rustc_mir_transform/
coroutine.rs

1//! This is the implementation of the pass which transforms coroutines into state machines.
2//!
3//! MIR generation for coroutines creates a function which has a self argument which
4//! passes by value. This argument is effectively a coroutine type which only contains upvars and
5//! is only used for this argument inside the MIR for the coroutine.
6//! It is passed by value to enable upvars to be moved out of it. Drop elaboration runs on that
7//! MIR before this pass and creates drop flags for MIR locals.
8//! It will also drop the coroutine argument (which only consists of upvars) if any of the upvars
9//! are moved out of. This pass elaborates the drops of upvars / coroutine argument in the case
10//! that none of the upvars were moved out of. This is because we cannot have any drops of this
11//! coroutine in the MIR, since it is used to create the drop glue for the coroutine. We'd get
12//! infinite recursion otherwise.
13//!
14//! This pass creates the implementation for either the `Coroutine::resume` or `Future::poll`
15//! function and the drop shim for the coroutine based on the MIR input.
16//! It converts the coroutine argument from Self to &mut Self adding derefs in the MIR as needed.
17//! It computes the final layout of the coroutine struct which looks like this:
18//!     First upvars are stored
19//!     It is followed by the coroutine state field.
20//!     Then finally the MIR locals which are live across a suspension point are stored.
21//!     ```ignore (illustrative)
22//!     struct Coroutine {
23//!         upvars...,
24//!         state: u32,
25//!         mir_locals...,
26//!     }
27//!     ```
28//! This pass computes the meaning of the state field and the MIR locals which are live
29//! across a suspension point. There are however three hardcoded coroutine states:
30//!     0 - Coroutine have not been resumed yet
31//!     1 - Coroutine has returned / is completed
32//!     2 - Coroutine has been poisoned
33//!
34//! It also rewrites `return x` and `yield y` as setting a new coroutine state and returning
35//! `CoroutineState::Complete(x)` and `CoroutineState::Yielded(y)`,
36//! or `Poll::Ready(x)` and `Poll::Pending` respectively.
37//! MIR locals which are live across a suspension point are moved to the coroutine struct
38//! with references to them being updated with references to the coroutine struct.
39//!
40//! The pass creates two functions which have a switch on the coroutine state giving
41//! the action to take.
42//!
43//! One of them is the implementation of `Coroutine::resume` / `Future::poll`.
44//! For coroutines with state 0 (unresumed) it starts the execution of the coroutine.
45//! For coroutines with state 1 (returned) and state 2 (poisoned) it panics.
46//! Otherwise it continues the execution from the last suspension point.
47//!
48//! The other function is the drop glue for the coroutine.
49//! For coroutines with state 0 (unresumed) it drops the upvars of the coroutine.
50//! For coroutines with state 1 (returned) and state 2 (poisoned) it does nothing.
51//! Otherwise it drops all the values in scope at the last suspension point.
52
53mod by_move_body;
54use std::{iter, ops};
55
56pub(super) use by_move_body::coroutine_by_move_body_def_id;
57use rustc_abi::{FieldIdx, VariantIdx};
58use rustc_data_structures::fx::FxHashSet;
59use rustc_errors::pluralize;
60use rustc_hir as hir;
61use rustc_hir::lang_items::LangItem;
62use rustc_hir::{CoroutineDesugaring, CoroutineKind};
63use rustc_index::bit_set::{BitMatrix, DenseBitSet, GrowableBitSet};
64use rustc_index::{Idx, IndexVec};
65use rustc_middle::mir::visit::{MutVisitor, PlaceContext, Visitor};
66use rustc_middle::mir::*;
67use rustc_middle::ty::{
68    self, CoroutineArgs, CoroutineArgsExt, GenericArgsRef, InstanceKind, Ty, TyCtxt, TypingMode,
69};
70use rustc_middle::{bug, span_bug};
71use rustc_mir_dataflow::impls::{
72    MaybeBorrowedLocals, MaybeLiveLocals, MaybeRequiresStorage, MaybeStorageLive,
73    always_storage_live_locals,
74};
75use rustc_mir_dataflow::{Analysis, Results, ResultsVisitor};
76use rustc_span::def_id::{DefId, LocalDefId};
77use rustc_span::{Span, sym};
78use rustc_target::spec::PanicStrategy;
79use rustc_trait_selection::error_reporting::InferCtxtErrorExt;
80use rustc_trait_selection::infer::TyCtxtInferExt as _;
81use rustc_trait_selection::traits::{ObligationCause, ObligationCauseCode, ObligationCtxt};
82use tracing::{debug, instrument, trace};
83
84use crate::deref_separator::deref_finder;
85use crate::{abort_unwinding_calls, errors, pass_manager as pm, simplify};
86
87pub(super) struct StateTransform;
88
89struct RenameLocalVisitor<'tcx> {
90    from: Local,
91    to: Local,
92    tcx: TyCtxt<'tcx>,
93}
94
95impl<'tcx> MutVisitor<'tcx> for RenameLocalVisitor<'tcx> {
96    fn tcx(&self) -> TyCtxt<'tcx> {
97        self.tcx
98    }
99
100    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
101        if *local == self.from {
102            *local = self.to;
103        }
104    }
105
106    fn visit_terminator(&mut self, terminator: &mut Terminator<'tcx>, location: Location) {
107        match terminator.kind {
108            TerminatorKind::Return => {
109                // Do not replace the implicit `_0` access here, as that's not possible. The
110                // transform already handles `return` correctly.
111            }
112            _ => self.super_terminator(terminator, location),
113        }
114    }
115}
116
117struct SelfArgVisitor<'tcx> {
118    tcx: TyCtxt<'tcx>,
119    new_base: Place<'tcx>,
120}
121
122impl<'tcx> SelfArgVisitor<'tcx> {
123    fn new(tcx: TyCtxt<'tcx>, elem: ProjectionElem<Local, Ty<'tcx>>) -> Self {
124        Self { tcx, new_base: Place { local: SELF_ARG, projection: tcx.mk_place_elems(&[elem]) } }
125    }
126}
127
128impl<'tcx> MutVisitor<'tcx> for SelfArgVisitor<'tcx> {
129    fn tcx(&self) -> TyCtxt<'tcx> {
130        self.tcx
131    }
132
133    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
134        assert_ne!(*local, SELF_ARG);
135    }
136
137    fn visit_place(&mut self, place: &mut Place<'tcx>, context: PlaceContext, location: Location) {
138        if place.local == SELF_ARG {
139            replace_base(place, self.new_base, self.tcx);
140        } else {
141            self.visit_local(&mut place.local, context, location);
142
143            for elem in place.projection.iter() {
144                if let PlaceElem::Index(local) = elem {
145                    assert_ne!(local, SELF_ARG);
146                }
147            }
148        }
149    }
150}
151
152fn replace_base<'tcx>(place: &mut Place<'tcx>, new_base: Place<'tcx>, tcx: TyCtxt<'tcx>) {
153    place.local = new_base.local;
154
155    let mut new_projection = new_base.projection.to_vec();
156    new_projection.append(&mut place.projection.to_vec());
157
158    place.projection = tcx.mk_place_elems(&new_projection);
159}
160
161const SELF_ARG: Local = Local::from_u32(1);
162
163/// A `yield` point in the coroutine.
164struct SuspensionPoint<'tcx> {
165    /// State discriminant used when suspending or resuming at this point.
166    state: usize,
167    /// The block to jump to after resumption.
168    resume: BasicBlock,
169    /// Where to move the resume argument after resumption.
170    resume_arg: Place<'tcx>,
171    /// Which block to jump to if the coroutine is dropped in this state.
172    drop: Option<BasicBlock>,
173    /// Set of locals that have live storage while at this suspension point.
174    storage_liveness: GrowableBitSet<Local>,
175}
176
177struct TransformVisitor<'tcx> {
178    tcx: TyCtxt<'tcx>,
179    coroutine_kind: hir::CoroutineKind,
180
181    // The type of the discriminant in the coroutine struct
182    discr_ty: Ty<'tcx>,
183
184    // Mapping from Local to (type of local, coroutine struct index)
185    remap: IndexVec<Local, Option<(Ty<'tcx>, VariantIdx, FieldIdx)>>,
186
187    // A map from a suspension point in a block to the locals which have live storage at that point
188    storage_liveness: IndexVec<BasicBlock, Option<DenseBitSet<Local>>>,
189
190    // A list of suspension points, generated during the transform
191    suspension_points: Vec<SuspensionPoint<'tcx>>,
192
193    // The set of locals that have no `StorageLive`/`StorageDead` annotations.
194    always_live_locals: DenseBitSet<Local>,
195
196    // The original RETURN_PLACE local
197    old_ret_local: Local,
198
199    old_yield_ty: Ty<'tcx>,
200
201    old_ret_ty: Ty<'tcx>,
202}
203
204impl<'tcx> TransformVisitor<'tcx> {
205    fn insert_none_ret_block(&self, body: &mut Body<'tcx>) -> BasicBlock {
206        let block = BasicBlock::new(body.basic_blocks.len());
207        let source_info = SourceInfo::outermost(body.span);
208
209        let none_value = match self.coroutine_kind {
210            CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
211                span_bug!(body.span, "`Future`s are not fused inherently")
212            }
213            CoroutineKind::Coroutine(_) => span_bug!(body.span, "`Coroutine`s cannot be fused"),
214            // `gen` continues return `None`
215            CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
216                let option_def_id = self.tcx.require_lang_item(LangItem::Option, None);
217                make_aggregate_adt(
218                    option_def_id,
219                    VariantIdx::ZERO,
220                    self.tcx.mk_args(&[self.old_yield_ty.into()]),
221                    IndexVec::new(),
222                )
223            }
224            // `async gen` continues to return `Poll::Ready(None)`
225            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => {
226                let ty::Adt(_poll_adt, args) = *self.old_yield_ty.kind() else { bug!() };
227                let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else { bug!() };
228                let yield_ty = args.type_at(0);
229                Rvalue::Use(Operand::Constant(Box::new(ConstOperand {
230                    span: source_info.span,
231                    const_: Const::Unevaluated(
232                        UnevaluatedConst::new(
233                            self.tcx.require_lang_item(LangItem::AsyncGenFinished, None),
234                            self.tcx.mk_args(&[yield_ty.into()]),
235                        ),
236                        self.old_yield_ty,
237                    ),
238                    user_ty: None,
239                })))
240            }
241        };
242
243        let statements = vec![Statement {
244            kind: StatementKind::Assign(Box::new((Place::return_place(), none_value))),
245            source_info,
246        }];
247
248        body.basic_blocks_mut().push(BasicBlockData {
249            statements,
250            terminator: Some(Terminator { source_info, kind: TerminatorKind::Return }),
251            is_cleanup: false,
252        });
253
254        block
255    }
256
257    // Make a `CoroutineState` or `Poll` variant assignment.
258    //
259    // `core::ops::CoroutineState` only has single element tuple variants,
260    // so we can just write to the downcasted first field and then set the
261    // discriminant to the appropriate variant.
262    fn make_state(
263        &self,
264        val: Operand<'tcx>,
265        source_info: SourceInfo,
266        is_return: bool,
267        statements: &mut Vec<Statement<'tcx>>,
268    ) {
269        const ZERO: VariantIdx = VariantIdx::ZERO;
270        const ONE: VariantIdx = VariantIdx::from_usize(1);
271        let rvalue = match self.coroutine_kind {
272            CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
273                let poll_def_id = self.tcx.require_lang_item(LangItem::Poll, None);
274                let args = self.tcx.mk_args(&[self.old_ret_ty.into()]);
275                let (variant_idx, operands) = if is_return {
276                    (ZERO, IndexVec::from_raw(vec![val])) // Poll::Ready(val)
277                } else {
278                    (ONE, IndexVec::new()) // Poll::Pending
279                };
280                make_aggregate_adt(poll_def_id, variant_idx, args, operands)
281            }
282            CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
283                let option_def_id = self.tcx.require_lang_item(LangItem::Option, None);
284                let args = self.tcx.mk_args(&[self.old_yield_ty.into()]);
285                let (variant_idx, operands) = if is_return {
286                    (ZERO, IndexVec::new()) // None
287                } else {
288                    (ONE, IndexVec::from_raw(vec![val])) // Some(val)
289                };
290                make_aggregate_adt(option_def_id, variant_idx, args, operands)
291            }
292            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => {
293                if is_return {
294                    let ty::Adt(_poll_adt, args) = *self.old_yield_ty.kind() else { bug!() };
295                    let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else { bug!() };
296                    let yield_ty = args.type_at(0);
297                    Rvalue::Use(Operand::Constant(Box::new(ConstOperand {
298                        span: source_info.span,
299                        const_: Const::Unevaluated(
300                            UnevaluatedConst::new(
301                                self.tcx.require_lang_item(LangItem::AsyncGenFinished, None),
302                                self.tcx.mk_args(&[yield_ty.into()]),
303                            ),
304                            self.old_yield_ty,
305                        ),
306                        user_ty: None,
307                    })))
308                } else {
309                    Rvalue::Use(val)
310                }
311            }
312            CoroutineKind::Coroutine(_) => {
313                let coroutine_state_def_id =
314                    self.tcx.require_lang_item(LangItem::CoroutineState, None);
315                let args = self.tcx.mk_args(&[self.old_yield_ty.into(), self.old_ret_ty.into()]);
316                let variant_idx = if is_return {
317                    ONE // CoroutineState::Complete(val)
318                } else {
319                    ZERO // CoroutineState::Yielded(val)
320                };
321                make_aggregate_adt(
322                    coroutine_state_def_id,
323                    variant_idx,
324                    args,
325                    IndexVec::from_raw(vec![val]),
326                )
327            }
328        };
329
330        statements.push(Statement {
331            kind: StatementKind::Assign(Box::new((Place::return_place(), rvalue))),
332            source_info,
333        });
334    }
335
336    // Create a Place referencing a coroutine struct field
337    fn make_field(&self, variant_index: VariantIdx, idx: FieldIdx, ty: Ty<'tcx>) -> Place<'tcx> {
338        let self_place = Place::from(SELF_ARG);
339        let base = self.tcx.mk_place_downcast_unnamed(self_place, variant_index);
340        let mut projection = base.projection.to_vec();
341        projection.push(ProjectionElem::Field(idx, ty));
342
343        Place { local: base.local, projection: self.tcx.mk_place_elems(&projection) }
344    }
345
346    // Create a statement which changes the discriminant
347    fn set_discr(&self, state_disc: VariantIdx, source_info: SourceInfo) -> Statement<'tcx> {
348        let self_place = Place::from(SELF_ARG);
349        Statement {
350            source_info,
351            kind: StatementKind::SetDiscriminant {
352                place: Box::new(self_place),
353                variant_index: state_disc,
354            },
355        }
356    }
357
358    // Create a statement which reads the discriminant into a temporary
359    fn get_discr(&self, body: &mut Body<'tcx>) -> (Statement<'tcx>, Place<'tcx>) {
360        let temp_decl = LocalDecl::new(self.discr_ty, body.span);
361        let local_decls_len = body.local_decls.push(temp_decl);
362        let temp = Place::from(local_decls_len);
363
364        let self_place = Place::from(SELF_ARG);
365        let assign = Statement {
366            source_info: SourceInfo::outermost(body.span),
367            kind: StatementKind::Assign(Box::new((temp, Rvalue::Discriminant(self_place)))),
368        };
369        (assign, temp)
370    }
371}
372
373impl<'tcx> MutVisitor<'tcx> for TransformVisitor<'tcx> {
374    fn tcx(&self) -> TyCtxt<'tcx> {
375        self.tcx
376    }
377
378    fn visit_local(&mut self, local: &mut Local, _: PlaceContext, _: Location) {
379        assert!(!self.remap.contains(*local));
380    }
381
382    fn visit_place(
383        &mut self,
384        place: &mut Place<'tcx>,
385        _context: PlaceContext,
386        _location: Location,
387    ) {
388        // Replace an Local in the remap with a coroutine struct access
389        if let Some(&Some((ty, variant_index, idx))) = self.remap.get(place.local) {
390            replace_base(place, self.make_field(variant_index, idx, ty), self.tcx);
391        }
392    }
393
394    fn visit_basic_block_data(&mut self, block: BasicBlock, data: &mut BasicBlockData<'tcx>) {
395        // Remove StorageLive and StorageDead statements for remapped locals
396        data.retain_statements(|s| match s.kind {
397            StatementKind::StorageLive(l) | StatementKind::StorageDead(l) => {
398                !self.remap.contains(l)
399            }
400            _ => true,
401        });
402
403        let ret_val = match data.terminator().kind {
404            TerminatorKind::Return => {
405                Some((true, None, Operand::Move(Place::from(self.old_ret_local)), None))
406            }
407            TerminatorKind::Yield { ref value, resume, resume_arg, drop } => {
408                Some((false, Some((resume, resume_arg)), value.clone(), drop))
409            }
410            _ => None,
411        };
412
413        if let Some((is_return, resume, v, drop)) = ret_val {
414            let source_info = data.terminator().source_info;
415            // We must assign the value first in case it gets declared dead below
416            self.make_state(v, source_info, is_return, &mut data.statements);
417            let state = if let Some((resume, mut resume_arg)) = resume {
418                // Yield
419                let state = CoroutineArgs::RESERVED_VARIANTS + self.suspension_points.len();
420
421                // The resume arg target location might itself be remapped if its base local is
422                // live across a yield.
423                if let Some(&Some((ty, variant, idx))) = self.remap.get(resume_arg.local) {
424                    replace_base(&mut resume_arg, self.make_field(variant, idx, ty), self.tcx);
425                }
426
427                let storage_liveness: GrowableBitSet<Local> =
428                    self.storage_liveness[block].clone().unwrap().into();
429
430                for i in 0..self.always_live_locals.domain_size() {
431                    let l = Local::new(i);
432                    let needs_storage_dead = storage_liveness.contains(l)
433                        && !self.remap.contains(l)
434                        && !self.always_live_locals.contains(l);
435                    if needs_storage_dead {
436                        data.statements
437                            .push(Statement { source_info, kind: StatementKind::StorageDead(l) });
438                    }
439                }
440
441                self.suspension_points.push(SuspensionPoint {
442                    state,
443                    resume,
444                    resume_arg,
445                    drop,
446                    storage_liveness,
447                });
448
449                VariantIdx::new(state)
450            } else {
451                // Return
452                VariantIdx::new(CoroutineArgs::RETURNED) // state for returned
453            };
454            data.statements.push(self.set_discr(state, source_info));
455            data.terminator_mut().kind = TerminatorKind::Return;
456        }
457
458        self.super_basic_block_data(block, data);
459    }
460}
461
462fn make_aggregate_adt<'tcx>(
463    def_id: DefId,
464    variant_idx: VariantIdx,
465    args: GenericArgsRef<'tcx>,
466    operands: IndexVec<FieldIdx, Operand<'tcx>>,
467) -> Rvalue<'tcx> {
468    Rvalue::Aggregate(Box::new(AggregateKind::Adt(def_id, variant_idx, args, None, None)), operands)
469}
470
471fn make_coroutine_state_argument_indirect<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
472    let coroutine_ty = body.local_decls.raw[1].ty;
473
474    let ref_coroutine_ty = Ty::new_mut_ref(tcx, tcx.lifetimes.re_erased, coroutine_ty);
475
476    // Replace the by value coroutine argument
477    body.local_decls.raw[1].ty = ref_coroutine_ty;
478
479    // Add a deref to accesses of the coroutine state
480    SelfArgVisitor::new(tcx, ProjectionElem::Deref).visit_body(body);
481}
482
483fn make_coroutine_state_argument_pinned<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
484    let ref_coroutine_ty = body.local_decls.raw[1].ty;
485
486    let pin_did = tcx.require_lang_item(LangItem::Pin, Some(body.span));
487    let pin_adt_ref = tcx.adt_def(pin_did);
488    let args = tcx.mk_args(&[ref_coroutine_ty.into()]);
489    let pin_ref_coroutine_ty = Ty::new_adt(tcx, pin_adt_ref, args);
490
491    // Replace the by ref coroutine argument
492    body.local_decls.raw[1].ty = pin_ref_coroutine_ty;
493
494    // Add the Pin field access to accesses of the coroutine state
495    SelfArgVisitor::new(tcx, ProjectionElem::Field(FieldIdx::ZERO, ref_coroutine_ty))
496        .visit_body(body);
497}
498
499/// Allocates a new local and replaces all references of `local` with it. Returns the new local.
500///
501/// `local` will be changed to a new local decl with type `ty`.
502///
503/// Note that the new local will be uninitialized. It is the caller's responsibility to assign some
504/// valid value to it before its first use.
505fn replace_local<'tcx>(
506    local: Local,
507    ty: Ty<'tcx>,
508    body: &mut Body<'tcx>,
509    tcx: TyCtxt<'tcx>,
510) -> Local {
511    let new_decl = LocalDecl::new(ty, body.span);
512    let new_local = body.local_decls.push(new_decl);
513    body.local_decls.swap(local, new_local);
514
515    RenameLocalVisitor { from: local, to: new_local, tcx }.visit_body(body);
516
517    new_local
518}
519
520/// Transforms the `body` of the coroutine applying the following transforms:
521///
522/// - Eliminates all the `get_context` calls that async lowering created.
523/// - Replace all `Local` `ResumeTy` types with `&mut Context<'_>` (`context_mut_ref`).
524///
525/// The `Local`s that have their types replaced are:
526/// - The `resume` argument itself.
527/// - The argument to `get_context`.
528/// - The yielded value of a `yield`.
529///
530/// The `ResumeTy` hides a `&mut Context<'_>` behind an unsafe raw pointer, and the
531/// `get_context` function is being used to convert that back to a `&mut Context<'_>`.
532///
533/// Ideally the async lowering would not use the `ResumeTy`/`get_context` indirection,
534/// but rather directly use `&mut Context<'_>`, however that would currently
535/// lead to higher-kinded lifetime errors.
536/// See <https://github.com/rust-lang/rust/issues/105501>.
537///
538/// The async lowering step and the type / lifetime inference / checking are
539/// still using the `ResumeTy` indirection for the time being, and that indirection
540/// is removed here. After this transform, the coroutine body only knows about `&mut Context<'_>`.
541fn transform_async_context<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
542    let context_mut_ref = Ty::new_task_context(tcx);
543
544    // replace the type of the `resume` argument
545    replace_resume_ty_local(tcx, body, Local::new(2), context_mut_ref);
546
547    let get_context_def_id = tcx.require_lang_item(LangItem::GetContext, None);
548
549    for bb in START_BLOCK..body.basic_blocks.next_index() {
550        let bb_data = &body[bb];
551        if bb_data.is_cleanup {
552            continue;
553        }
554
555        match &bb_data.terminator().kind {
556            TerminatorKind::Call { func, .. } => {
557                let func_ty = func.ty(body, tcx);
558                if let ty::FnDef(def_id, _) = *func_ty.kind() {
559                    if def_id == get_context_def_id {
560                        let local = eliminate_get_context_call(&mut body[bb]);
561                        replace_resume_ty_local(tcx, body, local, context_mut_ref);
562                    }
563                }
564            }
565            TerminatorKind::Yield { resume_arg, .. } => {
566                replace_resume_ty_local(tcx, body, resume_arg.local, context_mut_ref);
567            }
568            _ => {}
569        }
570    }
571}
572
573fn eliminate_get_context_call<'tcx>(bb_data: &mut BasicBlockData<'tcx>) -> Local {
574    let terminator = bb_data.terminator.take().unwrap();
575    let TerminatorKind::Call { args, destination, target, .. } = terminator.kind else {
576        bug!();
577    };
578    let [arg] = *Box::try_from(args).unwrap();
579    let local = arg.node.place().unwrap().local;
580
581    let arg = Rvalue::Use(arg.node);
582    let assign = Statement {
583        source_info: terminator.source_info,
584        kind: StatementKind::Assign(Box::new((destination, arg))),
585    };
586    bb_data.statements.push(assign);
587    bb_data.terminator = Some(Terminator {
588        source_info: terminator.source_info,
589        kind: TerminatorKind::Goto { target: target.unwrap() },
590    });
591    local
592}
593
594#[cfg_attr(not(debug_assertions), allow(unused))]
595fn replace_resume_ty_local<'tcx>(
596    tcx: TyCtxt<'tcx>,
597    body: &mut Body<'tcx>,
598    local: Local,
599    context_mut_ref: Ty<'tcx>,
600) {
601    let local_ty = std::mem::replace(&mut body.local_decls[local].ty, context_mut_ref);
602    // We have to replace the `ResumeTy` that is used for type and borrow checking
603    // with `&mut Context<'_>` in MIR.
604    #[cfg(debug_assertions)]
605    {
606        if let ty::Adt(resume_ty_adt, _) = local_ty.kind() {
607            let expected_adt = tcx.adt_def(tcx.require_lang_item(LangItem::ResumeTy, None));
608            assert_eq!(*resume_ty_adt, expected_adt);
609        } else {
610            panic!("expected `ResumeTy`, found `{:?}`", local_ty);
611        };
612    }
613}
614
615/// Transforms the `body` of the coroutine applying the following transform:
616///
617/// - Remove the `resume` argument.
618///
619/// Ideally the async lowering would not add the `resume` argument.
620///
621/// The async lowering step and the type / lifetime inference / checking are
622/// still using the `resume` argument for the time being. After this transform,
623/// the coroutine body doesn't have the `resume` argument.
624fn transform_gen_context<'tcx>(body: &mut Body<'tcx>) {
625    // This leaves the local representing the `resume` argument in place,
626    // but turns it into a regular local variable. This is cheaper than
627    // adjusting all local references in the body after removing it.
628    body.arg_count = 1;
629}
630
631struct LivenessInfo {
632    /// Which locals are live across any suspension point.
633    saved_locals: CoroutineSavedLocals,
634
635    /// The set of saved locals live at each suspension point.
636    live_locals_at_suspension_points: Vec<DenseBitSet<CoroutineSavedLocal>>,
637
638    /// Parallel vec to the above with SourceInfo for each yield terminator.
639    source_info_at_suspension_points: Vec<SourceInfo>,
640
641    /// For every saved local, the set of other saved locals that are
642    /// storage-live at the same time as this local. We cannot overlap locals in
643    /// the layout which have conflicting storage.
644    storage_conflicts: BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal>,
645
646    /// For every suspending block, the locals which are storage-live across
647    /// that suspension point.
648    storage_liveness: IndexVec<BasicBlock, Option<DenseBitSet<Local>>>,
649}
650
651/// Computes which locals have to be stored in the state-machine for the
652/// given coroutine.
653///
654/// The basic idea is as follows:
655/// - a local is live until we encounter a `StorageDead` statement. In
656///   case none exist, the local is considered to be always live.
657/// - a local has to be stored if it is either directly used after the
658///   the suspend point, or if it is live and has been previously borrowed.
659fn locals_live_across_suspend_points<'tcx>(
660    tcx: TyCtxt<'tcx>,
661    body: &Body<'tcx>,
662    always_live_locals: &DenseBitSet<Local>,
663    movable: bool,
664) -> LivenessInfo {
665    // Calculate when MIR locals have live storage. This gives us an upper bound of their
666    // lifetimes.
667    let mut storage_live = MaybeStorageLive::new(std::borrow::Cow::Borrowed(always_live_locals))
668        .iterate_to_fixpoint(tcx, body, None)
669        .into_results_cursor(body);
670
671    // Calculate the MIR locals which have been previously
672    // borrowed (even if they are still active).
673    let borrowed_locals_results =
674        MaybeBorrowedLocals.iterate_to_fixpoint(tcx, body, Some("coroutine"));
675
676    let mut borrowed_locals_cursor = borrowed_locals_results.clone().into_results_cursor(body);
677
678    // Calculate the MIR locals that we need to keep storage around for.
679    let mut requires_storage_results =
680        MaybeRequiresStorage::new(borrowed_locals_results.into_results_cursor(body))
681            .iterate_to_fixpoint(tcx, body, None);
682    let mut requires_storage_cursor = requires_storage_results.as_results_cursor(body);
683
684    // Calculate the liveness of MIR locals ignoring borrows.
685    let mut liveness =
686        MaybeLiveLocals.iterate_to_fixpoint(tcx, body, Some("coroutine")).into_results_cursor(body);
687
688    let mut storage_liveness_map = IndexVec::from_elem(None, &body.basic_blocks);
689    let mut live_locals_at_suspension_points = Vec::new();
690    let mut source_info_at_suspension_points = Vec::new();
691    let mut live_locals_at_any_suspension_point = DenseBitSet::new_empty(body.local_decls.len());
692
693    for (block, data) in body.basic_blocks.iter_enumerated() {
694        if let TerminatorKind::Yield { .. } = data.terminator().kind {
695            let loc = Location { block, statement_index: data.statements.len() };
696
697            liveness.seek_to_block_end(block);
698            let mut live_locals = liveness.get().clone();
699
700            if !movable {
701                // The `liveness` variable contains the liveness of MIR locals ignoring borrows.
702                // This is correct for movable coroutines since borrows cannot live across
703                // suspension points. However for immovable coroutines we need to account for
704                // borrows, so we conservatively assume that all borrowed locals are live until
705                // we find a StorageDead statement referencing the locals.
706                // To do this we just union our `liveness` result with `borrowed_locals`, which
707                // contains all the locals which has been borrowed before this suspension point.
708                // If a borrow is converted to a raw reference, we must also assume that it lives
709                // forever. Note that the final liveness is still bounded by the storage liveness
710                // of the local, which happens using the `intersect` operation below.
711                borrowed_locals_cursor.seek_before_primary_effect(loc);
712                live_locals.union(borrowed_locals_cursor.get());
713            }
714
715            // Store the storage liveness for later use so we can restore the state
716            // after a suspension point
717            storage_live.seek_before_primary_effect(loc);
718            storage_liveness_map[block] = Some(storage_live.get().clone());
719
720            // Locals live are live at this point only if they are used across
721            // suspension points (the `liveness` variable)
722            // and their storage is required (the `storage_required` variable)
723            requires_storage_cursor.seek_before_primary_effect(loc);
724            live_locals.intersect(requires_storage_cursor.get());
725
726            // The coroutine argument is ignored.
727            live_locals.remove(SELF_ARG);
728
729            debug!("loc = {:?}, live_locals = {:?}", loc, live_locals);
730
731            // Add the locals live at this suspension point to the set of locals which live across
732            // any suspension points
733            live_locals_at_any_suspension_point.union(&live_locals);
734
735            live_locals_at_suspension_points.push(live_locals);
736            source_info_at_suspension_points.push(data.terminator().source_info);
737        }
738    }
739
740    debug!("live_locals_anywhere = {:?}", live_locals_at_any_suspension_point);
741    let saved_locals = CoroutineSavedLocals(live_locals_at_any_suspension_point);
742
743    // Renumber our liveness_map bitsets to include only the locals we are
744    // saving.
745    let live_locals_at_suspension_points = live_locals_at_suspension_points
746        .iter()
747        .map(|live_here| saved_locals.renumber_bitset(live_here))
748        .collect();
749
750    let storage_conflicts = compute_storage_conflicts(
751        body,
752        &saved_locals,
753        always_live_locals.clone(),
754        requires_storage_results,
755    );
756
757    LivenessInfo {
758        saved_locals,
759        live_locals_at_suspension_points,
760        source_info_at_suspension_points,
761        storage_conflicts,
762        storage_liveness: storage_liveness_map,
763    }
764}
765
766/// The set of `Local`s that must be saved across yield points.
767///
768/// `CoroutineSavedLocal` is indexed in terms of the elements in this set;
769/// i.e. `CoroutineSavedLocal::new(1)` corresponds to the second local
770/// included in this set.
771struct CoroutineSavedLocals(DenseBitSet<Local>);
772
773impl CoroutineSavedLocals {
774    /// Returns an iterator over each `CoroutineSavedLocal` along with the `Local` it corresponds
775    /// to.
776    fn iter_enumerated(&self) -> impl '_ + Iterator<Item = (CoroutineSavedLocal, Local)> {
777        self.iter().enumerate().map(|(i, l)| (CoroutineSavedLocal::from(i), l))
778    }
779
780    /// Transforms a `DenseBitSet<Local>` that contains only locals saved across yield points to the
781    /// equivalent `DenseBitSet<CoroutineSavedLocal>`.
782    fn renumber_bitset(&self, input: &DenseBitSet<Local>) -> DenseBitSet<CoroutineSavedLocal> {
783        assert!(self.superset(input), "{:?} not a superset of {:?}", self.0, input);
784        let mut out = DenseBitSet::new_empty(self.count());
785        for (saved_local, local) in self.iter_enumerated() {
786            if input.contains(local) {
787                out.insert(saved_local);
788            }
789        }
790        out
791    }
792
793    fn get(&self, local: Local) -> Option<CoroutineSavedLocal> {
794        if !self.contains(local) {
795            return None;
796        }
797
798        let idx = self.iter().take_while(|&l| l < local).count();
799        Some(CoroutineSavedLocal::new(idx))
800    }
801}
802
803impl ops::Deref for CoroutineSavedLocals {
804    type Target = DenseBitSet<Local>;
805
806    fn deref(&self) -> &Self::Target {
807        &self.0
808    }
809}
810
811/// For every saved local, looks for which locals are StorageLive at the same
812/// time. Generates a bitset for every local of all the other locals that may be
813/// StorageLive simultaneously with that local. This is used in the layout
814/// computation; see `CoroutineLayout` for more.
815fn compute_storage_conflicts<'mir, 'tcx>(
816    body: &'mir Body<'tcx>,
817    saved_locals: &'mir CoroutineSavedLocals,
818    always_live_locals: DenseBitSet<Local>,
819    mut requires_storage: Results<'tcx, MaybeRequiresStorage<'mir, 'tcx>>,
820) -> BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal> {
821    assert_eq!(body.local_decls.len(), saved_locals.domain_size());
822
823    debug!("compute_storage_conflicts({:?})", body.span);
824    debug!("always_live = {:?}", always_live_locals);
825
826    // Locals that are always live or ones that need to be stored across
827    // suspension points are not eligible for overlap.
828    let mut ineligible_locals = always_live_locals;
829    ineligible_locals.intersect(&**saved_locals);
830
831    // Compute the storage conflicts for all eligible locals.
832    let mut visitor = StorageConflictVisitor {
833        body,
834        saved_locals,
835        local_conflicts: BitMatrix::from_row_n(&ineligible_locals, body.local_decls.len()),
836        eligible_storage_live: DenseBitSet::new_empty(body.local_decls.len()),
837    };
838
839    requires_storage.visit_reachable_with(body, &mut visitor);
840
841    let local_conflicts = visitor.local_conflicts;
842
843    // Compress the matrix using only stored locals (Local -> CoroutineSavedLocal).
844    //
845    // NOTE: Today we store a full conflict bitset for every local. Technically
846    // this is twice as many bits as we need, since the relation is symmetric.
847    // However, in practice these bitsets are not usually large. The layout code
848    // also needs to keep track of how many conflicts each local has, so it's
849    // simpler to keep it this way for now.
850    let mut storage_conflicts = BitMatrix::new(saved_locals.count(), saved_locals.count());
851    for (saved_local_a, local_a) in saved_locals.iter_enumerated() {
852        if ineligible_locals.contains(local_a) {
853            // Conflicts with everything.
854            storage_conflicts.insert_all_into_row(saved_local_a);
855        } else {
856            // Keep overlap information only for stored locals.
857            for (saved_local_b, local_b) in saved_locals.iter_enumerated() {
858                if local_conflicts.contains(local_a, local_b) {
859                    storage_conflicts.insert(saved_local_a, saved_local_b);
860                }
861            }
862        }
863    }
864    storage_conflicts
865}
866
867struct StorageConflictVisitor<'a, 'tcx> {
868    body: &'a Body<'tcx>,
869    saved_locals: &'a CoroutineSavedLocals,
870    // FIXME(tmandry): Consider using sparse bitsets here once we have good
871    // benchmarks for coroutines.
872    local_conflicts: BitMatrix<Local, Local>,
873    // We keep this bitset as a buffer to avoid reallocating memory.
874    eligible_storage_live: DenseBitSet<Local>,
875}
876
877impl<'a, 'tcx> ResultsVisitor<'a, 'tcx, MaybeRequiresStorage<'a, 'tcx>>
878    for StorageConflictVisitor<'a, 'tcx>
879{
880    fn visit_after_early_statement_effect(
881        &mut self,
882        _results: &mut Results<'tcx, MaybeRequiresStorage<'a, 'tcx>>,
883        state: &DenseBitSet<Local>,
884        _statement: &'a Statement<'tcx>,
885        loc: Location,
886    ) {
887        self.apply_state(state, loc);
888    }
889
890    fn visit_after_early_terminator_effect(
891        &mut self,
892        _results: &mut Results<'tcx, MaybeRequiresStorage<'a, 'tcx>>,
893        state: &DenseBitSet<Local>,
894        _terminator: &'a Terminator<'tcx>,
895        loc: Location,
896    ) {
897        self.apply_state(state, loc);
898    }
899}
900
901impl StorageConflictVisitor<'_, '_> {
902    fn apply_state(&mut self, state: &DenseBitSet<Local>, loc: Location) {
903        // Ignore unreachable blocks.
904        if let TerminatorKind::Unreachable = self.body.basic_blocks[loc.block].terminator().kind {
905            return;
906        }
907
908        self.eligible_storage_live.clone_from(state);
909        self.eligible_storage_live.intersect(&**self.saved_locals);
910
911        for local in self.eligible_storage_live.iter() {
912            self.local_conflicts.union_row_with(&self.eligible_storage_live, local);
913        }
914
915        if self.eligible_storage_live.count() > 1 {
916            trace!("at {:?}, eligible_storage_live={:?}", loc, self.eligible_storage_live);
917        }
918    }
919}
920
921fn compute_layout<'tcx>(
922    liveness: LivenessInfo,
923    body: &Body<'tcx>,
924) -> (
925    IndexVec<Local, Option<(Ty<'tcx>, VariantIdx, FieldIdx)>>,
926    CoroutineLayout<'tcx>,
927    IndexVec<BasicBlock, Option<DenseBitSet<Local>>>,
928) {
929    let LivenessInfo {
930        saved_locals,
931        live_locals_at_suspension_points,
932        source_info_at_suspension_points,
933        storage_conflicts,
934        storage_liveness,
935    } = liveness;
936
937    // Gather live local types and their indices.
938    let mut locals = IndexVec::<CoroutineSavedLocal, _>::new();
939    let mut tys = IndexVec::<CoroutineSavedLocal, _>::new();
940    for (saved_local, local) in saved_locals.iter_enumerated() {
941        debug!("coroutine saved local {:?} => {:?}", saved_local, local);
942
943        locals.push(local);
944        let decl = &body.local_decls[local];
945        debug!(?decl);
946
947        // Do not `assert_crate_local` here, as post-borrowck cleanup may have already cleared
948        // the information. This is alright, since `ignore_for_traits` is only relevant when
949        // this code runs on pre-cleanup MIR, and `ignore_for_traits = false` is the safer
950        // default.
951        let ignore_for_traits = match decl.local_info {
952            // Do not include raw pointers created from accessing `static` items, as those could
953            // well be re-created by another access to the same static.
954            ClearCrossCrate::Set(box LocalInfo::StaticRef { is_thread_local, .. }) => {
955                !is_thread_local
956            }
957            // Fake borrows are only read by fake reads, so do not have any reality in
958            // post-analysis MIR.
959            ClearCrossCrate::Set(box LocalInfo::FakeBorrow) => true,
960            _ => false,
961        };
962        let decl =
963            CoroutineSavedTy { ty: decl.ty, source_info: decl.source_info, ignore_for_traits };
964        debug!(?decl);
965
966        tys.push(decl);
967    }
968
969    // Leave empty variants for the UNRESUMED, RETURNED, and POISONED states.
970    // In debuginfo, these will correspond to the beginning (UNRESUMED) or end
971    // (RETURNED, POISONED) of the function.
972    let body_span = body.source_scopes[OUTERMOST_SOURCE_SCOPE].span;
973    let mut variant_source_info: IndexVec<VariantIdx, SourceInfo> = [
974        SourceInfo::outermost(body_span.shrink_to_lo()),
975        SourceInfo::outermost(body_span.shrink_to_hi()),
976        SourceInfo::outermost(body_span.shrink_to_hi()),
977    ]
978    .iter()
979    .copied()
980    .collect();
981
982    // Build the coroutine variant field list.
983    // Create a map from local indices to coroutine struct indices.
984    let mut variant_fields: IndexVec<VariantIdx, IndexVec<FieldIdx, CoroutineSavedLocal>> =
985        iter::repeat(IndexVec::new()).take(CoroutineArgs::RESERVED_VARIANTS).collect();
986    let mut remap = IndexVec::from_elem_n(None, saved_locals.domain_size());
987    for (suspension_point_idx, live_locals) in live_locals_at_suspension_points.iter().enumerate() {
988        let variant_index =
989            VariantIdx::from(CoroutineArgs::RESERVED_VARIANTS + suspension_point_idx);
990        let mut fields = IndexVec::new();
991        for (idx, saved_local) in live_locals.iter().enumerate() {
992            fields.push(saved_local);
993            // Note that if a field is included in multiple variants, we will
994            // just use the first one here. That's fine; fields do not move
995            // around inside coroutines, so it doesn't matter which variant
996            // index we access them by.
997            let idx = FieldIdx::from_usize(idx);
998            remap[locals[saved_local]] = Some((tys[saved_local].ty, variant_index, idx));
999        }
1000        variant_fields.push(fields);
1001        variant_source_info.push(source_info_at_suspension_points[suspension_point_idx]);
1002    }
1003    debug!("coroutine variant_fields = {:?}", variant_fields);
1004    debug!("coroutine storage_conflicts = {:#?}", storage_conflicts);
1005
1006    let mut field_names = IndexVec::from_elem(None, &tys);
1007    for var in &body.var_debug_info {
1008        let VarDebugInfoContents::Place(place) = &var.value else { continue };
1009        let Some(local) = place.as_local() else { continue };
1010        let Some(&Some((_, variant, field))) = remap.get(local) else {
1011            continue;
1012        };
1013
1014        let saved_local = variant_fields[variant][field];
1015        field_names.get_or_insert_with(saved_local, || var.name);
1016    }
1017
1018    let layout = CoroutineLayout {
1019        field_tys: tys,
1020        field_names,
1021        variant_fields,
1022        variant_source_info,
1023        storage_conflicts,
1024    };
1025    debug!(?layout);
1026
1027    (remap, layout, storage_liveness)
1028}
1029
1030/// Replaces the entry point of `body` with a block that switches on the coroutine discriminant and
1031/// dispatches to blocks according to `cases`.
1032///
1033/// After this function, the former entry point of the function will be bb1.
1034fn insert_switch<'tcx>(
1035    body: &mut Body<'tcx>,
1036    cases: Vec<(usize, BasicBlock)>,
1037    transform: &TransformVisitor<'tcx>,
1038    default: TerminatorKind<'tcx>,
1039) {
1040    let default_block = insert_term_block(body, default);
1041    let (assign, discr) = transform.get_discr(body);
1042    let switch_targets =
1043        SwitchTargets::new(cases.iter().map(|(i, bb)| ((*i) as u128, *bb)), default_block);
1044    let switch = TerminatorKind::SwitchInt { discr: Operand::Move(discr), targets: switch_targets };
1045
1046    let source_info = SourceInfo::outermost(body.span);
1047    body.basic_blocks_mut().raw.insert(
1048        0,
1049        BasicBlockData {
1050            statements: vec![assign],
1051            terminator: Some(Terminator { source_info, kind: switch }),
1052            is_cleanup: false,
1053        },
1054    );
1055
1056    let blocks = body.basic_blocks_mut().iter_mut();
1057
1058    for target in blocks.flat_map(|b| b.terminator_mut().successors_mut()) {
1059        *target = BasicBlock::new(target.index() + 1);
1060    }
1061}
1062
1063fn elaborate_coroutine_drops<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
1064    use crate::elaborate_drop::{Unwind, elaborate_drop};
1065    use crate::patch::MirPatch;
1066    use crate::shim::DropShimElaborator;
1067
1068    // Note that `elaborate_drops` only drops the upvars of a coroutine, and
1069    // this is ok because `open_drop` can only be reached within that own
1070    // coroutine's resume function.
1071    let typing_env = body.typing_env(tcx);
1072
1073    let mut elaborator = DropShimElaborator { body, patch: MirPatch::new(body), tcx, typing_env };
1074
1075    for (block, block_data) in body.basic_blocks.iter_enumerated() {
1076        let (target, unwind, source_info) = match block_data.terminator() {
1077            Terminator {
1078                source_info,
1079                kind: TerminatorKind::Drop { place, target, unwind, replace: _ },
1080            } => {
1081                if let Some(local) = place.as_local()
1082                    && local == SELF_ARG
1083                {
1084                    (target, unwind, source_info)
1085                } else {
1086                    continue;
1087                }
1088            }
1089            _ => continue,
1090        };
1091        let unwind = if block_data.is_cleanup {
1092            Unwind::InCleanup
1093        } else {
1094            Unwind::To(match *unwind {
1095                UnwindAction::Cleanup(tgt) => tgt,
1096                UnwindAction::Continue => elaborator.patch.resume_block(),
1097                UnwindAction::Unreachable => elaborator.patch.unreachable_cleanup_block(),
1098                UnwindAction::Terminate(reason) => elaborator.patch.terminate_block(reason),
1099            })
1100        };
1101        elaborate_drop(
1102            &mut elaborator,
1103            *source_info,
1104            Place::from(SELF_ARG),
1105            (),
1106            *target,
1107            unwind,
1108            block,
1109        );
1110    }
1111    elaborator.patch.apply(body);
1112}
1113
1114fn create_coroutine_drop_shim<'tcx>(
1115    tcx: TyCtxt<'tcx>,
1116    transform: &TransformVisitor<'tcx>,
1117    coroutine_ty: Ty<'tcx>,
1118    body: &Body<'tcx>,
1119    drop_clean: BasicBlock,
1120) -> Body<'tcx> {
1121    let mut body = body.clone();
1122    // Take the coroutine info out of the body, since the drop shim is
1123    // not a coroutine body itself; it just has its drop built out of it.
1124    let _ = body.coroutine.take();
1125    // Make sure the resume argument is not included here, since we're
1126    // building a body for `drop_in_place`.
1127    body.arg_count = 1;
1128
1129    let source_info = SourceInfo::outermost(body.span);
1130
1131    let mut cases = create_cases(&mut body, transform, Operation::Drop);
1132
1133    cases.insert(0, (CoroutineArgs::UNRESUMED, drop_clean));
1134
1135    // The returned state and the poisoned state fall through to the default
1136    // case which is just to return
1137
1138    insert_switch(&mut body, cases, transform, TerminatorKind::Return);
1139
1140    for block in body.basic_blocks_mut() {
1141        let kind = &mut block.terminator_mut().kind;
1142        if let TerminatorKind::CoroutineDrop = *kind {
1143            *kind = TerminatorKind::Return;
1144        }
1145    }
1146
1147    // Replace the return variable
1148    body.local_decls[RETURN_PLACE] = LocalDecl::with_source_info(tcx.types.unit, source_info);
1149
1150    make_coroutine_state_argument_indirect(tcx, &mut body);
1151
1152    // Change the coroutine argument from &mut to *mut
1153    body.local_decls[SELF_ARG] =
1154        LocalDecl::with_source_info(Ty::new_mut_ptr(tcx, coroutine_ty), source_info);
1155
1156    // Make sure we remove dead blocks to remove
1157    // unrelated code from the resume part of the function
1158    simplify::remove_dead_blocks(&mut body);
1159
1160    // Update the body's def to become the drop glue.
1161    let coroutine_instance = body.source.instance;
1162    let drop_in_place = tcx.require_lang_item(LangItem::DropInPlace, None);
1163    let drop_instance = InstanceKind::DropGlue(drop_in_place, Some(coroutine_ty));
1164
1165    // Temporary change MirSource to coroutine's instance so that dump_mir produces more sensible
1166    // filename.
1167    body.source.instance = coroutine_instance;
1168    dump_mir(tcx, false, "coroutine_drop", &0, &body, |_, _| Ok(()));
1169    body.source.instance = drop_instance;
1170
1171    body
1172}
1173
1174fn insert_term_block<'tcx>(body: &mut Body<'tcx>, kind: TerminatorKind<'tcx>) -> BasicBlock {
1175    let source_info = SourceInfo::outermost(body.span);
1176    body.basic_blocks_mut().push(BasicBlockData {
1177        statements: Vec::new(),
1178        terminator: Some(Terminator { source_info, kind }),
1179        is_cleanup: false,
1180    })
1181}
1182
1183fn insert_panic_block<'tcx>(
1184    tcx: TyCtxt<'tcx>,
1185    body: &mut Body<'tcx>,
1186    message: AssertMessage<'tcx>,
1187) -> BasicBlock {
1188    let assert_block = BasicBlock::new(body.basic_blocks.len());
1189    let kind = TerminatorKind::Assert {
1190        cond: Operand::Constant(Box::new(ConstOperand {
1191            span: body.span,
1192            user_ty: None,
1193            const_: Const::from_bool(tcx, false),
1194        })),
1195        expected: true,
1196        msg: Box::new(message),
1197        target: assert_block,
1198        unwind: UnwindAction::Continue,
1199    };
1200
1201    insert_term_block(body, kind)
1202}
1203
1204fn can_return<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> bool {
1205    // Returning from a function with an uninhabited return type is undefined behavior.
1206    if body.return_ty().is_privately_uninhabited(tcx, typing_env) {
1207        return false;
1208    }
1209
1210    // If there's a return terminator the function may return.
1211    for block in body.basic_blocks.iter() {
1212        if let TerminatorKind::Return = block.terminator().kind {
1213            return true;
1214        }
1215    }
1216
1217    // Otherwise the function can't return.
1218    false
1219}
1220
1221fn can_unwind<'tcx>(tcx: TyCtxt<'tcx>, body: &Body<'tcx>) -> bool {
1222    // Nothing can unwind when landing pads are off.
1223    if tcx.sess.panic_strategy() == PanicStrategy::Abort {
1224        return false;
1225    }
1226
1227    // Unwinds can only start at certain terminators.
1228    for block in body.basic_blocks.iter() {
1229        match block.terminator().kind {
1230            // These never unwind.
1231            TerminatorKind::Goto { .. }
1232            | TerminatorKind::SwitchInt { .. }
1233            | TerminatorKind::UnwindTerminate(_)
1234            | TerminatorKind::Return
1235            | TerminatorKind::Unreachable
1236            | TerminatorKind::CoroutineDrop
1237            | TerminatorKind::FalseEdge { .. }
1238            | TerminatorKind::FalseUnwind { .. } => {}
1239
1240            // Resume will *continue* unwinding, but if there's no other unwinding terminator it
1241            // will never be reached.
1242            TerminatorKind::UnwindResume => {}
1243
1244            TerminatorKind::Yield { .. } => {
1245                unreachable!("`can_unwind` called before coroutine transform")
1246            }
1247
1248            // These may unwind.
1249            TerminatorKind::Drop { .. }
1250            | TerminatorKind::Call { .. }
1251            | TerminatorKind::InlineAsm { .. }
1252            | TerminatorKind::Assert { .. } => return true,
1253
1254            TerminatorKind::TailCall { .. } => {
1255                unreachable!("tail calls can't be present in generators")
1256            }
1257        }
1258    }
1259
1260    // If we didn't find an unwinding terminator, the function cannot unwind.
1261    false
1262}
1263
1264fn create_coroutine_resume_function<'tcx>(
1265    tcx: TyCtxt<'tcx>,
1266    transform: TransformVisitor<'tcx>,
1267    body: &mut Body<'tcx>,
1268    can_return: bool,
1269) {
1270    let can_unwind = can_unwind(tcx, body);
1271
1272    // Poison the coroutine when it unwinds
1273    if can_unwind {
1274        let source_info = SourceInfo::outermost(body.span);
1275        let poison_block = body.basic_blocks_mut().push(BasicBlockData {
1276            statements: vec![
1277                transform.set_discr(VariantIdx::new(CoroutineArgs::POISONED), source_info),
1278            ],
1279            terminator: Some(Terminator { source_info, kind: TerminatorKind::UnwindResume }),
1280            is_cleanup: true,
1281        });
1282
1283        for (idx, block) in body.basic_blocks_mut().iter_enumerated_mut() {
1284            let source_info = block.terminator().source_info;
1285
1286            if let TerminatorKind::UnwindResume = block.terminator().kind {
1287                // An existing `Resume` terminator is redirected to jump to our dedicated
1288                // "poisoning block" above.
1289                if idx != poison_block {
1290                    *block.terminator_mut() = Terminator {
1291                        source_info,
1292                        kind: TerminatorKind::Goto { target: poison_block },
1293                    };
1294                }
1295            } else if !block.is_cleanup {
1296                // Any terminators that *can* unwind but don't have an unwind target set are also
1297                // pointed at our poisoning block (unless they're part of the cleanup path).
1298                if let Some(unwind @ UnwindAction::Continue) = block.terminator_mut().unwind_mut() {
1299                    *unwind = UnwindAction::Cleanup(poison_block);
1300                }
1301            }
1302        }
1303    }
1304
1305    let mut cases = create_cases(body, &transform, Operation::Resume);
1306
1307    use rustc_middle::mir::AssertKind::{ResumedAfterPanic, ResumedAfterReturn};
1308
1309    // Jump to the entry point on the unresumed
1310    cases.insert(0, (CoroutineArgs::UNRESUMED, START_BLOCK));
1311
1312    // Panic when resumed on the returned or poisoned state
1313    if can_unwind {
1314        cases.insert(
1315            1,
1316            (
1317                CoroutineArgs::POISONED,
1318                insert_panic_block(tcx, body, ResumedAfterPanic(transform.coroutine_kind)),
1319            ),
1320        );
1321    }
1322
1323    if can_return {
1324        let block = match transform.coroutine_kind {
1325            CoroutineKind::Desugared(CoroutineDesugaring::Async, _)
1326            | CoroutineKind::Coroutine(_) => {
1327                insert_panic_block(tcx, body, ResumedAfterReturn(transform.coroutine_kind))
1328            }
1329            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _)
1330            | CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
1331                transform.insert_none_ret_block(body)
1332            }
1333        };
1334        cases.insert(1, (CoroutineArgs::RETURNED, block));
1335    }
1336
1337    insert_switch(body, cases, &transform, TerminatorKind::Unreachable);
1338
1339    make_coroutine_state_argument_indirect(tcx, body);
1340
1341    match transform.coroutine_kind {
1342        // Iterator::next doesn't accept a pinned argument,
1343        // unlike for all other coroutine kinds.
1344        CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {}
1345        _ => {
1346            make_coroutine_state_argument_pinned(tcx, body);
1347        }
1348    }
1349
1350    // Make sure we remove dead blocks to remove
1351    // unrelated code from the drop part of the function
1352    simplify::remove_dead_blocks(body);
1353
1354    pm::run_passes_no_validate(tcx, body, &[&abort_unwinding_calls::AbortUnwindingCalls], None);
1355
1356    dump_mir(tcx, false, "coroutine_resume", &0, body, |_, _| Ok(()));
1357}
1358
1359fn insert_clean_drop(body: &mut Body<'_>) -> BasicBlock {
1360    let return_block = insert_term_block(body, TerminatorKind::Return);
1361
1362    let term = TerminatorKind::Drop {
1363        place: Place::from(SELF_ARG),
1364        target: return_block,
1365        unwind: UnwindAction::Continue,
1366        replace: false,
1367    };
1368    let source_info = SourceInfo::outermost(body.span);
1369
1370    // Create a block to destroy an unresumed coroutines. This can only destroy upvars.
1371    body.basic_blocks_mut().push(BasicBlockData {
1372        statements: Vec::new(),
1373        terminator: Some(Terminator { source_info, kind: term }),
1374        is_cleanup: false,
1375    })
1376}
1377
1378/// An operation that can be performed on a coroutine.
1379#[derive(PartialEq, Copy, Clone)]
1380enum Operation {
1381    Resume,
1382    Drop,
1383}
1384
1385impl Operation {
1386    fn target_block(self, point: &SuspensionPoint<'_>) -> Option<BasicBlock> {
1387        match self {
1388            Operation::Resume => Some(point.resume),
1389            Operation::Drop => point.drop,
1390        }
1391    }
1392}
1393
1394fn create_cases<'tcx>(
1395    body: &mut Body<'tcx>,
1396    transform: &TransformVisitor<'tcx>,
1397    operation: Operation,
1398) -> Vec<(usize, BasicBlock)> {
1399    let source_info = SourceInfo::outermost(body.span);
1400
1401    transform
1402        .suspension_points
1403        .iter()
1404        .filter_map(|point| {
1405            // Find the target for this suspension point, if applicable
1406            operation.target_block(point).map(|target| {
1407                let mut statements = Vec::new();
1408
1409                // Create StorageLive instructions for locals with live storage
1410                for i in 0..(body.local_decls.len()) {
1411                    let l = Local::new(i);
1412                    let needs_storage_live = point.storage_liveness.contains(l)
1413                        && !transform.remap.contains(l)
1414                        && !transform.always_live_locals.contains(l);
1415                    if needs_storage_live {
1416                        statements
1417                            .push(Statement { source_info, kind: StatementKind::StorageLive(l) });
1418                    }
1419                }
1420
1421                if operation == Operation::Resume {
1422                    // Move the resume argument to the destination place of the `Yield` terminator
1423                    let resume_arg = Local::new(2); // 0 = return, 1 = self
1424                    statements.push(Statement {
1425                        source_info,
1426                        kind: StatementKind::Assign(Box::new((
1427                            point.resume_arg,
1428                            Rvalue::Use(Operand::Move(resume_arg.into())),
1429                        ))),
1430                    });
1431                }
1432
1433                // Then jump to the real target
1434                let block = body.basic_blocks_mut().push(BasicBlockData {
1435                    statements,
1436                    terminator: Some(Terminator {
1437                        source_info,
1438                        kind: TerminatorKind::Goto { target },
1439                    }),
1440                    is_cleanup: false,
1441                });
1442
1443                (point.state, block)
1444            })
1445        })
1446        .collect()
1447}
1448
1449#[instrument(level = "debug", skip(tcx), ret)]
1450pub(crate) fn mir_coroutine_witnesses<'tcx>(
1451    tcx: TyCtxt<'tcx>,
1452    def_id: LocalDefId,
1453) -> Option<CoroutineLayout<'tcx>> {
1454    let (body, _) = tcx.mir_promoted(def_id);
1455    let body = body.borrow();
1456    let body = &*body;
1457
1458    // The first argument is the coroutine type passed by value
1459    let coroutine_ty = body.local_decls[ty::CAPTURE_STRUCT_LOCAL].ty;
1460
1461    let movable = match *coroutine_ty.kind() {
1462        ty::Coroutine(def_id, _) => tcx.coroutine_movability(def_id) == hir::Movability::Movable,
1463        ty::Error(_) => return None,
1464        _ => span_bug!(body.span, "unexpected coroutine type {}", coroutine_ty),
1465    };
1466
1467    // The witness simply contains all locals live across suspend points.
1468
1469    let always_live_locals = always_storage_live_locals(body);
1470    let liveness_info = locals_live_across_suspend_points(tcx, body, &always_live_locals, movable);
1471
1472    // Extract locals which are live across suspension point into `layout`
1473    // `remap` gives a mapping from local indices onto coroutine struct indices
1474    // `storage_liveness` tells us which locals have live storage at suspension points
1475    let (_, coroutine_layout, _) = compute_layout(liveness_info, body);
1476
1477    check_suspend_tys(tcx, &coroutine_layout, body);
1478    check_field_tys_sized(tcx, &coroutine_layout, def_id);
1479
1480    Some(coroutine_layout)
1481}
1482
1483fn check_field_tys_sized<'tcx>(
1484    tcx: TyCtxt<'tcx>,
1485    coroutine_layout: &CoroutineLayout<'tcx>,
1486    def_id: LocalDefId,
1487) {
1488    // No need to check if unsized_locals/unsized_fn_params is disabled,
1489    // since we will error during typeck.
1490    if !tcx.features().unsized_locals() && !tcx.features().unsized_fn_params() {
1491        return;
1492    }
1493
1494    // FIXME(#132279): @lcnr believes that we may want to support coroutines
1495    // whose `Sized`-ness relies on the hidden types of opaques defined by the
1496    // parent function. In this case we'd have to be able to reveal only these
1497    // opaques here.
1498    let infcx = tcx.infer_ctxt().ignoring_regions().build(TypingMode::non_body_analysis());
1499    let param_env = tcx.param_env(def_id);
1500
1501    let ocx = ObligationCtxt::new_with_diagnostics(&infcx);
1502    for field_ty in &coroutine_layout.field_tys {
1503        ocx.register_bound(
1504            ObligationCause::new(
1505                field_ty.source_info.span,
1506                def_id,
1507                ObligationCauseCode::SizedCoroutineInterior(def_id),
1508            ),
1509            param_env,
1510            field_ty.ty,
1511            tcx.require_lang_item(hir::LangItem::Sized, Some(field_ty.source_info.span)),
1512        );
1513    }
1514
1515    let errors = ocx.select_all_or_error();
1516    debug!(?errors);
1517    if !errors.is_empty() {
1518        infcx.err_ctxt().report_fulfillment_errors(errors);
1519    }
1520}
1521
1522impl<'tcx> crate::MirPass<'tcx> for StateTransform {
1523    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
1524        let Some(old_yield_ty) = body.yield_ty() else {
1525            // This only applies to coroutines
1526            return;
1527        };
1528        let old_ret_ty = body.return_ty();
1529
1530        assert!(body.coroutine_drop().is_none());
1531
1532        // The first argument is the coroutine type passed by value
1533        let coroutine_ty = body.local_decls.raw[1].ty;
1534        let coroutine_kind = body.coroutine_kind().unwrap();
1535
1536        // Get the discriminant type and args which typeck computed
1537        let (discr_ty, movable) = match *coroutine_ty.kind() {
1538            ty::Coroutine(_, args) => {
1539                let args = args.as_coroutine();
1540                (args.discr_ty(tcx), coroutine_kind.movability() == hir::Movability::Movable)
1541            }
1542            _ => {
1543                tcx.dcx().span_bug(body.span, format!("unexpected coroutine type {coroutine_ty}"));
1544            }
1545        };
1546
1547        let new_ret_ty = match coroutine_kind {
1548            CoroutineKind::Desugared(CoroutineDesugaring::Async, _) => {
1549                // Compute Poll<return_ty>
1550                let poll_did = tcx.require_lang_item(LangItem::Poll, None);
1551                let poll_adt_ref = tcx.adt_def(poll_did);
1552                let poll_args = tcx.mk_args(&[old_ret_ty.into()]);
1553                Ty::new_adt(tcx, poll_adt_ref, poll_args)
1554            }
1555            CoroutineKind::Desugared(CoroutineDesugaring::Gen, _) => {
1556                // Compute Option<yield_ty>
1557                let option_did = tcx.require_lang_item(LangItem::Option, None);
1558                let option_adt_ref = tcx.adt_def(option_did);
1559                let option_args = tcx.mk_args(&[old_yield_ty.into()]);
1560                Ty::new_adt(tcx, option_adt_ref, option_args)
1561            }
1562            CoroutineKind::Desugared(CoroutineDesugaring::AsyncGen, _) => {
1563                // The yield ty is already `Poll<Option<yield_ty>>`
1564                old_yield_ty
1565            }
1566            CoroutineKind::Coroutine(_) => {
1567                // Compute CoroutineState<yield_ty, return_ty>
1568                let state_did = tcx.require_lang_item(LangItem::CoroutineState, None);
1569                let state_adt_ref = tcx.adt_def(state_did);
1570                let state_args = tcx.mk_args(&[old_yield_ty.into(), old_ret_ty.into()]);
1571                Ty::new_adt(tcx, state_adt_ref, state_args)
1572            }
1573        };
1574
1575        // We rename RETURN_PLACE which has type mir.return_ty to old_ret_local
1576        // RETURN_PLACE then is a fresh unused local with type ret_ty.
1577        let old_ret_local = replace_local(RETURN_PLACE, new_ret_ty, body, tcx);
1578
1579        // Replace all occurrences of `ResumeTy` with `&mut Context<'_>` within async bodies.
1580        if matches!(
1581            coroutine_kind,
1582            CoroutineKind::Desugared(CoroutineDesugaring::Async | CoroutineDesugaring::AsyncGen, _)
1583        ) {
1584            transform_async_context(tcx, body);
1585        }
1586
1587        // We also replace the resume argument and insert an `Assign`.
1588        // This is needed because the resume argument `_2` might be live across a `yield`, in which
1589        // case there is no `Assign` to it that the transform can turn into a store to the coroutine
1590        // state. After the yield the slot in the coroutine state would then be uninitialized.
1591        let resume_local = Local::new(2);
1592        let resume_ty = body.local_decls[resume_local].ty;
1593        let old_resume_local = replace_local(resume_local, resume_ty, body, tcx);
1594
1595        // When first entering the coroutine, move the resume argument into its old local
1596        // (which is now a generator interior).
1597        let source_info = SourceInfo::outermost(body.span);
1598        let stmts = &mut body.basic_blocks_mut()[START_BLOCK].statements;
1599        stmts.insert(
1600            0,
1601            Statement {
1602                source_info,
1603                kind: StatementKind::Assign(Box::new((
1604                    old_resume_local.into(),
1605                    Rvalue::Use(Operand::Move(resume_local.into())),
1606                ))),
1607            },
1608        );
1609
1610        let always_live_locals = always_storage_live_locals(body);
1611
1612        let liveness_info =
1613            locals_live_across_suspend_points(tcx, body, &always_live_locals, movable);
1614
1615        if tcx.sess.opts.unstable_opts.validate_mir {
1616            let mut vis = EnsureCoroutineFieldAssignmentsNeverAlias {
1617                assigned_local: None,
1618                saved_locals: &liveness_info.saved_locals,
1619                storage_conflicts: &liveness_info.storage_conflicts,
1620            };
1621
1622            vis.visit_body(body);
1623        }
1624
1625        // Extract locals which are live across suspension point into `layout`
1626        // `remap` gives a mapping from local indices onto coroutine struct indices
1627        // `storage_liveness` tells us which locals have live storage at suspension points
1628        let (remap, layout, storage_liveness) = compute_layout(liveness_info, body);
1629
1630        let can_return = can_return(tcx, body, body.typing_env(tcx));
1631
1632        // Run the transformation which converts Places from Local to coroutine struct
1633        // accesses for locals in `remap`.
1634        // It also rewrites `return x` and `yield y` as writing a new coroutine state and returning
1635        // either `CoroutineState::Complete(x)` and `CoroutineState::Yielded(y)`,
1636        // or `Poll::Ready(x)` and `Poll::Pending` respectively depending on the coroutine kind.
1637        let mut transform = TransformVisitor {
1638            tcx,
1639            coroutine_kind,
1640            remap,
1641            storage_liveness,
1642            always_live_locals,
1643            suspension_points: Vec::new(),
1644            old_ret_local,
1645            discr_ty,
1646            old_ret_ty,
1647            old_yield_ty,
1648        };
1649        transform.visit_body(body);
1650
1651        // Update our MIR struct to reflect the changes we've made
1652        body.arg_count = 2; // self, resume arg
1653        body.spread_arg = None;
1654
1655        // Remove the context argument within generator bodies.
1656        if matches!(coroutine_kind, CoroutineKind::Desugared(CoroutineDesugaring::Gen, _)) {
1657            transform_gen_context(body);
1658        }
1659
1660        // The original arguments to the function are no longer arguments, mark them as such.
1661        // Otherwise they'll conflict with our new arguments, which although they don't have
1662        // argument_index set, will get emitted as unnamed arguments.
1663        for var in &mut body.var_debug_info {
1664            var.argument_index = None;
1665        }
1666
1667        body.coroutine.as_mut().unwrap().yield_ty = None;
1668        body.coroutine.as_mut().unwrap().resume_ty = None;
1669        body.coroutine.as_mut().unwrap().coroutine_layout = Some(layout);
1670
1671        // Insert `drop(coroutine_struct)` which is used to drop upvars for coroutines in
1672        // the unresumed state.
1673        // This is expanded to a drop ladder in `elaborate_coroutine_drops`.
1674        let drop_clean = insert_clean_drop(body);
1675
1676        dump_mir(tcx, false, "coroutine_pre-elab", &0, body, |_, _| Ok(()));
1677
1678        // Expand `drop(coroutine_struct)` to a drop ladder which destroys upvars.
1679        // If any upvars are moved out of, drop elaboration will handle upvar destruction.
1680        // However we need to also elaborate the code generated by `insert_clean_drop`.
1681        elaborate_coroutine_drops(tcx, body);
1682
1683        dump_mir(tcx, false, "coroutine_post-transform", &0, body, |_, _| Ok(()));
1684
1685        // Create a copy of our MIR and use it to create the drop shim for the coroutine
1686        let drop_shim = create_coroutine_drop_shim(tcx, &transform, coroutine_ty, body, drop_clean);
1687
1688        body.coroutine.as_mut().unwrap().coroutine_drop = Some(drop_shim);
1689
1690        // Create the Coroutine::resume / Future::poll function
1691        create_coroutine_resume_function(tcx, transform, body, can_return);
1692
1693        // Run derefer to fix Derefs that are not in the first place
1694        deref_finder(tcx, body);
1695    }
1696
1697    fn is_required(&self) -> bool {
1698        true
1699    }
1700}
1701
1702/// Looks for any assignments between locals (e.g., `_4 = _5`) that will both be converted to fields
1703/// in the coroutine state machine but whose storage is not marked as conflicting
1704///
1705/// Validation needs to happen immediately *before* `TransformVisitor` is invoked, not after.
1706///
1707/// This condition would arise when the assignment is the last use of `_5` but the initial
1708/// definition of `_4` if we weren't extra careful to mark all locals used inside a statement as
1709/// conflicting. Non-conflicting coroutine saved locals may be stored at the same location within
1710/// the coroutine state machine, which would result in ill-formed MIR: the left-hand and right-hand
1711/// sides of an assignment may not alias. This caused a miscompilation in [#73137].
1712///
1713/// [#73137]: https://github.com/rust-lang/rust/issues/73137
1714struct EnsureCoroutineFieldAssignmentsNeverAlias<'a> {
1715    saved_locals: &'a CoroutineSavedLocals,
1716    storage_conflicts: &'a BitMatrix<CoroutineSavedLocal, CoroutineSavedLocal>,
1717    assigned_local: Option<CoroutineSavedLocal>,
1718}
1719
1720impl EnsureCoroutineFieldAssignmentsNeverAlias<'_> {
1721    fn saved_local_for_direct_place(&self, place: Place<'_>) -> Option<CoroutineSavedLocal> {
1722        if place.is_indirect() {
1723            return None;
1724        }
1725
1726        self.saved_locals.get(place.local)
1727    }
1728
1729    fn check_assigned_place(&mut self, place: Place<'_>, f: impl FnOnce(&mut Self)) {
1730        if let Some(assigned_local) = self.saved_local_for_direct_place(place) {
1731            assert!(self.assigned_local.is_none(), "`check_assigned_place` must not recurse");
1732
1733            self.assigned_local = Some(assigned_local);
1734            f(self);
1735            self.assigned_local = None;
1736        }
1737    }
1738}
1739
1740impl<'tcx> Visitor<'tcx> for EnsureCoroutineFieldAssignmentsNeverAlias<'_> {
1741    fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) {
1742        let Some(lhs) = self.assigned_local else {
1743            // This visitor only invokes `visit_place` for the right-hand side of an assignment
1744            // and only after setting `self.assigned_local`. However, the default impl of
1745            // `Visitor::super_body` may call `visit_place` with a `NonUseContext` for places
1746            // with debuginfo. Ignore them here.
1747            assert!(!context.is_use());
1748            return;
1749        };
1750
1751        let Some(rhs) = self.saved_local_for_direct_place(*place) else { return };
1752
1753        if !self.storage_conflicts.contains(lhs, rhs) {
1754            bug!(
1755                "Assignment between coroutine saved locals whose storage is not \
1756                    marked as conflicting: {:?}: {:?} = {:?}",
1757                location,
1758                lhs,
1759                rhs,
1760            );
1761        }
1762    }
1763
1764    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
1765        match &statement.kind {
1766            StatementKind::Assign(box (lhs, rhs)) => {
1767                self.check_assigned_place(*lhs, |this| this.visit_rvalue(rhs, location));
1768            }
1769
1770            StatementKind::FakeRead(..)
1771            | StatementKind::SetDiscriminant { .. }
1772            | StatementKind::Deinit(..)
1773            | StatementKind::StorageLive(_)
1774            | StatementKind::StorageDead(_)
1775            | StatementKind::Retag(..)
1776            | StatementKind::AscribeUserType(..)
1777            | StatementKind::PlaceMention(..)
1778            | StatementKind::Coverage(..)
1779            | StatementKind::Intrinsic(..)
1780            | StatementKind::ConstEvalCounter
1781            | StatementKind::BackwardIncompatibleDropHint { .. }
1782            | StatementKind::Nop => {}
1783        }
1784    }
1785
1786    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
1787        // Checking for aliasing in terminators is probably overkill, but until we have actual
1788        // semantics, we should be conservative here.
1789        match &terminator.kind {
1790            TerminatorKind::Call {
1791                func,
1792                args,
1793                destination,
1794                target: Some(_),
1795                unwind: _,
1796                call_source: _,
1797                fn_span: _,
1798            } => {
1799                self.check_assigned_place(*destination, |this| {
1800                    this.visit_operand(func, location);
1801                    for arg in args {
1802                        this.visit_operand(&arg.node, location);
1803                    }
1804                });
1805            }
1806
1807            TerminatorKind::Yield { value, resume: _, resume_arg, drop: _ } => {
1808                self.check_assigned_place(*resume_arg, |this| this.visit_operand(value, location));
1809            }
1810
1811            // FIXME: Does `asm!` have any aliasing requirements?
1812            TerminatorKind::InlineAsm { .. } => {}
1813
1814            TerminatorKind::Call { .. }
1815            | TerminatorKind::Goto { .. }
1816            | TerminatorKind::SwitchInt { .. }
1817            | TerminatorKind::UnwindResume
1818            | TerminatorKind::UnwindTerminate(_)
1819            | TerminatorKind::Return
1820            | TerminatorKind::TailCall { .. }
1821            | TerminatorKind::Unreachable
1822            | TerminatorKind::Drop { .. }
1823            | TerminatorKind::Assert { .. }
1824            | TerminatorKind::CoroutineDrop
1825            | TerminatorKind::FalseEdge { .. }
1826            | TerminatorKind::FalseUnwind { .. } => {}
1827        }
1828    }
1829}
1830
1831fn check_suspend_tys<'tcx>(tcx: TyCtxt<'tcx>, layout: &CoroutineLayout<'tcx>, body: &Body<'tcx>) {
1832    let mut linted_tys = FxHashSet::default();
1833
1834    for (variant, yield_source_info) in
1835        layout.variant_fields.iter().zip(&layout.variant_source_info)
1836    {
1837        debug!(?variant);
1838        for &local in variant {
1839            let decl = &layout.field_tys[local];
1840            debug!(?decl);
1841
1842            if !decl.ignore_for_traits && linted_tys.insert(decl.ty) {
1843                let Some(hir_id) = decl.source_info.scope.lint_root(&body.source_scopes) else {
1844                    continue;
1845                };
1846
1847                check_must_not_suspend_ty(
1848                    tcx,
1849                    decl.ty,
1850                    hir_id,
1851                    SuspendCheckData {
1852                        source_span: decl.source_info.span,
1853                        yield_span: yield_source_info.span,
1854                        plural_len: 1,
1855                        ..Default::default()
1856                    },
1857                );
1858            }
1859        }
1860    }
1861}
1862
1863#[derive(Default)]
1864struct SuspendCheckData<'a> {
1865    source_span: Span,
1866    yield_span: Span,
1867    descr_pre: &'a str,
1868    descr_post: &'a str,
1869    plural_len: usize,
1870}
1871
1872// Returns whether it emitted a diagnostic or not
1873// Note that this fn and the proceeding one are based on the code
1874// for creating must_use diagnostics
1875//
1876// Note that this technique was chosen over things like a `Suspend` marker trait
1877// as it is simpler and has precedent in the compiler
1878fn check_must_not_suspend_ty<'tcx>(
1879    tcx: TyCtxt<'tcx>,
1880    ty: Ty<'tcx>,
1881    hir_id: hir::HirId,
1882    data: SuspendCheckData<'_>,
1883) -> bool {
1884    if ty.is_unit() {
1885        return false;
1886    }
1887
1888    let plural_suffix = pluralize!(data.plural_len);
1889
1890    debug!("Checking must_not_suspend for {}", ty);
1891
1892    match *ty.kind() {
1893        ty::Adt(_, args) if ty.is_box() => {
1894            let boxed_ty = args.type_at(0);
1895            let allocator_ty = args.type_at(1);
1896            check_must_not_suspend_ty(
1897                tcx,
1898                boxed_ty,
1899                hir_id,
1900                SuspendCheckData { descr_pre: &format!("{}boxed ", data.descr_pre), ..data },
1901            ) || check_must_not_suspend_ty(
1902                tcx,
1903                allocator_ty,
1904                hir_id,
1905                SuspendCheckData { descr_pre: &format!("{}allocator ", data.descr_pre), ..data },
1906            )
1907        }
1908        ty::Adt(def, _) => check_must_not_suspend_def(tcx, def.did(), hir_id, data),
1909        // FIXME: support adding the attribute to TAITs
1910        ty::Alias(ty::Opaque, ty::AliasTy { def_id: def, .. }) => {
1911            let mut has_emitted = false;
1912            for &(predicate, _) in tcx.explicit_item_bounds(def).skip_binder() {
1913                // We only look at the `DefId`, so it is safe to skip the binder here.
1914                if let ty::ClauseKind::Trait(ref poly_trait_predicate) =
1915                    predicate.kind().skip_binder()
1916                {
1917                    let def_id = poly_trait_predicate.trait_ref.def_id;
1918                    let descr_pre = &format!("{}implementer{} of ", data.descr_pre, plural_suffix);
1919                    if check_must_not_suspend_def(
1920                        tcx,
1921                        def_id,
1922                        hir_id,
1923                        SuspendCheckData { descr_pre, ..data },
1924                    ) {
1925                        has_emitted = true;
1926                        break;
1927                    }
1928                }
1929            }
1930            has_emitted
1931        }
1932        ty::Dynamic(binder, _, _) => {
1933            let mut has_emitted = false;
1934            for predicate in binder.iter() {
1935                if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() {
1936                    let def_id = trait_ref.def_id;
1937                    let descr_post = &format!(" trait object{}{}", plural_suffix, data.descr_post);
1938                    if check_must_not_suspend_def(
1939                        tcx,
1940                        def_id,
1941                        hir_id,
1942                        SuspendCheckData { descr_post, ..data },
1943                    ) {
1944                        has_emitted = true;
1945                        break;
1946                    }
1947                }
1948            }
1949            has_emitted
1950        }
1951        ty::Tuple(fields) => {
1952            let mut has_emitted = false;
1953            for (i, ty) in fields.iter().enumerate() {
1954                let descr_post = &format!(" in tuple element {i}");
1955                if check_must_not_suspend_ty(
1956                    tcx,
1957                    ty,
1958                    hir_id,
1959                    SuspendCheckData { descr_post, ..data },
1960                ) {
1961                    has_emitted = true;
1962                }
1963            }
1964            has_emitted
1965        }
1966        ty::Array(ty, len) => {
1967            let descr_pre = &format!("{}array{} of ", data.descr_pre, plural_suffix);
1968            check_must_not_suspend_ty(
1969                tcx,
1970                ty,
1971                hir_id,
1972                SuspendCheckData {
1973                    descr_pre,
1974                    // FIXME(must_not_suspend): This is wrong. We should handle printing unevaluated consts.
1975                    plural_len: len.try_to_target_usize(tcx).unwrap_or(0) as usize + 1,
1976                    ..data
1977                },
1978            )
1979        }
1980        // If drop tracking is enabled, we want to look through references, since the referent
1981        // may not be considered live across the await point.
1982        ty::Ref(_region, ty, _mutability) => {
1983            let descr_pre = &format!("{}reference{} to ", data.descr_pre, plural_suffix);
1984            check_must_not_suspend_ty(tcx, ty, hir_id, SuspendCheckData { descr_pre, ..data })
1985        }
1986        _ => false,
1987    }
1988}
1989
1990fn check_must_not_suspend_def(
1991    tcx: TyCtxt<'_>,
1992    def_id: DefId,
1993    hir_id: hir::HirId,
1994    data: SuspendCheckData<'_>,
1995) -> bool {
1996    if let Some(attr) = tcx.get_attr(def_id, sym::must_not_suspend) {
1997        let reason = attr.value_str().map(|s| errors::MustNotSuspendReason {
1998            span: data.source_span,
1999            reason: s.as_str().to_string(),
2000        });
2001        tcx.emit_node_span_lint(
2002            rustc_session::lint::builtin::MUST_NOT_SUSPEND,
2003            hir_id,
2004            data.source_span,
2005            errors::MustNotSupend {
2006                tcx,
2007                yield_sp: data.yield_span,
2008                reason,
2009                src_sp: data.source_span,
2010                pre: data.descr_pre,
2011                def_id,
2012                post: data.descr_post,
2013            },
2014        );
2015
2016        true
2017    } else {
2018        false
2019    }
2020}