rustc_hir_typeck/upvar.rs
1//! ### Inferring borrow kinds for upvars
2//!
3//! Whenever there is a closure expression, we need to determine how each
4//! upvar is used. We do this by initially assigning each upvar an
5//! immutable "borrow kind" (see `ty::BorrowKind` for details) and then
6//! "escalating" the kind as needed. The borrow kind proceeds according to
7//! the following lattice:
8//! ```ignore (not-rust)
9//! ty::ImmBorrow -> ty::UniqueImmBorrow -> ty::MutBorrow
10//! ```
11//! So, for example, if we see an assignment `x = 5` to an upvar `x`, we
12//! will promote its borrow kind to mutable borrow. If we see an `&mut x`
13//! we'll do the same. Naturally, this applies not just to the upvar, but
14//! to everything owned by `x`, so the result is the same for something
15//! like `x.f = 5` and so on (presuming `x` is not a borrowed pointer to a
16//! struct). These adjustments are performed in
17//! `adjust_for_non_move_closure` (you can trace backwards through the code
18//! from there).
19//!
20//! The fact that we are inferring borrow kinds as we go results in a
21//! semi-hacky interaction with mem-categorization. In particular,
22//! mem-categorization will query the current borrow kind as it
23//! categorizes, and we'll return the *current* value, but this may get
24//! adjusted later. Therefore, in this module, we generally ignore the
25//! borrow kind (and derived mutabilities) that are returned from
26//! mem-categorization, since they may be inaccurate. (Another option
27//! would be to use a unification scheme, where instead of returning a
28//! concrete borrow kind like `ty::ImmBorrow`, we return a
29//! `ty::InferBorrow(upvar_id)` or something like that, but this would
30//! then mean that all later passes would have to check for these figments
31//! and report an error, and it just seems like more mess in the end.)
32
33use std::iter;
34
35use rustc_abi::FIRST_VARIANT;
36use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
37use rustc_data_structures::unord::{ExtendUnord, UnordSet};
38use rustc_errors::{Applicability, MultiSpan};
39use rustc_hir as hir;
40use rustc_hir::HirId;
41use rustc_hir::def_id::LocalDefId;
42use rustc_hir::intravisit::{self, Visitor};
43use rustc_middle::hir::place::{Place, PlaceBase, PlaceWithHirId, Projection, ProjectionKind};
44use rustc_middle::mir::FakeReadCause;
45use rustc_middle::traits::ObligationCauseCode;
46use rustc_middle::ty::{
47 self, BorrowKind, ClosureSizeProfileData, Ty, TyCtxt, TypeVisitableExt as _, TypeckResults,
48 UpvarArgs, UpvarCapture,
49};
50use rustc_middle::{bug, span_bug};
51use rustc_session::lint;
52use rustc_span::{BytePos, Pos, Span, Symbol, sym};
53use rustc_trait_selection::infer::InferCtxtExt;
54use tracing::{debug, instrument};
55
56use super::FnCtxt;
57use crate::expr_use_visitor as euv;
58
59/// Describe the relationship between the paths of two places
60/// eg:
61/// - `foo` is ancestor of `foo.bar.baz`
62/// - `foo.bar.baz` is an descendant of `foo.bar`
63/// - `foo.bar` and `foo.baz` are divergent
64enum PlaceAncestryRelation {
65 Ancestor,
66 Descendant,
67 SamePlace,
68 Divergent,
69}
70
71/// Intermediate format to store a captured `Place` and associated `ty::CaptureInfo`
72/// during capture analysis. Information in this map feeds into the minimum capture
73/// analysis pass.
74type InferredCaptureInformation<'tcx> = Vec<(Place<'tcx>, ty::CaptureInfo)>;
75
76impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
77 pub(crate) fn closure_analyze(&self, body: &'tcx hir::Body<'tcx>) {
78 InferBorrowKindVisitor { fcx: self }.visit_body(body);
79
80 // it's our job to process these.
81 assert!(self.deferred_call_resolutions.borrow().is_empty());
82 }
83}
84
85/// Intermediate format to store the hir_id pointing to the use that resulted in the
86/// corresponding place being captured and a String which contains the captured value's
87/// name (i.e: a.b.c)
88#[derive(Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
89enum UpvarMigrationInfo {
90 /// We previously captured all of `x`, but now we capture some sub-path.
91 CapturingPrecise { source_expr: Option<HirId>, var_name: String },
92 CapturingNothing {
93 // where the variable appears in the closure (but is not captured)
94 use_span: Span,
95 },
96}
97
98/// Reasons that we might issue a migration warning.
99#[derive(Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
100struct MigrationWarningReason {
101 /// When we used to capture `x` in its entirety, we implemented the auto-trait(s)
102 /// in this vec, but now we don't.
103 auto_traits: Vec<&'static str>,
104
105 /// When we used to capture `x` in its entirety, we would execute some destructors
106 /// at a different time.
107 drop_order: bool,
108}
109
110impl MigrationWarningReason {
111 fn migration_message(&self) -> String {
112 let base = "changes to closure capture in Rust 2021 will affect";
113 if !self.auto_traits.is_empty() && self.drop_order {
114 format!("{base} drop order and which traits the closure implements")
115 } else if self.drop_order {
116 format!("{base} drop order")
117 } else {
118 format!("{base} which traits the closure implements")
119 }
120 }
121}
122
123/// Intermediate format to store information needed to generate a note in the migration lint.
124struct MigrationLintNote {
125 captures_info: UpvarMigrationInfo,
126
127 /// reasons why migration is needed for this capture
128 reason: MigrationWarningReason,
129}
130
131/// Intermediate format to store the hir id of the root variable and a HashSet containing
132/// information on why the root variable should be fully captured
133struct NeededMigration {
134 var_hir_id: HirId,
135 diagnostics_info: Vec<MigrationLintNote>,
136}
137
138struct InferBorrowKindVisitor<'a, 'tcx> {
139 fcx: &'a FnCtxt<'a, 'tcx>,
140}
141
142impl<'a, 'tcx> Visitor<'tcx> for InferBorrowKindVisitor<'a, 'tcx> {
143 fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) {
144 match expr.kind {
145 hir::ExprKind::Closure(&hir::Closure { capture_clause, body: body_id, .. }) => {
146 let body = self.fcx.tcx.hir().body(body_id);
147 self.visit_body(body);
148 self.fcx.analyze_closure(expr.hir_id, expr.span, body_id, body, capture_clause);
149 }
150 _ => {}
151 }
152
153 intravisit::walk_expr(self, expr);
154 }
155
156 fn visit_inline_const(&mut self, c: &'tcx hir::ConstBlock) {
157 let body = self.fcx.tcx.hir().body(c.body);
158 self.visit_body(body);
159 }
160}
161
162impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
163 /// Analysis starting point.
164 #[instrument(skip(self, body), level = "debug")]
165 fn analyze_closure(
166 &self,
167 closure_hir_id: HirId,
168 span: Span,
169 body_id: hir::BodyId,
170 body: &'tcx hir::Body<'tcx>,
171 mut capture_clause: hir::CaptureBy,
172 ) {
173 // Extract the type of the closure.
174 let ty = self.node_ty(closure_hir_id);
175 let (closure_def_id, args, infer_kind) = match *ty.kind() {
176 ty::Closure(def_id, args) => {
177 (def_id, UpvarArgs::Closure(args), self.closure_kind(ty).is_none())
178 }
179 ty::CoroutineClosure(def_id, args) => {
180 (def_id, UpvarArgs::CoroutineClosure(args), self.closure_kind(ty).is_none())
181 }
182 ty::Coroutine(def_id, args) => (def_id, UpvarArgs::Coroutine(args), false),
183 ty::Error(_) => {
184 // #51714: skip analysis when we have already encountered type errors
185 return;
186 }
187 _ => {
188 span_bug!(
189 span,
190 "type of closure expr {:?} is not a closure {:?}",
191 closure_hir_id,
192 ty
193 );
194 }
195 };
196 let args = self.resolve_vars_if_possible(args);
197 let closure_def_id = closure_def_id.expect_local();
198
199 assert_eq!(self.tcx.hir().body_owner_def_id(body.id()), closure_def_id);
200 let mut delegate = InferBorrowKind {
201 closure_def_id,
202 capture_information: Default::default(),
203 fake_reads: Default::default(),
204 };
205
206 let _ = euv::ExprUseVisitor::new(
207 &FnCtxt::new(self, self.tcx.param_env(closure_def_id), closure_def_id),
208 &mut delegate,
209 )
210 .consume_body(body);
211
212 // There are several curious situations with coroutine-closures where
213 // analysis is too aggressive with borrows when the coroutine-closure is
214 // marked `move`. Specifically:
215 //
216 // 1. If the coroutine-closure was inferred to be `FnOnce` during signature
217 // inference, then it's still possible that we try to borrow upvars from
218 // the coroutine-closure because they are not used by the coroutine body
219 // in a way that forces a move. See the test:
220 // `async-await/async-closures/force-move-due-to-inferred-kind.rs`.
221 //
222 // 2. If the coroutine-closure is forced to be `FnOnce` due to the way it
223 // uses its upvars (e.g. it consumes a non-copy value), but not *all* upvars
224 // would force the closure to `FnOnce`.
225 // See the test: `async-await/async-closures/force-move-due-to-actually-fnonce.rs`.
226 //
227 // This would lead to an impossible to satisfy situation, since `AsyncFnOnce`
228 // coroutine bodies can't borrow from their parent closure. To fix this,
229 // we force the inner coroutine to also be `move`. This only matters for
230 // coroutine-closures that are `move` since otherwise they themselves will
231 // be borrowing from the outer environment, so there's no self-borrows occurring.
232 if let UpvarArgs::Coroutine(..) = args
233 && let hir::CoroutineKind::Desugared(_, hir::CoroutineSource::Closure) =
234 self.tcx.coroutine_kind(closure_def_id).expect("coroutine should have kind")
235 && let parent_hir_id =
236 self.tcx.local_def_id_to_hir_id(self.tcx.local_parent(closure_def_id))
237 && let parent_ty = self.node_ty(parent_hir_id)
238 && let hir::CaptureBy::Value { move_kw } =
239 self.tcx.hir_node(parent_hir_id).expect_closure().capture_clause
240 {
241 // (1.) Closure signature inference forced this closure to `FnOnce`.
242 if let Some(ty::ClosureKind::FnOnce) = self.closure_kind(parent_ty) {
243 capture_clause = hir::CaptureBy::Value { move_kw };
244 }
245 // (2.) The way that the closure uses its upvars means it's `FnOnce`.
246 else if self.coroutine_body_consumes_upvars(closure_def_id, body) {
247 capture_clause = hir::CaptureBy::Value { move_kw };
248 }
249 }
250
251 // As noted in `lower_coroutine_body_with_moved_arguments`, we default the capture mode
252 // to `ByRef` for the `async {}` block internal to async fns/closure. This means
253 // that we would *not* be moving all of the parameters into the async block in all cases.
254 // For example, when one of the arguments is `Copy`, we turn a consuming use into a copy of
255 // a reference, so for `async fn x(t: i32) {}`, we'd only take a reference to `t`.
256 //
257 // We force all of these arguments to be captured by move before we do expr use analysis.
258 //
259 // FIXME(async_closures): This could be cleaned up. It's a bit janky that we're just
260 // moving all of the `LocalSource::AsyncFn` locals here.
261 if let Some(hir::CoroutineKind::Desugared(
262 _,
263 hir::CoroutineSource::Fn | hir::CoroutineSource::Closure,
264 )) = self.tcx.coroutine_kind(closure_def_id)
265 {
266 let hir::ExprKind::Block(block, _) = body.value.kind else {
267 bug!();
268 };
269 for stmt in block.stmts {
270 let hir::StmtKind::Let(hir::LetStmt {
271 init: Some(init),
272 source: hir::LocalSource::AsyncFn,
273 pat,
274 ..
275 }) = stmt.kind
276 else {
277 bug!();
278 };
279 let hir::PatKind::Binding(hir::BindingMode(hir::ByRef::No, _), _, _, _) = pat.kind
280 else {
281 // Complex pattern, skip the non-upvar local.
282 continue;
283 };
284 let hir::ExprKind::Path(hir::QPath::Resolved(_, path)) = init.kind else {
285 bug!();
286 };
287 let hir::def::Res::Local(local_id) = path.res else {
288 bug!();
289 };
290 let place = self.place_for_root_variable(closure_def_id, local_id);
291 delegate.capture_information.push((
292 place,
293 ty::CaptureInfo {
294 capture_kind_expr_id: Some(init.hir_id),
295 path_expr_id: Some(init.hir_id),
296 capture_kind: UpvarCapture::ByValue,
297 },
298 ));
299 }
300 }
301
302 debug!(
303 "For closure={:?}, capture_information={:#?}",
304 closure_def_id, delegate.capture_information
305 );
306
307 self.log_capture_analysis_first_pass(closure_def_id, &delegate.capture_information, span);
308
309 let (capture_information, closure_kind, origin) = self
310 .process_collected_capture_information(capture_clause, &delegate.capture_information);
311
312 self.compute_min_captures(closure_def_id, capture_information, span);
313
314 let closure_hir_id = self.tcx.local_def_id_to_hir_id(closure_def_id);
315
316 if should_do_rust_2021_incompatible_closure_captures_analysis(self.tcx, closure_hir_id) {
317 self.perform_2229_migration_analysis(closure_def_id, body_id, capture_clause, span);
318 }
319
320 let after_feature_tys = self.final_upvar_tys(closure_def_id);
321
322 // We now fake capture information for all variables that are mentioned within the closure
323 // We do this after handling migrations so that min_captures computes before
324 if !enable_precise_capture(span) {
325 let mut capture_information: InferredCaptureInformation<'tcx> = Default::default();
326
327 if let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) {
328 for var_hir_id in upvars.keys() {
329 let place = self.place_for_root_variable(closure_def_id, *var_hir_id);
330
331 debug!("seed place {:?}", place);
332
333 let capture_kind = self.init_capture_kind_for_place(&place, capture_clause);
334 let fake_info = ty::CaptureInfo {
335 capture_kind_expr_id: None,
336 path_expr_id: None,
337 capture_kind,
338 };
339
340 capture_information.push((place, fake_info));
341 }
342 }
343
344 // This will update the min captures based on this new fake information.
345 self.compute_min_captures(closure_def_id, capture_information, span);
346 }
347
348 let before_feature_tys = self.final_upvar_tys(closure_def_id);
349
350 if infer_kind {
351 // Unify the (as yet unbound) type variable in the closure
352 // args with the kind we inferred.
353 let closure_kind_ty = match args {
354 UpvarArgs::Closure(args) => args.as_closure().kind_ty(),
355 UpvarArgs::CoroutineClosure(args) => args.as_coroutine_closure().kind_ty(),
356 UpvarArgs::Coroutine(_) => unreachable!("coroutines don't have an inferred kind"),
357 };
358 self.demand_eqtype(
359 span,
360 Ty::from_closure_kind(self.tcx, closure_kind),
361 closure_kind_ty,
362 );
363
364 // If we have an origin, store it.
365 if let Some(mut origin) = origin {
366 if !enable_precise_capture(span) {
367 // Without precise captures, we just capture the base and ignore
368 // the projections.
369 origin.1.projections.clear()
370 }
371
372 self.typeck_results
373 .borrow_mut()
374 .closure_kind_origins_mut()
375 .insert(closure_hir_id, origin);
376 }
377 }
378
379 // For coroutine-closures, we additionally must compute the
380 // `coroutine_captures_by_ref_ty` type, which is used to generate the by-ref
381 // version of the coroutine-closure's output coroutine.
382 if let UpvarArgs::CoroutineClosure(args) = args
383 && !args.references_error()
384 {
385 let closure_env_region: ty::Region<'_> = ty::Region::new_bound(
386 self.tcx,
387 ty::INNERMOST,
388 ty::BoundRegion { var: ty::BoundVar::ZERO, kind: ty::BoundRegionKind::ClosureEnv },
389 );
390
391 let num_args = args
392 .as_coroutine_closure()
393 .coroutine_closure_sig()
394 .skip_binder()
395 .tupled_inputs_ty
396 .tuple_fields()
397 .len();
398 let typeck_results = self.typeck_results.borrow();
399
400 let tupled_upvars_ty_for_borrow = Ty::new_tup_from_iter(
401 self.tcx,
402 ty::analyze_coroutine_closure_captures(
403 typeck_results.closure_min_captures_flattened(closure_def_id),
404 typeck_results
405 .closure_min_captures_flattened(
406 self.tcx.coroutine_for_closure(closure_def_id).expect_local(),
407 )
408 // Skip the captures that are just moving the closure's args
409 // into the coroutine. These are always by move, and we append
410 // those later in the `CoroutineClosureSignature` helper functions.
411 .skip(num_args),
412 |(_, parent_capture), (_, child_capture)| {
413 // This is subtle. See documentation on function.
414 let needs_ref = should_reborrow_from_env_of_parent_coroutine_closure(
415 parent_capture,
416 child_capture,
417 );
418
419 let upvar_ty = child_capture.place.ty();
420 let capture = child_capture.info.capture_kind;
421 // Not all upvars are captured by ref, so use
422 // `apply_capture_kind_on_capture_ty` to ensure that we
423 // compute the right captured type.
424 return apply_capture_kind_on_capture_ty(
425 self.tcx,
426 upvar_ty,
427 capture,
428 if needs_ref {
429 closure_env_region
430 } else {
431 self.tcx.lifetimes.re_erased
432 },
433 );
434 },
435 ),
436 );
437 let coroutine_captures_by_ref_ty = Ty::new_fn_ptr(
438 self.tcx,
439 ty::Binder::bind_with_vars(
440 self.tcx.mk_fn_sig(
441 [],
442 tupled_upvars_ty_for_borrow,
443 false,
444 hir::Safety::Safe,
445 rustc_abi::ExternAbi::Rust,
446 ),
447 self.tcx.mk_bound_variable_kinds(&[ty::BoundVariableKind::Region(
448 ty::BoundRegionKind::ClosureEnv,
449 )]),
450 ),
451 );
452 self.demand_eqtype(
453 span,
454 args.as_coroutine_closure().coroutine_captures_by_ref_ty(),
455 coroutine_captures_by_ref_ty,
456 );
457
458 // Additionally, we can now constrain the coroutine's kind type.
459 //
460 // We only do this if `infer_kind`, because if we have constrained
461 // the kind from closure signature inference, the kind inferred
462 // for the inner coroutine may actually be more restrictive.
463 if infer_kind {
464 let ty::Coroutine(_, coroutine_args) =
465 *self.typeck_results.borrow().expr_ty(body.value).kind()
466 else {
467 bug!();
468 };
469 self.demand_eqtype(
470 span,
471 coroutine_args.as_coroutine().kind_ty(),
472 Ty::from_coroutine_closure_kind(self.tcx, closure_kind),
473 );
474 }
475 }
476
477 self.log_closure_min_capture_info(closure_def_id, span);
478
479 // Now that we've analyzed the closure, we know how each
480 // variable is borrowed, and we know what traits the closure
481 // implements (Fn vs FnMut etc). We now have some updates to do
482 // with that information.
483 //
484 // Note that no closure type C may have an upvar of type C
485 // (though it may reference itself via a trait object). This
486 // results from the desugaring of closures to a struct like
487 // `Foo<..., UV0...UVn>`. If one of those upvars referenced
488 // C, then the type would have infinite size (and the
489 // inference algorithm will reject it).
490
491 // Equate the type variables for the upvars with the actual types.
492 let final_upvar_tys = self.final_upvar_tys(closure_def_id);
493 debug!(?closure_hir_id, ?args, ?final_upvar_tys);
494
495 if self.tcx.features().unsized_locals() || self.tcx.features().unsized_fn_params() {
496 for capture in
497 self.typeck_results.borrow().closure_min_captures_flattened(closure_def_id)
498 {
499 if let UpvarCapture::ByValue = capture.info.capture_kind {
500 self.require_type_is_sized(
501 capture.place.ty(),
502 capture.get_path_span(self.tcx),
503 ObligationCauseCode::SizedClosureCapture(closure_def_id),
504 );
505 }
506 }
507 }
508
509 // Build a tuple (U0..Un) of the final upvar types U0..Un
510 // and unify the upvar tuple type in the closure with it:
511 let final_tupled_upvars_type = Ty::new_tup(self.tcx, &final_upvar_tys);
512 self.demand_suptype(span, args.tupled_upvars_ty(), final_tupled_upvars_type);
513
514 let fake_reads = delegate.fake_reads;
515
516 self.typeck_results.borrow_mut().closure_fake_reads.insert(closure_def_id, fake_reads);
517
518 if self.tcx.sess.opts.unstable_opts.profile_closures {
519 self.typeck_results.borrow_mut().closure_size_eval.insert(
520 closure_def_id,
521 ClosureSizeProfileData {
522 before_feature_tys: Ty::new_tup(self.tcx, &before_feature_tys),
523 after_feature_tys: Ty::new_tup(self.tcx, &after_feature_tys),
524 },
525 );
526 }
527
528 // If we are also inferred the closure kind here,
529 // process any deferred resolutions.
530 let deferred_call_resolutions = self.remove_deferred_call_resolutions(closure_def_id);
531 for deferred_call_resolution in deferred_call_resolutions {
532 deferred_call_resolution.resolve(self);
533 }
534 }
535
536 /// Determines whether the body of the coroutine uses its upvars in a way that
537 /// consumes (i.e. moves) the value, which would force the coroutine to `FnOnce`.
538 /// In a more detailed comment above, we care whether this happens, since if
539 /// this happens, we want to force the coroutine to move all of the upvars it
540 /// would've borrowed from the parent coroutine-closure.
541 ///
542 /// This only really makes sense to be called on the child coroutine of a
543 /// coroutine-closure.
544 fn coroutine_body_consumes_upvars(
545 &self,
546 coroutine_def_id: LocalDefId,
547 body: &'tcx hir::Body<'tcx>,
548 ) -> bool {
549 // This block contains argument capturing details. Since arguments
550 // aren't upvars, we do not care about them for determining if the
551 // coroutine body actually consumes its upvars.
552 let hir::ExprKind::Block(&hir::Block { expr: Some(body), .. }, None) = body.value.kind
553 else {
554 bug!();
555 };
556 // Specifically, we only care about the *real* body of the coroutine.
557 // We skip out into the drop-temps within the block of the body in order
558 // to skip over the args of the desugaring.
559 let hir::ExprKind::DropTemps(body) = body.kind else {
560 bug!();
561 };
562
563 let mut delegate = InferBorrowKind {
564 closure_def_id: coroutine_def_id,
565 capture_information: Default::default(),
566 fake_reads: Default::default(),
567 };
568
569 let _ = euv::ExprUseVisitor::new(
570 &FnCtxt::new(self, self.tcx.param_env(coroutine_def_id), coroutine_def_id),
571 &mut delegate,
572 )
573 .consume_expr(body);
574
575 let (_, kind, _) = self.process_collected_capture_information(
576 hir::CaptureBy::Ref,
577 &delegate.capture_information,
578 );
579
580 matches!(kind, ty::ClosureKind::FnOnce)
581 }
582
583 // Returns a list of `Ty`s for each upvar.
584 fn final_upvar_tys(&self, closure_id: LocalDefId) -> Vec<Ty<'tcx>> {
585 self.typeck_results
586 .borrow()
587 .closure_min_captures_flattened(closure_id)
588 .map(|captured_place| {
589 let upvar_ty = captured_place.place.ty();
590 let capture = captured_place.info.capture_kind;
591
592 debug!(?captured_place.place, ?upvar_ty, ?capture, ?captured_place.mutability);
593
594 apply_capture_kind_on_capture_ty(
595 self.tcx,
596 upvar_ty,
597 capture,
598 self.tcx.lifetimes.re_erased,
599 )
600 })
601 .collect()
602 }
603
604 /// Adjusts the closure capture information to ensure that the operations aren't unsafe,
605 /// and that the path can be captured with required capture kind (depending on use in closure,
606 /// move closure etc.)
607 ///
608 /// Returns the set of adjusted information along with the inferred closure kind and span
609 /// associated with the closure kind inference.
610 ///
611 /// Note that we *always* infer a minimal kind, even if
612 /// we don't always *use* that in the final result (i.e., sometimes
613 /// we've taken the closure kind from the expectations instead, and
614 /// for coroutines we don't even implement the closure traits
615 /// really).
616 ///
617 /// If we inferred that the closure needs to be FnMut/FnOnce, last element of the returned tuple
618 /// contains a `Some()` with the `Place` that caused us to do so.
619 fn process_collected_capture_information(
620 &self,
621 capture_clause: hir::CaptureBy,
622 capture_information: &InferredCaptureInformation<'tcx>,
623 ) -> (InferredCaptureInformation<'tcx>, ty::ClosureKind, Option<(Span, Place<'tcx>)>) {
624 let mut closure_kind = ty::ClosureKind::LATTICE_BOTTOM;
625 let mut origin: Option<(Span, Place<'tcx>)> = None;
626
627 let processed = capture_information
628 .iter()
629 .cloned()
630 .map(|(place, mut capture_info)| {
631 // Apply rules for safety before inferring closure kind
632 let (place, capture_kind) =
633 restrict_capture_precision(place, capture_info.capture_kind);
634
635 let (place, capture_kind) = truncate_capture_for_optimization(place, capture_kind);
636
637 let usage_span = if let Some(usage_expr) = capture_info.path_expr_id {
638 self.tcx.hir().span(usage_expr)
639 } else {
640 unreachable!()
641 };
642
643 let updated = match capture_kind {
644 ty::UpvarCapture::ByValue => match closure_kind {
645 ty::ClosureKind::Fn | ty::ClosureKind::FnMut => {
646 (ty::ClosureKind::FnOnce, Some((usage_span, place.clone())))
647 }
648 // If closure is already FnOnce, don't update
649 ty::ClosureKind::FnOnce => (closure_kind, origin.take()),
650 },
651
652 ty::UpvarCapture::ByRef(
653 ty::BorrowKind::Mutable | ty::BorrowKind::UniqueImmutable,
654 ) => {
655 match closure_kind {
656 ty::ClosureKind::Fn => {
657 (ty::ClosureKind::FnMut, Some((usage_span, place.clone())))
658 }
659 // Don't update the origin
660 ty::ClosureKind::FnMut | ty::ClosureKind::FnOnce => {
661 (closure_kind, origin.take())
662 }
663 }
664 }
665
666 _ => (closure_kind, origin.take()),
667 };
668
669 closure_kind = updated.0;
670 origin = updated.1;
671
672 let (place, capture_kind) = match capture_clause {
673 hir::CaptureBy::Value { .. } => adjust_for_move_closure(place, capture_kind),
674 hir::CaptureBy::Ref => adjust_for_non_move_closure(place, capture_kind),
675 };
676
677 // This restriction needs to be applied after we have handled adjustments for `move`
678 // closures. We want to make sure any adjustment that might make us move the place into
679 // the closure gets handled.
680 let (place, capture_kind) =
681 restrict_precision_for_drop_types(self, place, capture_kind);
682
683 capture_info.capture_kind = capture_kind;
684 (place, capture_info)
685 })
686 .collect();
687
688 (processed, closure_kind, origin)
689 }
690
691 /// Analyzes the information collected by `InferBorrowKind` to compute the min number of
692 /// Places (and corresponding capture kind) that we need to keep track of to support all
693 /// the required captured paths.
694 ///
695 ///
696 /// Note: If this function is called multiple times for the same closure, it will update
697 /// the existing min_capture map that is stored in TypeckResults.
698 ///
699 /// Eg:
700 /// ```
701 /// #[derive(Debug)]
702 /// struct Point { x: i32, y: i32 }
703 ///
704 /// let s = String::from("s"); // hir_id_s
705 /// let mut p = Point { x: 2, y: -2 }; // his_id_p
706 /// let c = || {
707 /// println!("{s:?}"); // L1
708 /// p.x += 10; // L2
709 /// println!("{}" , p.y); // L3
710 /// println!("{p:?}"); // L4
711 /// drop(s); // L5
712 /// };
713 /// ```
714 /// and let hir_id_L1..5 be the expressions pointing to use of a captured variable on
715 /// the lines L1..5 respectively.
716 ///
717 /// InferBorrowKind results in a structure like this:
718 ///
719 /// ```ignore (illustrative)
720 /// {
721 /// Place(base: hir_id_s, projections: [], ....) -> {
722 /// capture_kind_expr: hir_id_L5,
723 /// path_expr_id: hir_id_L5,
724 /// capture_kind: ByValue
725 /// },
726 /// Place(base: hir_id_p, projections: [Field(0, 0)], ...) -> {
727 /// capture_kind_expr: hir_id_L2,
728 /// path_expr_id: hir_id_L2,
729 /// capture_kind: ByValue
730 /// },
731 /// Place(base: hir_id_p, projections: [Field(1, 0)], ...) -> {
732 /// capture_kind_expr: hir_id_L3,
733 /// path_expr_id: hir_id_L3,
734 /// capture_kind: ByValue
735 /// },
736 /// Place(base: hir_id_p, projections: [], ...) -> {
737 /// capture_kind_expr: hir_id_L4,
738 /// path_expr_id: hir_id_L4,
739 /// capture_kind: ByValue
740 /// },
741 /// }
742 /// ```
743 ///
744 /// After the min capture analysis, we get:
745 /// ```ignore (illustrative)
746 /// {
747 /// hir_id_s -> [
748 /// Place(base: hir_id_s, projections: [], ....) -> {
749 /// capture_kind_expr: hir_id_L5,
750 /// path_expr_id: hir_id_L5,
751 /// capture_kind: ByValue
752 /// },
753 /// ],
754 /// hir_id_p -> [
755 /// Place(base: hir_id_p, projections: [], ...) -> {
756 /// capture_kind_expr: hir_id_L2,
757 /// path_expr_id: hir_id_L4,
758 /// capture_kind: ByValue
759 /// },
760 /// ],
761 /// }
762 /// ```
763 fn compute_min_captures(
764 &self,
765 closure_def_id: LocalDefId,
766 capture_information: InferredCaptureInformation<'tcx>,
767 closure_span: Span,
768 ) {
769 if capture_information.is_empty() {
770 return;
771 }
772
773 let mut typeck_results = self.typeck_results.borrow_mut();
774
775 let mut root_var_min_capture_list =
776 typeck_results.closure_min_captures.remove(&closure_def_id).unwrap_or_default();
777
778 for (mut place, capture_info) in capture_information.into_iter() {
779 let var_hir_id = match place.base {
780 PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
781 base => bug!("Expected upvar, found={:?}", base),
782 };
783 let var_ident = self.tcx.hir().ident(var_hir_id);
784
785 let Some(min_cap_list) = root_var_min_capture_list.get_mut(&var_hir_id) else {
786 let mutability = self.determine_capture_mutability(&typeck_results, &place);
787 let min_cap_list =
788 vec![ty::CapturedPlace { var_ident, place, info: capture_info, mutability }];
789 root_var_min_capture_list.insert(var_hir_id, min_cap_list);
790 continue;
791 };
792
793 // Go through each entry in the current list of min_captures
794 // - if ancestor is found, update its capture kind to account for current place's
795 // capture information.
796 //
797 // - if descendant is found, remove it from the list, and update the current place's
798 // capture information to account for the descendant's capture kind.
799 //
800 // We can never be in a case where the list contains both an ancestor and a descendant
801 // Also there can only be ancestor but in case of descendants there might be
802 // multiple.
803
804 let mut descendant_found = false;
805 let mut updated_capture_info = capture_info;
806 min_cap_list.retain(|possible_descendant| {
807 match determine_place_ancestry_relation(&place, &possible_descendant.place) {
808 // current place is ancestor of possible_descendant
809 PlaceAncestryRelation::Ancestor => {
810 descendant_found = true;
811
812 let mut possible_descendant = possible_descendant.clone();
813 let backup_path_expr_id = updated_capture_info.path_expr_id;
814
815 // Truncate the descendant (already in min_captures) to be same as the ancestor to handle any
816 // possible change in capture mode.
817 truncate_place_to_len_and_update_capture_kind(
818 &mut possible_descendant.place,
819 &mut possible_descendant.info.capture_kind,
820 place.projections.len(),
821 );
822
823 updated_capture_info =
824 determine_capture_info(updated_capture_info, possible_descendant.info);
825
826 // we need to keep the ancestor's `path_expr_id`
827 updated_capture_info.path_expr_id = backup_path_expr_id;
828 false
829 }
830
831 _ => true,
832 }
833 });
834
835 let mut ancestor_found = false;
836 if !descendant_found {
837 for possible_ancestor in min_cap_list.iter_mut() {
838 match determine_place_ancestry_relation(&place, &possible_ancestor.place) {
839 PlaceAncestryRelation::SamePlace => {
840 ancestor_found = true;
841 possible_ancestor.info = determine_capture_info(
842 possible_ancestor.info,
843 updated_capture_info,
844 );
845
846 // Only one related place will be in the list.
847 break;
848 }
849 // current place is descendant of possible_ancestor
850 PlaceAncestryRelation::Descendant => {
851 ancestor_found = true;
852 let backup_path_expr_id = possible_ancestor.info.path_expr_id;
853
854 // Truncate the descendant (current place) to be same as the ancestor to handle any
855 // possible change in capture mode.
856 truncate_place_to_len_and_update_capture_kind(
857 &mut place,
858 &mut updated_capture_info.capture_kind,
859 possible_ancestor.place.projections.len(),
860 );
861
862 possible_ancestor.info = determine_capture_info(
863 possible_ancestor.info,
864 updated_capture_info,
865 );
866
867 // we need to keep the ancestor's `path_expr_id`
868 possible_ancestor.info.path_expr_id = backup_path_expr_id;
869
870 // Only one related place will be in the list.
871 break;
872 }
873 _ => {}
874 }
875 }
876 }
877
878 // Only need to insert when we don't have an ancestor in the existing min capture list
879 if !ancestor_found {
880 let mutability = self.determine_capture_mutability(&typeck_results, &place);
881 let captured_place =
882 ty::CapturedPlace { var_ident, place, info: updated_capture_info, mutability };
883 min_cap_list.push(captured_place);
884 }
885 }
886
887 debug!(
888 "For closure={:?}, min_captures before sorting={:?}",
889 closure_def_id, root_var_min_capture_list
890 );
891
892 // Now that we have the minimized list of captures, sort the captures by field id.
893 // This causes the closure to capture the upvars in the same order as the fields are
894 // declared which is also the drop order. Thus, in situations where we capture all the
895 // fields of some type, the observable drop order will remain the same as it previously
896 // was even though we're dropping each capture individually.
897 // See https://github.com/rust-lang/project-rfc-2229/issues/42 and
898 // `tests/ui/closures/2229_closure_analysis/preserve_field_drop_order.rs`.
899 for (_, captures) in &mut root_var_min_capture_list {
900 captures.sort_by(|capture1, capture2| {
901 fn is_field<'a>(p: &&Projection<'a>) -> bool {
902 match p.kind {
903 ProjectionKind::Field(_, _) => true,
904 ProjectionKind::Deref | ProjectionKind::OpaqueCast => false,
905 p @ (ProjectionKind::Subslice | ProjectionKind::Index) => {
906 bug!("ProjectionKind {:?} was unexpected", p)
907 }
908 }
909 }
910
911 // Need to sort only by Field projections, so filter away others.
912 // A previous implementation considered other projection types too
913 // but that caused ICE #118144
914 let capture1_field_projections = capture1.place.projections.iter().filter(is_field);
915 let capture2_field_projections = capture2.place.projections.iter().filter(is_field);
916
917 for (p1, p2) in capture1_field_projections.zip(capture2_field_projections) {
918 // We do not need to look at the `Projection.ty` fields here because at each
919 // step of the iteration, the projections will either be the same and therefore
920 // the types must be as well or the current projection will be different and
921 // we will return the result of comparing the field indexes.
922 match (p1.kind, p2.kind) {
923 (ProjectionKind::Field(i1, _), ProjectionKind::Field(i2, _)) => {
924 // Compare only if paths are different.
925 // Otherwise continue to the next iteration
926 if i1 != i2 {
927 return i1.cmp(&i2);
928 }
929 }
930 // Given the filter above, this arm should never be hit
931 (l, r) => bug!("ProjectionKinds {:?} or {:?} were unexpected", l, r),
932 }
933 }
934
935 self.dcx().span_delayed_bug(
936 closure_span,
937 format!(
938 "two identical projections: ({:?}, {:?})",
939 capture1.place.projections, capture2.place.projections
940 ),
941 );
942 std::cmp::Ordering::Equal
943 });
944 }
945
946 debug!(
947 "For closure={:?}, min_captures after sorting={:#?}",
948 closure_def_id, root_var_min_capture_list
949 );
950 typeck_results.closure_min_captures.insert(closure_def_id, root_var_min_capture_list);
951 }
952
953 /// Perform the migration analysis for RFC 2229, and emit lint
954 /// `disjoint_capture_drop_reorder` if needed.
955 fn perform_2229_migration_analysis(
956 &self,
957 closure_def_id: LocalDefId,
958 body_id: hir::BodyId,
959 capture_clause: hir::CaptureBy,
960 span: Span,
961 ) {
962 let (need_migrations, reasons) = self.compute_2229_migrations(
963 closure_def_id,
964 span,
965 capture_clause,
966 self.typeck_results.borrow().closure_min_captures.get(&closure_def_id),
967 );
968
969 if !need_migrations.is_empty() {
970 let (migration_string, migrated_variables_concat) =
971 migration_suggestion_for_2229(self.tcx, &need_migrations);
972
973 let closure_hir_id = self.tcx.local_def_id_to_hir_id(closure_def_id);
974 let closure_head_span = self.tcx.def_span(closure_def_id);
975 self.tcx.node_span_lint(
976 lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES,
977 closure_hir_id,
978 closure_head_span,
979 |lint| {
980 lint.primary_message(reasons.migration_message());
981
982 for NeededMigration { var_hir_id, diagnostics_info } in &need_migrations {
983 // Labels all the usage of the captured variable and why they are responsible
984 // for migration being needed
985 for lint_note in diagnostics_info.iter() {
986 match &lint_note.captures_info {
987 UpvarMigrationInfo::CapturingPrecise { source_expr: Some(capture_expr_id), var_name: captured_name } => {
988 let cause_span = self.tcx.hir().span(*capture_expr_id);
989 lint.span_label(cause_span, format!("in Rust 2018, this closure captures all of `{}`, but in Rust 2021, it will only capture `{}`",
990 self.tcx.hir().name(*var_hir_id),
991 captured_name,
992 ));
993 }
994 UpvarMigrationInfo::CapturingNothing { use_span } => {
995 lint.span_label(*use_span, format!("in Rust 2018, this causes the closure to capture `{}`, but in Rust 2021, it has no effect",
996 self.tcx.hir().name(*var_hir_id),
997 ));
998 }
999
1000 _ => { }
1001 }
1002
1003 // Add a label pointing to where a captured variable affected by drop order
1004 // is dropped
1005 if lint_note.reason.drop_order {
1006 let drop_location_span = drop_location_span(self.tcx, closure_hir_id);
1007
1008 match &lint_note.captures_info {
1009 UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
1010 lint.span_label(drop_location_span, format!("in Rust 2018, `{}` is dropped here, but in Rust 2021, only `{}` will be dropped here as part of the closure",
1011 self.tcx.hir().name(*var_hir_id),
1012 captured_name,
1013 ));
1014 }
1015 UpvarMigrationInfo::CapturingNothing { use_span: _ } => {
1016 lint.span_label(drop_location_span, format!("in Rust 2018, `{v}` is dropped here along with the closure, but in Rust 2021 `{v}` is not part of the closure",
1017 v = self.tcx.hir().name(*var_hir_id),
1018 ));
1019 }
1020 }
1021 }
1022
1023 // Add a label explaining why a closure no longer implements a trait
1024 for &missing_trait in &lint_note.reason.auto_traits {
1025 // not capturing something anymore cannot cause a trait to fail to be implemented:
1026 match &lint_note.captures_info {
1027 UpvarMigrationInfo::CapturingPrecise { var_name: captured_name, .. } => {
1028 let var_name = self.tcx.hir().name(*var_hir_id);
1029 lint.span_label(closure_head_span, format!("\
1030 in Rust 2018, this closure implements {missing_trait} \
1031 as `{var_name}` implements {missing_trait}, but in Rust 2021, \
1032 this closure will no longer implement {missing_trait} \
1033 because `{var_name}` is not fully captured \
1034 and `{captured_name}` does not implement {missing_trait}"));
1035 }
1036
1037 // Cannot happen: if we don't capture a variable, we impl strictly more traits
1038 UpvarMigrationInfo::CapturingNothing { use_span } => span_bug!(*use_span, "missing trait from not capturing something"),
1039 }
1040 }
1041 }
1042 }
1043 lint.note("for more information, see <https://doc.rust-lang.org/nightly/edition-guide/rust-2021/disjoint-capture-in-closures.html>");
1044
1045 let diagnostic_msg = format!(
1046 "add a dummy let to cause {migrated_variables_concat} to be fully captured"
1047 );
1048
1049 let closure_span = self.tcx.hir().span_with_body(closure_hir_id);
1050 let mut closure_body_span = {
1051 // If the body was entirely expanded from a macro
1052 // invocation, i.e. the body is not contained inside the
1053 // closure span, then we walk up the expansion until we
1054 // find the span before the expansion.
1055 let s = self.tcx.hir().span_with_body(body_id.hir_id);
1056 s.find_ancestor_inside(closure_span).unwrap_or(s)
1057 };
1058
1059 if let Ok(mut s) = self.tcx.sess.source_map().span_to_snippet(closure_body_span) {
1060 if s.starts_with('$') {
1061 // Looks like a macro fragment. Try to find the real block.
1062 if let hir::Node::Expr(&hir::Expr {
1063 kind: hir::ExprKind::Block(block, ..), ..
1064 }) = self.tcx.hir_node(body_id.hir_id) {
1065 // If the body is a block (with `{..}`), we use the span of that block.
1066 // E.g. with a `|| $body` expanded from a `m!({ .. })`, we use `{ .. }`, and not `$body`.
1067 // Since we know it's a block, we know we can insert the `let _ = ..` without
1068 // breaking the macro syntax.
1069 if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(block.span) {
1070 closure_body_span = block.span;
1071 s = snippet;
1072 }
1073 }
1074 }
1075
1076 let mut lines = s.lines();
1077 let line1 = lines.next().unwrap_or_default();
1078
1079 if line1.trim_end() == "{" {
1080 // This is a multi-line closure with just a `{` on the first line,
1081 // so we put the `let` on its own line.
1082 // We take the indentation from the next non-empty line.
1083 let line2 = lines.find(|line| !line.is_empty()).unwrap_or_default();
1084 let indent = line2.split_once(|c: char| !c.is_whitespace()).unwrap_or_default().0;
1085 lint.span_suggestion(
1086 closure_body_span.with_lo(closure_body_span.lo() + BytePos::from_usize(line1.len())).shrink_to_lo(),
1087 diagnostic_msg,
1088 format!("\n{indent}{migration_string};"),
1089 Applicability::MachineApplicable,
1090 );
1091 } else if line1.starts_with('{') {
1092 // This is a closure with its body wrapped in
1093 // braces, but with more than just the opening
1094 // brace on the first line. We put the `let`
1095 // directly after the `{`.
1096 lint.span_suggestion(
1097 closure_body_span.with_lo(closure_body_span.lo() + BytePos(1)).shrink_to_lo(),
1098 diagnostic_msg,
1099 format!(" {migration_string};"),
1100 Applicability::MachineApplicable,
1101 );
1102 } else {
1103 // This is a closure without braces around the body.
1104 // We add braces to add the `let` before the body.
1105 lint.multipart_suggestion(
1106 diagnostic_msg,
1107 vec![
1108 (closure_body_span.shrink_to_lo(), format!("{{ {migration_string}; ")),
1109 (closure_body_span.shrink_to_hi(), " }".to_string()),
1110 ],
1111 Applicability::MachineApplicable
1112 );
1113 }
1114 } else {
1115 lint.span_suggestion(
1116 closure_span,
1117 diagnostic_msg,
1118 migration_string,
1119 Applicability::HasPlaceholders
1120 );
1121 }
1122 },
1123 );
1124 }
1125 }
1126
1127 /// Combines all the reasons for 2229 migrations
1128 fn compute_2229_migrations_reasons(
1129 &self,
1130 auto_trait_reasons: UnordSet<&'static str>,
1131 drop_order: bool,
1132 ) -> MigrationWarningReason {
1133 MigrationWarningReason {
1134 auto_traits: auto_trait_reasons.into_sorted_stable_ord(),
1135 drop_order,
1136 }
1137 }
1138
1139 /// Figures out the list of root variables (and their types) that aren't completely
1140 /// captured by the closure when `capture_disjoint_fields` is enabled and auto-traits
1141 /// differ between the root variable and the captured paths.
1142 ///
1143 /// Returns a tuple containing a HashMap of CapturesInfo that maps to a HashSet of trait names
1144 /// if migration is needed for traits for the provided var_hir_id, otherwise returns None
1145 fn compute_2229_migrations_for_trait(
1146 &self,
1147 min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1148 var_hir_id: HirId,
1149 closure_clause: hir::CaptureBy,
1150 ) -> Option<FxIndexMap<UpvarMigrationInfo, UnordSet<&'static str>>> {
1151 let auto_traits_def_id = [
1152 self.tcx.lang_items().clone_trait(),
1153 self.tcx.lang_items().sync_trait(),
1154 self.tcx.get_diagnostic_item(sym::Send),
1155 self.tcx.lang_items().unpin_trait(),
1156 self.tcx.get_diagnostic_item(sym::unwind_safe_trait),
1157 self.tcx.get_diagnostic_item(sym::ref_unwind_safe_trait),
1158 ];
1159 const AUTO_TRAITS: [&str; 6] =
1160 ["`Clone`", "`Sync`", "`Send`", "`Unpin`", "`UnwindSafe`", "`RefUnwindSafe`"];
1161
1162 let root_var_min_capture_list = min_captures.and_then(|m| m.get(&var_hir_id))?;
1163
1164 let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));
1165
1166 let ty = match closure_clause {
1167 hir::CaptureBy::Value { .. } => ty, // For move closure the capture kind should be by value
1168 hir::CaptureBy::Ref => {
1169 // For non move closure the capture kind is the max capture kind of all captures
1170 // according to the ordering ImmBorrow < UniqueImmBorrow < MutBorrow < ByValue
1171 let mut max_capture_info = root_var_min_capture_list.first().unwrap().info;
1172 for capture in root_var_min_capture_list.iter() {
1173 max_capture_info = determine_capture_info(max_capture_info, capture.info);
1174 }
1175
1176 apply_capture_kind_on_capture_ty(
1177 self.tcx,
1178 ty,
1179 max_capture_info.capture_kind,
1180 self.tcx.lifetimes.re_erased,
1181 )
1182 }
1183 };
1184
1185 let mut obligations_should_hold = Vec::new();
1186 // Checks if a root variable implements any of the auto traits
1187 for check_trait in auto_traits_def_id.iter() {
1188 obligations_should_hold.push(check_trait.is_some_and(|check_trait| {
1189 self.infcx
1190 .type_implements_trait(check_trait, [ty], self.param_env)
1191 .must_apply_modulo_regions()
1192 }));
1193 }
1194
1195 let mut problematic_captures = FxIndexMap::default();
1196 // Check whether captured fields also implement the trait
1197 for capture in root_var_min_capture_list.iter() {
1198 let ty = apply_capture_kind_on_capture_ty(
1199 self.tcx,
1200 capture.place.ty(),
1201 capture.info.capture_kind,
1202 self.tcx.lifetimes.re_erased,
1203 );
1204
1205 // Checks if a capture implements any of the auto traits
1206 let mut obligations_holds_for_capture = Vec::new();
1207 for check_trait in auto_traits_def_id.iter() {
1208 obligations_holds_for_capture.push(check_trait.is_some_and(|check_trait| {
1209 self.infcx
1210 .type_implements_trait(check_trait, [ty], self.param_env)
1211 .must_apply_modulo_regions()
1212 }));
1213 }
1214
1215 let mut capture_problems = UnordSet::default();
1216
1217 // Checks if for any of the auto traits, one or more trait is implemented
1218 // by the root variable but not by the capture
1219 for (idx, _) in obligations_should_hold.iter().enumerate() {
1220 if !obligations_holds_for_capture[idx] && obligations_should_hold[idx] {
1221 capture_problems.insert(AUTO_TRAITS[idx]);
1222 }
1223 }
1224
1225 if !capture_problems.is_empty() {
1226 problematic_captures.insert(
1227 UpvarMigrationInfo::CapturingPrecise {
1228 source_expr: capture.info.path_expr_id,
1229 var_name: capture.to_string(self.tcx),
1230 },
1231 capture_problems,
1232 );
1233 }
1234 }
1235 if !problematic_captures.is_empty() {
1236 return Some(problematic_captures);
1237 }
1238 None
1239 }
1240
1241 /// Figures out the list of root variables (and their types) that aren't completely
1242 /// captured by the closure when `capture_disjoint_fields` is enabled and drop order of
1243 /// some path starting at that root variable **might** be affected.
1244 ///
1245 /// The output list would include a root variable if:
1246 /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1247 /// enabled, **and**
1248 /// - It wasn't completely captured by the closure, **and**
1249 /// - One of the paths starting at this root variable, that is not captured needs Drop.
1250 ///
1251 /// This function only returns a HashSet of CapturesInfo for significant drops. If there
1252 /// are no significant drops than None is returned
1253 #[instrument(level = "debug", skip(self))]
1254 fn compute_2229_migrations_for_drop(
1255 &self,
1256 closure_def_id: LocalDefId,
1257 closure_span: Span,
1258 min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1259 closure_clause: hir::CaptureBy,
1260 var_hir_id: HirId,
1261 ) -> Option<FxIndexSet<UpvarMigrationInfo>> {
1262 let ty = self.resolve_vars_if_possible(self.node_ty(var_hir_id));
1263
1264 // FIXME(#132279): Using `non_body_analysis` here feels wrong.
1265 if !ty.has_significant_drop(
1266 self.tcx,
1267 ty::TypingEnv::non_body_analysis(self.tcx, closure_def_id),
1268 ) {
1269 debug!("does not have significant drop");
1270 return None;
1271 }
1272
1273 let Some(root_var_min_capture_list) = min_captures.and_then(|m| m.get(&var_hir_id)) else {
1274 // The upvar is mentioned within the closure but no path starting from it is
1275 // used. This occurs when you have (e.g.)
1276 //
1277 // ```
1278 // let x = move || {
1279 // let _ = y;
1280 // });
1281 // ```
1282 debug!("no path starting from it is used");
1283
1284 match closure_clause {
1285 // Only migrate if closure is a move closure
1286 hir::CaptureBy::Value { .. } => {
1287 let mut diagnostics_info = FxIndexSet::default();
1288 let upvars =
1289 self.tcx.upvars_mentioned(closure_def_id).expect("must be an upvar");
1290 let upvar = upvars[&var_hir_id];
1291 diagnostics_info
1292 .insert(UpvarMigrationInfo::CapturingNothing { use_span: upvar.span });
1293 return Some(diagnostics_info);
1294 }
1295 hir::CaptureBy::Ref => {}
1296 }
1297
1298 return None;
1299 };
1300 debug!(?root_var_min_capture_list);
1301
1302 let mut projections_list = Vec::new();
1303 let mut diagnostics_info = FxIndexSet::default();
1304
1305 for captured_place in root_var_min_capture_list.iter() {
1306 match captured_place.info.capture_kind {
1307 // Only care about captures that are moved into the closure
1308 ty::UpvarCapture::ByValue => {
1309 projections_list.push(captured_place.place.projections.as_slice());
1310 diagnostics_info.insert(UpvarMigrationInfo::CapturingPrecise {
1311 source_expr: captured_place.info.path_expr_id,
1312 var_name: captured_place.to_string(self.tcx),
1313 });
1314 }
1315 ty::UpvarCapture::ByRef(..) => {}
1316 }
1317 }
1318
1319 debug!(?projections_list);
1320 debug!(?diagnostics_info);
1321
1322 let is_moved = !projections_list.is_empty();
1323 debug!(?is_moved);
1324
1325 let is_not_completely_captured =
1326 root_var_min_capture_list.iter().any(|capture| !capture.place.projections.is_empty());
1327 debug!(?is_not_completely_captured);
1328
1329 if is_moved
1330 && is_not_completely_captured
1331 && self.has_significant_drop_outside_of_captures(
1332 closure_def_id,
1333 closure_span,
1334 ty,
1335 projections_list,
1336 )
1337 {
1338 return Some(diagnostics_info);
1339 }
1340
1341 None
1342 }
1343
1344 /// Figures out the list of root variables (and their types) that aren't completely
1345 /// captured by the closure when `capture_disjoint_fields` is enabled and either drop
1346 /// order of some path starting at that root variable **might** be affected or auto-traits
1347 /// differ between the root variable and the captured paths.
1348 ///
1349 /// The output list would include a root variable if:
1350 /// - It would have been moved into the closure when `capture_disjoint_fields` wasn't
1351 /// enabled, **and**
1352 /// - It wasn't completely captured by the closure, **and**
1353 /// - One of the paths starting at this root variable, that is not captured needs Drop **or**
1354 /// - One of the paths captured does not implement all the auto-traits its root variable
1355 /// implements.
1356 ///
1357 /// Returns a tuple containing a vector of MigrationDiagnosticInfo, as well as a String
1358 /// containing the reason why root variables whose HirId is contained in the vector should
1359 /// be captured
1360 #[instrument(level = "debug", skip(self))]
1361 fn compute_2229_migrations(
1362 &self,
1363 closure_def_id: LocalDefId,
1364 closure_span: Span,
1365 closure_clause: hir::CaptureBy,
1366 min_captures: Option<&ty::RootVariableMinCaptureList<'tcx>>,
1367 ) -> (Vec<NeededMigration>, MigrationWarningReason) {
1368 let Some(upvars) = self.tcx.upvars_mentioned(closure_def_id) else {
1369 return (Vec::new(), MigrationWarningReason::default());
1370 };
1371
1372 let mut need_migrations = Vec::new();
1373 let mut auto_trait_migration_reasons = UnordSet::default();
1374 let mut drop_migration_needed = false;
1375
1376 // Perform auto-trait analysis
1377 for (&var_hir_id, _) in upvars.iter() {
1378 let mut diagnostics_info = Vec::new();
1379
1380 let auto_trait_diagnostic = self
1381 .compute_2229_migrations_for_trait(min_captures, var_hir_id, closure_clause)
1382 .unwrap_or_default();
1383
1384 let drop_reorder_diagnostic = if let Some(diagnostics_info) = self
1385 .compute_2229_migrations_for_drop(
1386 closure_def_id,
1387 closure_span,
1388 min_captures,
1389 closure_clause,
1390 var_hir_id,
1391 ) {
1392 drop_migration_needed = true;
1393 diagnostics_info
1394 } else {
1395 FxIndexSet::default()
1396 };
1397
1398 // Combine all the captures responsible for needing migrations into one HashSet
1399 let mut capture_diagnostic = drop_reorder_diagnostic.clone();
1400 for key in auto_trait_diagnostic.keys() {
1401 capture_diagnostic.insert(key.clone());
1402 }
1403
1404 let mut capture_diagnostic = capture_diagnostic.into_iter().collect::<Vec<_>>();
1405 capture_diagnostic.sort();
1406 for captures_info in capture_diagnostic {
1407 // Get the auto trait reasons of why migration is needed because of that capture, if there are any
1408 let capture_trait_reasons =
1409 if let Some(reasons) = auto_trait_diagnostic.get(&captures_info) {
1410 reasons.clone()
1411 } else {
1412 UnordSet::default()
1413 };
1414
1415 // Check if migration is needed because of drop reorder as a result of that capture
1416 let capture_drop_reorder_reason = drop_reorder_diagnostic.contains(&captures_info);
1417
1418 // Combine all the reasons of why the root variable should be captured as a result of
1419 // auto trait implementation issues
1420 auto_trait_migration_reasons.extend_unord(capture_trait_reasons.items().copied());
1421
1422 diagnostics_info.push(MigrationLintNote {
1423 captures_info,
1424 reason: self.compute_2229_migrations_reasons(
1425 capture_trait_reasons,
1426 capture_drop_reorder_reason,
1427 ),
1428 });
1429 }
1430
1431 if !diagnostics_info.is_empty() {
1432 need_migrations.push(NeededMigration { var_hir_id, diagnostics_info });
1433 }
1434 }
1435 (
1436 need_migrations,
1437 self.compute_2229_migrations_reasons(
1438 auto_trait_migration_reasons,
1439 drop_migration_needed,
1440 ),
1441 )
1442 }
1443
1444 /// This is a helper function to `compute_2229_migrations_precise_pass`. Provided the type
1445 /// of a root variable and a list of captured paths starting at this root variable (expressed
1446 /// using list of `Projection` slices), it returns true if there is a path that is not
1447 /// captured starting at this root variable that implements Drop.
1448 ///
1449 /// The way this function works is at a given call it looks at type `base_path_ty` of some base
1450 /// path say P and then list of projection slices which represent the different captures moved
1451 /// into the closure starting off of P.
1452 ///
1453 /// This will make more sense with an example:
1454 ///
1455 /// ```rust,edition2021
1456 ///
1457 /// struct FancyInteger(i32); // This implements Drop
1458 ///
1459 /// struct Point { x: FancyInteger, y: FancyInteger }
1460 /// struct Color;
1461 ///
1462 /// struct Wrapper { p: Point, c: Color }
1463 ///
1464 /// fn f(w: Wrapper) {
1465 /// let c = || {
1466 /// // Closure captures w.p.x and w.c by move.
1467 /// };
1468 ///
1469 /// c();
1470 /// }
1471 /// ```
1472 ///
1473 /// If `capture_disjoint_fields` wasn't enabled the closure would've moved `w` instead of the
1474 /// precise paths. If we look closely `w.p.y` isn't captured which implements Drop and
1475 /// therefore Drop ordering would change and we want this function to return true.
1476 ///
1477 /// Call stack to figure out if we need to migrate for `w` would look as follows:
1478 ///
1479 /// Our initial base path is just `w`, and the paths captured from it are `w[p, x]` and
1480 /// `w[c]`.
1481 /// Notation:
1482 /// - Ty(place): Type of place
1483 /// - `(a, b)`: Represents the function parameters `base_path_ty` and `captured_by_move_projs`
1484 /// respectively.
1485 /// ```ignore (illustrative)
1486 /// (Ty(w), [ &[p, x], &[c] ])
1487 /// // |
1488 /// // ----------------------------
1489 /// // | |
1490 /// // v v
1491 /// (Ty(w.p), [ &[x] ]) (Ty(w.c), [ &[] ]) // I(1)
1492 /// // | |
1493 /// // v v
1494 /// (Ty(w.p), [ &[x] ]) false
1495 /// // |
1496 /// // |
1497 /// // -------------------------------
1498 /// // | |
1499 /// // v v
1500 /// (Ty((w.p).x), [ &[] ]) (Ty((w.p).y), []) // IMP 2
1501 /// // | |
1502 /// // v v
1503 /// false NeedsSignificantDrop(Ty(w.p.y))
1504 /// // |
1505 /// // v
1506 /// true
1507 /// ```
1508 ///
1509 /// IMP 1 `(Ty(w.c), [ &[] ])`: Notice the single empty slice inside `captured_projs`.
1510 /// This implies that the `w.c` is completely captured by the closure.
1511 /// Since drop for this path will be called when the closure is
1512 /// dropped we don't need to migrate for it.
1513 ///
1514 /// IMP 2 `(Ty((w.p).y), [])`: Notice that `captured_projs` is empty. This implies that this
1515 /// path wasn't captured by the closure. Also note that even
1516 /// though we didn't capture this path, the function visits it,
1517 /// which is kind of the point of this function. We then return
1518 /// if the type of `w.p.y` implements Drop, which in this case is
1519 /// true.
1520 ///
1521 /// Consider another example:
1522 ///
1523 /// ```ignore (pseudo-rust)
1524 /// struct X;
1525 /// impl Drop for X {}
1526 ///
1527 /// struct Y(X);
1528 /// impl Drop for Y {}
1529 ///
1530 /// fn foo() {
1531 /// let y = Y(X);
1532 /// let c = || move(y.0);
1533 /// }
1534 /// ```
1535 ///
1536 /// Note that `y.0` is captured by the closure. When this function is called for `y`, it will
1537 /// return true, because even though all paths starting at `y` are captured, `y` itself
1538 /// implements Drop which will be affected since `y` isn't completely captured.
1539 fn has_significant_drop_outside_of_captures(
1540 &self,
1541 closure_def_id: LocalDefId,
1542 closure_span: Span,
1543 base_path_ty: Ty<'tcx>,
1544 captured_by_move_projs: Vec<&[Projection<'tcx>]>,
1545 ) -> bool {
1546 // FIXME(#132279): Using `non_body_analysis` here feels wrong.
1547 let needs_drop = |ty: Ty<'tcx>| {
1548 ty.has_significant_drop(
1549 self.tcx,
1550 ty::TypingEnv::non_body_analysis(self.tcx, closure_def_id),
1551 )
1552 };
1553
1554 let is_drop_defined_for_ty = |ty: Ty<'tcx>| {
1555 let drop_trait = self.tcx.require_lang_item(hir::LangItem::Drop, Some(closure_span));
1556 self.infcx
1557 .type_implements_trait(drop_trait, [ty], self.tcx.param_env(closure_def_id))
1558 .must_apply_modulo_regions()
1559 };
1560
1561 let is_drop_defined_for_ty = is_drop_defined_for_ty(base_path_ty);
1562
1563 // If there is a case where no projection is applied on top of current place
1564 // then there must be exactly one capture corresponding to such a case. Note that this
1565 // represents the case of the path being completely captured by the variable.
1566 //
1567 // eg. If `a.b` is captured and we are processing `a.b`, then we can't have the closure also
1568 // capture `a.b.c`, because that violates min capture.
1569 let is_completely_captured = captured_by_move_projs.iter().any(|projs| projs.is_empty());
1570
1571 assert!(!is_completely_captured || (captured_by_move_projs.len() == 1));
1572
1573 if is_completely_captured {
1574 // The place is captured entirely, so doesn't matter if needs dtor, it will be drop
1575 // when the closure is dropped.
1576 return false;
1577 }
1578
1579 if captured_by_move_projs.is_empty() {
1580 return needs_drop(base_path_ty);
1581 }
1582
1583 if is_drop_defined_for_ty {
1584 // If drop is implemented for this type then we need it to be fully captured,
1585 // and we know it is not completely captured because of the previous checks.
1586
1587 // Note that this is a bug in the user code that will be reported by the
1588 // borrow checker, since we can't move out of drop types.
1589
1590 // The bug exists in the user's code pre-migration, and we don't migrate here.
1591 return false;
1592 }
1593
1594 match base_path_ty.kind() {
1595 // Observations:
1596 // - `captured_by_move_projs` is not empty. Therefore we can call
1597 // `captured_by_move_projs.first().unwrap()` safely.
1598 // - All entries in `captured_by_move_projs` have at least one projection.
1599 // Therefore we can call `captured_by_move_projs.first().unwrap().first().unwrap()` safely.
1600
1601 // We don't capture derefs in case of move captures, which would have be applied to
1602 // access any further paths.
1603 ty::Adt(def, _) if def.is_box() => unreachable!(),
1604 ty::Ref(..) => unreachable!(),
1605 ty::RawPtr(..) => unreachable!(),
1606
1607 ty::Adt(def, args) => {
1608 // Multi-variant enums are captured in entirety,
1609 // which would've been handled in the case of single empty slice in `captured_by_move_projs`.
1610 assert_eq!(def.variants().len(), 1);
1611
1612 // Only Field projections can be applied to a non-box Adt.
1613 assert!(
1614 captured_by_move_projs.iter().all(|projs| matches!(
1615 projs.first().unwrap().kind,
1616 ProjectionKind::Field(..)
1617 ))
1618 );
1619 def.variants().get(FIRST_VARIANT).unwrap().fields.iter_enumerated().any(
1620 |(i, field)| {
1621 let paths_using_field = captured_by_move_projs
1622 .iter()
1623 .filter_map(|projs| {
1624 if let ProjectionKind::Field(field_idx, _) =
1625 projs.first().unwrap().kind
1626 {
1627 if field_idx == i { Some(&projs[1..]) } else { None }
1628 } else {
1629 unreachable!();
1630 }
1631 })
1632 .collect();
1633
1634 let after_field_ty = field.ty(self.tcx, args);
1635 self.has_significant_drop_outside_of_captures(
1636 closure_def_id,
1637 closure_span,
1638 after_field_ty,
1639 paths_using_field,
1640 )
1641 },
1642 )
1643 }
1644
1645 ty::Tuple(fields) => {
1646 // Only Field projections can be applied to a tuple.
1647 assert!(
1648 captured_by_move_projs.iter().all(|projs| matches!(
1649 projs.first().unwrap().kind,
1650 ProjectionKind::Field(..)
1651 ))
1652 );
1653
1654 fields.iter().enumerate().any(|(i, element_ty)| {
1655 let paths_using_field = captured_by_move_projs
1656 .iter()
1657 .filter_map(|projs| {
1658 if let ProjectionKind::Field(field_idx, _) = projs.first().unwrap().kind
1659 {
1660 if field_idx.index() == i { Some(&projs[1..]) } else { None }
1661 } else {
1662 unreachable!();
1663 }
1664 })
1665 .collect();
1666
1667 self.has_significant_drop_outside_of_captures(
1668 closure_def_id,
1669 closure_span,
1670 element_ty,
1671 paths_using_field,
1672 )
1673 })
1674 }
1675
1676 // Anything else would be completely captured and therefore handled already.
1677 _ => unreachable!(),
1678 }
1679 }
1680
1681 fn init_capture_kind_for_place(
1682 &self,
1683 place: &Place<'tcx>,
1684 capture_clause: hir::CaptureBy,
1685 ) -> ty::UpvarCapture {
1686 match capture_clause {
1687 // In case of a move closure if the data is accessed through a reference we
1688 // want to capture by ref to allow precise capture using reborrows.
1689 //
1690 // If the data will be moved out of this place, then the place will be truncated
1691 // at the first Deref in `adjust_for_move_closure` and then moved into the closure.
1692 hir::CaptureBy::Value { .. } if !place.deref_tys().any(Ty::is_ref) => {
1693 ty::UpvarCapture::ByValue
1694 }
1695 hir::CaptureBy::Value { .. } | hir::CaptureBy::Ref => {
1696 ty::UpvarCapture::ByRef(BorrowKind::Immutable)
1697 }
1698 }
1699 }
1700
1701 fn place_for_root_variable(
1702 &self,
1703 closure_def_id: LocalDefId,
1704 var_hir_id: HirId,
1705 ) -> Place<'tcx> {
1706 let upvar_id = ty::UpvarId::new(var_hir_id, closure_def_id);
1707
1708 Place {
1709 base_ty: self.node_ty(var_hir_id),
1710 base: PlaceBase::Upvar(upvar_id),
1711 projections: Default::default(),
1712 }
1713 }
1714
1715 fn should_log_capture_analysis(&self, closure_def_id: LocalDefId) -> bool {
1716 self.tcx.has_attr(closure_def_id, sym::rustc_capture_analysis)
1717 }
1718
1719 fn log_capture_analysis_first_pass(
1720 &self,
1721 closure_def_id: LocalDefId,
1722 capture_information: &InferredCaptureInformation<'tcx>,
1723 closure_span: Span,
1724 ) {
1725 if self.should_log_capture_analysis(closure_def_id) {
1726 let mut diag =
1727 self.dcx().struct_span_err(closure_span, "First Pass analysis includes:");
1728 for (place, capture_info) in capture_information {
1729 let capture_str = construct_capture_info_string(self.tcx, place, capture_info);
1730 let output_str = format!("Capturing {capture_str}");
1731
1732 let span =
1733 capture_info.path_expr_id.map_or(closure_span, |e| self.tcx.hir().span(e));
1734 diag.span_note(span, output_str);
1735 }
1736 diag.emit();
1737 }
1738 }
1739
1740 fn log_closure_min_capture_info(&self, closure_def_id: LocalDefId, closure_span: Span) {
1741 if self.should_log_capture_analysis(closure_def_id) {
1742 if let Some(min_captures) =
1743 self.typeck_results.borrow().closure_min_captures.get(&closure_def_id)
1744 {
1745 let mut diag =
1746 self.dcx().struct_span_err(closure_span, "Min Capture analysis includes:");
1747
1748 for (_, min_captures_for_var) in min_captures {
1749 for capture in min_captures_for_var {
1750 let place = &capture.place;
1751 let capture_info = &capture.info;
1752
1753 let capture_str =
1754 construct_capture_info_string(self.tcx, place, capture_info);
1755 let output_str = format!("Min Capture {capture_str}");
1756
1757 if capture.info.path_expr_id != capture.info.capture_kind_expr_id {
1758 let path_span = capture_info
1759 .path_expr_id
1760 .map_or(closure_span, |e| self.tcx.hir().span(e));
1761 let capture_kind_span = capture_info
1762 .capture_kind_expr_id
1763 .map_or(closure_span, |e| self.tcx.hir().span(e));
1764
1765 let mut multi_span: MultiSpan =
1766 MultiSpan::from_spans(vec![path_span, capture_kind_span]);
1767
1768 let capture_kind_label =
1769 construct_capture_kind_reason_string(self.tcx, place, capture_info);
1770 let path_label = construct_path_string(self.tcx, place);
1771
1772 multi_span.push_span_label(path_span, path_label);
1773 multi_span.push_span_label(capture_kind_span, capture_kind_label);
1774
1775 diag.span_note(multi_span, output_str);
1776 } else {
1777 let span = capture_info
1778 .path_expr_id
1779 .map_or(closure_span, |e| self.tcx.hir().span(e));
1780
1781 diag.span_note(span, output_str);
1782 };
1783 }
1784 }
1785 diag.emit();
1786 }
1787 }
1788 }
1789
1790 /// A captured place is mutable if
1791 /// 1. Projections don't include a Deref of an immut-borrow, **and**
1792 /// 2. PlaceBase is mut or projections include a Deref of a mut-borrow.
1793 fn determine_capture_mutability(
1794 &self,
1795 typeck_results: &'a TypeckResults<'tcx>,
1796 place: &Place<'tcx>,
1797 ) -> hir::Mutability {
1798 let var_hir_id = match place.base {
1799 PlaceBase::Upvar(upvar_id) => upvar_id.var_path.hir_id,
1800 _ => unreachable!(),
1801 };
1802
1803 let bm = *typeck_results.pat_binding_modes().get(var_hir_id).expect("missing binding mode");
1804
1805 let mut is_mutbl = bm.1;
1806
1807 for pointer_ty in place.deref_tys() {
1808 match self.structurally_resolve_type(self.tcx.hir().span(var_hir_id), pointer_ty).kind()
1809 {
1810 // We don't capture derefs of raw ptrs
1811 ty::RawPtr(_, _) => unreachable!(),
1812
1813 // Dereferencing a mut-ref allows us to mut the Place if we don't deref
1814 // an immut-ref after on top of this.
1815 ty::Ref(.., hir::Mutability::Mut) => is_mutbl = hir::Mutability::Mut,
1816
1817 // The place isn't mutable once we dereference an immutable reference.
1818 ty::Ref(.., hir::Mutability::Not) => return hir::Mutability::Not,
1819
1820 // Dereferencing a box doesn't change mutability
1821 ty::Adt(def, ..) if def.is_box() => {}
1822
1823 unexpected_ty => span_bug!(
1824 self.tcx.hir().span(var_hir_id),
1825 "deref of unexpected pointer type {:?}",
1826 unexpected_ty
1827 ),
1828 }
1829 }
1830
1831 is_mutbl
1832 }
1833}
1834
1835/// Determines whether a child capture that is derived from a parent capture
1836/// should be borrowed with the lifetime of the parent coroutine-closure's env.
1837///
1838/// There are two cases when this needs to happen:
1839///
1840/// (1.) Are we borrowing data owned by the parent closure? We can determine if
1841/// that is the case by checking if the parent capture is by move, EXCEPT if we
1842/// apply a deref projection, which means we're reborrowing a reference that we
1843/// captured by move.
1844///
1845/// ```rust
1846/// let x = &1i32; // Let's call this lifetime `'1`.
1847/// let c = async move || {
1848/// println!("{:?}", *x);
1849/// // Even though the inner coroutine borrows by ref, we're only capturing `*x`,
1850/// // not `x`, so the inner closure is allowed to reborrow the data for `'1`.
1851/// };
1852/// ```
1853///
1854/// (2.) If a coroutine is mutably borrowing from a parent capture, then that
1855/// mutable borrow cannot live for longer than either the parent *or* the borrow
1856/// that we have on the original upvar. Therefore we always need to borrow the
1857/// child capture with the lifetime of the parent coroutine-closure's env.
1858///
1859/// ```rust
1860/// let mut x = 1i32;
1861/// let c = async || {
1862/// x = 1;
1863/// // The parent borrows `x` for some `&'1 mut i32`.
1864/// // However, when we call `c()`, we implicitly autoref for the signature of
1865/// // `AsyncFnMut::async_call_mut`. Let's call that lifetime `'call`. Since
1866/// // the maximum that `&'call mut &'1 mut i32` can be reborrowed is `&'call mut i32`,
1867/// // the inner coroutine should capture w/ the lifetime of the coroutine-closure.
1868/// };
1869/// ```
1870///
1871/// If either of these cases apply, then we should capture the borrow with the
1872/// lifetime of the parent coroutine-closure's env. Luckily, if this function is
1873/// not correct, then the program is not unsound, since we still borrowck and validate
1874/// the choices made from this function -- the only side-effect is that the user
1875/// may receive unnecessary borrowck errors.
1876fn should_reborrow_from_env_of_parent_coroutine_closure<'tcx>(
1877 parent_capture: &ty::CapturedPlace<'tcx>,
1878 child_capture: &ty::CapturedPlace<'tcx>,
1879) -> bool {
1880 // (1.)
1881 (!parent_capture.is_by_ref()
1882 && !matches!(
1883 child_capture.place.projections.get(parent_capture.place.projections.len()),
1884 Some(Projection { kind: ProjectionKind::Deref, .. })
1885 ))
1886 // (2.)
1887 || matches!(child_capture.info.capture_kind, UpvarCapture::ByRef(ty::BorrowKind::Mutable))
1888}
1889
1890/// Truncate the capture so that the place being borrowed is in accordance with RFC 1240,
1891/// which states that it's unsafe to take a reference into a struct marked `repr(packed)`.
1892fn restrict_repr_packed_field_ref_capture<'tcx>(
1893 mut place: Place<'tcx>,
1894 mut curr_borrow_kind: ty::UpvarCapture,
1895) -> (Place<'tcx>, ty::UpvarCapture) {
1896 let pos = place.projections.iter().enumerate().position(|(i, p)| {
1897 let ty = place.ty_before_projection(i);
1898
1899 // Return true for fields of packed structs.
1900 match p.kind {
1901 ProjectionKind::Field(..) => match ty.kind() {
1902 ty::Adt(def, _) if def.repr().packed() => {
1903 // We stop here regardless of field alignment. Field alignment can change as
1904 // types change, including the types of private fields in other crates, and that
1905 // shouldn't affect how we compute our captures.
1906 true
1907 }
1908
1909 _ => false,
1910 },
1911 _ => false,
1912 }
1913 });
1914
1915 if let Some(pos) = pos {
1916 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_borrow_kind, pos);
1917 }
1918
1919 (place, curr_borrow_kind)
1920}
1921
1922/// Returns a Ty that applies the specified capture kind on the provided capture Ty
1923fn apply_capture_kind_on_capture_ty<'tcx>(
1924 tcx: TyCtxt<'tcx>,
1925 ty: Ty<'tcx>,
1926 capture_kind: UpvarCapture,
1927 region: ty::Region<'tcx>,
1928) -> Ty<'tcx> {
1929 match capture_kind {
1930 ty::UpvarCapture::ByValue => ty,
1931 ty::UpvarCapture::ByRef(kind) => Ty::new_ref(tcx, region, ty, kind.to_mutbl_lossy()),
1932 }
1933}
1934
1935/// Returns the Span of where the value with the provided HirId would be dropped
1936fn drop_location_span(tcx: TyCtxt<'_>, hir_id: HirId) -> Span {
1937 let owner_id = tcx.hir().get_enclosing_scope(hir_id).unwrap();
1938
1939 let owner_node = tcx.hir_node(owner_id);
1940 let owner_span = match owner_node {
1941 hir::Node::Item(item) => match item.kind {
1942 hir::ItemKind::Fn { body: owner_id, .. } => tcx.hir().span(owner_id.hir_id),
1943 _ => {
1944 bug!("Drop location span error: need to handle more ItemKind '{:?}'", item.kind);
1945 }
1946 },
1947 hir::Node::Block(block) => tcx.hir().span(block.hir_id),
1948 hir::Node::TraitItem(item) => tcx.hir().span(item.hir_id()),
1949 hir::Node::ImplItem(item) => tcx.hir().span(item.hir_id()),
1950 _ => {
1951 bug!("Drop location span error: need to handle more Node '{:?}'", owner_node);
1952 }
1953 };
1954 tcx.sess.source_map().end_point(owner_span)
1955}
1956
1957struct InferBorrowKind<'tcx> {
1958 // The def-id of the closure whose kind and upvar accesses are being inferred.
1959 closure_def_id: LocalDefId,
1960
1961 /// For each Place that is captured by the closure, we track the minimal kind of
1962 /// access we need (ref, ref mut, move, etc) and the expression that resulted in such access.
1963 ///
1964 /// Consider closure where s.str1 is captured via an ImmutableBorrow and
1965 /// s.str2 via a MutableBorrow
1966 ///
1967 /// ```rust,no_run
1968 /// struct SomeStruct { str1: String, str2: String };
1969 ///
1970 /// // Assume that the HirId for the variable definition is `V1`
1971 /// let mut s = SomeStruct { str1: format!("s1"), str2: format!("s2") };
1972 ///
1973 /// let fix_s = |new_s2| {
1974 /// // Assume that the HirId for the expression `s.str1` is `E1`
1975 /// println!("Updating SomeStruct with str1={0}", s.str1);
1976 /// // Assume that the HirId for the expression `*s.str2` is `E2`
1977 /// s.str2 = new_s2;
1978 /// };
1979 /// ```
1980 ///
1981 /// For closure `fix_s`, (at a high level) the map contains
1982 ///
1983 /// ```ignore (illustrative)
1984 /// Place { V1, [ProjectionKind::Field(Index=0, Variant=0)] } : CaptureKind { E1, ImmutableBorrow }
1985 /// Place { V1, [ProjectionKind::Field(Index=1, Variant=0)] } : CaptureKind { E2, MutableBorrow }
1986 /// ```
1987 capture_information: InferredCaptureInformation<'tcx>,
1988 fake_reads: Vec<(Place<'tcx>, FakeReadCause, HirId)>,
1989}
1990
1991impl<'tcx> euv::Delegate<'tcx> for InferBorrowKind<'tcx> {
1992 fn fake_read(
1993 &mut self,
1994 place_with_id: &PlaceWithHirId<'tcx>,
1995 cause: FakeReadCause,
1996 diag_expr_id: HirId,
1997 ) {
1998 let PlaceBase::Upvar(_) = place_with_id.place.base else { return };
1999
2000 // We need to restrict Fake Read precision to avoid fake reading unsafe code,
2001 // such as deref of a raw pointer.
2002 let dummy_capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::Immutable);
2003
2004 let (place, _) =
2005 restrict_capture_precision(place_with_id.place.clone(), dummy_capture_kind);
2006
2007 let (place, _) = restrict_repr_packed_field_ref_capture(place, dummy_capture_kind);
2008 self.fake_reads.push((place, cause, diag_expr_id));
2009 }
2010
2011 #[instrument(skip(self), level = "debug")]
2012 fn consume(&mut self, place_with_id: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
2013 let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
2014 assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
2015
2016 self.capture_information.push((
2017 place_with_id.place.clone(),
2018 ty::CaptureInfo {
2019 capture_kind_expr_id: Some(diag_expr_id),
2020 path_expr_id: Some(diag_expr_id),
2021 capture_kind: ty::UpvarCapture::ByValue,
2022 },
2023 ));
2024 }
2025
2026 #[instrument(skip(self), level = "debug")]
2027 fn borrow(
2028 &mut self,
2029 place_with_id: &PlaceWithHirId<'tcx>,
2030 diag_expr_id: HirId,
2031 bk: ty::BorrowKind,
2032 ) {
2033 let PlaceBase::Upvar(upvar_id) = place_with_id.place.base else { return };
2034 assert_eq!(self.closure_def_id, upvar_id.closure_expr_id);
2035
2036 // The region here will get discarded/ignored
2037 let capture_kind = ty::UpvarCapture::ByRef(bk);
2038
2039 // We only want repr packed restriction to be applied to reading references into a packed
2040 // struct, and not when the data is being moved. Therefore we call this method here instead
2041 // of in `restrict_capture_precision`.
2042 let (place, mut capture_kind) =
2043 restrict_repr_packed_field_ref_capture(place_with_id.place.clone(), capture_kind);
2044
2045 // Raw pointers don't inherit mutability
2046 if place_with_id.place.deref_tys().any(Ty::is_raw_ptr) {
2047 capture_kind = ty::UpvarCapture::ByRef(ty::BorrowKind::Immutable);
2048 }
2049
2050 self.capture_information.push((
2051 place,
2052 ty::CaptureInfo {
2053 capture_kind_expr_id: Some(diag_expr_id),
2054 path_expr_id: Some(diag_expr_id),
2055 capture_kind,
2056 },
2057 ));
2058 }
2059
2060 #[instrument(skip(self), level = "debug")]
2061 fn mutate(&mut self, assignee_place: &PlaceWithHirId<'tcx>, diag_expr_id: HirId) {
2062 self.borrow(assignee_place, diag_expr_id, ty::BorrowKind::Mutable);
2063 }
2064}
2065
2066/// Rust doesn't permit moving fields out of a type that implements drop
2067fn restrict_precision_for_drop_types<'a, 'tcx>(
2068 fcx: &'a FnCtxt<'a, 'tcx>,
2069 mut place: Place<'tcx>,
2070 mut curr_mode: ty::UpvarCapture,
2071) -> (Place<'tcx>, ty::UpvarCapture) {
2072 let is_copy_type = fcx.infcx.type_is_copy_modulo_regions(fcx.param_env, place.ty());
2073
2074 if let (false, UpvarCapture::ByValue) = (is_copy_type, curr_mode) {
2075 for i in 0..place.projections.len() {
2076 match place.ty_before_projection(i).kind() {
2077 ty::Adt(def, _) if def.destructor(fcx.tcx).is_some() => {
2078 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
2079 break;
2080 }
2081 _ => {}
2082 }
2083 }
2084 }
2085
2086 (place, curr_mode)
2087}
2088
2089/// Truncate `place` so that an `unsafe` block isn't required to capture it.
2090/// - No projections are applied to raw pointers, since these require unsafe blocks. We capture
2091/// them completely.
2092/// - No projections are applied on top of Union ADTs, since these require unsafe blocks.
2093fn restrict_precision_for_unsafe(
2094 mut place: Place<'_>,
2095 mut curr_mode: ty::UpvarCapture,
2096) -> (Place<'_>, ty::UpvarCapture) {
2097 if place.base_ty.is_raw_ptr() {
2098 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
2099 }
2100
2101 if place.base_ty.is_union() {
2102 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, 0);
2103 }
2104
2105 for (i, proj) in place.projections.iter().enumerate() {
2106 if proj.ty.is_raw_ptr() {
2107 // Don't apply any projections on top of a raw ptr.
2108 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
2109 break;
2110 }
2111
2112 if proj.ty.is_union() {
2113 // Don't capture precise fields of a union.
2114 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i + 1);
2115 break;
2116 }
2117 }
2118
2119 (place, curr_mode)
2120}
2121
2122/// Truncate projections so that following rules are obeyed by the captured `place`:
2123/// - No Index projections are captured, since arrays are captured completely.
2124/// - No unsafe block is required to capture `place`
2125/// Returns the truncated place and updated capture mode.
2126fn restrict_capture_precision(
2127 place: Place<'_>,
2128 curr_mode: ty::UpvarCapture,
2129) -> (Place<'_>, ty::UpvarCapture) {
2130 let (mut place, mut curr_mode) = restrict_precision_for_unsafe(place, curr_mode);
2131
2132 if place.projections.is_empty() {
2133 // Nothing to do here
2134 return (place, curr_mode);
2135 }
2136
2137 for (i, proj) in place.projections.iter().enumerate() {
2138 match proj.kind {
2139 ProjectionKind::Index | ProjectionKind::Subslice => {
2140 // Arrays are completely captured, so we drop Index and Subslice projections
2141 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, i);
2142 return (place, curr_mode);
2143 }
2144 ProjectionKind::Deref => {}
2145 ProjectionKind::OpaqueCast => {}
2146 ProjectionKind::Field(..) => {} // ignore
2147 }
2148 }
2149
2150 (place, curr_mode)
2151}
2152
2153/// Truncate deref of any reference.
2154fn adjust_for_move_closure(
2155 mut place: Place<'_>,
2156 mut kind: ty::UpvarCapture,
2157) -> (Place<'_>, ty::UpvarCapture) {
2158 let first_deref = place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
2159
2160 if let Some(idx) = first_deref {
2161 truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
2162 }
2163
2164 (place, ty::UpvarCapture::ByValue)
2165}
2166
2167/// Adjust closure capture just that if taking ownership of data, only move data
2168/// from enclosing stack frame.
2169fn adjust_for_non_move_closure(
2170 mut place: Place<'_>,
2171 mut kind: ty::UpvarCapture,
2172) -> (Place<'_>, ty::UpvarCapture) {
2173 let contains_deref =
2174 place.projections.iter().position(|proj| proj.kind == ProjectionKind::Deref);
2175
2176 match kind {
2177 ty::UpvarCapture::ByValue => {
2178 if let Some(idx) = contains_deref {
2179 truncate_place_to_len_and_update_capture_kind(&mut place, &mut kind, idx);
2180 }
2181 }
2182
2183 ty::UpvarCapture::ByRef(..) => {}
2184 }
2185
2186 (place, kind)
2187}
2188
2189fn construct_place_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
2190 let variable_name = match place.base {
2191 PlaceBase::Upvar(upvar_id) => var_name(tcx, upvar_id.var_path.hir_id).to_string(),
2192 _ => bug!("Capture_information should only contain upvars"),
2193 };
2194
2195 let mut projections_str = String::new();
2196 for (i, item) in place.projections.iter().enumerate() {
2197 let proj = match item.kind {
2198 ProjectionKind::Field(a, b) => format!("({a:?}, {b:?})"),
2199 ProjectionKind::Deref => String::from("Deref"),
2200 ProjectionKind::Index => String::from("Index"),
2201 ProjectionKind::Subslice => String::from("Subslice"),
2202 ProjectionKind::OpaqueCast => String::from("OpaqueCast"),
2203 };
2204 if i != 0 {
2205 projections_str.push(',');
2206 }
2207 projections_str.push_str(proj.as_str());
2208 }
2209
2210 format!("{variable_name}[{projections_str}]")
2211}
2212
2213fn construct_capture_kind_reason_string<'tcx>(
2214 tcx: TyCtxt<'_>,
2215 place: &Place<'tcx>,
2216 capture_info: &ty::CaptureInfo,
2217) -> String {
2218 let place_str = construct_place_string(tcx, place);
2219
2220 let capture_kind_str = match capture_info.capture_kind {
2221 ty::UpvarCapture::ByValue => "ByValue".into(),
2222 ty::UpvarCapture::ByRef(kind) => format!("{kind:?}"),
2223 };
2224
2225 format!("{place_str} captured as {capture_kind_str} here")
2226}
2227
2228fn construct_path_string<'tcx>(tcx: TyCtxt<'_>, place: &Place<'tcx>) -> String {
2229 let place_str = construct_place_string(tcx, place);
2230
2231 format!("{place_str} used here")
2232}
2233
2234fn construct_capture_info_string<'tcx>(
2235 tcx: TyCtxt<'_>,
2236 place: &Place<'tcx>,
2237 capture_info: &ty::CaptureInfo,
2238) -> String {
2239 let place_str = construct_place_string(tcx, place);
2240
2241 let capture_kind_str = match capture_info.capture_kind {
2242 ty::UpvarCapture::ByValue => "ByValue".into(),
2243 ty::UpvarCapture::ByRef(kind) => format!("{kind:?}"),
2244 };
2245 format!("{place_str} -> {capture_kind_str}")
2246}
2247
2248fn var_name(tcx: TyCtxt<'_>, var_hir_id: HirId) -> Symbol {
2249 tcx.hir().name(var_hir_id)
2250}
2251
2252#[instrument(level = "debug", skip(tcx))]
2253fn should_do_rust_2021_incompatible_closure_captures_analysis(
2254 tcx: TyCtxt<'_>,
2255 closure_id: HirId,
2256) -> bool {
2257 if tcx.sess.at_least_rust_2021() {
2258 return false;
2259 }
2260
2261 let (level, _) =
2262 tcx.lint_level_at_node(lint::builtin::RUST_2021_INCOMPATIBLE_CLOSURE_CAPTURES, closure_id);
2263
2264 !matches!(level, lint::Level::Allow)
2265}
2266
2267/// Return a two string tuple (s1, s2)
2268/// - s1: Line of code that is needed for the migration: eg: `let _ = (&x, ...)`.
2269/// - s2: Comma separated names of the variables being migrated.
2270fn migration_suggestion_for_2229(
2271 tcx: TyCtxt<'_>,
2272 need_migrations: &[NeededMigration],
2273) -> (String, String) {
2274 let need_migrations_variables = need_migrations
2275 .iter()
2276 .map(|NeededMigration { var_hir_id: v, .. }| var_name(tcx, *v))
2277 .collect::<Vec<_>>();
2278
2279 let migration_ref_concat =
2280 need_migrations_variables.iter().map(|v| format!("&{v}")).collect::<Vec<_>>().join(", ");
2281
2282 let migration_string = if 1 == need_migrations.len() {
2283 format!("let _ = {migration_ref_concat}")
2284 } else {
2285 format!("let _ = ({migration_ref_concat})")
2286 };
2287
2288 let migrated_variables_concat =
2289 need_migrations_variables.iter().map(|v| format!("`{v}`")).collect::<Vec<_>>().join(", ");
2290
2291 (migration_string, migrated_variables_concat)
2292}
2293
2294/// Helper function to determine if we need to escalate CaptureKind from
2295/// CaptureInfo A to B and returns the escalated CaptureInfo.
2296/// (Note: CaptureInfo contains CaptureKind and an expression that led to capture it in that way)
2297///
2298/// If both `CaptureKind`s are considered equivalent, then the CaptureInfo is selected based
2299/// on the `CaptureInfo` containing an associated `capture_kind_expr_id`.
2300///
2301/// It is the caller's duty to figure out which path_expr_id to use.
2302///
2303/// If both the CaptureKind and Expression are considered to be equivalent,
2304/// then `CaptureInfo` A is preferred. This can be useful in cases where we want to prioritize
2305/// expressions reported back to the user as part of diagnostics based on which appears earlier
2306/// in the closure. This can be achieved simply by calling
2307/// `determine_capture_info(existing_info, current_info)`. This works out because the
2308/// expressions that occur earlier in the closure body than the current expression are processed before.
2309/// Consider the following example
2310/// ```rust,no_run
2311/// struct Point { x: i32, y: i32 }
2312/// let mut p = Point { x: 10, y: 10 };
2313///
2314/// let c = || {
2315/// p.x += 10;
2316/// // ^ E1 ^
2317/// // ...
2318/// // More code
2319/// // ...
2320/// p.x += 10; // E2
2321/// // ^ E2 ^
2322/// };
2323/// ```
2324/// `CaptureKind` associated with both `E1` and `E2` will be ByRef(MutBorrow),
2325/// and both have an expression associated, however for diagnostics we prefer reporting
2326/// `E1` since it appears earlier in the closure body. When `E2` is being processed we
2327/// would've already handled `E1`, and have an existing capture_information for it.
2328/// Calling `determine_capture_info(existing_info_e1, current_info_e2)` will return
2329/// `existing_info_e1` in this case, allowing us to point to `E1` in case of diagnostics.
2330fn determine_capture_info(
2331 capture_info_a: ty::CaptureInfo,
2332 capture_info_b: ty::CaptureInfo,
2333) -> ty::CaptureInfo {
2334 // If the capture kind is equivalent then, we don't need to escalate and can compare the
2335 // expressions.
2336 let eq_capture_kind = match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2337 (ty::UpvarCapture::ByValue, ty::UpvarCapture::ByValue) => true,
2338 (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => ref_a == ref_b,
2339 (ty::UpvarCapture::ByValue, _) | (ty::UpvarCapture::ByRef(_), _) => false,
2340 };
2341
2342 if eq_capture_kind {
2343 match (capture_info_a.capture_kind_expr_id, capture_info_b.capture_kind_expr_id) {
2344 (Some(_), _) | (None, None) => capture_info_a,
2345 (None, Some(_)) => capture_info_b,
2346 }
2347 } else {
2348 // We select the CaptureKind which ranks higher based the following priority order:
2349 // ByValue > MutBorrow > UniqueImmBorrow > ImmBorrow
2350 match (capture_info_a.capture_kind, capture_info_b.capture_kind) {
2351 (ty::UpvarCapture::ByValue, _) => capture_info_a,
2352 (_, ty::UpvarCapture::ByValue) => capture_info_b,
2353 (ty::UpvarCapture::ByRef(ref_a), ty::UpvarCapture::ByRef(ref_b)) => {
2354 match (ref_a, ref_b) {
2355 // Take LHS:
2356 (BorrowKind::UniqueImmutable | BorrowKind::Mutable, BorrowKind::Immutable)
2357 | (BorrowKind::Mutable, BorrowKind::UniqueImmutable) => capture_info_a,
2358
2359 // Take RHS:
2360 (BorrowKind::Immutable, BorrowKind::UniqueImmutable | BorrowKind::Mutable)
2361 | (BorrowKind::UniqueImmutable, BorrowKind::Mutable) => capture_info_b,
2362
2363 (BorrowKind::Immutable, BorrowKind::Immutable)
2364 | (BorrowKind::UniqueImmutable, BorrowKind::UniqueImmutable)
2365 | (BorrowKind::Mutable, BorrowKind::Mutable) => {
2366 bug!("Expected unequal capture kinds");
2367 }
2368 }
2369 }
2370 }
2371 }
2372}
2373
2374/// Truncates `place` to have up to `len` projections.
2375/// `curr_mode` is the current required capture kind for the place.
2376/// Returns the truncated `place` and the updated required capture kind.
2377///
2378/// Note: Capture kind changes from `MutBorrow` to `UniqueImmBorrow` if the truncated part of the `place`
2379/// contained `Deref` of `&mut`.
2380fn truncate_place_to_len_and_update_capture_kind<'tcx>(
2381 place: &mut Place<'tcx>,
2382 curr_mode: &mut ty::UpvarCapture,
2383 len: usize,
2384) {
2385 let is_mut_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Mut));
2386
2387 // If the truncated part of the place contains `Deref` of a `&mut` then convert MutBorrow ->
2388 // UniqueImmBorrow
2389 // Note that if the place contained Deref of a raw pointer it would've not been MutBorrow, so
2390 // we don't need to worry about that case here.
2391 match curr_mode {
2392 ty::UpvarCapture::ByRef(ty::BorrowKind::Mutable) => {
2393 for i in len..place.projections.len() {
2394 if place.projections[i].kind == ProjectionKind::Deref
2395 && is_mut_ref(place.ty_before_projection(i))
2396 {
2397 *curr_mode = ty::UpvarCapture::ByRef(ty::BorrowKind::UniqueImmutable);
2398 break;
2399 }
2400 }
2401 }
2402
2403 ty::UpvarCapture::ByRef(..) => {}
2404 ty::UpvarCapture::ByValue => {}
2405 }
2406
2407 place.projections.truncate(len);
2408}
2409
2410/// Determines the Ancestry relationship of Place A relative to Place B
2411///
2412/// `PlaceAncestryRelation::Ancestor` implies Place A is ancestor of Place B
2413/// `PlaceAncestryRelation::Descendant` implies Place A is descendant of Place B
2414/// `PlaceAncestryRelation::Divergent` implies neither of them is the ancestor of the other.
2415fn determine_place_ancestry_relation<'tcx>(
2416 place_a: &Place<'tcx>,
2417 place_b: &Place<'tcx>,
2418) -> PlaceAncestryRelation {
2419 // If Place A and Place B don't start off from the same root variable, they are divergent.
2420 if place_a.base != place_b.base {
2421 return PlaceAncestryRelation::Divergent;
2422 }
2423
2424 // Assume of length of projections_a = n
2425 let projections_a = &place_a.projections;
2426
2427 // Assume of length of projections_b = m
2428 let projections_b = &place_b.projections;
2429
2430 let same_initial_projections =
2431 iter::zip(projections_a, projections_b).all(|(proj_a, proj_b)| proj_a.kind == proj_b.kind);
2432
2433 if same_initial_projections {
2434 use std::cmp::Ordering;
2435
2436 // First min(n, m) projections are the same
2437 // Select Ancestor/Descendant
2438 match projections_b.len().cmp(&projections_a.len()) {
2439 Ordering::Greater => PlaceAncestryRelation::Ancestor,
2440 Ordering::Equal => PlaceAncestryRelation::SamePlace,
2441 Ordering::Less => PlaceAncestryRelation::Descendant,
2442 }
2443 } else {
2444 PlaceAncestryRelation::Divergent
2445 }
2446}
2447
2448/// Reduces the precision of the captured place when the precision doesn't yield any benefit from
2449/// borrow checking perspective, allowing us to save us on the size of the capture.
2450///
2451///
2452/// Fields that are read through a shared reference will always be read via a shared ref or a copy,
2453/// and therefore capturing precise paths yields no benefit. This optimization truncates the
2454/// rightmost deref of the capture if the deref is applied to a shared ref.
2455///
2456/// Reason we only drop the last deref is because of the following edge case:
2457///
2458/// ```
2459/// # struct A { field_of_a: Box<i32> }
2460/// # struct B {}
2461/// # struct C<'a>(&'a i32);
2462/// struct MyStruct<'a> {
2463/// a: &'static A,
2464/// b: B,
2465/// c: C<'a>,
2466/// }
2467///
2468/// fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static {
2469/// || drop(&*m.a.field_of_a)
2470/// // Here we really do want to capture `*m.a` because that outlives `'static`
2471///
2472/// // If we capture `m`, then the closure no longer outlives `'static`
2473/// // it is constrained to `'a`
2474/// }
2475/// ```
2476fn truncate_capture_for_optimization(
2477 mut place: Place<'_>,
2478 mut curr_mode: ty::UpvarCapture,
2479) -> (Place<'_>, ty::UpvarCapture) {
2480 let is_shared_ref = |ty: Ty<'_>| matches!(ty.kind(), ty::Ref(.., hir::Mutability::Not));
2481
2482 // Find the rightmost deref (if any). All the projections that come after this
2483 // are fields or other "in-place pointer adjustments"; these refer therefore to
2484 // data owned by whatever pointer is being dereferenced here.
2485 let idx = place.projections.iter().rposition(|proj| ProjectionKind::Deref == proj.kind);
2486
2487 match idx {
2488 // If that pointer is a shared reference, then we don't need those fields.
2489 Some(idx) if is_shared_ref(place.ty_before_projection(idx)) => {
2490 truncate_place_to_len_and_update_capture_kind(&mut place, &mut curr_mode, idx + 1)
2491 }
2492 None | Some(_) => {}
2493 }
2494
2495 (place, curr_mode)
2496}
2497
2498/// Precise capture is enabled if user is using Rust Edition 2021 or higher.
2499/// `span` is the span of the closure.
2500fn enable_precise_capture(span: Span) -> bool {
2501 // We use span here to ensure that if the closure was generated by a macro with a different
2502 // edition.
2503 span.at_least_rust_2021()
2504}