rustc_trait_selection/traits/wf.rs
1use std::iter;
2
3use rustc_hir as hir;
4use rustc_hir::lang_items::LangItem;
5use rustc_infer::traits::{ObligationCauseCode, PredicateObligations};
6use rustc_middle::bug;
7use rustc_middle::ty::{
8 self, GenericArg, GenericArgKind, GenericArgsRef, Ty, TyCtxt, TypeSuperVisitable,
9 TypeVisitable, TypeVisitableExt, TypeVisitor,
10};
11use rustc_session::parse::feature_err;
12use rustc_span::def_id::{DefId, LocalDefId};
13use rustc_span::{Span, sym};
14use tracing::{debug, instrument, trace};
15
16use crate::infer::InferCtxt;
17use crate::traits;
18/// Returns the set of obligations needed to make `arg` well-formed.
19/// If `arg` contains unresolved inference variables, this may include
20/// further WF obligations. However, if `arg` IS an unresolved
21/// inference variable, returns `None`, because we are not able to
22/// make any progress at all. This is to prevent "livelock" where we
23/// say "$0 is WF if $0 is WF".
24pub fn obligations<'tcx>(
25 infcx: &InferCtxt<'tcx>,
26 param_env: ty::ParamEnv<'tcx>,
27 body_id: LocalDefId,
28 recursion_depth: usize,
29 arg: GenericArg<'tcx>,
30 span: Span,
31) -> Option<PredicateObligations<'tcx>> {
32 // Handle the "livelock" case (see comment above) by bailing out if necessary.
33 let arg = match arg.unpack() {
34 GenericArgKind::Type(ty) => {
35 match ty.kind() {
36 ty::Infer(ty::TyVar(_)) => {
37 let resolved_ty = infcx.shallow_resolve(ty);
38 if resolved_ty == ty {
39 // No progress, bail out to prevent "livelock".
40 return None;
41 } else {
42 resolved_ty
43 }
44 }
45 _ => ty,
46 }
47 .into()
48 }
49 GenericArgKind::Const(ct) => {
50 match ct.kind() {
51 ty::ConstKind::Infer(_) => {
52 let resolved = infcx.shallow_resolve_const(ct);
53 if resolved == ct {
54 // No progress.
55 return None;
56 } else {
57 resolved
58 }
59 }
60 _ => ct,
61 }
62 .into()
63 }
64 // There is nothing we have to do for lifetimes.
65 GenericArgKind::Lifetime(..) => return Some(PredicateObligations::new()),
66 };
67
68 let mut wf = WfPredicates {
69 infcx,
70 param_env,
71 body_id,
72 span,
73 out: PredicateObligations::new(),
74 recursion_depth,
75 item: None,
76 };
77 wf.compute(arg);
78 debug!("wf::obligations({:?}, body_id={:?}) = {:?}", arg, body_id, wf.out);
79
80 let result = wf.normalize(infcx);
81 debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", arg, body_id, result);
82 Some(result)
83}
84
85/// Compute the predicates that are required for a type to be well-formed.
86///
87/// This is only intended to be used in the new solver, since it does not
88/// take into account recursion depth or proper error-reporting spans.
89pub fn unnormalized_obligations<'tcx>(
90 infcx: &InferCtxt<'tcx>,
91 param_env: ty::ParamEnv<'tcx>,
92 arg: GenericArg<'tcx>,
93 span: Span,
94 body_id: LocalDefId,
95) -> Option<PredicateObligations<'tcx>> {
96 debug_assert_eq!(arg, infcx.resolve_vars_if_possible(arg));
97
98 // However, if `arg` IS an unresolved inference variable, returns `None`,
99 // because we are not able to make any progress at all. This is to prevent
100 // "livelock" where we say "$0 is WF if $0 is WF".
101 if arg.is_non_region_infer() {
102 return None;
103 }
104
105 if let ty::GenericArgKind::Lifetime(..) = arg.unpack() {
106 return Some(PredicateObligations::new());
107 }
108
109 let mut wf = WfPredicates {
110 infcx,
111 param_env,
112 body_id,
113 span,
114 out: PredicateObligations::new(),
115 recursion_depth: 0,
116 item: None,
117 };
118 wf.compute(arg);
119 Some(wf.out)
120}
121
122/// Returns the obligations that make this trait reference
123/// well-formed. For example, if there is a trait `Set` defined like
124/// `trait Set<K: Eq>`, then the trait bound `Foo: Set<Bar>` is WF
125/// if `Bar: Eq`.
126pub fn trait_obligations<'tcx>(
127 infcx: &InferCtxt<'tcx>,
128 param_env: ty::ParamEnv<'tcx>,
129 body_id: LocalDefId,
130 trait_pred: ty::TraitPredicate<'tcx>,
131 span: Span,
132 item: &'tcx hir::Item<'tcx>,
133) -> PredicateObligations<'tcx> {
134 let mut wf = WfPredicates {
135 infcx,
136 param_env,
137 body_id,
138 span,
139 out: PredicateObligations::new(),
140 recursion_depth: 0,
141 item: Some(item),
142 };
143 wf.compute_trait_pred(trait_pred, Elaborate::All);
144 debug!(obligations = ?wf.out);
145 wf.normalize(infcx)
146}
147
148/// Returns the requirements for `clause` to be well-formed.
149///
150/// For example, if there is a trait `Set` defined like
151/// `trait Set<K: Eq>`, then the trait bound `Foo: Set<Bar>` is WF
152/// if `Bar: Eq`.
153#[instrument(skip(infcx), ret)]
154pub fn clause_obligations<'tcx>(
155 infcx: &InferCtxt<'tcx>,
156 param_env: ty::ParamEnv<'tcx>,
157 body_id: LocalDefId,
158 clause: ty::Clause<'tcx>,
159 span: Span,
160) -> PredicateObligations<'tcx> {
161 let mut wf = WfPredicates {
162 infcx,
163 param_env,
164 body_id,
165 span,
166 out: PredicateObligations::new(),
167 recursion_depth: 0,
168 item: None,
169 };
170
171 // It's ok to skip the binder here because wf code is prepared for it
172 match clause.kind().skip_binder() {
173 ty::ClauseKind::Trait(t) => {
174 wf.compute_trait_pred(t, Elaborate::None);
175 }
176 ty::ClauseKind::HostEffect(..) => {
177 // Technically the well-formedness of this predicate is implied by
178 // the corresponding trait predicate it should've been generated beside.
179 }
180 ty::ClauseKind::RegionOutlives(..) => {}
181 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _reg)) => {
182 wf.compute(ty.into());
183 }
184 ty::ClauseKind::Projection(t) => {
185 wf.compute_alias_term(t.projection_term);
186 wf.compute(t.term.into_arg());
187 }
188 ty::ClauseKind::ConstArgHasType(ct, ty) => {
189 wf.compute(ct.into());
190 wf.compute(ty.into());
191 }
192 ty::ClauseKind::WellFormed(arg) => {
193 wf.compute(arg);
194 }
195
196 ty::ClauseKind::ConstEvaluatable(ct) => {
197 wf.compute(ct.into());
198 }
199 }
200
201 wf.normalize(infcx)
202}
203
204struct WfPredicates<'a, 'tcx> {
205 infcx: &'a InferCtxt<'tcx>,
206 param_env: ty::ParamEnv<'tcx>,
207 body_id: LocalDefId,
208 span: Span,
209 out: PredicateObligations<'tcx>,
210 recursion_depth: usize,
211 item: Option<&'tcx hir::Item<'tcx>>,
212}
213
214/// Controls whether we "elaborate" supertraits and so forth on the WF
215/// predicates. This is a kind of hack to address #43784. The
216/// underlying problem in that issue was a trait structure like:
217///
218/// ```ignore (illustrative)
219/// trait Foo: Copy { }
220/// trait Bar: Foo { }
221/// impl<T: Bar> Foo for T { }
222/// impl<T> Bar for T { }
223/// ```
224///
225/// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
226/// we decide that this is true because `T: Bar` is in the
227/// where-clauses (and we can elaborate that to include `T:
228/// Copy`). This wouldn't be a problem, except that when we check the
229/// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
230/// impl. And so nowhere did we check that `T: Copy` holds!
231///
232/// To resolve this, we elaborate the WF requirements that must be
233/// proven when checking impls. This means that (e.g.) the `impl Bar
234/// for T` will be forced to prove not only that `T: Foo` but also `T:
235/// Copy` (which it won't be able to do, because there is no `Copy`
236/// impl for `T`).
237#[derive(Debug, PartialEq, Eq, Copy, Clone)]
238enum Elaborate {
239 All,
240 None,
241}
242
243/// Points the cause span of a super predicate at the relevant associated type.
244///
245/// Given a trait impl item:
246///
247/// ```ignore (incomplete)
248/// impl TargetTrait for TargetType {
249/// type Assoc = SomeType;
250/// }
251/// ```
252///
253/// And a super predicate of `TargetTrait` that has any of the following forms:
254///
255/// 1. `<OtherType as OtherTrait>::Assoc == <TargetType as TargetTrait>::Assoc`
256/// 2. `<<TargetType as TargetTrait>::Assoc as OtherTrait>::Assoc == OtherType`
257/// 3. `<TargetType as TargetTrait>::Assoc: OtherTrait`
258///
259/// Replace the span of the cause with the span of the associated item:
260///
261/// ```ignore (incomplete)
262/// impl TargetTrait for TargetType {
263/// type Assoc = SomeType;
264/// // ^^^^^^^^ this span
265/// }
266/// ```
267///
268/// Note that bounds that can be expressed as associated item bounds are **not**
269/// super predicates. This means that form 2 and 3 from above are only relevant if
270/// the [`GenericArgsRef`] of the projection type are not its identity arguments.
271fn extend_cause_with_original_assoc_item_obligation<'tcx>(
272 tcx: TyCtxt<'tcx>,
273 item: Option<&hir::Item<'tcx>>,
274 cause: &mut traits::ObligationCause<'tcx>,
275 pred: ty::Predicate<'tcx>,
276) {
277 debug!(?item, ?cause, ?pred, "extended_cause_with_original_assoc_item_obligation");
278 let (items, impl_def_id) = match item {
279 Some(hir::Item { kind: hir::ItemKind::Impl(impl_), owner_id, .. }) => {
280 (impl_.items, *owner_id)
281 }
282 _ => return,
283 };
284
285 let ty_to_impl_span = |ty: Ty<'_>| {
286 if let ty::Alias(ty::Projection, projection_ty) = ty.kind()
287 && let Some(&impl_item_id) =
288 tcx.impl_item_implementor_ids(impl_def_id).get(&projection_ty.def_id)
289 && let Some(impl_item) =
290 items.iter().find(|item| item.id.owner_id.to_def_id() == impl_item_id)
291 {
292 Some(tcx.hir().impl_item(impl_item.id).expect_type().span)
293 } else {
294 None
295 }
296 };
297
298 // It is fine to skip the binder as we don't care about regions here.
299 match pred.kind().skip_binder() {
300 ty::PredicateKind::Clause(ty::ClauseKind::Projection(proj)) => {
301 // Form 1: The obligation comes not from the current `impl` nor the `trait` being
302 // implemented, but rather from a "second order" obligation, where an associated
303 // type has a projection coming from another associated type.
304 // See `tests/ui/traits/assoc-type-in-superbad.rs` for an example.
305 if let Some(term_ty) = proj.term.as_type()
306 && let Some(impl_item_span) = ty_to_impl_span(term_ty)
307 {
308 cause.span = impl_item_span;
309 }
310
311 // Form 2: A projection obligation for an associated item failed to be met.
312 // We overwrite the span from above to ensure that a bound like
313 // `Self::Assoc1: Trait<OtherAssoc = Self::Assoc2>` gets the same
314 // span for both obligations that it is lowered to.
315 if let Some(impl_item_span) = ty_to_impl_span(proj.self_ty()) {
316 cause.span = impl_item_span;
317 }
318 }
319
320 ty::PredicateKind::Clause(ty::ClauseKind::Trait(pred)) => {
321 // Form 3: A trait obligation for an associated item failed to be met.
322 debug!("extended_cause_with_original_assoc_item_obligation trait proj {:?}", pred);
323 if let Some(impl_item_span) = ty_to_impl_span(pred.self_ty()) {
324 cause.span = impl_item_span;
325 }
326 }
327 _ => {}
328 }
329}
330
331impl<'a, 'tcx> WfPredicates<'a, 'tcx> {
332 fn tcx(&self) -> TyCtxt<'tcx> {
333 self.infcx.tcx
334 }
335
336 fn cause(&self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
337 traits::ObligationCause::new(self.span, self.body_id, code)
338 }
339
340 fn normalize(self, infcx: &InferCtxt<'tcx>) -> PredicateObligations<'tcx> {
341 // Do not normalize `wf` obligations with the new solver.
342 //
343 // The current deep normalization routine with the new solver does not
344 // handle ambiguity and the new solver correctly deals with unnnormalized goals.
345 // If the user relies on normalized types, e.g. for `fn implied_outlives_bounds`,
346 // it is their responsibility to normalize while avoiding ambiguity.
347 if infcx.next_trait_solver() {
348 return self.out;
349 }
350
351 let cause = self.cause(ObligationCauseCode::WellFormed(None));
352 let param_env = self.param_env;
353 let mut obligations = PredicateObligations::with_capacity(self.out.len());
354 for mut obligation in self.out {
355 assert!(!obligation.has_escaping_bound_vars());
356 let mut selcx = traits::SelectionContext::new(infcx);
357 // Don't normalize the whole obligation, the param env is either
358 // already normalized, or we're currently normalizing the
359 // param_env. Either way we should only normalize the predicate.
360 let normalized_predicate = traits::normalize::normalize_with_depth_to(
361 &mut selcx,
362 param_env,
363 cause.clone(),
364 self.recursion_depth,
365 obligation.predicate,
366 &mut obligations,
367 );
368 obligation.predicate = normalized_predicate;
369 obligations.push(obligation);
370 }
371 obligations
372 }
373
374 /// Pushes the obligations required for `trait_ref` to be WF into `self.out`.
375 fn compute_trait_pred(&mut self, trait_pred: ty::TraitPredicate<'tcx>, elaborate: Elaborate) {
376 let tcx = self.tcx();
377 let trait_ref = trait_pred.trait_ref;
378
379 // Negative trait predicates don't require supertraits to hold, just
380 // that their args are WF.
381 if trait_pred.polarity == ty::PredicatePolarity::Negative {
382 self.compute_negative_trait_pred(trait_ref);
383 return;
384 }
385
386 // if the trait predicate is not const, the wf obligations should not be const as well.
387 let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.args);
388
389 debug!("compute_trait_pred obligations {:?}", obligations);
390 let param_env = self.param_env;
391 let depth = self.recursion_depth;
392
393 let item = self.item;
394
395 let extend = |traits::PredicateObligation { predicate, mut cause, .. }| {
396 if let Some(parent_trait_pred) = predicate.as_trait_clause() {
397 cause = cause.derived_cause(
398 parent_trait_pred,
399 traits::ObligationCauseCode::WellFormedDerived,
400 );
401 }
402 extend_cause_with_original_assoc_item_obligation(tcx, item, &mut cause, predicate);
403 traits::Obligation::with_depth(tcx, cause, depth, param_env, predicate)
404 };
405
406 if let Elaborate::All = elaborate {
407 let implied_obligations = traits::util::elaborate(tcx, obligations);
408 let implied_obligations = implied_obligations.map(extend);
409 self.out.extend(implied_obligations);
410 } else {
411 self.out.extend(obligations);
412 }
413
414 self.out.extend(
415 trait_ref
416 .args
417 .iter()
418 .enumerate()
419 .filter(|(_, arg)| {
420 matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
421 })
422 .filter(|(_, arg)| !arg.has_escaping_bound_vars())
423 .map(|(i, arg)| {
424 let mut cause = traits::ObligationCause::misc(self.span, self.body_id);
425 // The first arg is the self ty - use the correct span for it.
426 if i == 0 {
427 if let Some(hir::ItemKind::Impl(hir::Impl { self_ty, .. })) =
428 item.map(|i| &i.kind)
429 {
430 cause.span = self_ty.span;
431 }
432 }
433 traits::Obligation::with_depth(
434 tcx,
435 cause,
436 depth,
437 param_env,
438 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
439 arg,
440 ))),
441 )
442 }),
443 );
444 }
445
446 // Compute the obligations that are required for `trait_ref` to be WF,
447 // given that it is a *negative* trait predicate.
448 fn compute_negative_trait_pred(&mut self, trait_ref: ty::TraitRef<'tcx>) {
449 for arg in trait_ref.args {
450 self.compute(arg);
451 }
452 }
453
454 /// Pushes the obligations required for an alias (except inherent) to be WF
455 /// into `self.out`.
456 fn compute_alias_term(&mut self, data: ty::AliasTerm<'tcx>) {
457 // A projection is well-formed if
458 //
459 // (a) its predicates hold (*)
460 // (b) its args are wf
461 //
462 // (*) The predicates of an associated type include the predicates of
463 // the trait that it's contained in. For example, given
464 //
465 // trait A<T>: Clone {
466 // type X where T: Copy;
467 // }
468 //
469 // The predicates of `<() as A<i32>>::X` are:
470 // [
471 // `(): Sized`
472 // `(): Clone`
473 // `(): A<i32>`
474 // `i32: Sized`
475 // `i32: Clone`
476 // `i32: Copy`
477 // ]
478 let obligations = self.nominal_obligations(data.def_id, data.args);
479 self.out.extend(obligations);
480
481 self.compute_projection_args(data.args);
482 }
483
484 /// Pushes the obligations required for an inherent alias to be WF
485 /// into `self.out`.
486 // FIXME(inherent_associated_types): Merge this function with `fn compute_alias`.
487 fn compute_inherent_projection(&mut self, data: ty::AliasTy<'tcx>) {
488 // An inherent projection is well-formed if
489 //
490 // (a) its predicates hold (*)
491 // (b) its args are wf
492 //
493 // (*) The predicates of an inherent associated type include the
494 // predicates of the impl that it's contained in.
495
496 if !data.self_ty().has_escaping_bound_vars() {
497 // FIXME(inherent_associated_types): Should this happen inside of a snapshot?
498 // FIXME(inherent_associated_types): This is incompatible with the new solver and lazy norm!
499 let args = traits::project::compute_inherent_assoc_ty_args(
500 &mut traits::SelectionContext::new(self.infcx),
501 self.param_env,
502 data,
503 self.cause(ObligationCauseCode::WellFormed(None)),
504 self.recursion_depth,
505 &mut self.out,
506 );
507 let obligations = self.nominal_obligations(data.def_id, args);
508 self.out.extend(obligations);
509 }
510
511 data.args.visit_with(self);
512 }
513
514 fn compute_projection_args(&mut self, args: GenericArgsRef<'tcx>) {
515 let tcx = self.tcx();
516 let cause = self.cause(ObligationCauseCode::WellFormed(None));
517 let param_env = self.param_env;
518 let depth = self.recursion_depth;
519
520 self.out.extend(
521 args.iter()
522 .filter(|arg| {
523 matches!(arg.unpack(), GenericArgKind::Type(..) | GenericArgKind::Const(..))
524 })
525 .filter(|arg| !arg.has_escaping_bound_vars())
526 .map(|arg| {
527 traits::Obligation::with_depth(
528 tcx,
529 cause.clone(),
530 depth,
531 param_env,
532 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
533 arg,
534 ))),
535 )
536 }),
537 );
538 }
539
540 fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
541 if !subty.has_escaping_bound_vars() {
542 let cause = self.cause(cause);
543 let trait_ref = ty::TraitRef::new(
544 self.tcx(),
545 self.tcx().require_lang_item(LangItem::Sized, Some(cause.span)),
546 [subty],
547 );
548 self.out.push(traits::Obligation::with_depth(
549 self.tcx(),
550 cause,
551 self.recursion_depth,
552 self.param_env,
553 ty::Binder::dummy(trait_ref),
554 ));
555 }
556 }
557
558 /// Pushes all the predicates needed to validate that `ty` is WF into `out`.
559 #[instrument(level = "debug", skip(self))]
560 fn compute(&mut self, arg: GenericArg<'tcx>) {
561 arg.visit_with(self);
562 debug!(?self.out);
563 }
564
565 #[instrument(level = "debug", skip(self))]
566 fn nominal_obligations(
567 &mut self,
568 def_id: DefId,
569 args: GenericArgsRef<'tcx>,
570 ) -> PredicateObligations<'tcx> {
571 let predicates = self.tcx().predicates_of(def_id);
572 let mut origins = vec![def_id; predicates.predicates.len()];
573 let mut head = predicates;
574 while let Some(parent) = head.parent {
575 head = self.tcx().predicates_of(parent);
576 origins.extend(iter::repeat(parent).take(head.predicates.len()));
577 }
578
579 let predicates = predicates.instantiate(self.tcx(), args);
580 trace!("{:#?}", predicates);
581 debug_assert_eq!(predicates.predicates.len(), origins.len());
582
583 iter::zip(predicates, origins.into_iter().rev())
584 .map(|((pred, span), origin_def_id)| {
585 let code = ObligationCauseCode::WhereClause(origin_def_id, span);
586 let cause = self.cause(code);
587 traits::Obligation::with_depth(
588 self.tcx(),
589 cause,
590 self.recursion_depth,
591 self.param_env,
592 pred,
593 )
594 })
595 .filter(|pred| !pred.has_escaping_bound_vars())
596 .collect()
597 }
598
599 fn from_object_ty(
600 &mut self,
601 ty: Ty<'tcx>,
602 data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
603 region: ty::Region<'tcx>,
604 ) {
605 // Imagine a type like this:
606 //
607 // trait Foo { }
608 // trait Bar<'c> : 'c { }
609 //
610 // &'b (Foo+'c+Bar<'d>)
611 // ^
612 //
613 // In this case, the following relationships must hold:
614 //
615 // 'b <= 'c
616 // 'd <= 'c
617 //
618 // The first conditions is due to the normal region pointer
619 // rules, which say that a reference cannot outlive its
620 // referent.
621 //
622 // The final condition may be a bit surprising. In particular,
623 // you may expect that it would have been `'c <= 'd`, since
624 // usually lifetimes of outer things are conservative
625 // approximations for inner things. However, it works somewhat
626 // differently with trait objects: here the idea is that if the
627 // user specifies a region bound (`'c`, in this case) it is the
628 // "master bound" that *implies* that bounds from other traits are
629 // all met. (Remember that *all bounds* in a type like
630 // `Foo+Bar+Zed` must be met, not just one, hence if we write
631 // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
632 // 'y.)
633 //
634 // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
635 // am looking forward to the future here.
636 if !data.has_escaping_bound_vars() && !region.has_escaping_bound_vars() {
637 let implicit_bounds = object_region_bounds(self.tcx(), data);
638
639 let explicit_bound = region;
640
641 self.out.reserve(implicit_bounds.len());
642 for implicit_bound in implicit_bounds {
643 let cause = self.cause(ObligationCauseCode::ObjectTypeBound(ty, explicit_bound));
644 let outlives =
645 ty::Binder::dummy(ty::OutlivesPredicate(explicit_bound, implicit_bound));
646 self.out.push(traits::Obligation::with_depth(
647 self.tcx(),
648 cause,
649 self.recursion_depth,
650 self.param_env,
651 outlives,
652 ));
653 }
654 }
655 }
656}
657
658impl<'a, 'tcx> TypeVisitor<TyCtxt<'tcx>> for WfPredicates<'a, 'tcx> {
659 fn visit_ty(&mut self, t: Ty<'tcx>) -> Self::Result {
660 debug!("wf bounds for t={:?} t.kind={:#?}", t, t.kind());
661
662 let tcx = self.tcx();
663
664 match *t.kind() {
665 ty::Bool
666 | ty::Char
667 | ty::Int(..)
668 | ty::Uint(..)
669 | ty::Float(..)
670 | ty::Error(_)
671 | ty::Str
672 | ty::CoroutineWitness(..)
673 | ty::Never
674 | ty::Param(_)
675 | ty::Bound(..)
676 | ty::Placeholder(..)
677 | ty::Foreign(..) => {
678 // WfScalar, WfParameter, etc
679 }
680
681 // Can only infer to `ty::Int(_) | ty::Uint(_)`.
682 ty::Infer(ty::IntVar(_)) => {}
683
684 // Can only infer to `ty::Float(_)`.
685 ty::Infer(ty::FloatVar(_)) => {}
686
687 ty::Slice(subty) => {
688 self.require_sized(subty, ObligationCauseCode::SliceOrArrayElem);
689 }
690
691 ty::Array(subty, len) => {
692 self.require_sized(subty, ObligationCauseCode::SliceOrArrayElem);
693 // Note that the len being WF is implicitly checked while visiting.
694 // Here we just check that it's of type usize.
695 let cause = self.cause(ObligationCauseCode::ArrayLen(t));
696 self.out.push(traits::Obligation::with_depth(
697 tcx,
698 cause,
699 self.recursion_depth,
700 self.param_env,
701 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(
702 len,
703 tcx.types.usize,
704 ))),
705 ));
706 }
707
708 ty::Pat(subty, pat) => {
709 self.require_sized(subty, ObligationCauseCode::Misc);
710 match *pat {
711 ty::PatternKind::Range { start, end, include_end: _ } => {
712 let mut check = |c| {
713 let cause = self.cause(ObligationCauseCode::Misc);
714 self.out.push(traits::Obligation::with_depth(
715 tcx,
716 cause.clone(),
717 self.recursion_depth,
718 self.param_env,
719 ty::Binder::dummy(ty::PredicateKind::Clause(
720 ty::ClauseKind::ConstArgHasType(c, subty),
721 )),
722 ));
723 if !tcx.features().generic_pattern_types() {
724 if c.has_param() {
725 if self.span.is_dummy() {
726 self.tcx().dcx().delayed_bug(
727 "feature error should be reported elsewhere, too",
728 );
729 } else {
730 feature_err(
731 &self.tcx().sess,
732 sym::generic_pattern_types,
733 self.span,
734 "wraparound pattern type ranges cause monomorphization time errors",
735 )
736 .emit();
737 }
738 }
739 }
740 };
741 if let Some(start) = start {
742 check(start)
743 }
744 if let Some(end) = end {
745 check(end)
746 }
747 }
748 }
749 }
750
751 ty::Tuple(tys) => {
752 if let Some((_last, rest)) = tys.split_last() {
753 for &elem in rest {
754 self.require_sized(elem, ObligationCauseCode::TupleElem);
755 }
756 }
757 }
758
759 ty::RawPtr(_, _) => {
760 // Simple cases that are WF if their type args are WF.
761 }
762
763 ty::Alias(ty::Projection | ty::Opaque | ty::Weak, data) => {
764 let obligations = self.nominal_obligations(data.def_id, data.args);
765 self.out.extend(obligations);
766 }
767 ty::Alias(ty::Inherent, data) => {
768 self.compute_inherent_projection(data);
769 return; // Subtree handled by compute_inherent_projection.
770 }
771
772 ty::Adt(def, args) => {
773 // WfNominalType
774 let obligations = self.nominal_obligations(def.did(), args);
775 self.out.extend(obligations);
776 }
777
778 ty::FnDef(did, args) => {
779 // HACK: Check the return type of function definitions for
780 // well-formedness to mostly fix #84533. This is still not
781 // perfect and there may be ways to abuse the fact that we
782 // ignore requirements with escaping bound vars. That's a
783 // more general issue however.
784 let fn_sig = tcx.fn_sig(did).instantiate(tcx, args);
785 fn_sig.output().skip_binder().visit_with(self);
786
787 let obligations = self.nominal_obligations(did, args);
788 self.out.extend(obligations);
789 }
790
791 ty::Ref(r, rty, _) => {
792 // WfReference
793 if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
794 let cause = self.cause(ObligationCauseCode::ReferenceOutlivesReferent(t));
795 self.out.push(traits::Obligation::with_depth(
796 tcx,
797 cause,
798 self.recursion_depth,
799 self.param_env,
800 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
801 ty::OutlivesPredicate(rty, r),
802 ))),
803 ));
804 }
805 }
806
807 ty::Coroutine(did, args, ..) => {
808 // Walk ALL the types in the coroutine: this will
809 // include the upvar types as well as the yield
810 // type. Note that this is mildly distinct from
811 // the closure case, where we have to be careful
812 // about the signature of the closure. We don't
813 // have the problem of implied bounds here since
814 // coroutines don't take arguments.
815 let obligations = self.nominal_obligations(did, args);
816 self.out.extend(obligations);
817 }
818
819 ty::Closure(did, args) => {
820 // Note that we cannot skip the generic types
821 // types. Normally, within the fn
822 // body where they are created, the generics will
823 // always be WF, and outside of that fn body we
824 // are not directly inspecting closure types
825 // anyway, except via auto trait matching (which
826 // only inspects the upvar types).
827 // But when a closure is part of a type-alias-impl-trait
828 // then the function that created the defining site may
829 // have had more bounds available than the type alias
830 // specifies. This may cause us to have a closure in the
831 // hidden type that is not actually well formed and
832 // can cause compiler crashes when the user abuses unsafe
833 // code to procure such a closure.
834 // See tests/ui/type-alias-impl-trait/wf_check_closures.rs
835 let obligations = self.nominal_obligations(did, args);
836 self.out.extend(obligations);
837 // Only check the upvar types for WF, not the rest
838 // of the types within. This is needed because we
839 // capture the signature and it may not be WF
840 // without the implied bounds. Consider a closure
841 // like `|x: &'a T|` -- it may be that `T: 'a` is
842 // not known to hold in the creator's context (and
843 // indeed the closure may not be invoked by its
844 // creator, but rather turned to someone who *can*
845 // verify that).
846 //
847 // The special treatment of closures here really
848 // ought not to be necessary either; the problem
849 // is related to #25860 -- there is no way for us
850 // to express a fn type complete with the implied
851 // bounds that it is assuming. I think in reality
852 // the WF rules around fn are a bit messed up, and
853 // that is the rot problem: `fn(&'a T)` should
854 // probably always be WF, because it should be
855 // shorthand for something like `where(T: 'a) {
856 // fn(&'a T) }`, as discussed in #25860.
857 let upvars = args.as_closure().tupled_upvars_ty();
858 return upvars.visit_with(self);
859 }
860
861 ty::CoroutineClosure(did, args) => {
862 // See the above comments. The same apply to coroutine-closures.
863 let obligations = self.nominal_obligations(did, args);
864 self.out.extend(obligations);
865 let upvars = args.as_coroutine_closure().tupled_upvars_ty();
866 return upvars.visit_with(self);
867 }
868
869 ty::FnPtr(..) => {
870 // Let the visitor iterate into the argument/return
871 // types appearing in the fn signature.
872 }
873 ty::UnsafeBinder(ty) => {
874 // FIXME(unsafe_binders): For now, we have no way to express
875 // that a type must be `ManuallyDrop` OR `Copy` (or a pointer).
876 if !ty.has_escaping_bound_vars() {
877 self.out.push(traits::Obligation::new(
878 self.tcx(),
879 self.cause(ObligationCauseCode::Misc),
880 self.param_env,
881 ty.map_bound(|ty| {
882 ty::TraitRef::new(
883 self.tcx(),
884 self.tcx().require_lang_item(
885 LangItem::BikeshedGuaranteedNoDrop,
886 Some(self.span),
887 ),
888 [ty],
889 )
890 }),
891 ));
892 }
893
894 // We recurse into the binder below.
895 }
896
897 ty::Dynamic(data, r, _) => {
898 // WfObject
899 //
900 // Here, we defer WF checking due to higher-ranked
901 // regions. This is perhaps not ideal.
902 self.from_object_ty(t, data, r);
903
904 // FIXME(#27579) RFC also considers adding trait
905 // obligations that don't refer to Self and
906 // checking those
907
908 let defer_to_coercion = tcx.features().dyn_compatible_for_dispatch();
909
910 if !defer_to_coercion {
911 if let Some(principal) = data.principal_def_id() {
912 self.out.push(traits::Obligation::with_depth(
913 tcx,
914 self.cause(ObligationCauseCode::WellFormed(None)),
915 self.recursion_depth,
916 self.param_env,
917 ty::Binder::dummy(ty::PredicateKind::DynCompatible(principal)),
918 ));
919 }
920 }
921 }
922
923 // Inference variables are the complicated case, since we don't
924 // know what type they are. We do two things:
925 //
926 // 1. Check if they have been resolved, and if so proceed with
927 // THAT type.
928 // 2. If not, we've at least simplified things (e.g., we went
929 // from `Vec<$0>: WF` to `$0: WF`), so we can
930 // register a pending obligation and keep
931 // moving. (Goal is that an "inductive hypothesis"
932 // is satisfied to ensure termination.)
933 // See also the comment on `fn obligations`, describing "livelock"
934 // prevention, which happens before this can be reached.
935 ty::Infer(_) => {
936 let cause = self.cause(ObligationCauseCode::WellFormed(None));
937 self.out.push(traits::Obligation::with_depth(
938 tcx,
939 cause,
940 self.recursion_depth,
941 self.param_env,
942 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
943 t.into(),
944 ))),
945 ));
946 }
947 }
948
949 t.super_visit_with(self)
950 }
951
952 fn visit_const(&mut self, c: ty::Const<'tcx>) -> Self::Result {
953 let tcx = self.tcx();
954
955 match c.kind() {
956 ty::ConstKind::Unevaluated(uv) => {
957 if !c.has_escaping_bound_vars() {
958 let obligations = self.nominal_obligations(uv.def, uv.args);
959 self.out.extend(obligations);
960
961 let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(
962 ty::ClauseKind::ConstEvaluatable(c),
963 ));
964 let cause = self.cause(ObligationCauseCode::WellFormed(None));
965 self.out.push(traits::Obligation::with_depth(
966 tcx,
967 cause,
968 self.recursion_depth,
969 self.param_env,
970 predicate,
971 ));
972 }
973 }
974 ty::ConstKind::Infer(_) => {
975 let cause = self.cause(ObligationCauseCode::WellFormed(None));
976
977 self.out.push(traits::Obligation::with_depth(
978 tcx,
979 cause,
980 self.recursion_depth,
981 self.param_env,
982 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
983 c.into(),
984 ))),
985 ));
986 }
987 ty::ConstKind::Expr(_) => {
988 // FIXME(generic_const_exprs): this doesn't verify that given `Expr(N + 1)` the
989 // trait bound `typeof(N): Add<typeof(1)>` holds. This is currently unnecessary
990 // as `ConstKind::Expr` is only produced via normalization of `ConstKind::Unevaluated`
991 // which means that the `DefId` would have been typeck'd elsewhere. However in
992 // the future we may allow directly lowering to `ConstKind::Expr` in which case
993 // we would not be proving bounds we should.
994
995 let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(
996 ty::ClauseKind::ConstEvaluatable(c),
997 ));
998 let cause = self.cause(ObligationCauseCode::WellFormed(None));
999 self.out.push(traits::Obligation::with_depth(
1000 tcx,
1001 cause,
1002 self.recursion_depth,
1003 self.param_env,
1004 predicate,
1005 ));
1006 }
1007
1008 ty::ConstKind::Error(_)
1009 | ty::ConstKind::Param(_)
1010 | ty::ConstKind::Bound(..)
1011 | ty::ConstKind::Placeholder(..) => {
1012 // These variants are trivially WF, so nothing to do here.
1013 }
1014 ty::ConstKind::Value(..) => {
1015 // FIXME: Enforce that values are structurally-matchable.
1016 }
1017 }
1018
1019 c.super_visit_with(self)
1020 }
1021
1022 fn visit_predicate(&mut self, _p: ty::Predicate<'tcx>) -> Self::Result {
1023 bug!("predicate should not be checked for well-formedness");
1024 }
1025}
1026
1027/// Given an object type like `SomeTrait + Send`, computes the lifetime
1028/// bounds that must hold on the elided self type. These are derived
1029/// from the declarations of `SomeTrait`, `Send`, and friends -- if
1030/// they declare `trait SomeTrait : 'static`, for example, then
1031/// `'static` would appear in the list.
1032///
1033/// N.B., in some cases, particularly around higher-ranked bounds,
1034/// this function returns a kind of conservative approximation.
1035/// That is, all regions returned by this function are definitely
1036/// required, but there may be other region bounds that are not
1037/// returned, as well as requirements like `for<'a> T: 'a`.
1038///
1039/// Requires that trait definitions have been processed so that we can
1040/// elaborate predicates and walk supertraits.
1041pub fn object_region_bounds<'tcx>(
1042 tcx: TyCtxt<'tcx>,
1043 existential_predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
1044) -> Vec<ty::Region<'tcx>> {
1045 let erased_self_ty = tcx.types.trait_object_dummy_self;
1046
1047 let predicates =
1048 existential_predicates.iter().map(|predicate| predicate.with_self_ty(tcx, erased_self_ty));
1049
1050 traits::elaborate(tcx, predicates)
1051 .filter_map(|pred| {
1052 debug!(?pred);
1053 match pred.kind().skip_binder() {
1054 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ref t, ref r)) => {
1055 // Search for a bound of the form `erased_self_ty
1056 // : 'a`, but be wary of something like `for<'a>
1057 // erased_self_ty : 'a` (we interpret a
1058 // higher-ranked bound like that as 'static,
1059 // though at present the code in `fulfill.rs`
1060 // considers such bounds to be unsatisfiable, so
1061 // it's kind of a moot point since you could never
1062 // construct such an object, but this seems
1063 // correct even if that code changes).
1064 if t == &erased_self_ty && !r.has_escaping_bound_vars() {
1065 Some(*r)
1066 } else {
1067 None
1068 }
1069 }
1070 ty::ClauseKind::Trait(_)
1071 | ty::ClauseKind::HostEffect(..)
1072 | ty::ClauseKind::RegionOutlives(_)
1073 | ty::ClauseKind::Projection(_)
1074 | ty::ClauseKind::ConstArgHasType(_, _)
1075 | ty::ClauseKind::WellFormed(_)
1076 | ty::ClauseKind::ConstEvaluatable(_) => None,
1077 }
1078 })
1079 .collect()
1080}