt, ?use_set);
                            v.insert(use_set);
                        }
                        Entry::Occupied(mut o) => {
                            debug!("Many uses of {:?} at {:?}", res, ident.span);
                            *o.get_mut() = LifetimeUseSet::Many;
                        }
                    }
                }
                return;
            }

            match rib.kind {
                LifetimeRibKind::Item => break,
                LifetimeRibKind::ConstParamTy => {
                    self.emit_non_static_lt_in_const_param_ty_error(lifetime);
                    self.record_lifetime_res(
                        lifetime.id,
                        LifetimeRes::Error,
                        LifetimeElisionCandidate::Ignore,
                    );
                    return;
                }
                LifetimeRibKind::ConcreteAnonConst(cause) => {
                    self.emit_forbidden_non_static_lifetime_error(cause, lifetime);
                    self.record_lifetime_res(
                        lifetime.id,
                        LifetimeRes::Error,
                        LifetimeElisionCandidate::Ignore,
                    );
                    return;
                }
                LifetimeRibKind::AnonymousCreateParameter { .. }
                | LifetimeRibKind::Elided(_)
                | LifetimeRibKind::Generics { .. }
                | LifetimeRibKind::ElisionFailure
                | LifetimeRibKind::AnonymousReportError
                | LifetimeRibKind::StaticIfNoLifetimeInScope { .. } => {}
            }
        }

        let mut outer_res = None;
        for rib in lifetime_rib_iter {
            let normalized_ident = ident.normalize_to_macros_2_0();
            if let Some((&outer, _)) = rib.bindings.get_key_value(&normalized_ident) {
                outer_res = Some(outer);
                break;
            }
        }

        self.emit_undeclared_lifetime_error(lifetime, outer_res);
        self.record_lifetime_res(lifetime.id, LifetimeRes::Error, LifetimeElisionCandidate::Named);
    }

    #[instrument(level = "debug", skip(self))]
    fn resolve_anonymous_lifetime(
        &mut self,
        lifetime: &Lifetime,
        id_for_lint: NodeId,
        elided: bool,
    ) {
        debug_assert_eq!(lifetime.ident.name, kw::UnderscoreLifetime);

        let kind =
            if elided { MissingLifetimeKind::Ampersand } else { MissingLifetimeKind::Underscore };
        let missing_lifetime = MissingLifetime {
            id: lifetime.id,
            span: lifetime.ident.span,
            kind,
            count: 1,
            id_for_lint,
        };
        let elision_candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
        for (i, rib) in self.lifetime_ribs.iter().enumerate().rev() {
            debug!(?rib.kind);
            match rib.kind {
                LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
                    let res = self.create_fresh_lifetime(lifetime.ident, binder, kind);
                    self.record_lifetime_res(lifetime.id, res, elision_candidate);
                    return;
                }
                LifetimeRibKind::StaticIfNoLifetimeInScope { lint_id: node_id, emit_lint } => {
                    let mut lifetimes_in_scope = vec![];
                    for rib in &self.lifetime_ribs[..i] {
                        lifetimes_in_scope.extend(rib.bindings.iter().map(|(ident, _)| ident.span));
                        // Consider any anonymous lifetimes, too
                        if let LifetimeRibKind::AnonymousCreateParameter { binder, .. } = rib.kind
                            && let Some(extra) = self.r.extra_lifetime_params_map.get(&binder)
                        {
                            lifetimes_in_scope.extend(extra.iter().map(|(ident, _, _)| ident.span));
                        }
                    }
                    if lifetimes_in_scope.is_empty() {
                        self.record_lifetime_res(
                            lifetime.id,
                            // We are inside a const item, so do not warn.
                            LifetimeRes::Static { suppress_elision_warning: true },
                            elision_candidate,
                        );
                        return;
                    } else if emit_lint {
                        self.r.lint_buffer.buffer_lint(
                            lint::builtin::ELIDED_LIFETIMES_IN_ASSOCIATED_CONSTANT,
                            node_id,
                            lifetime.ident.span,
                            lint::BuiltinLintDiag::AssociatedConstElidedLifetime {
                                elided,
                                span: lifetime.ident.span,
                                lifetimes_in_scope: lifetimes_in_scope.into(),
                            },
                        );
                    }
                }
                LifetimeRibKind::AnonymousReportError => {
                    if elided {
                        let mut suggestion = None;
                        for rib in self.lifetime_ribs[i..].iter().rev() {
                            if let LifetimeRibKind::Generics {
                                span,
                                kind: LifetimeBinderKind::PolyTrait | LifetimeBinderKind::WhereBound,
                                ..
                            } = &rib.kind
                            {
                                suggestion =
                                    Some(errors::ElidedAnonymousLivetimeReportErrorSuggestion {
                                        lo: span.shrink_to_lo(),
                                        hi: lifetime.ident.span.shrink_to_hi(),
                                    });
                                break;
                            }
                        }

                        // are we trying to use an anonymous lifetime
                        // on a non GAT associated trait type?
                        if !self.in_func_body
                            && let Some((module, _)) = &self.current_trait_ref
                            && let Some(ty) = &self.diag_metadata.current_self_type
                            && Some(true) == self.diag_metadata.in_non_gat_assoc_type
                            && let crate::ModuleKind::Def(DefKind::Trait, trait_id, _) = module.kind
                        {
                            if def_id_matches_path(self.r.tcx, trait_id, &[
                                "core", "iter", "traits", "iterator", "Iterator",
                            ]) {
                                self.r.dcx().emit_err(errors::LendingIteratorReportError {
                                    lifetime: lifetime.ident.span,
                                    ty: ty.span,
                                });
                            } else {
                                self.r.dcx().emit_err(errors::AnonymousLivetimeNonGatReportError {
                                    lifetime: lifetime.ident.span,
                                });
                            }
                        } else {
                            self.r.dcx().emit_err(errors::ElidedAnonymousLivetimeReportError {
                                span: lifetime.ident.span,
                                suggestion,
                            });
                        }
                    } else {
                        self.r.dcx().emit_err(errors::ExplicitAnonymousLivetimeReportError {
                            span: lifetime.ident.span,
                        });
                    };
                    self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
                    return;
                }
                LifetimeRibKind::Elided(res) => {
                    self.record_lifetime_res(lifetime.id, res, elision_candidate);
                    return;
                }
                LifetimeRibKind::ElisionFailure => {
                    self.diag_metadata.current_elision_failures.push(missing_lifetime);
                    self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
                    return;
                }
                LifetimeRibKind::Item => break,
                LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstParamTy => {}
                LifetimeRibKind::ConcreteAnonConst(_) => {
                    // There is always an `Elided(LifetimeRes::Infer)` inside an `AnonConst`.
                    span_bug!(lifetime.ident.span, "unexpected rib kind: {:?}", rib.kind)
                }
            }
        }
        self.record_lifetime_res(lifetime.id, LifetimeRes::Error, elision_candidate);
        self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
    }

    #[instrument(level = "debug", skip(self))]
    fn resolve_elided_lifetime(&mut self, anchor_id: NodeId, span: Span) {
        let id = self.r.next_node_id();
        let lt = Lifetime { id, ident: Ident::new(kw::UnderscoreLifetime, span) };

        self.record_lifetime_res(
            anchor_id,
            LifetimeRes::ElidedAnchor { start: id, end: NodeId::from_u32(id.as_u32() + 1) },
            LifetimeElisionCandidate::Ignore,
        );
        self.resolve_anonymous_lifetime(&lt, anchor_id, true);
    }

    #[instrument(level = "debug", skip(self))]
    fn create_fresh_lifetime(
        &mut self,
        ident: Ident,
        binder: NodeId,
        kind: MissingLifetimeKind,
    ) -> LifetimeRes {
        debug_assert_eq!(ident.name, kw::UnderscoreLifetime);
        debug!(?ident.span);

        // Leave the responsibility to create the `LocalDefId` to lowering.
        let param = self.r.next_node_id();
        let res = LifetimeRes::Fresh { param, binder, kind };
        self.record_lifetime_param(param, res);

        // Record the created lifetime parameter so lowering can pick it up and add it to HIR.
        self.r
            .extra_lifetime_params_map
            .entry(binder)
            .or_insert_with(Vec::new)
            .push((ident, param, res));
        res
    }

    #[instrument(level = "debug", skip(self))]
    fn resolve_elided_lifetimes_in_path(
        &mut self,
        partial_res: PartialRes,
        path: &[Segment],
        source: PathSource<'_>,
        path_span: Span,
    ) {
        let proj_start = path.len() - partial_res.unresolved_segments();
        for (i, segment) in path.iter().enumerate() {
            if segment.has_lifetime_args {
                continue;
            }
            let Some(segment_id) = segment.id else {
                continue;
            };

            // Figure out if this is a type/trait segment,
            // which may need lifetime elision performed.
            let type_def_id = match partial_res.base_res() {
                Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
                    self.r.tcx.parent(def_id)
                }
                Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
                    self.r.tcx.parent(def_id)
                }
                Res::Def(DefKind::Struct, def_id)
                | Res::Def(DefKind::Union, def_id)
                | Res::Def(DefKind::Enum, def_id)
                | Res::Def(DefKind::TyAlias, def_id)
                | Res::Def(DefKind::Trait, def_id)
                    if i + 1 == proj_start =>
                {
                    def_id
                }
                _ => continue,
            };

            let expected_lifetimes = self.r.item_generics_num_lifetimes(type_def_id);
            if expected_lifetimes == 0 {
                continue;
            }

            let node_ids = self.r.next_node_ids(expected_lifetimes);
            self.record_lifetime_res(
                segment_id,
                LifetimeRes::ElidedAnchor { start: node_ids.start, end: node_ids.end },
                LifetimeElisionCandidate::Ignore,
            );

            let inferred = match source {
                PathSource::Trait(..)
                | PathSource::TraitItem(..)
                | PathSource::Type
                | PathSource::PreciseCapturingArg(..)
                | PathSource::ReturnTypeNotation => false,
                PathSource::Expr(..)
                | PathSource::Pat
                | PathSource::Struct
                | PathSource::TupleStruct(..)
                | PathSource::Delegation => true,
            };
            if inferred {
                // Do not create a parameter for patterns and expressions: type checking can infer
                // the appropriate lifetime for us.
                for id in node_ids {
                    self.record_lifetime_res(
                        id,
                        LifetimeRes::Infer,
                        LifetimeElisionCandidate::Named,
                    );
                }
                continue;
            }

            let elided_lifetime_span = if segment.has_generic_args {
                // If there are brackets, but not generic arguments, then use the opening bracket
                segment.args_span.with_hi(segment.args_span.lo() + BytePos(1))
            } else {
                // If there are no brackets, use the identifier span.
                // HACK: we use find_ancestor_inside to properly suggest elided spans in paths
                // originating from macros, since the segment's span might be from a macro arg.
                segment.ident.span.find_ancestor_inside(path_span).unwrap_or(path_span)
            };
            let ident = Ident::new(kw::UnderscoreLifetime, elided_lifetime_span);

            let kind = if segment.has_generic_args {
                MissingLifetimeKind::Comma
            } else {
                MissingLifetimeKind::Brackets
            };
            let missing_lifetime = MissingLifetime {
                id: node_ids.start,
                id_for_lint: segment_id,
                span: elided_lifetime_span,
                kind,
                count: expected_lifetimes,
            };
            let mut should_lint = true;
            for rib in self.lifetime_ribs.iter().rev() {
                match rib.kind {
                    // In create-parameter mode we error here because we don't want to support
                    // deprecated impl elision in new features like impl elision and `async fn`,
                    // both of which work using the `CreateParameter` mode:
                    //
                    //     impl Foo for std::cell::Ref<u32> // note lack of '_
                    //     async fn foo(_: std::cell::Ref<u32>) { ... }
                    LifetimeRibKind::AnonymousCreateParameter { report_in_path: true, .. }
                    | LifetimeRibKind::StaticIfNoLifetimeInScope { .. } => {
                        let sess = self.r.tcx.sess;
                        let subdiag = rustc_errors::elided_lifetime_in_path_suggestion(
                            sess.source_map(),
                            expected_lifetimes,
                            path_span,
                            !segment.has_generic_args,
                            elided_lifetime_span,
                        );
                        self.r.dcx().emit_err(errors::ImplicitElidedLifetimeNotAllowedHere {
                            span: path_span,
                            subdiag,
                        });
                        should_lint = false;

                        for id in node_ids {
                            self.record_lifetime_res(
                                id,
                                LifetimeRes::Error,
                                LifetimeElisionCandidate::Named,
                            );
                        }
                        break;
                    }
                    // Do not create a parameter for patterns and expressions.
                    LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
                        // Group all suggestions into the first record.
                        let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
                        for id in node_ids {
                            let res = self.create_fresh_lifetime(ident, binder, kind);
                            self.record_lifetime_res(
                                id,
                                res,
                                replace(&mut candidate, LifetimeElisionCandidate::Named),
                            );
                        }
                        break;
                    }
                    LifetimeRibKind::Elided(res) => {
                        let mut candidate = LifetimeElisionCandidate::Missing(missing_lifetime);
                        for id in node_ids {
                            self.record_lifetime_res(
                                id,
                                res,
                                replace(&mut candidate, LifetimeElisionCandidate::Ignore),
                            );
                        }
                        break;
                    }
                    LifetimeRibKind::ElisionFailure => {
                        self.diag_metadata.current_elision_failures.push(missing_lifetime);
                        for id in node_ids {
                            self.record_lifetime_res(
                                id,
                                LifetimeRes::Error,
                                LifetimeElisionCandidate::Ignore,
                            );
                        }
                        break;
                    }
                    // `LifetimeRes::Error`, which would usually be used in the case of
                    // `ReportError`, is unsuitable here, as we don't emit an error yet. Instead,
                    // we simply resolve to an implicit lifetime, which will be checked later, at
                    // which point a suitable error will be emitted.
                    LifetimeRibKind::AnonymousReportError | LifetimeRibKind::Item => {
                        for id in node_ids {
                            self.record_lifetime_res(
                                id,
                                LifetimeRes::Error,
                                LifetimeElisionCandidate::Ignore,
                            );
                        }
                        self.report_missing_lifetime_specifiers(vec![missing_lifetime], None);
                        break;
                    }
                    LifetimeRibKind::Generics { .. } | LifetimeRibKind::ConstParamTy => {}
                    LifetimeRibKind::ConcreteAnonConst(_) => {
                        // There is always an `Elided(LifetimeRes::Infer)` inside an `AnonConst`.
                        span_bug!(elided_lifetime_span, "unexpected rib kind: {:?}", rib.kind)
                    }
                }
            }

            if should_lint {
                self.r.lint_buffer.buffer_lint(
                    lint::builtin::ELIDED_LIFETIMES_IN_PATHS,
                    segment_id,
                    elided_lifetime_span,
                    lint::BuiltinLintDiag::ElidedLifetimesInPaths(
                        expected_lifetimes,
                        path_span,
                        !segment.has_generic_args,
                        elided_lifetime_span,
                    ),
                );
            }
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn record_lifetime_res(
        &mut self,
        id: NodeId,
        res: LifetimeRes,
        candidate: LifetimeElisionCandidate,
    ) {
        if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
            panic!("lifetime {id:?} resolved multiple times ({prev_res:?} before, {res:?} now)")
        }

        match candidate {
            LifetimeElisionCandidate::Missing(missing @ MissingLifetime { .. }) => {
                debug_assert_eq!(id, missing.id);
                match res {
                    LifetimeRes::Static { suppress_elision_warning } => {
                        if !suppress_elision_warning {
                            self.r.lint_buffer.buffer_lint(
                                lint::builtin::ELIDED_NAMED_LIFETIMES,
                                missing.id_for_lint,
                                missing.span,
                                BuiltinLintDiag::ElidedNamedLifetimes {
                                    elided: (missing.span, missing.kind),
                                    resolution: lint::ElidedLifetimeResolution::Static,
                                },
                            );
                        }
                    }
                    LifetimeRes::Param { param, binder: _ } => {
                        let tcx = self.r.tcx();
                        self.r.lint_buffer.buffer_lint(
                            lint::builtin::ELIDED_NAMED_LIFETIMES,
                            missing.id_for_lint,
                            missing.span,
                            BuiltinLintDiag::ElidedNamedLifetimes {
                                elided: (missing.span, missing.kind),
                                resolution: lint::ElidedLifetimeResolution::Param(
                                    tcx.item_name(param.into()),
                                    tcx.source_span(param),
                                ),
                            },
                        );
                    }
                    LifetimeRes::Fresh { .. }
                    | LifetimeRes::Infer
                    | LifetimeRes::Error
                    | LifetimeRes::ElidedAnchor { .. } => {}
                }
            }
            LifetimeElisionCandidate::Ignore | LifetimeElisionCandidate::Named => {}
        }

        match res {
            LifetimeRes::Param { .. } | LifetimeRes::Fresh { .. } | LifetimeRes::Static { .. } => {
                if let Some(ref mut candidates) = self.lifetime_elision_candidates {
                    candidates.push((res, candidate));
                }
            }
            LifetimeRes::Infer | LifetimeRes::Error | LifetimeRes::ElidedAnchor { .. } => {}
        }
    }

    #[instrument(level = "debug", skip(self))]
    fn record_lifetime_param(&mut self, id: NodeId, res: LifetimeRes) {
        if let Some(prev_res) = self.r.lifetimes_res_map.insert(id, res) {
            panic!(
                "lifetime parameter {id:?} resolved multiple times ({prev_res:?} before, {res:?} now)"
            )
        }
    }

    /// Perform resolution of a function signature, accounting for lifetime elision.
    #[instrument(level = "debug", skip(self, inputs))]
    fn resolve_fn_signature(
        &mut self,
        fn_id: NodeId,
        has_self: bool,
        inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)> + Clone,
        output_ty: &'ast FnRetTy,
    ) {
        // Add each argument to the rib.
        let elision_lifetime = self.resolve_fn_params(has_self, inputs);
        debug!(?elision_lifetime);

        let outer_failures = take(&mut self.diag_metadata.current_elision_failures);
        let output_rib = if let Ok(res) = elision_lifetime.as_ref() {
            self.r.lifetime_elision_allowed.insert(fn_id);
            LifetimeRibKind::Elided(*res)
        } else {
            LifetimeRibKind::ElisionFailure
        };
        self.with_lifetime_rib(output_rib, |this| visit::walk_fn_ret_ty(this, output_ty));
        let elision_failures =
            replace(&mut self.diag_metadata.current_elision_failures, outer_failures);
        if !elision_failures.is_empty() {
            let Err(failure_info) = elision_lifetime else { bug!() };
            self.report_missing_lifetime_specifiers(elision_failures, Some(failure_info));
        }
    }

    /// Resolve inside function parameters and parameter types.
    /// Returns the lifetime for elision in fn return type,
    /// or diagnostic information in case of elision failure.
    fn resolve_fn_params(
        &mut self,
        has_self: bool,
        inputs: impl Iterator<Item = (Option<&'ast Pat>, &'ast Ty)>,
    ) -> Result<LifetimeRes, (Vec<MissingLifetime>, Vec<ElisionFnParameter>)> {
        enum Elision {
            /// We have not found any candidate.
            None,
            /// We have a candidate bound to `self`.
            Self_(LifetimeRes),
            /// We have a candidate bound to a parameter.
            Param(LifetimeRes),
            /// We failed elision.
            Err,
        }

        // Save elision state to reinstate it later.
        let outer_candidates = self.lifetime_elision_candidates.take();

        // Result of elision.
        let mut elision_lifetime = Elision::None;
        // Information for diagnostics.
        let mut parameter_info = Vec::new();
        let mut all_candidates = Vec::new();

        let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
        for (index, (pat, ty)) in inputs.enumerate() {
            debug!(?pat, ?ty);
            self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
                if let Some(pat) = pat {
                    this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
                }
            });

            // Record elision candidates only for this parameter.
            debug_assert_matches!(self.lifetime_elision_candidates, None);
            self.lifetime_elision_candidates = Some(Default::default());
            self.visit_ty(ty);
            let local_candidates = self.lifetime_elision_candidates.take();

            if let Some(candidates) = local_candidates {
                let distinct: FxHashSet<_> = candidates.iter().map(|(res, _)| *res).collect();
                let lifetime_count = distinct.len();
                if lifetime_count != 0 {
                    parameter_info.push(ElisionFnParameter {
                        index,
                        ident: if let Some(pat) = pat
                            && let PatKind::Ident(_, ident, _) = pat.kind
                        {
                            Some(ident)
                        } else {
                            None
                        },
                        lifetime_count,
                        span: ty.span,
                    });
                    all_candidates.extend(candidates.into_iter().filter_map(|(_, candidate)| {
                        match candidate {
                            LifetimeElisionCandidate::Ignore | LifetimeElisionCandidate::Named => {
                                None
                            }
                            LifetimeElisionCandidate::Missing(missing) => Some(missing),
                        }
                    }));
                }
                let mut distinct_iter = distinct.into_iter();
                if let Some(res) = distinct_iter.next() {
                    match elision_lifetime {
                        // We are the first parameter to bind lifetimes.
                        Elision::None => {
                            if distinct_iter.next().is_none() {
                                // We have a single lifetime => success.
                                elision_lifetime = Elision::Param(res)
                            } else {
                                // We have multiple lifetimes => error.
                                elision_lifetime = Elision::Err;
                            }
                        }
                        // We have 2 parameters that bind lifetimes => error.
                        Elision::Param(_) => elision_lifetime = Elision::Err,
                        // `self` elision takes precedence over everything else.
                        Elision::Self_(_) | Elision::Err => {}
                    }
                }
            }

            // Handle `self` specially.
            if index == 0 && has_self {
                let self_lifetime = self.find_lifetime_for_self(ty);
                elision_lifetime = match self_lifetime {
                    // We found `self` elision.
                    Set1::One(lifetime) => Elision::Self_(lifetime),
                    // `self` itself had ambiguous lifetimes, e.g.
                    // &Box<&Self>. In this case we won't consider
                    // taking an alternative parameter lifetime; just avoid elision
                    // entirely.
                    Set1::Many => Elision::Err,
                    // We do not have `self` elision: disregard the `Elision::Param` that we may
                    // have found.
                    Set1::Empty => Elision::None,
                }
            }
            debug!("(resolving function / closure) recorded parameter");
        }

        // Reinstate elision state.
        debug_assert_matches!(self.lifetime_elision_candidates, None);
        self.lifetime_elision_candidates = outer_candidates;

        if let Elision::Param(res) | Elision::Self_(res) = elision_lifetime {
            return Ok(res);
        }

        // We do not have a candidate.
        Err((all_candidates, parameter_info))
    }

    /// List all the lifetimes that appear in the provided type.
    fn find_lifetime_for_self(&self, ty: &'ast Ty) -> Set1<LifetimeRes> {
        /// Visits a type to find all the &references, and determines the
        /// set of lifetimes for all of those references where the referent
        /// contains Self.
        struct FindReferenceVisitor<'a, 'ra, 'tcx> {
            r: &'a Resolver<'ra, 'tcx>,
            impl_self: Option<Res>,
            lifetime: Set1<LifetimeRes>,
        }

        impl<'ra> Visitor<'ra> for FindReferenceVisitor<'_, '_, '_> {
            fn visit_ty(&mut self, ty: &'ra Ty) {
                trace!("FindReferenceVisitor considering ty={:?}", ty);
                if let TyKind::Ref(lt, _) = ty.kind {
                    // See if anything inside the &thing contains Self
                    let mut visitor =
                        SelfVisitor { r: self.r, impl_self: self.impl_self, self_found: false };
                    visitor.visit_ty(ty);
                    trace!("FindReferenceVisitor: SelfVisitor self_found={:?}", visitor.self_found);
                    if visitor.self_found {
                        let lt_id = if let Some(lt) = lt {
                            lt.id
                        } else {
                            let res = self.r.lifetimes_res_map[&ty.id];
                            let LifetimeRes::ElidedAnchor { start, .. } = res else { bug!() };
                            start
                        };
                        let lt_res = self.r.lifetimes_res_map[&lt_id];
                        trace!("FindReferenceVisitor inserting res={:?}", lt_res);
                        self.lifetime.insert(lt_res);
                    }
                }
                visit::walk_ty(self, ty)
            }

            // A type may have an expression as a const generic argument.
            // We do not want to recurse into those.
            fn visit_expr(&mut self, _: &'ra Expr) {}
        }

        /// Visitor which checks the referent of a &Thing to see if the
        /// Thing contains Self
        struct SelfVisitor<'a, 'ra, 'tcx> {
            r: &'a Resolver<'ra, 'tcx>,
            impl_self: Option<Res>,
            self_found: bool,
        }

        impl SelfVisitor<'_, '_, '_> {
            // Look for `self: &'a Self` - also desugared from `&'a self`
            fn is_self_ty(&self, ty: &Ty) -> bool {
                match ty.kind {
                    TyKind::ImplicitSelf => true,
                    TyKind::Path(None, _) => {
                        let path_res = self.r.partial_res_map[&ty.id].full_res();
                        if let Some(Res::SelfTyParam { .. } | Res::SelfTyAlias { .. }) = path_res {
                            return true;
                        }
                        self.impl_self.is_some() && path_res == self.impl_self
                    }
                    _ => false,
                }
            }
        }

        impl<'ra> Visitor<'ra> for SelfVisitor<'_, '_, '_> {
            fn visit_ty(&mut self, ty: &'ra Ty) {
                trace!("SelfVisitor considering ty={:?}", ty);
                if self.is_self_ty(ty) {
                    trace!("SelfVisitor found Self");
                    self.self_found = true;
                }
                visit::walk_ty(self, ty)
            }

            // A type may have an expression as a const generic argument.
            // We do not want to recurse into those.
            fn visit_expr(&mut self, _: &'ra Expr) {}
        }

        let impl_self = self
            .diag_metadata
            .current_self_type
            .as_ref()
            .and_then(|ty| {
                if let TyKind::Path(None, _) = ty.kind {
                    self.r.partial_res_map.get(&ty.id)
                } else {
                    None
                }
            })
            .and_then(|res| res.full_res())
            .filter(|res| {
                // Permit the types that unambiguously always
                // result in the same type constructor being used
                // (it can't differ between `Self` and `self`).
                matches!(
                    res,
                    Res::Def(DefKind::Struct | DefKind::Union | DefKind::Enum, _,) | Res::PrimTy(_)
                )
            });
        let mut visitor = FindReferenceVisitor { r: self.r, impl_self, lifetime: Set1::Empty };
        visitor.visit_ty(ty);
        trace!("FindReferenceVisitor found={:?}", visitor.lifetime);
        visitor.lifetime
    }

    /// Searches the current set of local scopes for labels. Returns the `NodeId` of the resolved
    /// label and reports an error if the label is not found or is unreachable.
    fn resolve_label(&mut self, mut label: Ident) -> Result<(NodeId, Span), ResolutionError<'ra>> {
        let mut suggestion = None;

        for i in (0..self.label_ribs.len()).rev() {
            let rib = &self.label_ribs[i];

            if let RibKind::MacroDefinition(def) = rib.kind {
                // If an invocation of this macro created `ident`, give up on `ident`
                // and switch to `ident`'s source from the macro definition.
                if def == self.r.macro_def(label.span.ctxt()) {
                    label.span.remove_mark();
                }
            }

            let ident = label.normalize_to_macro_rules();
            if let Some((ident, id)) = rib.bindings.get_key_value(&ident) {
                let definition_span = ident.span;
                return if self.is_label_valid_from_rib(i) {
                    Ok((*id, definition_span))
                } else {
                    Err(ResolutionError::UnreachableLabel {
                        name: label.name,
                        definition_span,
                        suggestion,
                    })
                };
            }

            // Diagnostics: Check if this rib contains a label with a similar name, keep track of
            // the first such label that is encountered.
            suggestion = suggestion.or_else(|| self.suggestion_for_label_in_rib(i, label));
        }

        Err(ResolutionError::UndeclaredLabel { name: label.name, suggestion })
    }

    /// Determine whether or not a label from the `rib_index`th label rib is reachable.
    fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
        let ribs = &self.label_ribs[rib_index + 1..];

        for rib in ribs {
            if rib.kind.is_label_barrier() {
                return false;
            }
        }

        true
    }

    fn resolve_adt(&mut self, item: &'ast Item, generics: &'ast Generics) {
        debug!("resolve_adt");
        let kind = self.r.local_def_kind(item.id);
        self.with_current_self_item(item, |this| {
            this.with_generic_param_rib(
                &generics.params,
                RibKind::Item(HasGenericParams::Yes(generics.span), kind),
                LifetimeRibKind::Generics {
                    binder: item.id,
                    kind: LifetimeBinderKind::Item,
                    span: generics.span,
                },
                |this| {
                    let item_def_id = this.r.local_def_id(item.id).to_def_id();
                    this.with_self_rib(
                        Res::SelfTyAlias {
                            alias_to: item_def_id,
                            forbid_generic: false,
                            is_trait_impl: false,
                        },
                        |this| {
                            visit::walk_item(this, item);
                        },
                    );
                },
            );
        });
    }

    fn future_proof_import(&mut self, use_tree: &UseTree) {
        if let [segment, rest @ ..] = use_tree.prefix.segments.as_slice() {
            let ident = segment.ident;
            if ident.is_path_segment_keyword() || ident.span.is_rust_2015() {
                return;
            }

            let nss = match use_tree.kind {
                UseTreeKind::Simple(..) if rest.is_empty() => &[TypeNS, ValueNS][..],
                _ => &[TypeNS],
            };
            let report_error = |this: &Self, ns| {
                if this.should_report_errs() {
                    let what = if ns == TypeNS { "type parameters" } else { "local variables" };
                    this.r.dcx().emit_err(errors::ImportsCannotReferTo { span: ident.span, what });
                }
            };

            for &ns in nss {
                match self.maybe_resolve_ident_in_lexical_scope(ident, ns) {
                    Some(LexicalScopeBinding::Res(..)) => {
                        report_error(self, ns);
                    }
                    Some(LexicalScopeBinding::Item(binding)) => {
                        if let Some(LexicalScopeBinding::Res(..)) =
                            self.resolve_ident_in_lexical_scope(ident, ns, None, Some(binding))
                        {
                            report_error(self, ns);
                        }
                    }
                    None => {}
                }
            }
        } else if let UseTreeKind::Nested { items, .. } = &use_tree.kind {
            for (use_tree, _) in items {
                self.future_proof_import(use_tree);
            }
        }
    }

    fn resolve_item(&mut self, item: &'ast Item) {
        let mod_inner_docs =
            matches!(item.kind, ItemKind::Mod(..)) && rustdoc::inner_docs(&item.attrs);
        if !mod_inner_docs && !matches!(item.kind, ItemKind::Impl(..) | ItemKind::Use(..)) {
            self.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
        }

        let name = item.ident.name;
        debug!("(resolving item) resolving {} ({:?})", name, item.kind);

        let def_kind = self.r.local_def_kind(item.id);
        match item.kind {
            ItemKind::TyAlias(box TyAlias { ref generics, .. }) => {
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        kind: LifetimeBinderKind::Item,
                        span: generics.span,
                    },
                    |this| visit::walk_item(this, item),
                );
            }

            ItemKind::Fn(box Fn { ref generics, .. }) => {
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        kind: LifetimeBinderKind::Function,
                        span: generics.span,
                    },
                    |this| visit::walk_item(this, item),
                );
            }

            ItemKind::Enum(_, ref generics)
            | ItemKind::Struct(_, ref generics)
            | ItemKind::Union(_, ref generics) => {
                self.resolve_adt(item, generics);
            }

            ItemKind::Impl(box Impl {
                ref generics,
                ref of_trait,
                ref self_ty,
                items: ref impl_items,
                ..
            }) => {
                self.diag_metadata.current_impl_items = Some(impl_items);
                self.resolve_implementation(
                    &item.attrs,
                    generics,
                    of_trait,
                    self_ty,
                    item.id,
                    impl_items,
                );
                self.diag_metadata.current_impl_items = None;
            }

            ItemKind::Trait(box Trait { ref generics, ref bounds, ref items, .. }) => {
                // Create a new rib for the trait-wide type parameters.
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        kind: LifetimeBinderKind::Item,
                        span: generics.span,
                    },
                    |this| {
                        let local_def_id = this.r.local_def_id(item.id).to_def_id();
                        this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
                            this.visit_generics(generics);
                            walk_list!(this, visit_param_bound, bounds, BoundKind::SuperTraits);
                            this.resolve_trait_items(items);
                        });
                    },
                );
            }

            ItemKind::TraitAlias(ref generics, ref bounds) => {
                // Create a new rib for the trait-wide type parameters.
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::Item(HasGenericParams::Yes(generics.span), def_kind),
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        kind: LifetimeBinderKind::Item,
                        span: generics.span,
                    },
                    |this| {
                        let local_def_id = this.r.local_def_id(item.id).to_def_id();
                        this.with_self_rib(Res::SelfTyParam { trait_: local_def_id }, |this| {
                            this.visit_generics(generics);
                            walk_list!(this, visit_param_bound, bounds, BoundKind::Bound);
                        });
                    },
                );
            }

            ItemKind::Mod(..) => {
                self.with_scope(item.id, |this| {
                    if mod_inner_docs {
                        this.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
                    }
                    let old_macro_rules = this.parent_scope.macro_rules;
                    visit::walk_item(this, item);
                    // Maintain macro_rules scopes in the same way as during early resolution
                    // for diagnostics and doc links.
                    if item.attrs.iter().all(|attr| {
                        !attr.has_name(sym::macro_use) && !attr.has_name(sym::macro_escape)
                    }) {
                        this.parent_scope.macro_rules = old_macro_rules;
                    }
                });
            }

            ItemKind::Static(box ast::StaticItem { ref ty, ref expr, .. }) => {
                self.with_static_rib(def_kind, |this| {
                    this.with_lifetime_rib(
                        LifetimeRibKind::Elided(LifetimeRes::Static {
                            suppress_elision_warning: true,
                        }),
                        |this| {
                            this.visit_ty(ty);
                        },
                    );
                    if let Some(expr) = expr {
                        // We already forbid generic params because of the above item rib,
                        // so it doesn't matter whether this is a trivial constant.
                        this.resolve_const_body(expr, Some((item.ident, ConstantItemKind::Static)));
                    }
                });
            }

            ItemKind::Const(box ast::ConstItem { ref generics, ref ty, ref expr, .. }) => {
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::Item(
                        if self.r.tcx.features().generic_const_items {
                            HasGenericParams::Yes(generics.span)
                        } else {
                            HasGenericParams::No
                        },
                        def_kind,
                    ),
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        kind: LifetimeBinderKind::ConstItem,
                        span: generics.span,
                    },
                    |this| {
                        this.visit_generics(generics);

                        this.with_lifetime_rib(
                            LifetimeRibKind::Elided(LifetimeRes::Static {
                                suppress_elision_warning: true,
                            }),
                            |this| this.visit_ty(ty),
                        );

                        if let Some(expr) = expr {
                            this.resolve_const_body(
                                expr,
                                Some((item.ident, ConstantItemKind::Const)),
                            );
                        }
                    },
                );
            }

            ItemKind::Use(ref use_tree) => {
                let maybe_exported = match use_tree.kind {
                    UseTreeKind::Simple(_) | UseTreeKind::Glob => MaybeExported::Ok(item.id),
                    UseTreeKind::Nested { .. } => MaybeExported::NestedUse(&item.vis),
                };
                self.resolve_doc_links(&item.attrs, maybe_exported);

                self.future_proof_import(use_tree);
            }

            ItemKind::MacroDef(ref macro_def) => {
                // Maintain macro_rules scopes in the same way as during early resolution
                // for diagnostics and doc links.
                if macro_def.macro_rules {
                    let def_id = self.r.local_def_id(item.id);
                    self.parent_scope.macro_rules = self.r.macro_rules_scopes[&def_id];
                }
            }

            ItemKind::ForeignMod(_) | ItemKind::GlobalAsm(_) => {
                visit::walk_item(self, item);
            }

            ItemKind::Delegation(ref delegation) => {
                let span = delegation.path.segments.last().unwrap().ident.span;
                self.with_generic_param_rib(
                    &[],
                    RibKind::Item(HasGenericParams::Yes(span), def_kind),
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        kind: LifetimeBinderKind::Function,
                        span,
                    },
                    |this| this.resolve_delegation(delegation),
                );
            }

            ItemKind::ExternCrate(..) => {}

            ItemKind::MacCall(_) | ItemKind::DelegationMac(..) => {
                panic!("unexpanded macro in resolve!")
            }
        }
    }

    fn with_generic_param_rib<'c, F>(
        &'c mut self,
        params: &'c [GenericParam],
        kind: RibKind<'ra>,
        lifetime_kind: LifetimeRibKind,
        f: F,
    ) where
        F: FnOnce(&mut Self),
    {
        debug!("with_generic_param_rib");
        let LifetimeRibKind::Generics { binder, span: generics_span, kind: generics_kind, .. } =
            lifetime_kind
        else {
            panic!()
        };

        let mut function_type_rib = Rib::new(kind);
        let mut function_value_rib = Rib::new(kind);
        let mut function_lifetime_rib = LifetimeRib::new(lifetime_kind);

        // Only check for shadowed bindings if we're declaring new params.
        if !params.is_empty() {
            let mut seen_bindings = FxHashMap::default();
            // Store all seen lifetimes names from outer scopes.
            let mut seen_lifetimes = FxHashSet::default();

            // We also can't shadow bindings from associated parent items.
            for ns in [ValueNS, TypeNS] {
                for parent_rib in self.ribs[ns].iter().rev() {
                    // Break at mod level, to account for nested items which are
                    // allowed to shadow generic param names.
                    if matches!(parent_rib.kind, RibKind::Module(..)) {
                        break;
                    }

                    seen_bindings
                        .extend(parent_rib.bindings.keys().map(|ident| (*ident, ident.span)));
                }
            }

            // Forbid shadowing lifetime bindings
            for rib in self.lifetime_ribs.iter().rev() {
                seen_lifetimes.extend(rib.bindings.iter().map(|(ident, _)| *ident));
                if let LifetimeRibKind::Item = rib.kind {
                    break;
                }
            }

            for param in params {
                let ident = param.ident.normalize_to_macros_2_0();
                debug!("with_generic_param_rib: {}", param.id);

                if let GenericParamKind::Lifetime = param.kind
                    && let Some(&original) = seen_lifetimes.get(&ident)
                {
                    diagnostics::signal_lifetime_shadowing(self.r.tcx.sess, original, param.ident);
                    // Record lifetime res, so lowering knows there is something fishy.
                    self.record_lifetime_param(param.id, LifetimeRes::Error);
                    continue;
                }

                match seen_bindings.entry(ident) {
                    Entry::Occupied(entry) => {
                        let span = *entry.get();
                        let err = ResolutionError::NameAlreadyUsedInParameterList(ident.name, span);
                        self.report_error(param.ident.span, err);
                        let rib = match param.kind {
                            GenericParamKind::Lifetime => {
                                // Record lifetime res, so lowering knows there is something fishy.
                                self.record_lifetime_param(param.id, LifetimeRes::Error);
                                continue;
                            }
                            GenericParamKind::Type { .. } => &mut function_type_rib,
                            GenericParamKind::Const { .. } => &mut function_value_rib,
                        };

                        // Taint the resolution in case of errors to prevent follow up errors in typeck
                        self.r.record_partial_res(param.id, PartialRes::new(Res::Err));
                        rib.bindings.insert(ident, Res::Err);
                        continue;
                    }
                    Entry::Vacant(entry) => {
                        entry.insert(param.ident.span);
                    }
                }

                if param.ident.name == kw::UnderscoreLifetime {
                    self.r
                        .dcx()
                        .emit_err(errors::UnderscoreLifetimeIsReserved { span: param.ident.span });
                    // Record lifetime res, so lowering knows there is something fishy.
                    self.record_lifetime_param(param.id, LifetimeRes::Error);
                    continue;
                }

                if param.ident.name == kw::StaticLifetime {
                    self.r.dcx().emit_err(errors::StaticLifetimeIsReserved {
                        span: param.ident.span,
                        lifetime: param.ident,
                    });
                    // Record lifetime res, so lowering knows there is something fishy.
                    self.record_lifetime_param(param.id, LifetimeRes::Error);
                    continue;
                }

                let def_id = self.r.local_def_id(param.id);

                // Plain insert (no renaming).
                let (rib, def_kind) = match param.kind {
                    GenericParamKind::Type { .. } => (&mut function_type_rib, DefKind::TyParam),
                    GenericParamKind::Const { .. } => {
                        (&mut function_value_rib, DefKind::ConstParam)
                    }
                    GenericParamKind::Lifetime => {
                        let res = LifetimeRes::Param { param: def_id, binder };
                        self.record_lifetime_param(param.id, res);
                        function_lifetime_rib.bindings.insert(ident, (param.id, res));
                        continue;
                    }
                };

                let res = match kind {
                    RibKind::Item(..) | RibKind::AssocItem => {
                        Res::Def(def_kind, def_id.to_def_id())
                    }
                    RibKind::Normal => {
                        // FIXME(non_lifetime_binders): Stop special-casing
                        // const params to error out here.
                        if self.r.tcx.features().non_lifetime_binders
                            && matches!(param.kind, GenericParamKind::Type { .. })
                        {
                            Res::Def(def_kind, def_id.to_def_id())
                        } else {
                            Res::Err
                        }
                    }
                    _ => span_bug!(param.ident.span, "Unexpected rib kind {:?}", kind),
                };
                self.r.record_partial_res(param.id, PartialRes::new(res));
                rib.bindings.insert(ident, res);
            }
        }

        self.lifetime_ribs.push(function_lifetime_rib);
        self.ribs[ValueNS].push(function_value_rib);
        self.ribs[TypeNS].push(function_type_rib);

        f(self);

        self.ribs[TypeNS].pop();
        self.ribs[ValueNS].pop();
        let function_lifetime_rib = self.lifetime_ribs.pop().unwrap();

        // Do not account for the parameters we just bound for function lifetime elision.
        if let Some(ref mut candidates) = self.lifetime_elision_candidates {
            for (_, res) in function_lifetime_rib.bindings.values() {
                candidates.retain(|(r, _)| r != res);
            }
        }

        if let LifetimeBinderKind::BareFnType
        | LifetimeBinderKind::WhereBound
        | LifetimeBinderKind::Function
        | LifetimeBinderKind::ImplBlock = generics_kind
        {
            self.maybe_report_lifetime_uses(generics_span, params)
        }
    }

    fn with_label_rib(&mut self, kind: RibKind<'ra>, f: impl FnOnce(&mut Self)) {
        self.label_ribs.push(Rib::new(kind));
        f(self);
        self.label_ribs.pop();
    }

    fn with_static_rib(&mut self, def_kind: DefKind, f: impl FnOnce(&mut Self)) {
        let kind = RibKind::Item(HasGenericParams::No, def_kind);
        self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
    }

    // HACK(min_const_generics, generic_const_exprs): We
    // want to keep allowing `[0; std::mem::size_of::<*mut T>()]`
    // with a future compat lint for now. We do this by adding an
    // additional special case for repeat expressions.
    //
    // Note that we intentionally still forbid `[0; N + 1]` during
    // name resolution so that we don't extend the future
    // compat lint to new cases.
    #[instrument(level = "debug", skip(self, f))]
    fn with_constant_rib(
        &mut self,
        is_repeat: IsRepeatExpr,
        may_use_generics: ConstantHasGenerics,
        item: Option<(Ident, ConstantItemKind)>,
        f: impl FnOnce(&mut Self),
    ) {
        let f = |this: &mut Self| {
            this.with_rib(ValueNS, RibKind::ConstantItem(may_use_generics, item), |this| {
                this.with_rib(
                    TypeNS,
                    RibKind::ConstantItem(
                        may_use_generics.force_yes_if(is_repeat == IsRepeatExpr::Yes),
                        item,
                    ),
                    |this| {
                        this.with_label_rib(RibKind::ConstantItem(may_use_generics, item), f);
                    },
                )
            })
        };

        if let ConstantHasGenerics::No(cause) = may_use_generics {
            self.with_lifetime_rib(LifetimeRibKind::ConcreteAnonConst(cause), f)
        } else {
            f(self)
        }
    }

    fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
        // Handle nested impls (inside fn bodies)
        let previous_value =
            replace(&mut self.diag_metadata.current_self_type, Some(self_type.clone()));
        let result = f(self);
        self.diag_metadata.current_self_type = previous_value;
        result
    }

    fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
        let previous_value = replace(&mut self.diag_metadata.current_self_item, Some(self_item.id));
        let result = f(self);
        self.diag_metadata.current_self_item = previous_value;
        result
    }

    /// When evaluating a `trait` use its associated types' idents for suggestions in E0412.
    fn resolve_trait_items(&mut self, trait_items: &'ast [P<AssocItem>]) {
        let trait_assoc_items =
            replace(&mut self.diag_metadata.current_trait_assoc_items, Some(trait_items));

        let walk_assoc_item =
            |this: &mut Self, generics: &Generics, kind, item: &'ast AssocItem| {
                this.with_generic_param_rib(
                    &generics.params,
                    RibKind::AssocItem,
                    LifetimeRibKind::Generics { binder: item.id, span: generics.span, kind },
                    |this| visit::walk_assoc_item(this, item, AssocCtxt::Trait),
                );
            };

        for item in trait_items {
            self.resolve_doc_links(&item.attrs, MaybeExported::Ok(item.id));
            match &item.kind {
                AssocItemKind::Const(box ast::ConstItem { generics, ty, expr, .. }) => {
                    self.with_generic_param_rib(
                        &generics.params,
                        RibKind::AssocItem,
                        LifetimeRibKind::Generics {
                            binder: item.id,
                            span: generics.span,
                            kind: LifetimeBinderKind::ConstItem,
                        },
                        |this| {
                            this.with_lifetime_rib(
                                LifetimeRibKind::StaticIfNoLifetimeInScope {
                                    lint_id: item.id,
                                    emit_lint: false,
                                },
                                |this| {
                                    this.visit_generics(generics);
                                    this.visit_ty(ty);

                                    // Only impose the restrictions of `ConstRibKind` for an
                                    // actual constant expression in a provided default.
                                    if let Some(expr) = expr {
                                        // We allow arbitrary const expressions inside of associated consts,
                                        // even if they are potentially not const evaluatable.
                                        //
                                        // Type parameters can already be used and as associated consts are
                                        // not used as part of the type system, this is far less surprising.
                                        this.resolve_const_body(expr, None);
                                    }
                                },
                            )
                        },
                    );
                }
                AssocItemKind::Fn(box Fn { generics, .. }) => {
                    walk_assoc_item(self, generics, LifetimeBinderKind::Function, item);
                }
                AssocItemKind::Delegation(delegation) => {
                    self.with_generic_param_rib(
                        &[],
                        RibKind::AssocItem,
                        LifetimeRibKind::Generics {
                            binder: item.id,
                            kind: LifetimeBinderKind::Function,
                            span: delegation.path.segments.last().unwrap().ident.span,
                        },
                        |this| this.resolve_delegation(delegation),
                    );
                }
                AssocItemKind::Type(box TyAlias { generics, .. }) => self
                    .with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
                        walk_assoc_item(this, generics, LifetimeBinderKind::Item, item)
                    }),
                AssocItemKind::MacCall(_) | AssocItemKind::DelegationMac(..) => {
                    panic!("unexpanded macro in resolve!")
                }
            };
        }

        self.diag_metadata.current_trait_assoc_items = trait_assoc_items;
    }

    /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
    fn with_optional_trait_ref<T>(
        &mut self,
        opt_trait_ref: Option<&TraitRef>,
        self_type: &'ast Ty,
        f: impl FnOnce(&mut Self, Option<DefId>) -> T,
    ) -> T {
        let mut new_val = None;
        let mut new_id = None;
        if let Some(trait_ref) = opt_trait_ref {
            let path: Vec<_> = Segment::from_path(&trait_ref.path);
            self.diag_metadata.currently_processing_impl_trait =
                Some((trait_ref.clone(), self_type.clone()));
            let res = self.smart_resolve_path_fragment(
                &None,
                &path,
                PathSource::Trait(AliasPossibility::No),
                Finalize::new(trait_ref.ref_id, trait_ref.path.span),
                RecordPartialRes::Yes,
            );
            self.diag_metadata.currently_processing_impl_trait = None;
            if let Some(def_id) = res.expect_full_res().opt_def_id() {
                new_id = Some(def_id);
                new_val = Some((self.r.expect_module(def_id), trait_ref.clone()));
            }
        }
        let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
        let result = f(self, new_id);
        self.current_trait_ref = original_trait_ref;
        result
    }

    fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
        let mut self_type_rib = Rib::new(RibKind::Normal);

        // Plain insert (no renaming, since types are not currently hygienic)
        self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
        self.ribs[ns].push(self_type_rib);
        f(self);
        self.ribs[ns].pop();
    }

    fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
        self.with_self_rib_ns(TypeNS, self_res, f)
    }

    fn resolve_implementation(
        &mut self,
        attrs: &[ast::Attribute],
        generics: &'ast Generics,
        opt_trait_reference: &'ast Option<TraitRef>,
        self_type: &'ast Ty,
        item_id: NodeId,
        impl_items: &'ast [P<AssocItem>],
    ) {
        debug!("resolve_implementation");
        // If applicable, create a rib for the type parameters.
        self.with_generic_param_rib(
            &generics.params,
            RibKind::Item(HasGenericParams::Yes(generics.span), self.r.local_def_kind(item_id)),
            LifetimeRibKind::Generics {
                span: generics.span,
                binder: item_id,
                kind: LifetimeBinderKind::ImplBlock,
            },
            |this| {
                // Dummy self type for better errors if `Self` is used in the trait path.
                this.with_self_rib(Res::SelfTyParam { trait_: LOCAL_CRATE.as_def_id() }, |this| {
                    this.with_lifetime_rib(
                        LifetimeRibKind::AnonymousCreateParameter {
                            binder: item_id,
                            report_in_path: true
                        },
                        |this| {
                            // Resolve the trait reference, if necessary.
                            this.with_optional_trait_ref(
                                opt_trait_reference.as_ref(),
                                self_type,
                                |this, trait_id| {
                                    this.resolve_doc_links(attrs, MaybeExported::Impl(trait_id));

                                    let item_def_id = this.r.local_def_id(item_id);

                                    // Register the trait definitions from here.
                                    if let Some(trait_id) = trait_id {
                                        this.r
                                            .trait_impls
                                            .entry(trait_id)
                                            .or_default()
                                            .push(item_def_id);
                                    }

                                    let item_def_id = item_def_id.to_def_id();
                                    let res = Res::SelfTyAlias {
                                        alias_to: item_def_id,
                                        forbid_generic: false,
                                        is_trait_impl: trait_id.is_some()
                                    };
                                    this.with_self_rib(res, |this| {
                                        if let Some(trait_ref) = opt_trait_reference.as_ref() {
                                            // Resolve type arguments in the trait path.
                                            visit::walk_trait_ref(this, trait_ref);
                                        }
                                        // Resolve the self type.
                                        this.visit_ty(self_type);
                                        // Resolve the generic parameters.
                                        this.visit_generics(generics);

                                        // Resolve the items within the impl.
                                        this.with_current_self_type(self_type, |this| {
                                            this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
                                                debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
                                                let mut seen_trait_items = Default::default();
                                                for item in impl_items {
                                                    this.resolve_impl_item(&**item, &mut seen_trait_items, trait_id);
                                                }
                                            });
                                        });
                                    });
                                },
                            )
                        },
                    );
                });
            },
        );
    }

    fn resolve_impl_item(
        &mut self,
        item: &'ast AssocItem,
        seen_trait_items: &mut FxHashMap<DefId, Span>,
        trait_id: Option<DefId>,
    ) {
        use crate::ResolutionError::*;
        self.resolve_doc_links(&item.attrs, MaybeExported::ImplItem(trait_id.ok_or(&item.vis)));
        match &item.kind {
            AssocItemKind::Const(box ast::ConstItem { generics, ty, expr, .. }) => {
                debug!("resolve_implementation AssocItemKind::Const");
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::AssocItem,
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        span: generics.span,
                        kind: LifetimeBinderKind::ConstItem,
                    },
                    |this| {
                        this.with_lifetime_rib(
                            LifetimeRibKind::StaticIfNoLifetimeInScope {
                                lint_id: item.id,
                                // In impls, it's not a hard error yet due to backcompat.
                                emit_lint: true,
                            },
                            |this| {
                                // If this is a trait impl, ensure the const
                                // exists in trait
                                this.check_trait_item(
                                    item.id,
                                    item.ident,
                                    &item.kind,
                                    ValueNS,
                                    item.span,
                                    seen_trait_items,
                                    |i, s, c| ConstNotMemberOfTrait(i, s, c),
                                );

                                this.visit_generics(generics);
                                this.visit_ty(ty);
                                if let Some(expr) = expr {
                                    // We allow arbitrary const expressions inside of associated consts,
                                    // even if they are potentially not const evaluatable.
                                    //
                                    // Type parameters can already be used and as associated consts are
                                    // not used as part of the type system, this is far less surprising.
                                    this.resolve_const_body(expr, None);
                                }
                            },
                        );
                    },
                );
            }
            AssocItemKind::Fn(box Fn { generics, .. }) => {
                debug!("resolve_implementation AssocItemKind::Fn");
                // We also need a new scope for the impl item type parameters.
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::AssocItem,
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        span: generics.span,
                        kind: LifetimeBinderKind::Function,
                    },
                    |this| {
                        // If this is a trait impl, ensure the method
                        // exists in trait
                        this.check_trait_item(
                            item.id,
                            item.ident,
                            &item.kind,
                            ValueNS,
                            item.span,
                            seen_trait_items,
                            |i, s, c| MethodNotMemberOfTrait(i, s, c),
                        );

                        visit::walk_assoc_item(this, item, AssocCtxt::Impl)
                    },
                );
            }
            AssocItemKind::Type(box TyAlias { generics, .. }) => {
                self.diag_metadata.in_non_gat_assoc_type = Some(generics.params.is_empty());
                debug!("resolve_implementation AssocItemKind::Type");
                // We also need a new scope for the impl item type parameters.
                self.with_generic_param_rib(
                    &generics.params,
                    RibKind::AssocItem,
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        span: generics.span,
                        kind: LifetimeBinderKind::Item,
                    },
                    |this| {
                        this.with_lifetime_rib(LifetimeRibKind::AnonymousReportError, |this| {
                            // If this is a trait impl, ensure the type
                            // exists in trait
                            this.check_trait_item(
                                item.id,
                                item.ident,
                                &item.kind,
                                TypeNS,
                                item.span,
                                seen_trait_items,
                                |i, s, c| TypeNotMemberOfTrait(i, s, c),
                            );

                            visit::walk_assoc_item(this, item, AssocCtxt::Impl)
                        });
                    },
                );
                self.diag_metadata.in_non_gat_assoc_type = None;
            }
            AssocItemKind::Delegation(box delegation) => {
                debug!("resolve_implementation AssocItemKind::Delegation");
                self.with_generic_param_rib(
                    &[],
                    RibKind::AssocItem,
                    LifetimeRibKind::Generics {
                        binder: item.id,
                        kind: LifetimeBinderKind::Function,
                        span: delegation.path.segments.last().unwrap().ident.span,
                    },
                    |this| {
                        this.check_trait_item(
                            item.id,
                            item.ident,
                            &item.kind,
                            ValueNS,
                            item.span,
                            seen_trait_items,
                            |i, s, c| MethodNotMemberOfTrait(i, s, c),
                        );

                        this.resolve_delegation(delegation)
                    },
                );
            }
            AssocItemKind::MacCall(_) | AssocItemKind::DelegationMac(..) => {
                panic!("unexpanded macro in resolve!")
            }
        }
    }

    fn check_trait_item<F>(
        &mut self,
        id: NodeId,
        mut ident: Ident,
        kind: &AssocItemKind,
        ns: Namespace,
        span: Span,
        seen_trait_items: &mut FxHashMap<DefId, Span>,
        err: F,
    ) where
        F: FnOnce(Ident, String, Option<Symbol>) -> ResolutionError<'ra>,
    {
        // If there is a TraitRef in scope for an impl, then the method must be in the trait.
        let Some((module, _)) = self.current_trait_ref else {
            return;
        };
        ident.span.normalize_to_macros_2_0_and_adjust(module.expansion);
        let key = BindingKey::new(ident, ns);
        let mut binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
        debug!(?binding);
        if binding.is_none() {
            // We could not find the trait item in the correct namespace.
            // Check the other namespace to report an error.
            let ns = match ns {
                ValueNS => TypeNS,
                TypeNS => ValueNS,
                _ => ns,
            };
            let key = BindingKey::new(ident, ns);
            binding = self.r.resolution(module, key).try_borrow().ok().and_then(|r| r.binding);
            debug!(?binding);
        }

        let feed_visibility = |this: &mut Self, def_id| {
            let vis = this.r.tcx.visibility(def_id);
            let vis = if vis.is_visible_locally() {
                vis.expect_local()
            } else {
                this.r.dcx().span_delayed_bug(
                    span,
                    "error should be emitted when an unexpected trait item is used",
                );
                rustc_middle::ty::Visibility::Public
            };
            this.r.feed_visibility(this.r.feed(id), vis);
        };

        let Some(binding) = binding else {
            // We could not find the method: report an error.
            let candidate = self.find_similarly_named_assoc_item(ident.name, kind);
            let path = &self.current_trait_ref.as_ref().unwrap().1.path;
            let path_names = path_names_to_string(path);
            self.report_error(span, err(ident, path_names, candidate));
            feed_visibility(self, module.def_id());
            return;
        };

        let res = binding.res();
        let Res::Def(def_kind, id_in_trait) = res else { bug!() };
        feed_visibility(self, id_in_trait);

        match seen_trait_items.entry(id_in_trait) {
            Entry::Occupied(entry) => {
                self.report_error(span, ResolutionError::TraitImplDuplicate {
                    name: ident.name,
                    old_span: *entry.get(),
                    trait_item_span: binding.span,
                });
                return;
            }
            Entry::Vacant(entry) => {
                entry.insert(span);
            }
        };

        match (def_kind, kind) {
            (DefKind::AssocTy, AssocItemKind::Type(..))
            | (DefKind::AssocFn, AssocItemKind::Fn(..))
            | (DefKind::AssocConst, AssocItemKind::Const(..))
            | (DefKind::AssocFn, AssocItemKind::Delegation(..)) => {
                self.r.record_partial_res(id, PartialRes::new(res));
                return;
            }
            _ => {}
        }

        // The method kind does not correspond to what appeared in the trait, report.
        let path = &self.current_trait_ref.as_ref().unwrap().1.path;
        let (code, kind) = match kind {
            AssocItemKind::Const(..) => (E0323, "const"),
            AssocItemKind::Fn(..) => (E0324, "method"),
            AssocItemKind::Type(..) => (E0325, "type"),
            AssocItemKind::Delegation(..) => (E0324, "method"),
            AssocItemKind::MacCall(..) | AssocItemKind::DelegationMac(..) => {
                span_bug!(span, "unexpanded macro")
            }
        };
        let trait_path = path_names_to_string(path);
        self.report_error(span, ResolutionError::TraitImplMismatch {
            name: ident.name,
            kind,
            code,
            trait_path,
            trait_item_span: binding.span,
        });
    }

    fn resolve_const_body(&mut self, expr: &'ast Expr, item: Option<(Ident, ConstantItemKind)>) {
        self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
            this.with_constant_rib(IsRepeatExpr::No, ConstantHasGenerics::Yes, item, |this| {
                this.visit_expr(expr)
            });
        })
    }

    fn resolve_delegation(&mut self, delegation: &'ast Delegation) {
        self.smart_resolve_path(
            delegation.id,
            &delegation.qself,
            &delegation.path,
            PathSource::Delegation,
        );
        if let Some(qself) = &delegation.qself {
            self.visit_ty(&qself.ty);
        }
        self.visit_path(&delegation.path, delegation.id);
        if let Some(body) = &delegation.body {
            self.with_rib(ValueNS, RibKind::FnOrCoroutine, |this| {
                // `PatBoundCtx` is not necessary in this context
                let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];

                let span = delegation.path.segments.last().unwrap().ident.span;
                this.fresh_binding(
                    Ident::new(kw::SelfLower, span),
                    delegation.id,
                    PatternSource::FnParam,
                    &mut bindings,
                );
                this.visit_block(body);
            });
        }
    }

    fn resolve_params(&mut self, params: &'ast [Param]) {
        let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
        self.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
            for Param { pat, .. } in params {
                this.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
            }
        });
        for Param { ty, .. } in params {
            self.visit_ty(ty);
        }
    }

    fn resolve_local(&mut self, local: &'ast Local) {
        debug!("resolving local ({:?})", local);
        // Resolve the type.
        visit_opt!(self, visit_ty, &local.ty);

        // Resolve the initializer.
        if let Some((init, els)) = local.kind.init_else_opt() {
            self.visit_expr(init);

            // Resolve the `else` block
            if let Some(els) = els {
                self.visit_block(els);
            }
        }

        // Resolve the pattern.
        self.resolve_pattern_top(&local.pat, PatternSource::Let);
    }

    /// Build a map from pattern identifiers to binding-info's, and check the bindings are
    /// consistent when encountering or-patterns and never patterns.
    /// This is done hygienically: this could arise for a macro that expands into an or-pattern
    /// where one 'x' was from the user and one 'x' came from the macro.
    ///
    /// A never pattern by definition indicates an unreachable case. For example, matching on
    /// `Result<T, &!>` could look like:
    /// ```rust
    /// # #![feature(never_type)]
    /// # #![feature(never_patterns)]
    /// # fn bar(_x: u32) {}
    /// let foo: Result<u32, &!> = Ok(0);
    /// match foo {
    ///     Ok(x) => bar(x),
    ///     Err(&!),
    /// }
    /// ```
    /// This extends to product types: `(x, !)` is likewise unreachable. So it doesn't make sense to
    /// have a binding here, and we tell the user to use `_` instead.
    fn compute_and_check_binding_map(
        &mut self,
        pat: &Pat,
    ) -> Result<FxIndexMap<Ident, BindingInfo>, IsNeverPattern> {
        let mut binding_map = FxIndexMap::default();
        let mut is_never_pat = false;

        pat.walk(&mut |pat| {
            match pat.kind {
                PatKind::Ident(annotation, ident, ref sub_pat)
                    if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
                {
                    binding_map.insert(ident, BindingInfo { span: ident.span, annotation });
                }
                PatKind::Or(ref ps) => {
                    // Check the consistency of this or-pattern and
                    // then add all bindings to the larger map.
                    match self.compute_and_check_or_pat_binding_map(ps) {
                        Ok(bm) => binding_map.extend(bm),
                        Err(IsNeverPattern) => is_never_pat = true,
                    }
                    return false;
                }
                PatKind::Never => is_never_pat = true,
                _ => {}
            }

            true
        });

        if is_never_pat {
            for (_, binding) in binding_map {
                self.report_error(binding.span, ResolutionError::BindingInNeverPattern);
            }
            Err(IsNeverPattern)
        } else {
            Ok(binding_map)
        }
    }

    fn is_base_res_local(&self, nid: NodeId) -> bool {
        matches!(
            self.r.partial_res_map.get(&nid).map(|res| res.expect_full_res()),
            Some(Res::Local(..))
        )
    }

    /// Compute the binding map for an or-pattern. Checks that all of the arms in the or-pattern
    /// have exactly the same set of bindings, with the same binding modes for each.
    /// Returns the computed binding map and a boolean indicating whether the pattern is a never
    /// pattern.
    ///
    /// A never pattern by definition indicates an unreachable case. For example, destructuring a
    /// `Result<T, &!>` could look like:
    /// ```rust
    /// # #![feature(never_type)]
    /// # #![feature(never_patterns)]
    /// # fn foo() -> Result<bool, &'static !> { Ok(true) }
    /// let (Ok(x) | Err(&!)) = foo();
    /// # let _ = x;
    /// ```
    /// Because the `Err(&!)` branch is never reached, it does not need to have the same bindings as
    /// the other branches of the or-pattern. So we must ignore never pattern when checking the
    /// bindings of an or-pattern.
    /// Moreover, if all the subpatterns are never patterns (e.g. `Ok(!) | Err(!)`), then the
    /// pattern as a whole counts as a never pattern (since it's definitionallly unreachable).
    fn compute_and_check_or_pat_binding_map(
        &mut self,
        pats: &[P<Pat>],
    ) -> Result<FxIndexMap<Ident, BindingInfo>, IsNeverPattern> {
        let mut missing_vars = FxIndexMap::default();
        let mut inconsistent_vars = FxIndexMap::default();

        // 1) Compute the binding maps of all arms; we must ignore never patterns here.
        let not_never_pats = pats
            .iter()
            .filter_map(|pat| {
                let binding_map = self.compute_and_check_binding_map(pat).ok()?;
                Some((binding_map, pat))
            })
            .collect::<Vec<_>>();

        // 2) Record any missing bindings or binding mode inconsistencies.
        for (map_outer, pat_outer) in not_never_pats.iter() {
            // Check against all arms except for the same pattern which is always self-consistent.
            let inners = not_never_pats
                .iter()
                .filter(|(_, pat)| pat.id != pat_outer.id)
                .flat_map(|(map, _)| map);

            for (key, binding_inner) in inners {
                let name = key.name;
                match map_outer.get(key) {
                    None => {
                        // The inner binding is missing in the outer.
                        let binding_error =
                            missing_vars.entry(name).or_insert_with(|| BindingError {
                                name,
                                origin: BTreeSet::new(),
                                target: BTreeSet::new(),
                                could_be_path: name.as_str().starts_with(char::is_uppercase),
                            });
                        binding_error.origin.insert(binding_inner.span);
                        binding_error.target.insert(pat_outer.span);
                    }
                    Some(binding_outer) => {
                        if binding_outer.annotation != binding_inner.annotation {
                            // The binding modes in the outer and inner bindings differ.
                            inconsistent_vars
                                .entry(name)
                                .or_insert((binding_inner.span, binding_outer.span));
                        }
                    }
                }
            }
        }

        // 3) Report all missing variables we found.
        for (name, mut v) in missing_vars {
            if inconsistent_vars.contains_key(&name) {
                v.could_be_path = false;
            }
            self.report_error(
                *v.origin.iter().next().unwrap(),
                ResolutionError::VariableNotBoundInPattern(v, self.parent_scope),
            );
        }

        // 4) Report all inconsistencies in binding modes we found.
        for (name, v) in inconsistent_vars {
            self.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(name, v.1));
        }

        // 5) Bubble up the final binding map.
        if not_never_pats.is_empty() {
            // All the patterns are never patterns, so the whole or-pattern is one too.
            Err(IsNeverPattern)
        } else {
            let mut binding_map = FxIndexMap::default();
            for (bm, _) in not_never_pats {
                binding_map.extend(bm);
            }
            Ok(binding_map)
        }
    }

    /// Check the consistency of bindings wrt or-patterns and never patterns.
    fn check_consistent_bindings(&mut self, pat: &'ast Pat) {
        let mut is_or_or_never = false;
        pat.walk(&mut |pat| match pat.kind {
            PatKind::Or(..) | PatKind::Never => {
                is_or_or_never = true;
                false
            }
            _ => true,
        });
        if is_or_or_never {
            let _ = self.compute_and_check_binding_map(pat);
        }
    }

    fn resolve_arm(&mut self, arm: &'ast Arm) {
        self.with_rib(ValueNS, RibKind::Normal, |this| {
            this.resolve_pattern_top(&arm.pat, PatternSource::Match);
            visit_opt!(this, visit_expr, &arm.guard);
            visit_opt!(this, visit_expr, &arm.body);
        });
    }

    /// Arising from `source`, resolve a top level pattern.
    fn resolve_pattern_top(&mut self, pat: &'ast Pat, pat_src: PatternSource) {
        let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
        self.resolve_pattern(pat, pat_src, &mut bindings);
    }

    fn resolve_pattern(
        &mut self,
        pat: &'ast Pat,
        pat_src: PatternSource,
        bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
    ) {
        // We walk the pattern before declaring the pattern's inner bindings,
        // so that we avoid resolving a literal expression to a binding defined
        // by the pattern.
        visit::walk_pat(self, pat);
        self.resolve_pattern_inner(pat, pat_src, bindings);
        // This has to happen *after* we determine which pat_idents are variants:
        self.check_consistent_bindings(pat);
    }

    /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
    ///
    /// ### `bindings`
    ///
    /// A stack of sets of bindings accumulated.
    ///
    /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
    /// be interpreted as re-binding an already bound binding. This results in an error.
    /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
    /// in reusing this binding rather than creating a fresh one.
    ///
    /// When called at the top level, the stack must have a single element
    /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
    /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
    /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
    /// When each `p_i` has been dealt with, the top set is merged with its parent.
    /// When a whole or-pattern has been dealt with, the thing happens.
    ///
    /// See the implementation and `fresh_binding` for more details.
    fn resolve_pattern_inner(
        &mut self,
        pat: &Pat,
        pat_src: PatternSource,
        bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
    ) {
        // Visit all direct subpatterns of this pattern.
        pat.walk(&mut |pat| {
            debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
            match pat.kind {
                PatKind::Ident(bmode, ident, ref sub) => {
                    // First try to resolve the identifier as some existing entity,
                    // then fall back to a fresh binding.
                    let has_sub = sub.is_some();
                    let res = self
                        .try_resolve_as_non_binding(pat_src, bmode, ident, has_sub)
                        .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
                    self.r.record_partial_res(pat.id, PartialRes::new(res));
                    self.r.record_pat_span(pat.id, pat.span);
                }
                PatKind::TupleStruct(ref qself, ref path, ref sub_patterns) => {
                    self.smart_resolve_path(
                        pat.id,
                        qself,
                        path,
                        PathSource::TupleStruct(
                            pat.span,
                            self.r.arenas.alloc_pattern_spans(sub_patterns.iter().map(|p| p.span)),
                        ),
                    );
                }
                PatKind::Path(ref qself, ref path) => {
                    self.smart_resolve_path(pat.id, qself, path, PathSource::Pat);
                }
                PatKind::Struct(ref qself, ref path, ..) => {
                    self.smart_resolve_path(pat.id, qself, path, PathSource::Struct);
                }
                PatKind::Or(ref ps) => {
                    // Add a new set of bindings to the stack. `Or` here records that when a
                    // binding already exists in this set, it should not result in an error because
                    // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
                    bindings.push((PatBoundCtx::Or, Default::default()));
                    for p in ps {
                        // Now we need to switch back to a product context so that each
                        // part of the or-pattern internally rejects already bound names.
                        // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
                        bindings.push((PatBoundCtx::Product, Default::default()));
                        self.resolve_pattern_inner(p, pat_src, bindings);
                        // Move up the non-overlapping bindings to the or-pattern.
                        // Existing bindings just get "merged".
                        let collected = bindings.pop().unwrap().1;
                        bindings.last_mut().unwrap().1.extend(collected);
                    }
                    // This or-pattern itself can itself be part of a product,
                    // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
                    // Both cases bind `a` again in a product pattern and must be rejected.
                    let collected = bindings.pop().unwrap().1;
                    bindings.last_mut().unwrap().1.extend(collected);

                    // Prevent visiting `ps` as we've already done so above.
                    return false;
                }
                _ => {}
            }
            true
        });
    }

    fn fresh_binding(
        &mut self,
        ident: Ident,
        pat_id: NodeId,
        pat_src: PatternSource,
        bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
    ) -> Res {
        // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
        // (We must not add it if it's in the bindings map because that breaks the assumptions
        // later passes make about or-patterns.)
        let ident = ident.normalize_to_macro_rules();

        let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
        // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
        let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
        // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
        // This is *required* for consistency which is checked later.
        let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);

        if already_bound_and {
            // Overlap in a product pattern somewhere; report an error.
            use ResolutionError::*;
            let error = match pat_src {
                // `fn f(a: u8, a: u8)`:
                PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
                // `Variant(a, a)`:
                _ => IdentifierBoundMoreThanOnceInSamePattern,
            };
            self.report_error(ident.span, error(ident.name));
        }

        // Record as bound if it's valid:
        let ident_valid = ident.name != kw::Empty;
        if ident_valid {
            bindings.last_mut().unwrap().1.insert(ident);
        }

        if already_bound_or {
            // `Variant1(a) | Variant2(a)`, ok
            // Reuse definition from the first `a`.
            self.innermost_rib_bindings(ValueNS)[&ident]
        } else {
            let res = Res::Local(pat_id);
            if ident_valid {
                // A completely fresh binding add to the set if it's valid.
                self.innermost_rib_bindings(ValueNS).insert(ident, res);
            }
            res
        }
    }

    fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
        &mut self.ribs[ns].last_mut().unwrap().bindings
    }

    fn try_resolve_as_non_binding(
        &mut self,
        pat_src: PatternSource,
        ann: BindingMode,
        ident: Ident,
        has_sub: bool,
    ) -> Option<Res> {
        // An immutable (no `mut`) by-value (no `ref`) binding pattern without
        // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
        // also be interpreted as a path to e.g. a constant, variant, etc.
        let is_syntactic_ambiguity = !has_sub && ann == BindingMode::NONE;

        let ls_binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS)?;
        let (res, binding) = match ls_binding {
            LexicalScopeBinding::Item(binding)
                if is_syntactic_ambiguity && binding.is_ambiguity_recursive() =>
            {
                // For ambiguous bindings we don't know all their definitions and cannot check
                // whether they can be shadowed by fresh bindings or not, so force an error.
                // issues/33118#issuecomment-233962221 (see below) still applies here,
                // but we have to ignore it for backward compatibility.
                self.r.record_use(ident, binding, Used::Other);
                return None;
            }
            LexicalScopeBinding::Item(binding) => (binding.res(), Some(binding)),
            LexicalScopeBinding::Res(res) => (res, None),
        };

        match res {
            Res::SelfCtor(_) // See #70549.
            | Res::Def(
                DefKind::Ctor(_, CtorKind::Const) | DefKind::Const | DefKind::ConstParam,
                _,
            ) if is_syntactic_ambiguity => {
                // Disambiguate in favor of a unit struct/variant or constant pattern.
                if let Some(binding) = binding {
                    self.r.record_use(ident, binding, Used::Other);
                }
                Some(res)
            }
            Res::Def(DefKind::Ctor(..) | DefKind::Const | DefKind::Static { .. }, _) => {
                // This is unambiguously a fresh binding, either syntactically
                // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
                // to something unusable as a pattern (e.g., constructor function),
                // but we still conservatively report an error, see
                // issues/33118#issuecomment-233962221 for one reason why.
                let binding = binding.expect("no binding for a ctor or static");
                self.report_error(
                    ident.span,
                    ResolutionError::BindingShadowsSomethingUnacceptable {
                        shadowing_binding: pat_src,
                        name: ident.name,
                        participle: if binding.is_import() { "imported" } else { "defined" },
                        article: binding.res().article(),
                        shadowed_binding: binding.res(),
                        shadowed_binding_span: binding.span,
                    },
                );
                None
            }
            Res::Def(DefKind::ConstParam, def_id) => {
                // Same as for DefKind::Const above, but here, `binding` is `None`, so we
                // have to construct the error differently
                self.report_error(
                    ident.span,
                    ResolutionError::BindingShadowsSomethingUnacceptable {
                        shadowing_binding: pat_src,
                        name: ident.name,
                        participle: "defined",
                        article: res.article(),
                        shadowed_binding: res,
                        shadowed_binding_span: self.r.def_span(def_id),
                    }
                );
                None
            }
            Res::Def(DefKind::Fn, _) | Res::Local(..) | Res::Err => {
                // These entities are explicitly allowed to be shadowed by fresh bindings.
                None
            }
            Res::SelfCtor(_) => {
                // We resolve `Self` in pattern position as an ident sometimes during recovery,
                // so delay a bug instead of ICEing. (Note: is this no longer true? We now ICE. If
                // this triggers, please convert to a delayed bug and add a test.)
                self.r.dcx().span_bug(
                    ident.span,
                    "unexpected `SelfCtor` in pattern, expected identifier"
                );
            }
            _ => span_bug!(
                ident.span,
                "unexpected resolution for an identifier in pattern: {:?}",
                res,
            ),
        }
    }

    // High-level and context dependent path resolution routine.
    // Resolves the path and records the resolution into definition map.
    // If resolution fails tries several techniques to find likely
    // resolution candidates, suggest imports or other help, and report
    // errors in user friendly way.
    fn smart_resolve_path(
        &mut self,
        id: NodeId,
        qself: &Option<P<QSelf>>,
        path: &Path,
        source: PathSource<'ast>,
    ) {
        self.smart_resolve_path_fragment(
            qself,
            &Segment::from_path(path),
            source,
            Finalize::new(id, path.span),
            RecordPartialRes::Yes,
        );
    }

    #[instrument(level = "debug", skip(self))]
    fn smart_resolve_path_fragment(
        &mut self,
        qself: &Option<P<QSelf>>,
        path: &[Segment],
        source: PathSource<'ast>,
        finalize: Finalize,
        record_partial_res: RecordPartialRes,
    ) -> PartialRes {
        let ns = source.namespace();

        let Finalize { node_id, path_span, .. } = finalize;
        let report_errors = |this: &mut Self, res: Option<Res>| {
            if this.should_report_errs() {
                let (err, candidates) =
                    this.smart_resolve_report_errors(path, None, path_span, source, res);

                let def_id = this.parent_scope.module.nearest_parent_mod();
                let instead = res.is_some();
                let suggestion = if let Some((start, end)) = this.diag_metadata.in_range
                    && path[0].ident.span.lo() == end.span.lo()
                {
                    let mut sugg = ".";
                    let mut span = start.span.between(end.span);
                    if span.lo() + BytePos(2) == span.hi() {
                        // There's no space between the start, the range op and the end, suggest
                        // removal which will look better.
                        span = span.with_lo(span.lo() + BytePos(1));
                        sugg = "";
                    }
                    Some((
                        span,
                        "you might have meant to write `.` instead of `..`",
                        sugg.to_string(),
                        Applicability::MaybeIncorrect,
                    ))
                } else if res.is_none()
                    && let PathSource::Type
                    | PathSource::Expr(_)
                    | PathSource::PreciseCapturingArg(..) = source
                {
                    this.suggest_adding_generic_parameter(path, source)
                } else {
                    None
                };

                let ue = UseError {
                    err,
                    candidates,
                    def_id,
                    instead,
                    suggestion,
                    path: path.into(),
                    is_call: source.is_call(),
                };

                this.r.use_injections.push(ue);
            }

            PartialRes::new(Res::Err)
        };

        // For paths originating from calls (like in `HashMap::new()`), tries
        // to enrich the plain `failed to resolve: ...` message with hints
        // about possible missing imports.
        //
        // Similar thing, for types, happens in `report_errors` above.
        let report_errors_for_call =
            |this: &mut Self, parent_err: Spanned<ResolutionError<'ra>>| {
                // Before we start looking for candidates, we have to get our hands
                // on the type user is trying to perform invocation on; basically:
                // we're transforming `HashMap::new` into just `HashMap`.
                let (following_seg, prefix_path) = match path.split_last() {
                    Some((last, path)) if !path.is_empty() => (Some(last), path),
                    _ => return Some(parent_err),
                };

                let (mut err, candidates) = this.smart_resolve_report_errors(
                    prefix_path,
                    following_seg,
                    path_span,
                    PathSource::Type,
                    None,
                );

                // There are two different error messages user might receive at
                // this point:
                // - E0412 cannot find type `{}` in this scope
                // - E0433 failed to resolve: use of undeclared type or module `{}`
                //
                // The first one is emitted for paths in type-position, and the
                // latter one - for paths in expression-position.
                //
                // Thus (since we're in expression-position at this point), not to
                // confuse the user, we want to keep the *message* from E0433 (so
                // `parent_err`), but we want *hints* from E0412 (so `err`).
                //
                // And that's what happens below - we're just mixing both messages
                // into a single one.
                let mut parent_err = this.r.into_struct_error(parent_err.span, parent_err.node);

                // overwrite all properties with the parent's error message
                err.messages = take(&mut parent_err.messages);
                err.code = take(&mut parent_err.code);
                swap(&mut err.span, &mut parent_err.span);
                err.children = take(&mut parent_err.children);
                err.sort_span = parent_err.sort_span;
                err.is_lint = parent_err.is_lint.clone();

                // merge the parent_err's suggestions with the typo (err's) suggestions
                match &mut err.suggestions {
                    Suggestions::Enabled(typo_suggestions) => match &mut parent_err.suggestions {
                        Suggestions::Enabled(parent_suggestions) => {
                            // If both suggestions are enabled, append parent_err's suggestions to err's suggestions.
                            typo_suggestions.append(parent_suggestions)
                        }
                        Suggestions::Sealed(_) | Suggestions::Disabled => {
                            // If the parent's suggestions are either sealed or disabled, it signifies that
                            // new suggestions cannot be added or removed from the diagnostic. Therefore,
                            // we assign both types of suggestions to err's suggestions and discard the
                            // existing suggestions in err.
                            err.suggestions = std::mem::take(&mut parent_err.suggestions);
                        }
                    },
                    Suggestions::Sealed(_) | Suggestions::Disabled => (),
                }

                parent_err.cancel();

                let def_id = this.parent_scope.module.nearest_parent_mod();

                if this.should_report_errs() {
                    if candidates.is_empty() {
                        if path.len() == 2
                            && let [segment] = prefix_path
                        {
                            // Delay to check whether methond name is an associated function or not
                            // ```
                            // let foo = Foo {};
                            // foo::bar(); // possibly suggest to foo.bar();
                            //```
                            err.stash(segment.ident.span, rustc_errors::StashKey::CallAssocMethod);
                        } else {
                            // When there is no suggested imports, we can just emit the error
                            // and suggestions immediately. Note that we bypass the usually error
                            // reporting routine (ie via `self.r.report_error`) because we need
                            // to post-process the `ResolutionError` above.
                            err.emit();
                        }
                    } else {
                        // If there are suggested imports, the error reporting is delayed
                        this.r.use_injections.push(UseError {
                            err,
                            candidates,
                            def_id,
                            instead: false,
                            suggestion: None,
                            path: prefix_path.into(),
                            is_call: source.is_call(),
                        });
                    }
                } else {
                    err.cancel();
                }

                // We don't return `Some(parent_err)` here, because the error will
                // be already printed either immediately or as part of the `use` injections
                None
            };

        let partial_res = match self.resolve_qpath_anywhere(
            qself,
            path,
            ns,
            path_span,
            source.defer_to_typeck(),
            finalize,
        ) {
            Ok(Some(partial_res)) if let Some(res) = partial_res.full_res() => {
                // if we also have an associated type that matches the ident, stash a suggestion
                if let Some(items) = self.diag_metadata.current_trait_assoc_items
                    && let [Segment { ident, .. }] = path
                    && items.iter().any(|item| {
                        item.ident == *ident && matches!(item.kind, AssocItemKind::Type(_))
                    })
                {
                    let mut diag = self.r.tcx.dcx().struct_allow("");
                    diag.span_suggestion_verbose(
                        path_span.shrink_to_lo(),
                        "there is an associated type with the same name",
                        "Self::",
                        Applicability::MaybeIncorrect,
                    );
                    diag.stash(path_span, StashKey::AssociatedTypeSuggestion);
                }

                if source.is_expected(res) || res == Res::Err {
                    partial_res
                } else {
                    report_errors(self, Some(res))
                }
            }

            Ok(Some(partial_res)) if source.defer_to_typeck() => {
                // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
                // or `<T>::A::B`. If `B` should be resolved in value namespace then
                // it needs to be added to the trait map.
                if ns == ValueNS {
                    let item_name = path.last().unwrap().ident;
                    let traits = self.traits_in_scope(item_name, ns);
                    self.r.trait_map.insert(node_id, traits);
                }

                if PrimTy::from_name(path[0].ident.name).is_some() {
                    let mut std_path = Vec::with_capacity(1 + path.len());

                    std_path.push(Segment::from_ident(Ident::with_dummy_span(sym::std)));
                    std_path.extend(path);
                    if let PathResult::Module(_) | PathResult::NonModule(_) =
                        self.resolve_path(&std_path, Some(ns), None)
                    {
                        // Check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
                        let item_span =
                            path.iter().last().map_or(path_span, |segment| segment.ident.span);

                        self.r.confused_type_with_std_module.insert(item_span, path_span);
                        self.r.confused_type_with_std_module.insert(path_span, path_span);
                    }
                }

                partial_res
            }

            Err(err) => {
                if let Some(err) = report_errors_for_call(self, err) {
                    self.report_error(err.span, err.node);
                }

                PartialRes::new(Res::Err)
            }

            _ => report_errors(self, None),
        };

        if record_partial_res == RecordPartialRes::Yes {
            // Avoid recording definition of `A::B` in `<T as A>::B::C`.
            self.r.record_partial_res(node_id, partial_res);
            self.resolve_elided_lifetimes_in_path(partial_res, path, source, path_span);
            self.lint_unused_qualifications(path, ns, finalize);
        }

        partial_res
    }

    fn self_type_is_available(&mut self) -> bool {
        let binding = self
            .maybe_resolve_ident_in_lexical_scope(Ident::with_dummy_span(kw::SelfUpper), TypeNS);
        if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
    }

    fn self_value_is_available(&mut self, self_span: Span) -> bool {
        let ident = Ident::new(kw::SelfLower, self_span);
        let binding = self.maybe_resolve_ident_in_lexical_scope(ident, ValueNS);
        if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
    }

    /// A wrapper around [`Resolver::report_error`].
    ///
    /// This doesn't emit errors for function bodies if this is rustdoc.
    fn report_error(&mut self, span: Span, resolution_error: ResolutionError<'ra>) {
        if self.should_report_errs() {
            self.r.report_error(span, resolution_error);
        }
    }

    #[inline]
    /// If we're actually rustdoc then avoid giving a name resolution error for `cfg()` items or
    // an invalid `use foo::*;` was found, which can cause unbounded ammounts of "item not found"
    // errors. We silence them all.
    fn should_report_errs(&self) -> bool {
        !(self.r.tcx.sess.opts.actually_rustdoc && self.in_func_body)
            && !self.r.glob_error.is_some()
    }

    // Resolve in alternative namespaces if resolution in the primary namespace fails.
    fn resolve_qpath_anywhere(
        &mut self,
        qself: &Option<P<QSelf>>,
        path: &[Segment],
        primary_ns: Namespace,
        span: Span,
        defer_to_typeck: bool,
        finalize: Finalize,
    ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'ra>>> {
        let mut fin_res = None;

        for (i, &ns) in [primary_ns, TypeNS, ValueNS].iter().enumerate() {
            if i == 0 || ns != primary_ns {
                match self.resolve_qpath(qself, path, ns, finalize)? {
                    Some(partial_res)
                        if partial_res.unresolved_segments() == 0 || defer_to_typeck =>
                    {
                        return Ok(Some(partial_res));
                    }
                    partial_res => {
                        if fin_res.is_none() {
                            fin_res = partial_res;
                        }
                    }
                }
            }
        }

        assert!(primary_ns != MacroNS);

        if qself.is_none() {
            let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
            let path = Path { segments: path.iter().map(path_seg).collect(), span, tokens: None };
            if let Ok((_, res)) =
                self.r.resolve_macro_path(&path, None, &self.parent_scope, false, false, None)
            {
                return Ok(Some(PartialRes::new(res)));
            }
        }

        Ok(fin_res)
    }

    /// Handles paths that may refer to associated items.
    fn resolve_qpath(
        &mut self,
        qself: &Option<P<QSelf>>,
        path: &[Segment],
        ns: Namespace,
        finalize: Finalize,
    ) -> Result<Option<PartialRes>, Spanned<ResolutionError<'ra>>> {
        debug!(
            "resolve_qpath(qself={:?}, path={:?}, ns={:?}, finalize={:?})",
            qself, path, ns, finalize,
        );

        if let Some(qself) = qself {
            if qself.position == 0 {
                // This is a case like `<T>::B`, where there is no
                // trait to resolve. In that case, we leave the `B`
                // segment to be resolved by type-check.
                return Ok(Some(PartialRes::with_unresolved_segments(
                    Res::Def(DefKind::Mod, CRATE_DEF_ID.to_def_id()),
                    path.len(),
                )));
            }

            let num_privacy_errors = self.r.privacy_errors.len();
            // Make sure that `A` in `<T as A>::B::C` is a trait.
            let trait_res = self.smart_resolve_path_fragment(
                &None,
                &path[..qself.position],
                PathSource::Trait(AliasPossibility::No),
                Finalize::new(finalize.node_id, qself.path_span),
                RecordPartialRes::No,
            );

            if trait_res.expect_full_res() == Res::Err {
                return Ok(Some(trait_res));
            }

            // Truncate additional privacy errors reported above,
            // because they'll be recomputed below.
            self.r.privacy_errors.truncate(num_privacy_errors);

            // Make sure `A::B` in `<T as A>::B::C` is a trait item.
            //
            // Currently, `path` names the full item (`A::B::C`, in
            // our example). so we extract the prefix of that that is
            // the trait (the slice upto and including
            // `qself.position`). And then we recursively resolve that,
            // but with `qself` set to `None`.
            let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
            let partial_res = self.smart_resolve_path_fragment(
                &None,
                &path[..=qself.position],
                PathSource::TraitItem(ns),
                Finalize::with_root_span(finalize.node_id, finalize.path_span, qself.path_span),
                RecordPartialRes::No,
            );

            // The remaining segments (the `C` in our example) will
            // have to be resolved by type-check, since that requires doing
            // trait resolution.
            return Ok(Some(PartialRes::with_unresolved_segments(
                partial_res.base_res(),
                partial_res.unresolved_segments() + path.len() - qself.position - 1,
            )));
        }

        let result = match self.resolve_path(path, Some(ns), Some(finalize)) {
            PathResult::NonModule(path_res) => path_res,
            PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
                PartialRes::new(module.res().unwrap())
            }
            // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
            // don't report an error right away, but try to fallback to a primitive type.
            // So, we are still able to successfully resolve something like
            //
            // use std::u8; // bring module u8 in scope
            // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
            //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
            //                     // not to nonexistent std::u8::max_value
            // }
            //
            // Such behavior is required for backward compatibility.
            // The same fallback is used when `a` resolves to nothing.
            PathResult::Module(ModuleOrUniformRoot::Module(_)) | PathResult::Failed { .. }
                if (ns == TypeNS || path.len() > 1)
                    && PrimTy::from_name(path[0].ident.name).is_some() =>
            {
                let prim = PrimTy::from_name(path[0].ident.name).unwrap();
                let tcx = self.r.tcx();

                let gate_err_sym_msg = match prim {
                    PrimTy::Float(FloatTy::F16) if !tcx.features().f16 => {
                        Some((sym::f16, "the type `f16` is unstable"))
                    }
                    PrimTy::Float(FloatTy::F128) if !tcx.features().f128 => {
                        Some((sym::f128, "the type `f128` is unstable"))
                    }
                    _ => None,
                };

                if let Some((sym, msg)) = gate_err_sym_msg {
                    let span = path[0].ident.span;
                    if !span.allows_unstable(sym) {
                        feature_err(tcx.sess, sym, span, msg).emit();
                    }
                };

                PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
            }
            PathResult::Module(ModuleOrUniformRoot::Module(module)) => {
                PartialRes::new(module.res().unwrap())
            }
            PathResult::Failed {
                is_error_from_last_segment: false,
                span,
                label,
                suggestion,
                module,
                segment_name,
            } => {
                return Err(respan(span, ResolutionError::FailedToResolve {
                    segment: Some(segment_name),
                    label,
                    suggestion,
                    module,
                }));
            }
            PathResult::Module(..) | PathResult::Failed { .. } => return Ok(None),
            PathResult::Indeterminate => bug!("indeterminate path result in resolve_qpath"),
        };

        Ok(Some(result))
    }

    fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
        if let Some(label) = label {
            if label.ident.as_str().as_bytes()[1] != b'_' {
                self.diag_metadata.unused_labels.insert(id, label.ident.span);
            }

            if let Ok((_, orig_span)) = self.resolve_label(label.ident) {
                diagnostics::signal_label_shadowing(self.r.tcx.sess, orig_span, label.ident)
            }

            self.with_label_rib(RibKind::Normal, |this| {
                let ident = label.ident.normalize_to_macro_rules();
                this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
                f(this);
            });
        } else {
            f(self);
        }
    }

    fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &'ast Block) {
        self.with_resolved_label(label, id, |this| this.visit_block(block));
    }

    fn resolve_block(&mut self, block: &'ast Block) {
        debug!("(resolving block) entering block");
        // Move down in the graph, if there's an anonymous module rooted here.
        let orig_module = self.parent_scope.module;
        let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference

        let mut num_macro_definition_ribs = 0;
        if let Some(anonymous_module) = anonymous_module {
            debug!("(resolving block) found anonymous module, moving down");
            self.ribs[ValueNS].push(Rib::new(RibKind::Module(anonymous_module)));
            self.ribs[TypeNS].push(Rib::new(RibKind::Module(anonymous_module)));
            self.parent_scope.module = anonymous_module;
        } else {
            self.ribs[ValueNS].push(Rib::new(RibKind::Normal));
        }

        let prev = self.diag_metadata.current_block_could_be_bare_struct_literal.take();
        if let (true, [Stmt { kind: StmtKind::Expr(expr), .. }]) =
            (block.could_be_bare_literal, &block.stmts[..])
            && let ExprKind::Type(..) = expr.kind
        {
            self.diag_metadata.current_block_could_be_bare_struct_literal = Some(block.span);
        }
        // Descend into the block.
        for stmt in &block.stmts {
            if let StmtKind::Item(ref item) = stmt.kind
                && let ItemKind::MacroDef(..) = item.kind
            {
                num_macro_definition_ribs += 1;
                let res = self.r.local_def_id(item.id).to_def_id();
                self.ribs[ValueNS].push(Rib::new(RibKind::MacroDefinition(res)));
                self.label_ribs.push(Rib::new(RibKind::MacroDefinition(res)));
            }

            self.visit_stmt(stmt);
        }
        self.diag_metadata.current_block_could_be_bare_struct_literal = prev;

        // Move back up.
        self.parent_scope.module = orig_module;
        for _ in 0..num_macro_definition_ribs {
            self.ribs[ValueNS].pop();
            self.label_ribs.pop();
        }
        self.last_block_rib = self.ribs[ValueNS].pop();
        if anonymous_module.is_some() {
            self.ribs[TypeNS].pop();
        }
        debug!("(resolving block) leaving block");
    }

    fn resolve_anon_const(&mut self, constant: &'ast AnonConst, anon_const_kind: AnonConstKind) {
        debug!(
            "resolve_anon_const(constant: {:?}, anon_const_kind: {:?})",
            constant, anon_const_kind
        );

        self.resolve_anon_const_manual(
            constant.value.is_potential_trivial_const_arg(true),
            anon_const_kind,
            |this| this.resolve_expr(&constant.value, None),
        )
    }

    /// There are a few places that we need to resolve an anon const but we did not parse an
    /// anon const so cannot provide an `&'ast AnonConst`. Right now this is just unbraced
    /// const arguments that were parsed as type arguments, and `legacy_const_generics` which
    /// parse as normal function argument expressions. To avoid duplicating the code for resolving
    /// an anon const we have this function which lets the caller manually call `resolve_expr` or
    /// `smart_resolve_path`.
    fn resolve_anon_const_manual(
        &mut self,
        is_trivial_const_arg: bool,
        anon_const_kind: AnonConstKind,
        resolve_expr: impl FnOnce(&mut Self),
    ) {
        let is_repeat_expr = match anon_const_kind {
            AnonConstKind::ConstArg(is_repeat_expr) => is_repeat_expr,
            _ => IsRepeatExpr::No,
        };

        let may_use_generics = match anon_const_kind {
            AnonConstKind::EnumDiscriminant => {
                ConstantHasGenerics::No(NoConstantGenericsReason::IsEnumDiscriminant)
            }
            AnonConstKind::InlineConst => ConstantHasGenerics::Yes,
            AnonConstKind::ConstArg(_) => {
                if self.r.tcx.features().generic_const_exprs || is_trivial_const_arg {
                    ConstantHasGenerics::Yes
                } else {
                    ConstantHasGenerics::No(NoConstantGenericsReason::NonTrivialConstArg)
                }
            }
        };

        self.with_constant_rib(is_repeat_expr, may_use_generics, None, |this| {
            this.with_lifetime_rib(LifetimeRibKind::Elided(LifetimeRes::Infer), |this| {
                resolve_expr(this);
            });
        });
    }

    fn resolve_expr_field(&mut self, f: &'ast ExprField, e: &'ast Expr) {
        self.resolve_expr(&f.expr, Some(e));
        self.visit_ident(f.ident);
        walk_list!(self, visit_attribute, f.attrs.iter());
    }

    fn resolve_expr(&mut self, expr: &'ast Expr, parent: Option<&'ast Expr>) {
        // First, record candidate traits for this expression if it could
        // result in the invocation of a method call.

        self.record_candidate_traits_for_expr_if_necessary(expr);

        // Next, resolve the node.
        match expr.kind {
            ExprKind::Path(ref qself, ref path) => {
                self.smart_resolve_path(expr.id, qself, path, PathSource::Expr(parent));
                visit::walk_expr(self, expr);
            }

            ExprKind::Struct(ref se) => {
                self.smart_resolve_path(expr.id, &se.qself, &se.path, PathSource::Struct);
                // This is the same as `visit::walk_expr(self, expr);`, but we want to pass the
                // parent in for accurate suggestions when encountering `Foo { bar }` that should
                // have been `Foo { bar: self.bar }`.
                if let Some(qself) = &se.qself {
                    self.visit_ty(&qself.ty);
                }
                self.visit_path(&se.path, expr.id);
                walk_list!(self, resolve_expr_field, &se.fields, expr);
                match &se.rest {
                    StructRest::Base(expr) => self.visit_expr(expr),
                    StructRest::Rest(_span) => {}
                    StructRest::None => {}
                }
            }

            ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
                match self.resolve_label(label.ident) {
                    Ok((node_id, _)) => {
                        // Since this res is a label, it is never read.
                        self.r.label_res_map.insert(expr.id, node_id);
                        self.diag_metadata.unused_labels.remove(&node_id);
                    }
                    Err(error) => {
                        self.report_error(label.ident.span, error);
                    }
                }

                // visit `break` argument if any
                visit::walk_expr(self, expr);
            }

            ExprKind::Break(None, Some(ref e)) => {
                // We use this instead of `visit::walk_expr` to keep the parent expr around for
                // better diagnostics.
                self.resolve_expr(e, Some(expr));
            }

            ExprKind::Let(ref pat, ref scrutinee, _, _) => {
                self.visit_expr(scrutinee);
                self.resolve_pattern_top(pat, PatternSource::Let);
            }

            ExprKind::If(ref cond, ref then, ref opt_else) => {
                self.with_rib(ValueNS, RibKind::Normal, |this| {
                    let old = this.diag_metadata.in_if_condition.replace(cond);
                    this.visit_expr(cond);
                    this.diag_metadata.in_if_condition = old;
                    this.visit_block(then);
                });
                if let Some(expr) = opt_else {
                    self.visit_expr(expr);
                }
            }

            ExprKind::Loop(ref block, label, _) => {
                self.resolve_labeled_block(label, expr.id, block)
            }

            ExprKind::While(ref cond, ref block, label) => {
                self.with_resolved_label(label, expr.id, |this| {
                    this.with_rib(ValueNS, RibKind::Normal, |this| {
                        let old = this.diag_metadata.in_if_condition.replace(cond);
                        this.visit_expr(cond);
                        this.diag_metadata.in_if_condition = old;
                        this.visit_block(block);
                    })
                });
            }

            ExprKind::ForLoop { ref pat, ref iter, ref body, label, kind: _ } => {
                self.visit_expr(iter);
                self.with_rib(ValueNS, RibKind::Normal, |this| {
                    this.resolve_pattern_top(pat, PatternSource::For);
                    this.resolve_labeled_block(label, expr.id, body);
                });
            }

            ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),

            // Equivalent to `visit::walk_expr` + passing some context to children.
            ExprKind::Field(ref subexpression, _) => {
                self.resolve_expr(subexpression, Some(expr));
            }
            ExprKind::MethodCall(box MethodCall { ref seg, ref receiver, ref args, .. }) => {
                self.resolve_expr(receiver, Some(expr));
                for arg in args {
                    self.resolve_expr(arg, None);
                }
                self.visit_path_segment(seg);
            }

            ExprKind::Call(ref callee, ref arguments) => {
                self.resolve_expr(callee, Some(expr));
                let const_args = self.r.legacy_const_generic_args(callee).unwrap_or_default();
                for (idx, argument) in arguments.iter().enumerate() {
                    // Constant arguments need to be treated as AnonConst since
                    // that is how they will be later lowered to HIR.
                    if const_args.contains(&idx) {
                        self.resolve_anon_const_manual(
                            argument.is_potential_trivial_const_arg(true),
                            AnonConstKind::ConstArg(IsRepeatExpr::No),
                            |this| this.resolve_expr(argument, None),
                        );
                    } else {
                        self.resolve_expr(argument, None);
                    }
                }
            }
            ExprKind::Type(ref _type_expr, ref _ty) => {
                visit::walk_expr(self, expr);
            }
            // For closures, RibKind::FnOrCoroutine is added in visit_fn
            ExprKind::Closure(box ast::Closure {
                binder: ClosureBinder::For { ref generic_params, span },
                ..
            }) => {
                self.with_generic_param_rib(
                    generic_params,
                    RibKind::Normal,
                    LifetimeRibKind::Generics {
                        binder: expr.id,
                        kind: LifetimeBinderKind::Closure,
                        span,
                    },
                    |this| visit::walk_expr(this, expr),
                );
            }
            ExprKind::Closure(..) => visit::walk_expr(self, expr),
            ExprKind::Gen(..) => {
                self.with_label_rib(RibKind::FnOrCoroutine, |this| visit::walk_expr(this, expr));
            }
            ExprKind::Repeat(ref elem, ref ct) => {
                self.visit_expr(elem);
                self.resolve_anon_const(ct, AnonConstKind::ConstArg(IsRepeatExpr::Yes));
            }
            ExprKind::ConstBlock(ref ct) => {
                self.resolve_anon_const(ct, AnonConstKind::InlineConst);
            }
            ExprKind::Index(ref elem, ref idx, _) => {
                self.resolve_expr(elem, Some(expr));
                self.visit_expr(idx);
            }
            ExprKind::Assign(ref lhs, ref rhs, _) => {
                if !self.diag_metadata.is_assign_rhs {
                    self.diag_metadata.in_assignment = Some(expr);
                }
                self.visit_expr(lhs);
                self.diag_metadata.is_assign_rhs = true;
                self.diag_metadata.in_assignment = None;
                self.visit_expr(rhs);
                self.diag_metadata.is_assign_rhs = false;
            }
            ExprKind::Range(Some(ref start), Some(ref end), RangeLimits::HalfOpen) => {
                self.diag_metadata.in_range = Some((start, end));
                self.resolve_expr(start, Some(expr));
                self.resolve_expr(end, Some(expr));
                self.diag_metadata.in_range = None;
            }
            _ => {
                visit::walk_expr(self, expr);
            }
        }
    }

    fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &'ast Expr) {
        match expr.kind {
            ExprKind::Field(_, ident) => {
                // #6890: Even though you can't treat a method like a field,
                // we need to add any trait methods we find that match the
                // field name so that we can do some nice error reporting
                // later on in typeck.
                let traits = self.traits_in_scope(ident, ValueNS);
                self.r.trait_map.insert(expr.id, traits);
            }
            ExprKind::MethodCall(ref call) => {
                debug!("(recording candidate traits for expr) recording traits for {}", expr.id);
                let traits = self.traits_in_scope(call.seg.ident, ValueNS);
                self.r.trait_map.insert(expr.id, traits);
            }
            _ => {
                // Nothing to do.
            }
        }
    }

    fn traits_in_scope(&mut self, ident: Ident, ns: Namespace) -> Vec<TraitCandidate> {
        self.r.traits_in_scope(
            self.current_trait_ref.as_ref().map(|(module, _)| *module),
            &self.parent_scope,
            ident.span.ctxt(),
            Some((ident.name, ns)),
        )
    }

    /// Construct the list of in-scope lifetime parameters for impl trait lowering.
    /// We include all lifetime parameters, either named or "Fresh".
    /// The order of those parameters does not matter, as long as it is
    /// deterministic.
    fn record_lifetime_params_for_impl_trait(&mut self, impl_trait_node_id: NodeId) {
        let mut extra_lifetime_params = vec![];

        for rib in self.lifetime_ribs.iter().rev() {
            extra_lifetime_params
                .extend(rib.bindings.iter().map(|(&ident, &(node_id, res))| (ident, node_id, res)));
            match rib.kind {
                LifetimeRibKind::Item => break,
                LifetimeRibKind::AnonymousCreateParameter { binder, .. } => {
                    if let Some(earlier_fresh) = self.r.extra_lifetime_params_map.get(&binder) {
                        extra_lifetime_params.extend(earlier_fresh);
                    }
                }
                _ => {}
            }
        }

        self.r.extra_lifetime_params_map.insert(impl_trait_node_id, extra_lifetime_params);
    }

    fn resolve_and_cache_rustdoc_path(&mut self, path_str: &str, ns: Namespace) -> Option<Res> {
        // FIXME: This caching may be incorrect in case of multiple `macro_rules`
        // items with the same name in the same module.
        // Also hygiene is not considered.
        let mut doc_link_resolutions = std::mem::take(&mut self.r.doc_link_resolutions);
        let res = *doc_link_resolutions
            .entry(self.parent_scope.module.nearest_parent_mod().expect_local())
            .or_default()
            .entry((Symbol::intern(path_str), ns))
            .or_insert_with_key(|(path, ns)| {
                let res = self.r.resolve_rustdoc_path(path.as_str(), *ns, self.parent_scope);
                if let Some(res) = res
                    && let Some(def_id) = res.opt_def_id()
                    && !def_id.is_local()
                    && self.r.tcx.crate_types().contains(&CrateType::ProcMacro)
                    && matches!(
                        self.r.tcx.sess.opts.resolve_doc_links,
                        ResolveDocLinks::ExportedMetadata
                    )
                {
                    // Encoding foreign def ids in proc macro crate metadata will ICE.
                    return None;
                }
                res
            });
        self.r.doc_link_resolutions = doc_link_resolutions;
        res
    }

    fn resolve_doc_links(&mut self, attrs: &[Attribute], maybe_exported: MaybeExported<'_>) {
        match self.r.tcx.sess.opts.resolve_doc_links {
            ResolveDocLinks::None => return,
            ResolveDocLinks::ExportedMetadata
                if !self.r.tcx.crate_types().iter().copied().any(CrateType::has_metadata)
                    || !maybe_exported.eval(self.r) =>
            {
                return;
            }
            ResolveDocLinks::Exported
                if !maybe_exported.eval(self.r)
                    && !rustdoc::has_primitive_or_keyword_docs(attrs) =>
            {
                return;
            }
            ResolveDocLinks::ExportedMetadata
            | ResolveDocLinks::Exported
            | ResolveDocLinks::All => {}
        }

        if !attrs.iter().any(|attr| attr.may_have_doc_links()) {
            return;
        }

        let mut need_traits_in_scope = false;
        for path_str in rustdoc::attrs_to_preprocessed_links(attrs) {
            // Resolve all namespaces due to no disambiguator or for diagnostics.
            let mut any_resolved = false;
            let mut need_assoc = false;
            for ns in [TypeNS, ValueNS, MacroNS] {
                if let Some(res) = self.resolve_and_cache_rustdoc_path(&path_str, ns) {
                    // Rustdoc ignores tool attribute resolutions and attempts
                    // to resolve their prefixes for diagnostics.
                    any_resolved = !matches!(res, Res::NonMacroAttr(NonMacroAttrKind::Tool));
                } else if ns != MacroNS {
                    need_assoc = true;
                }
            }

            // Resolve all prefixes for type-relative resolution or for diagnostics.
            if need_assoc || !any_resolved {
                let mut path = &path_str[..];
                while let Some(idx) = path.rfind("::") {
                    path = &path[..idx];
                    need_traits_in_scope = true;
                    for ns in [TypeNS, ValueNS, MacroNS] {
                        self.resolve_and_cache_rustdoc_path(path, ns);
                    }
                }
            }
        }

        if need_traits_in_scope {
            // FIXME: hygiene is not considered.
            let mut doc_link_traits_in_scope = std::mem::take(&mut self.r.doc_link_traits_in_scope);
            doc_link_traits_in_scope
                .entry(self.parent_scope.module.nearest_parent_mod().expect_local())
                .or_insert_with(|| {
                    self.r
                        .traits_in_scope(None, &self.parent_scope, SyntaxContext::root(), None)
                        .into_iter()
                        .filter_map(|tr| {
                            if !tr.def_id.is_local()
                                && self.r.tcx.crate_types().contains(&CrateType::ProcMacro)
                                && matches!(
                                    self.r.tcx.sess.opts.resolve_doc_links,
                                    ResolveDocLinks::ExportedMetadata
                                )
                            {
                                // Encoding foreign def ids in proc macro crate metadata will ICE.
                                return None;
                            }
                            Some(tr.def_id)
                        })
                        .collect()
                });
            self.r.doc_link_traits_in_scope = doc_link_traits_in_scope;
        }
    }

    fn lint_unused_qualifications(&mut self, path: &[Segment], ns: Namespace, finalize: Finalize) {
        // Don't lint on global paths because the user explicitly wrote out the full path.
        if let Some(seg) = path.first()
            && seg.ident.name == kw::PathRoot
        {
            return;
        }

        if finalize.path_span.from_expansion()
            || path.iter().any(|seg| seg.ident.span.from_expansion())
        {
            return;
        }

        let end_pos =
            path.iter().position(|seg| seg.has_generic_args).map_or(path.len(), |pos| pos + 1);
        let unqualified = path[..end_pos].iter().enumerate().skip(1).rev().find_map(|(i, seg)| {
            // Preserve the current namespace for the final path segment, but use the type
            // namespace for all preceding segments
            //
            // e.g. for `std::env::args` check the `ValueNS` for `args` but the `TypeNS` for
            // `std` and `env`
            //
            // If the final path segment is beyond `end_pos` all the segments to check will
            // use the type namespace
            let ns = if i + 1 == path.len() { ns } else { TypeNS };
            let res = self.r.partial_res_map.get(&seg.id?)?.full_res()?;
            let binding = self.resolve_ident_in_lexical_scope(seg.ident, ns, None, None)?;
            (res == binding.res()).then_some((seg, binding))
        });

        if let Some((seg, binding)) = unqualified {
            self.r.potentially_unnecessary_qualifications.push(UnnecessaryQualification {
                binding,
                node_id: finalize.node_id,
                path_span: finalize.path_span,
                removal_span: path[0].ident.span.until(seg.ident.span),
            });
        }
    }
}

/// Walks the whole crate in DFS order, visiting each item, counting the declared number of
/// lifetime generic parameters and function parameters.
struct ItemInfoCollector<'a, 'ra, 'tcx> {
    r: &'a mut Resolver<'ra, 'tcx>,
}

impl ItemInfoCollector<'_, '_, '_> {
    fn collect_fn_info(&mut self, sig: &FnSig, id: NodeId) {
        let sig = DelegationFnSig {
            header: sig.header,
            param_count: sig.decl.inputs.len(),
            has_self: sig.decl.has_self(),
            c_variadic: sig.decl.c_variadic(),
        };
        self.r.delegation_fn_sigs.insert(self.r.local_def_id(id), sig);
    }
}

impl<'ast> Visitor<'ast> for ItemInfoCollector<'_, '_, '_> {
    fn visit_item(&mut self, item: &'ast Item) {
        match &item.kind {
            ItemKind::TyAlias(box TyAlias { ref generics, .. })
            | ItemKind::Const(box ConstItem { ref generics, .. })
            | ItemKind::Fn(box Fn { ref generics, .. })
            | ItemKind::Enum(_, ref generics)
            | ItemKind::Struct(_, ref generics)
            | ItemKind::Union(_, ref generics)
            | ItemKind::Impl(box Impl { ref generics, .. })
            | ItemKind::Trait(box Trait { ref generics, .. })
            | ItemKind::TraitAlias(ref generics, _) => {
                if let ItemKind::Fn(box Fn { ref sig, .. }) = &item.kind {
                    self.collect_fn_info(sig, item.id);
                }

                let def_id = self.r.local_def_id(item.id);
                let count = generics
                    .params
                    .iter()
                    .filter(|param| matches!(param.kind, ast::GenericParamKind::Lifetime { .. }))
                    .count();
                self.r.item_generics_num_lifetimes.insert(def_id, count);
            }

            ItemKind::Mod(..)
            | ItemKind::ForeignMod(..)
            | ItemKind::Static(..)
            | ItemKind::Use(..)
            | ItemKind::ExternCrate(..)
            | ItemKind::MacroDef(..)
            | ItemKind::GlobalAsm(..)
            | ItemKind::MacCall(..)
            | ItemKind::DelegationMac(..) => {}
            ItemKind::Delegation(..) => {
                // Delegated functions have lifetimes, their count is not necessarily zero.
                // But skipping the delegation items here doesn't mean that the count will be considered zero,
                // it means there will be a panic when retrieving the count,
                // but for delegation items we are never actually retrieving that count in practice.
            }
        }
        visit::walk_item(self, item)
    }

    fn visit_assoc_item(&mut self, item: &'ast AssocItem, ctxt: AssocCtxt) {
        if let AssocItemKind::Fn(box Fn { ref sig, .. }) = &item.kind {
            self.collect_fn_info(sig, item.id);
        }
        visit::walk_assoc_item(self, item, ctxt);
    }
}

impl<'ra, 'tcx> Resolver<'ra, 'tcx> {
    pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
        visit::walk_crate(&mut ItemInfoCollector { r: self }, krate);
        let mut late_resolution_visitor = LateResolutionVisitor::new(self);
        late_resolution_visitor.resolve_doc_links(&krate.attrs, MaybeExported::Ok(CRATE_NODE_ID));
        visit::walk_crate(&mut late_resolution_visitor, krate);
        for (id, span) in late_resolution_visitor.diag_metadata.unused_labels.iter() {
            self.lint_buffer.buffer_lint(
                lint::builtin::UNUSED_LABELS,
                *id,
                *span,
                BuiltinLintDiag::UnusedLabel,
            );
        }
    }
}

/// Check if definition matches a path
fn def_id_matches_path(tcx: TyCtxt<'_>, mut def_id: DefId, expected_path: &[&str]) -> bool {
    let mut path = expected_path.iter().rev();
    while let (Some(parent), Some(next_step)) = (tcx.opt_parent(def_id), path.next()) {
        if !tcx.opt_item_name(def_id).map_or(false, |n| n.as_str() == *next_step) {
            return false;
        }
        def_id = parent;
    }
    true
}