rustc_codegen_ssa/
base.rs

1use std::cmp;
2use std::collections::BTreeSet;
3use std::sync::Arc;
4use std::time::{Duration, Instant};
5
6use itertools::Itertools;
7use rustc_abi::FIRST_VARIANT;
8use rustc_ast as ast;
9use rustc_ast::expand::allocator::AllocatorKind;
10use rustc_data_structures::fx::{FxHashMap, FxIndexSet};
11use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
12use rustc_data_structures::sync::{IntoDynSyncSend, par_map};
13use rustc_data_structures::unord::UnordMap;
14use rustc_hir::attrs::OptimizeAttr;
15use rustc_hir::def_id::{DefId, LOCAL_CRATE};
16use rustc_hir::lang_items::LangItem;
17use rustc_hir::{ItemId, Target};
18use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
19use rustc_middle::middle::debugger_visualizer::{DebuggerVisualizerFile, DebuggerVisualizerType};
20use rustc_middle::middle::dependency_format::Dependencies;
21use rustc_middle::middle::exported_symbols::{self, SymbolExportKind};
22use rustc_middle::middle::lang_items;
23use rustc_middle::mir::BinOp;
24use rustc_middle::mir::interpret::ErrorHandled;
25use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem, MonoItemPartitions};
26use rustc_middle::query::Providers;
27use rustc_middle::ty::layout::{HasTyCtxt, HasTypingEnv, LayoutOf, TyAndLayout};
28use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
29use rustc_middle::{bug, span_bug};
30use rustc_session::Session;
31use rustc_session::config::{self, CrateType, EntryFnType};
32use rustc_span::{DUMMY_SP, Symbol, sym};
33use rustc_symbol_mangling::mangle_internal_symbol;
34use rustc_trait_selection::infer::{BoundRegionConversionTime, TyCtxtInferExt};
35use rustc_trait_selection::traits::{ObligationCause, ObligationCtxt};
36use tracing::{debug, info};
37
38use crate::assert_module_sources::CguReuse;
39use crate::back::link::are_upstream_rust_objects_already_included;
40use crate::back::write::{
41    ComputedLtoType, OngoingCodegen, compute_per_cgu_lto_type, start_async_codegen,
42    submit_codegened_module_to_llvm, submit_post_lto_module_to_llvm, submit_pre_lto_module_to_llvm,
43};
44use crate::common::{self, IntPredicate, RealPredicate, TypeKind};
45use crate::meth::load_vtable;
46use crate::mir::operand::OperandValue;
47use crate::mir::place::PlaceRef;
48use crate::traits::*;
49use crate::{
50    CachedModuleCodegen, CodegenLintLevels, CrateInfo, ModuleCodegen, ModuleKind, errors, meth, mir,
51};
52
53pub(crate) fn bin_op_to_icmp_predicate(op: BinOp, signed: bool) -> IntPredicate {
54    match (op, signed) {
55        (BinOp::Eq, _) => IntPredicate::IntEQ,
56        (BinOp::Ne, _) => IntPredicate::IntNE,
57        (BinOp::Lt, true) => IntPredicate::IntSLT,
58        (BinOp::Lt, false) => IntPredicate::IntULT,
59        (BinOp::Le, true) => IntPredicate::IntSLE,
60        (BinOp::Le, false) => IntPredicate::IntULE,
61        (BinOp::Gt, true) => IntPredicate::IntSGT,
62        (BinOp::Gt, false) => IntPredicate::IntUGT,
63        (BinOp::Ge, true) => IntPredicate::IntSGE,
64        (BinOp::Ge, false) => IntPredicate::IntUGE,
65        op => bug!("bin_op_to_icmp_predicate: expected comparison operator, found {:?}", op),
66    }
67}
68
69pub(crate) fn bin_op_to_fcmp_predicate(op: BinOp) -> RealPredicate {
70    match op {
71        BinOp::Eq => RealPredicate::RealOEQ,
72        BinOp::Ne => RealPredicate::RealUNE,
73        BinOp::Lt => RealPredicate::RealOLT,
74        BinOp::Le => RealPredicate::RealOLE,
75        BinOp::Gt => RealPredicate::RealOGT,
76        BinOp::Ge => RealPredicate::RealOGE,
77        op => bug!("bin_op_to_fcmp_predicate: expected comparison operator, found {:?}", op),
78    }
79}
80
81pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
82    bx: &mut Bx,
83    lhs: Bx::Value,
84    rhs: Bx::Value,
85    t: Ty<'tcx>,
86    ret_ty: Bx::Type,
87    op: BinOp,
88) -> Bx::Value {
89    let signed = match t.kind() {
90        ty::Float(_) => {
91            let cmp = bin_op_to_fcmp_predicate(op);
92            let cmp = bx.fcmp(cmp, lhs, rhs);
93            return bx.sext(cmp, ret_ty);
94        }
95        ty::Uint(_) => false,
96        ty::Int(_) => true,
97        _ => bug!("compare_simd_types: invalid SIMD type"),
98    };
99
100    let cmp = bin_op_to_icmp_predicate(op, signed);
101    let cmp = bx.icmp(cmp, lhs, rhs);
102    // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
103    // to get the correctly sized type. This will compile to a single instruction
104    // once the IR is converted to assembly if the SIMD instruction is supported
105    // by the target architecture.
106    bx.sext(cmp, ret_ty)
107}
108
109/// Codegen takes advantage of the additional assumption, where if the
110/// principal trait def id of what's being casted doesn't change,
111/// then we don't need to adjust the vtable at all. This
112/// corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
113/// requires that `A = B`; we don't allow *upcasting* objects
114/// between the same trait with different args. If we, for
115/// some reason, were to relax the `Unsize` trait, it could become
116/// unsound, so let's validate here that the trait refs are subtypes.
117pub fn validate_trivial_unsize<'tcx>(
118    tcx: TyCtxt<'tcx>,
119    source_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
120    target_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
121) -> bool {
122    match (source_data.principal(), target_data.principal()) {
123        (Some(hr_source_principal), Some(hr_target_principal)) => {
124            let (infcx, param_env) =
125                tcx.infer_ctxt().build_with_typing_env(ty::TypingEnv::fully_monomorphized());
126            let universe = infcx.universe();
127            let ocx = ObligationCtxt::new(&infcx);
128            infcx.enter_forall(hr_target_principal, |target_principal| {
129                let source_principal = infcx.instantiate_binder_with_fresh_vars(
130                    DUMMY_SP,
131                    BoundRegionConversionTime::HigherRankedType,
132                    hr_source_principal,
133                );
134                let Ok(()) = ocx.eq(
135                    &ObligationCause::dummy(),
136                    param_env,
137                    target_principal,
138                    source_principal,
139                ) else {
140                    return false;
141                };
142                if !ocx.select_all_or_error().is_empty() {
143                    return false;
144                }
145                infcx.leak_check(universe, None).is_ok()
146            })
147        }
148        (_, None) => true,
149        _ => false,
150    }
151}
152
153/// Retrieves the information we are losing (making dynamic) in an unsizing
154/// adjustment.
155///
156/// The `old_info` argument is a bit odd. It is intended for use in an upcast,
157/// where the new vtable for an object will be derived from the old one.
158fn unsized_info<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
159    bx: &mut Bx,
160    source: Ty<'tcx>,
161    target: Ty<'tcx>,
162    old_info: Option<Bx::Value>,
163) -> Bx::Value {
164    let cx = bx.cx();
165    let (source, target) =
166        cx.tcx().struct_lockstep_tails_for_codegen(source, target, bx.typing_env());
167    match (source.kind(), target.kind()) {
168        (&ty::Array(_, len), &ty::Slice(_)) => cx.const_usize(
169            len.try_to_target_usize(cx.tcx()).expect("expected monomorphic const in codegen"),
170        ),
171        (&ty::Dynamic(data_a, _, src_dyn_kind), &ty::Dynamic(data_b, _, target_dyn_kind))
172            if src_dyn_kind == target_dyn_kind =>
173        {
174            let old_info =
175                old_info.expect("unsized_info: missing old info for trait upcasting coercion");
176            let b_principal_def_id = data_b.principal_def_id();
177            if data_a.principal_def_id() == b_principal_def_id || b_principal_def_id.is_none() {
178                // Codegen takes advantage of the additional assumption, where if the
179                // principal trait def id of what's being casted doesn't change,
180                // then we don't need to adjust the vtable at all. This
181                // corresponds to the fact that `dyn Tr<A>: Unsize<dyn Tr<B>>`
182                // requires that `A = B`; we don't allow *upcasting* objects
183                // between the same trait with different args. If we, for
184                // some reason, were to relax the `Unsize` trait, it could become
185                // unsound, so let's assert here that the trait refs are *equal*.
186                debug_assert!(
187                    validate_trivial_unsize(cx.tcx(), data_a, data_b),
188                    "NOP unsize vtable changed principal trait ref: {data_a} -> {data_b}"
189                );
190
191                // A NOP cast that doesn't actually change anything, let's avoid any
192                // unnecessary work. This relies on the assumption that if the principal
193                // traits are equal, then the associated type bounds (`dyn Trait<Assoc=T>`)
194                // are also equal, which is ensured by the fact that normalization is
195                // a function and we do not allow overlapping impls.
196                return old_info;
197            }
198
199            // trait upcasting coercion
200
201            let vptr_entry_idx = cx.tcx().supertrait_vtable_slot((source, target));
202
203            if let Some(entry_idx) = vptr_entry_idx {
204                let ptr_size = bx.data_layout().pointer_size();
205                let vtable_byte_offset = u64::try_from(entry_idx).unwrap() * ptr_size.bytes();
206                load_vtable(bx, old_info, bx.type_ptr(), vtable_byte_offset, source, true)
207            } else {
208                old_info
209            }
210        }
211        (_, ty::Dynamic(data, _, _)) => meth::get_vtable(
212            cx,
213            source,
214            data.principal()
215                .map(|principal| bx.tcx().instantiate_bound_regions_with_erased(principal)),
216        ),
217        _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
218    }
219}
220
221/// Coerces `src` to `dst_ty`. `src_ty` must be a pointer.
222pub(crate) fn unsize_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
223    bx: &mut Bx,
224    src: Bx::Value,
225    src_ty: Ty<'tcx>,
226    dst_ty: Ty<'tcx>,
227    old_info: Option<Bx::Value>,
228) -> (Bx::Value, Bx::Value) {
229    debug!("unsize_ptr: {:?} => {:?}", src_ty, dst_ty);
230    match (src_ty.kind(), dst_ty.kind()) {
231        (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(b, _))
232        | (&ty::RawPtr(a, _), &ty::RawPtr(b, _)) => {
233            assert_eq!(bx.cx().type_is_sized(a), old_info.is_none());
234            (src, unsized_info(bx, a, b, old_info))
235        }
236        (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
237            assert_eq!(def_a, def_b); // implies same number of fields
238            let src_layout = bx.cx().layout_of(src_ty);
239            let dst_layout = bx.cx().layout_of(dst_ty);
240            if src_ty == dst_ty {
241                return (src, old_info.unwrap());
242            }
243            let mut result = None;
244            for i in 0..src_layout.fields.count() {
245                let src_f = src_layout.field(bx.cx(), i);
246                if src_f.is_1zst() {
247                    // We are looking for the one non-1-ZST field; this is not it.
248                    continue;
249                }
250
251                assert_eq!(src_layout.fields.offset(i).bytes(), 0);
252                assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
253                assert_eq!(src_layout.size, src_f.size);
254
255                let dst_f = dst_layout.field(bx.cx(), i);
256                assert_ne!(src_f.ty, dst_f.ty);
257                assert_eq!(result, None);
258                result = Some(unsize_ptr(bx, src, src_f.ty, dst_f.ty, old_info));
259            }
260            result.unwrap()
261        }
262        _ => bug!("unsize_ptr: called on bad types"),
263    }
264}
265
266/// Coerces `src`, which is a reference to a value of type `src_ty`,
267/// to a value of type `dst_ty`, and stores the result in `dst`.
268pub(crate) fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
269    bx: &mut Bx,
270    src: PlaceRef<'tcx, Bx::Value>,
271    dst: PlaceRef<'tcx, Bx::Value>,
272) {
273    let src_ty = src.layout.ty;
274    let dst_ty = dst.layout.ty;
275    match (src_ty.kind(), dst_ty.kind()) {
276        (&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
277            let (base, info) = match bx.load_operand(src).val {
278                OperandValue::Pair(base, info) => unsize_ptr(bx, base, src_ty, dst_ty, Some(info)),
279                OperandValue::Immediate(base) => unsize_ptr(bx, base, src_ty, dst_ty, None),
280                OperandValue::Ref(..) | OperandValue::ZeroSized => bug!(),
281            };
282            OperandValue::Pair(base, info).store(bx, dst);
283        }
284
285        (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
286            assert_eq!(def_a, def_b); // implies same number of fields
287
288            for i in def_a.variant(FIRST_VARIANT).fields.indices() {
289                let src_f = src.project_field(bx, i.as_usize());
290                let dst_f = dst.project_field(bx, i.as_usize());
291
292                if dst_f.layout.is_zst() {
293                    // No data here, nothing to copy/coerce.
294                    continue;
295                }
296
297                if src_f.layout.ty == dst_f.layout.ty {
298                    bx.typed_place_copy(dst_f.val, src_f.val, src_f.layout);
299                } else {
300                    coerce_unsized_into(bx, src_f, dst_f);
301                }
302            }
303        }
304        _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
305    }
306}
307
308/// Returns `rhs` sufficiently masked, truncated, and/or extended so that it can be used to shift
309/// `lhs`: it has the same size as `lhs`, and the value, when interpreted unsigned (no matter its
310/// type), will not exceed the size of `lhs`.
311///
312/// Shifts in MIR are all allowed to have mismatched LHS & RHS types, and signed RHS.
313/// The shift methods in `BuilderMethods`, however, are fully homogeneous
314/// (both parameters and the return type are all the same size) and assume an unsigned RHS.
315///
316/// If `is_unchecked` is false, this masks the RHS to ensure it stays in-bounds,
317/// as the `BuilderMethods` shifts are UB for out-of-bounds shift amounts.
318/// For 32- and 64-bit types, this matches the semantics
319/// of Java. (See related discussion on #1877 and #10183.)
320///
321/// If `is_unchecked` is true, this does no masking, and adds sufficient `assume`
322/// calls or operation flags to preserve as much freedom to optimize as possible.
323pub(crate) fn build_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
324    bx: &mut Bx,
325    lhs: Bx::Value,
326    mut rhs: Bx::Value,
327    is_unchecked: bool,
328) -> Bx::Value {
329    // Shifts may have any size int on the rhs
330    let mut rhs_llty = bx.cx().val_ty(rhs);
331    let mut lhs_llty = bx.cx().val_ty(lhs);
332
333    let mask = common::shift_mask_val(bx, lhs_llty, rhs_llty, false);
334    if !is_unchecked {
335        rhs = bx.and(rhs, mask);
336    }
337
338    if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
339        rhs_llty = bx.cx().element_type(rhs_llty)
340    }
341    if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
342        lhs_llty = bx.cx().element_type(lhs_llty)
343    }
344    let rhs_sz = bx.cx().int_width(rhs_llty);
345    let lhs_sz = bx.cx().int_width(lhs_llty);
346    if lhs_sz < rhs_sz {
347        if is_unchecked { bx.unchecked_utrunc(rhs, lhs_llty) } else { bx.trunc(rhs, lhs_llty) }
348    } else if lhs_sz > rhs_sz {
349        // We zero-extend even if the RHS is signed. So e.g. `(x: i32) << -1i8` will zero-extend the
350        // RHS to `255i32`. But then we mask the shift amount to be within the size of the LHS
351        // anyway so the result is `31` as it should be. All the extra bits introduced by zext
352        // are masked off so their value does not matter.
353        // FIXME: if we ever support 512bit integers, this will be wrong! For such large integers,
354        // the extra bits introduced by zext are *not* all masked away any more.
355        assert!(lhs_sz <= 256);
356        bx.zext(rhs, lhs_llty)
357    } else {
358        rhs
359    }
360}
361
362// Returns `true` if this session's target will use native wasm
363// exceptions. This means that the VM does the unwinding for
364// us
365pub fn wants_wasm_eh(sess: &Session) -> bool {
366    sess.target.is_like_wasm
367        && (sess.target.os != "emscripten" || sess.opts.unstable_opts.emscripten_wasm_eh)
368}
369
370/// Returns `true` if this session's target will use SEH-based unwinding.
371///
372/// This is only true for MSVC targets, and even then the 64-bit MSVC target
373/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
374/// 64-bit MinGW) instead of "full SEH".
375pub fn wants_msvc_seh(sess: &Session) -> bool {
376    sess.target.is_like_msvc
377}
378
379/// Returns `true` if this session's target requires the new exception
380/// handling LLVM IR instructions (catchpad / cleanuppad / ... instead
381/// of landingpad)
382pub(crate) fn wants_new_eh_instructions(sess: &Session) -> bool {
383    wants_wasm_eh(sess) || wants_msvc_seh(sess)
384}
385
386pub(crate) fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
387    cx: &'a Bx::CodegenCx,
388    instance: Instance<'tcx>,
389) {
390    // this is an info! to allow collecting monomorphization statistics
391    // and to allow finding the last function before LLVM aborts from
392    // release builds.
393    info!("codegen_instance({})", instance);
394
395    mir::codegen_mir::<Bx>(cx, instance);
396}
397
398pub fn codegen_global_asm<'tcx, Cx>(cx: &mut Cx, item_id: ItemId)
399where
400    Cx: LayoutOf<'tcx, LayoutOfResult = TyAndLayout<'tcx>> + AsmCodegenMethods<'tcx>,
401{
402    let item = cx.tcx().hir_item(item_id);
403    if let rustc_hir::ItemKind::GlobalAsm { asm, .. } = item.kind {
404        let operands: Vec<_> = asm
405            .operands
406            .iter()
407            .map(|(op, op_sp)| match *op {
408                rustc_hir::InlineAsmOperand::Const { ref anon_const } => {
409                    match cx.tcx().const_eval_poly(anon_const.def_id.to_def_id()) {
410                        Ok(const_value) => {
411                            let ty =
412                                cx.tcx().typeck_body(anon_const.body).node_type(anon_const.hir_id);
413                            let string = common::asm_const_to_str(
414                                cx.tcx(),
415                                *op_sp,
416                                const_value,
417                                cx.layout_of(ty),
418                            );
419                            GlobalAsmOperandRef::Const { string }
420                        }
421                        Err(ErrorHandled::Reported { .. }) => {
422                            // An error has already been reported and
423                            // compilation is guaranteed to fail if execution
424                            // hits this path. So an empty string instead of
425                            // a stringified constant value will suffice.
426                            GlobalAsmOperandRef::Const { string: String::new() }
427                        }
428                        Err(ErrorHandled::TooGeneric(_)) => {
429                            span_bug!(*op_sp, "asm const cannot be resolved; too generic")
430                        }
431                    }
432                }
433                rustc_hir::InlineAsmOperand::SymFn { expr } => {
434                    let ty = cx.tcx().typeck(item_id.owner_id).expr_ty(expr);
435                    let instance = match ty.kind() {
436                        &ty::FnDef(def_id, args) => Instance::expect_resolve(
437                            cx.tcx(),
438                            ty::TypingEnv::fully_monomorphized(),
439                            def_id,
440                            args,
441                            expr.span,
442                        ),
443                        _ => span_bug!(*op_sp, "asm sym is not a function"),
444                    };
445
446                    GlobalAsmOperandRef::SymFn { instance }
447                }
448                rustc_hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
449                    GlobalAsmOperandRef::SymStatic { def_id }
450                }
451                rustc_hir::InlineAsmOperand::In { .. }
452                | rustc_hir::InlineAsmOperand::Out { .. }
453                | rustc_hir::InlineAsmOperand::InOut { .. }
454                | rustc_hir::InlineAsmOperand::SplitInOut { .. }
455                | rustc_hir::InlineAsmOperand::Label { .. } => {
456                    span_bug!(*op_sp, "invalid operand type for global_asm!")
457                }
458            })
459            .collect();
460
461        cx.codegen_global_asm(asm.template, &operands, asm.options, asm.line_spans);
462    } else {
463        span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type")
464    }
465}
466
467/// Creates the `main` function which will initialize the rust runtime and call
468/// users main function.
469pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
470    cx: &'a Bx::CodegenCx,
471    cgu: &CodegenUnit<'tcx>,
472) -> Option<Bx::Function> {
473    let (main_def_id, entry_type) = cx.tcx().entry_fn(())?;
474    let main_is_local = main_def_id.is_local();
475    let instance = Instance::mono(cx.tcx(), main_def_id);
476
477    if main_is_local {
478        // We want to create the wrapper in the same codegen unit as Rust's main
479        // function.
480        if !cgu.contains_item(&MonoItem::Fn(instance)) {
481            return None;
482        }
483    } else if !cgu.is_primary() {
484        // We want to create the wrapper only when the codegen unit is the primary one
485        return None;
486    }
487
488    let main_llfn = cx.get_fn_addr(instance);
489
490    let entry_fn = create_entry_fn::<Bx>(cx, main_llfn, main_def_id, entry_type);
491    return Some(entry_fn);
492
493    fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
494        cx: &'a Bx::CodegenCx,
495        rust_main: Bx::Value,
496        rust_main_def_id: DefId,
497        entry_type: EntryFnType,
498    ) -> Bx::Function {
499        // The entry function is either `int main(void)` or `int main(int argc, char **argv)`, or
500        // `usize efi_main(void *handle, void *system_table)` depending on the target.
501        let llfty = if cx.sess().target.os.contains("uefi") {
502            cx.type_func(&[cx.type_ptr(), cx.type_ptr()], cx.type_isize())
503        } else if cx.sess().target.main_needs_argc_argv {
504            cx.type_func(&[cx.type_int(), cx.type_ptr()], cx.type_int())
505        } else {
506            cx.type_func(&[], cx.type_int())
507        };
508
509        let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).no_bound_vars().unwrap().output();
510        // Given that `main()` has no arguments,
511        // then its return type cannot have
512        // late-bound regions, since late-bound
513        // regions must appear in the argument
514        // listing.
515        let main_ret_ty = cx
516            .tcx()
517            .normalize_erasing_regions(cx.typing_env(), main_ret_ty.no_bound_vars().unwrap());
518
519        let Some(llfn) = cx.declare_c_main(llfty) else {
520            // FIXME: We should be smart and show a better diagnostic here.
521            let span = cx.tcx().def_span(rust_main_def_id);
522            cx.tcx().dcx().emit_fatal(errors::MultipleMainFunctions { span });
523        };
524
525        // `main` should respect same config for frame pointer elimination as rest of code
526        cx.set_frame_pointer_type(llfn);
527        cx.apply_target_cpu_attr(llfn);
528
529        let llbb = Bx::append_block(cx, llfn, "top");
530        let mut bx = Bx::build(cx, llbb);
531
532        bx.insert_reference_to_gdb_debug_scripts_section_global();
533
534        let isize_ty = cx.type_isize();
535        let ptr_ty = cx.type_ptr();
536        let (arg_argc, arg_argv) = get_argc_argv(&mut bx);
537
538        let EntryFnType::Main { sigpipe } = entry_type;
539        let (start_fn, start_ty, args, instance) = {
540            let start_def_id = cx.tcx().require_lang_item(LangItem::Start, DUMMY_SP);
541            let start_instance = ty::Instance::expect_resolve(
542                cx.tcx(),
543                cx.typing_env(),
544                start_def_id,
545                cx.tcx().mk_args(&[main_ret_ty.into()]),
546                DUMMY_SP,
547            );
548            let start_fn = cx.get_fn_addr(start_instance);
549
550            let i8_ty = cx.type_i8();
551            let arg_sigpipe = bx.const_u8(sigpipe);
552
553            let start_ty = cx.type_func(&[cx.val_ty(rust_main), isize_ty, ptr_ty, i8_ty], isize_ty);
554            (
555                start_fn,
556                start_ty,
557                vec![rust_main, arg_argc, arg_argv, arg_sigpipe],
558                Some(start_instance),
559            )
560        };
561
562        let result = bx.call(start_ty, None, None, start_fn, &args, None, instance);
563        if cx.sess().target.os.contains("uefi") {
564            bx.ret(result);
565        } else {
566            let cast = bx.intcast(result, cx.type_int(), true);
567            bx.ret(cast);
568        }
569
570        llfn
571    }
572}
573
574/// Obtain the `argc` and `argv` values to pass to the rust start function
575/// (i.e., the "start" lang item).
576fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(bx: &mut Bx) -> (Bx::Value, Bx::Value) {
577    if bx.cx().sess().target.os.contains("uefi") {
578        // Params for UEFI
579        let param_handle = bx.get_param(0);
580        let param_system_table = bx.get_param(1);
581        let ptr_size = bx.tcx().data_layout.pointer_size();
582        let ptr_align = bx.tcx().data_layout.pointer_align().abi;
583        let arg_argc = bx.const_int(bx.cx().type_isize(), 2);
584        let arg_argv = bx.alloca(2 * ptr_size, ptr_align);
585        bx.store(param_handle, arg_argv, ptr_align);
586        let arg_argv_el1 = bx.inbounds_ptradd(arg_argv, bx.const_usize(ptr_size.bytes()));
587        bx.store(param_system_table, arg_argv_el1, ptr_align);
588        (arg_argc, arg_argv)
589    } else if bx.cx().sess().target.main_needs_argc_argv {
590        // Params from native `main()` used as args for rust start function
591        let param_argc = bx.get_param(0);
592        let param_argv = bx.get_param(1);
593        let arg_argc = bx.intcast(param_argc, bx.cx().type_isize(), true);
594        let arg_argv = param_argv;
595        (arg_argc, arg_argv)
596    } else {
597        // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
598        let arg_argc = bx.const_int(bx.cx().type_int(), 0);
599        let arg_argv = bx.const_null(bx.cx().type_ptr());
600        (arg_argc, arg_argv)
601    }
602}
603
604/// This function returns all of the debugger visualizers specified for the
605/// current crate as well as all upstream crates transitively that match the
606/// `visualizer_type` specified.
607pub fn collect_debugger_visualizers_transitive(
608    tcx: TyCtxt<'_>,
609    visualizer_type: DebuggerVisualizerType,
610) -> BTreeSet<DebuggerVisualizerFile> {
611    tcx.debugger_visualizers(LOCAL_CRATE)
612        .iter()
613        .chain(
614            tcx.crates(())
615                .iter()
616                .filter(|&cnum| {
617                    let used_crate_source = tcx.used_crate_source(*cnum);
618                    used_crate_source.rlib.is_some() || used_crate_source.rmeta.is_some()
619                })
620                .flat_map(|&cnum| tcx.debugger_visualizers(cnum)),
621        )
622        .filter(|visualizer| visualizer.visualizer_type == visualizer_type)
623        .cloned()
624        .collect::<BTreeSet<_>>()
625}
626
627/// Decide allocator kind to codegen. If `Some(_)` this will be the same as
628/// `tcx.allocator_kind`, but it may be `None` in more cases (e.g. if using
629/// allocator definitions from a dylib dependency).
630pub fn allocator_kind_for_codegen(tcx: TyCtxt<'_>) -> Option<AllocatorKind> {
631    // If the crate doesn't have an `allocator_kind` set then there's definitely
632    // no shim to generate. Otherwise we also check our dependency graph for all
633    // our output crate types. If anything there looks like its a `Dynamic`
634    // linkage for all crate types we may link as, then it's already got an
635    // allocator shim and we'll be using that one instead. If nothing exists
636    // then it's our job to generate the allocator! If crate types disagree
637    // about whether an allocator shim is necessary or not, we generate one
638    // and let needs_allocator_shim_for_linking decide at link time whether or
639    // not to use it for any particular linker invocation.
640    let all_crate_types_any_dynamic_crate = tcx.dependency_formats(()).iter().all(|(_, list)| {
641        use rustc_middle::middle::dependency_format::Linkage;
642        list.iter().any(|&linkage| linkage == Linkage::Dynamic)
643    });
644    if all_crate_types_any_dynamic_crate { None } else { tcx.allocator_kind(()) }
645}
646
647/// Decide if this particular crate type needs an allocator shim linked in.
648/// This may return true even when allocator_kind_for_codegen returns false. In
649/// this case no allocator shim shall be linked.
650pub(crate) fn needs_allocator_shim_for_linking(
651    dependency_formats: &Dependencies,
652    crate_type: CrateType,
653) -> bool {
654    use rustc_middle::middle::dependency_format::Linkage;
655    let any_dynamic_crate =
656        dependency_formats[&crate_type].iter().any(|&linkage| linkage == Linkage::Dynamic);
657    !any_dynamic_crate
658}
659
660pub fn codegen_crate<B: ExtraBackendMethods>(
661    backend: B,
662    tcx: TyCtxt<'_>,
663    target_cpu: String,
664) -> OngoingCodegen<B> {
665    // Skip crate items and just output metadata in -Z no-codegen mode.
666    if tcx.sess.opts.unstable_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
667        let ongoing_codegen = start_async_codegen(backend, tcx, target_cpu, None);
668
669        ongoing_codegen.codegen_finished(tcx);
670
671        ongoing_codegen.check_for_errors(tcx.sess);
672
673        return ongoing_codegen;
674    }
675
676    if tcx.sess.target.need_explicit_cpu && tcx.sess.opts.cg.target_cpu.is_none() {
677        // The target has no default cpu, but none is set explicitly
678        tcx.dcx().emit_fatal(errors::CpuRequired);
679    }
680
681    let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
682
683    // Run the monomorphization collector and partition the collected items into
684    // codegen units.
685    let MonoItemPartitions { codegen_units, .. } = tcx.collect_and_partition_mono_items(());
686
687    // Force all codegen_unit queries so they are already either red or green
688    // when compile_codegen_unit accesses them. We are not able to re-execute
689    // the codegen_unit query from just the DepNode, so an unknown color would
690    // lead to having to re-execute compile_codegen_unit, possibly
691    // unnecessarily.
692    if tcx.dep_graph.is_fully_enabled() {
693        for cgu in codegen_units {
694            tcx.ensure_ok().codegen_unit(cgu.name());
695        }
696    }
697
698    // Codegen an allocator shim, if necessary.
699    let allocator_module = if let Some(kind) = allocator_kind_for_codegen(tcx) {
700        let llmod_id =
701            cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
702
703        tcx.sess.time("write_allocator_module", || {
704            let module = backend.codegen_allocator(
705                tcx,
706                &llmod_id,
707                kind,
708                // If allocator_kind is Some then alloc_error_handler_kind must
709                // also be Some.
710                tcx.alloc_error_handler_kind(()).unwrap(),
711            );
712            Some(ModuleCodegen::new_allocator(llmod_id, module))
713        })
714    } else {
715        None
716    };
717
718    let ongoing_codegen = start_async_codegen(backend.clone(), tcx, target_cpu, allocator_module);
719
720    // For better throughput during parallel processing by LLVM, we used to sort
721    // CGUs largest to smallest. This would lead to better thread utilization
722    // by, for example, preventing a large CGU from being processed last and
723    // having only one LLVM thread working while the rest remained idle.
724    //
725    // However, this strategy would lead to high memory usage, as it meant the
726    // LLVM-IR for all of the largest CGUs would be resident in memory at once.
727    //
728    // Instead, we can compromise by ordering CGUs such that the largest and
729    // smallest are first, second largest and smallest are next, etc. If there
730    // are large size variations, this can reduce memory usage significantly.
731    let codegen_units: Vec<_> = {
732        let mut sorted_cgus = codegen_units.iter().collect::<Vec<_>>();
733        sorted_cgus.sort_by_key(|cgu| cmp::Reverse(cgu.size_estimate()));
734
735        let (first_half, second_half) = sorted_cgus.split_at(sorted_cgus.len() / 2);
736        first_half.iter().interleave(second_half.iter().rev()).copied().collect()
737    };
738
739    // Calculate the CGU reuse
740    let cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
741        codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, cgu)).collect::<Vec<_>>()
742    });
743
744    crate::assert_module_sources::assert_module_sources(tcx, &|cgu_reuse_tracker| {
745        for (i, cgu) in codegen_units.iter().enumerate() {
746            let cgu_reuse = cgu_reuse[i];
747            cgu_reuse_tracker.set_actual_reuse(cgu.name().as_str(), cgu_reuse);
748        }
749    });
750
751    let mut total_codegen_time = Duration::new(0, 0);
752    let start_rss = tcx.sess.opts.unstable_opts.time_passes.then(|| get_resident_set_size());
753
754    // The non-parallel compiler can only translate codegen units to LLVM IR
755    // on a single thread, leading to a staircase effect where the N LLVM
756    // threads have to wait on the single codegen threads to generate work
757    // for them. The parallel compiler does not have this restriction, so
758    // we can pre-load the LLVM queue in parallel before handing off
759    // coordination to the OnGoingCodegen scheduler.
760    //
761    // This likely is a temporary measure. Once we don't have to support the
762    // non-parallel compiler anymore, we can compile CGUs end-to-end in
763    // parallel and get rid of the complicated scheduling logic.
764    let mut pre_compiled_cgus = if tcx.sess.threads() > 1 {
765        tcx.sess.time("compile_first_CGU_batch", || {
766            // Try to find one CGU to compile per thread.
767            let cgus: Vec<_> = cgu_reuse
768                .iter()
769                .enumerate()
770                .filter(|&(_, reuse)| reuse == &CguReuse::No)
771                .take(tcx.sess.threads())
772                .collect();
773
774            // Compile the found CGUs in parallel.
775            let start_time = Instant::now();
776
777            let pre_compiled_cgus = par_map(cgus, |(i, _)| {
778                let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
779                (i, IntoDynSyncSend(module))
780            });
781
782            total_codegen_time += start_time.elapsed();
783
784            pre_compiled_cgus
785        })
786    } else {
787        FxHashMap::default()
788    };
789
790    for (i, cgu) in codegen_units.iter().enumerate() {
791        ongoing_codegen.wait_for_signal_to_codegen_item();
792        ongoing_codegen.check_for_errors(tcx.sess);
793
794        let cgu_reuse = cgu_reuse[i];
795
796        match cgu_reuse {
797            CguReuse::No => {
798                let (module, cost) = if let Some(cgu) = pre_compiled_cgus.remove(&i) {
799                    cgu.0
800                } else {
801                    let start_time = Instant::now();
802                    let module = backend.compile_codegen_unit(tcx, cgu.name());
803                    total_codegen_time += start_time.elapsed();
804                    module
805                };
806                // This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
807                // guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
808                // compilation hang on post-monomorphization errors.
809                tcx.dcx().abort_if_errors();
810
811                submit_codegened_module_to_llvm(&ongoing_codegen.coordinator, module, cost);
812            }
813            CguReuse::PreLto => {
814                submit_pre_lto_module_to_llvm(
815                    tcx,
816                    &ongoing_codegen.coordinator,
817                    CachedModuleCodegen {
818                        name: cgu.name().to_string(),
819                        source: cgu.previous_work_product(tcx),
820                    },
821                );
822            }
823            CguReuse::PostLto => {
824                submit_post_lto_module_to_llvm(
825                    &ongoing_codegen.coordinator,
826                    CachedModuleCodegen {
827                        name: cgu.name().to_string(),
828                        source: cgu.previous_work_product(tcx),
829                    },
830                );
831            }
832        }
833    }
834
835    ongoing_codegen.codegen_finished(tcx);
836
837    // Since the main thread is sometimes blocked during codegen, we keep track
838    // -Ztime-passes output manually.
839    if tcx.sess.opts.unstable_opts.time_passes {
840        let end_rss = get_resident_set_size();
841
842        print_time_passes_entry(
843            "codegen_to_LLVM_IR",
844            total_codegen_time,
845            start_rss.unwrap(),
846            end_rss,
847            tcx.sess.opts.unstable_opts.time_passes_format,
848        );
849    }
850
851    ongoing_codegen.check_for_errors(tcx.sess);
852    ongoing_codegen
853}
854
855/// Returns whether a call from the current crate to the [`Instance`] would produce a call
856/// from `compiler_builtins` to a symbol the linker must resolve.
857///
858/// Such calls from `compiler_bultins` are effectively impossible for the linker to handle. Some
859/// linkers will optimize such that dead calls to unresolved symbols are not an error, but this is
860/// not guaranteed. So we used this function in codegen backends to ensure we do not generate any
861/// unlinkable calls.
862///
863/// Note that calls to LLVM intrinsics are uniquely okay because they won't make it to the linker.
864pub fn is_call_from_compiler_builtins_to_upstream_monomorphization<'tcx>(
865    tcx: TyCtxt<'tcx>,
866    instance: Instance<'tcx>,
867) -> bool {
868    fn is_llvm_intrinsic(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
869        if let Some(name) = tcx.codegen_fn_attrs(def_id).symbol_name {
870            name.as_str().starts_with("llvm.")
871        } else {
872            false
873        }
874    }
875
876    let def_id = instance.def_id();
877    !def_id.is_local()
878        && tcx.is_compiler_builtins(LOCAL_CRATE)
879        && !is_llvm_intrinsic(tcx, def_id)
880        && !tcx.should_codegen_locally(instance)
881}
882
883impl CrateInfo {
884    pub fn new(tcx: TyCtxt<'_>, target_cpu: String) -> CrateInfo {
885        let crate_types = tcx.crate_types().to_vec();
886        let exported_symbols = crate_types
887            .iter()
888            .map(|&c| (c, crate::back::linker::exported_symbols(tcx, c)))
889            .collect();
890        let linked_symbols =
891            crate_types.iter().map(|&c| (c, crate::back::linker::linked_symbols(tcx, c))).collect();
892        let local_crate_name = tcx.crate_name(LOCAL_CRATE);
893        let crate_attrs = tcx.hir_attrs(rustc_hir::CRATE_HIR_ID);
894        let subsystem =
895            ast::attr::first_attr_value_str_by_name(crate_attrs, sym::windows_subsystem);
896        let windows_subsystem = subsystem.map(|subsystem| {
897            if subsystem != sym::windows && subsystem != sym::console {
898                tcx.dcx().emit_fatal(errors::InvalidWindowsSubsystem { subsystem });
899            }
900            subsystem.to_string()
901        });
902
903        // This list is used when generating the command line to pass through to
904        // system linker. The linker expects undefined symbols on the left of the
905        // command line to be defined in libraries on the right, not the other way
906        // around. For more info, see some comments in the add_used_library function
907        // below.
908        //
909        // In order to get this left-to-right dependency ordering, we use the reverse
910        // postorder of all crates putting the leaves at the rightmost positions.
911        let mut compiler_builtins = None;
912        let mut used_crates: Vec<_> = tcx
913            .postorder_cnums(())
914            .iter()
915            .rev()
916            .copied()
917            .filter(|&cnum| {
918                let link = !tcx.dep_kind(cnum).macros_only();
919                if link && tcx.is_compiler_builtins(cnum) {
920                    compiler_builtins = Some(cnum);
921                    return false;
922                }
923                link
924            })
925            .collect();
926        // `compiler_builtins` are always placed last to ensure that they're linked correctly.
927        used_crates.extend(compiler_builtins);
928
929        let crates = tcx.crates(());
930        let n_crates = crates.len();
931        let mut info = CrateInfo {
932            target_cpu,
933            target_features: tcx.global_backend_features(()).clone(),
934            crate_types,
935            exported_symbols,
936            linked_symbols,
937            local_crate_name,
938            compiler_builtins,
939            profiler_runtime: None,
940            is_no_builtins: Default::default(),
941            native_libraries: Default::default(),
942            used_libraries: tcx.native_libraries(LOCAL_CRATE).iter().map(Into::into).collect(),
943            crate_name: UnordMap::with_capacity(n_crates),
944            used_crates,
945            used_crate_source: UnordMap::with_capacity(n_crates),
946            dependency_formats: Arc::clone(tcx.dependency_formats(())),
947            windows_subsystem,
948            natvis_debugger_visualizers: Default::default(),
949            lint_levels: CodegenLintLevels::from_tcx(tcx),
950            metadata_symbol: exported_symbols::metadata_symbol_name(tcx),
951        };
952
953        info.native_libraries.reserve(n_crates);
954
955        for &cnum in crates.iter() {
956            info.native_libraries
957                .insert(cnum, tcx.native_libraries(cnum).iter().map(Into::into).collect());
958            info.crate_name.insert(cnum, tcx.crate_name(cnum));
959
960            let used_crate_source = tcx.used_crate_source(cnum);
961            info.used_crate_source.insert(cnum, Arc::clone(used_crate_source));
962            if tcx.is_profiler_runtime(cnum) {
963                info.profiler_runtime = Some(cnum);
964            }
965            if tcx.is_no_builtins(cnum) {
966                info.is_no_builtins.insert(cnum);
967            }
968        }
969
970        // Handle circular dependencies in the standard library.
971        // See comment before `add_linked_symbol_object` function for the details.
972        // If global LTO is enabled then almost everything (*) is glued into a single object file,
973        // so this logic is not necessary and can cause issues on some targets (due to weak lang
974        // item symbols being "privatized" to that object file), so we disable it.
975        // (*) Native libs, and `#[compiler_builtins]` and `#[no_builtins]` crates are not glued,
976        // and we assume that they cannot define weak lang items. This is not currently enforced
977        // by the compiler, but that's ok because all this stuff is unstable anyway.
978        let target = &tcx.sess.target;
979        if !are_upstream_rust_objects_already_included(tcx.sess) {
980            let add_prefix = match (target.is_like_windows, target.arch.as_ref()) {
981                (true, "x86") => |name: String, _: SymbolExportKind| format!("_{name}"),
982                (true, "arm64ec") => {
983                    // Only functions are decorated for arm64ec.
984                    |name: String, export_kind: SymbolExportKind| match export_kind {
985                        SymbolExportKind::Text => format!("#{name}"),
986                        _ => name,
987                    }
988                }
989                _ => |name: String, _: SymbolExportKind| name,
990            };
991            let missing_weak_lang_items: FxIndexSet<(Symbol, SymbolExportKind)> = info
992                .used_crates
993                .iter()
994                .flat_map(|&cnum| tcx.missing_lang_items(cnum))
995                .filter(|l| l.is_weak())
996                .filter_map(|&l| {
997                    let name = l.link_name()?;
998                    let export_kind = match l.target() {
999                        Target::Fn => SymbolExportKind::Text,
1000                        Target::Static => SymbolExportKind::Data,
1001                        _ => bug!(
1002                            "Don't know what the export kind is for lang item of kind {:?}",
1003                            l.target()
1004                        ),
1005                    };
1006                    lang_items::required(tcx, l).then_some((name, export_kind))
1007                })
1008                .collect();
1009
1010            // This loop only adds new items to values of the hash map, so the order in which we
1011            // iterate over the values is not important.
1012            #[allow(rustc::potential_query_instability)]
1013            info.linked_symbols
1014                .iter_mut()
1015                .filter(|(crate_type, _)| {
1016                    !matches!(crate_type, CrateType::Rlib | CrateType::Staticlib)
1017                })
1018                .for_each(|(_, linked_symbols)| {
1019                    let mut symbols = missing_weak_lang_items
1020                        .iter()
1021                        .map(|(item, export_kind)| {
1022                            (
1023                                add_prefix(
1024                                    mangle_internal_symbol(tcx, item.as_str()),
1025                                    *export_kind,
1026                                ),
1027                                *export_kind,
1028                            )
1029                        })
1030                        .collect::<Vec<_>>();
1031                    symbols.sort_unstable_by(|a, b| a.0.cmp(&b.0));
1032                    linked_symbols.extend(symbols);
1033                });
1034        }
1035
1036        let embed_visualizers = tcx.crate_types().iter().any(|&crate_type| match crate_type {
1037            CrateType::Executable | CrateType::Dylib | CrateType::Cdylib | CrateType::Sdylib => {
1038                // These are crate types for which we invoke the linker and can embed
1039                // NatVis visualizers.
1040                true
1041            }
1042            CrateType::ProcMacro => {
1043                // We could embed NatVis for proc macro crates too (to improve the debugging
1044                // experience for them) but it does not seem like a good default, since
1045                // this is a rare use case and we don't want to slow down the common case.
1046                false
1047            }
1048            CrateType::Staticlib | CrateType::Rlib => {
1049                // We don't invoke the linker for these, so we don't need to collect the NatVis for
1050                // them.
1051                false
1052            }
1053        });
1054
1055        if target.is_like_msvc && embed_visualizers {
1056            info.natvis_debugger_visualizers =
1057                collect_debugger_visualizers_transitive(tcx, DebuggerVisualizerType::Natvis);
1058        }
1059
1060        info
1061    }
1062}
1063
1064pub(crate) fn provide(providers: &mut Providers) {
1065    providers.backend_optimization_level = |tcx, cratenum| {
1066        let for_speed = match tcx.sess.opts.optimize {
1067            // If globally no optimisation is done, #[optimize] has no effect.
1068            //
1069            // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
1070            // pass manager and it is likely that some module-wide passes (such as inliner or
1071            // cross-function constant propagation) would ignore the `optnone` annotation we put
1072            // on the functions, thus necessarily involving these functions into optimisations.
1073            config::OptLevel::No => return config::OptLevel::No,
1074            // If globally optimise-speed is already specified, just use that level.
1075            config::OptLevel::Less => return config::OptLevel::Less,
1076            config::OptLevel::More => return config::OptLevel::More,
1077            config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
1078            // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
1079            // are present).
1080            config::OptLevel::Size => config::OptLevel::More,
1081            config::OptLevel::SizeMin => config::OptLevel::More,
1082        };
1083
1084        let defids = tcx.collect_and_partition_mono_items(cratenum).all_mono_items;
1085
1086        let any_for_speed = defids.items().any(|id| {
1087            let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
1088            matches!(optimize, OptimizeAttr::Speed)
1089        });
1090
1091        if any_for_speed {
1092            return for_speed;
1093        }
1094
1095        tcx.sess.opts.optimize
1096    };
1097}
1098
1099pub fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
1100    if !tcx.dep_graph.is_fully_enabled() {
1101        return CguReuse::No;
1102    }
1103
1104    let work_product_id = &cgu.work_product_id();
1105    if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
1106        // We don't have anything cached for this CGU. This can happen
1107        // if the CGU did not exist in the previous session.
1108        return CguReuse::No;
1109    }
1110
1111    // Try to mark the CGU as green. If it we can do so, it means that nothing
1112    // affecting the LLVM module has changed and we can re-use a cached version.
1113    // If we compile with any kind of LTO, this means we can re-use the bitcode
1114    // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
1115    // know that later). If we are not doing LTO, there is only one optimized
1116    // version of each module, so we re-use that.
1117    let dep_node = cgu.codegen_dep_node(tcx);
1118    tcx.dep_graph.assert_dep_node_not_yet_allocated_in_current_session(&dep_node, || {
1119        format!(
1120            "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
1121            cgu.name()
1122        )
1123    });
1124
1125    if tcx.try_mark_green(&dep_node) {
1126        // We can re-use either the pre- or the post-thinlto state. If no LTO is
1127        // being performed then we can use post-LTO artifacts, otherwise we must
1128        // reuse pre-LTO artifacts
1129        match compute_per_cgu_lto_type(
1130            &tcx.sess.lto(),
1131            &tcx.sess.opts,
1132            tcx.crate_types(),
1133            ModuleKind::Regular,
1134        ) {
1135            ComputedLtoType::No => CguReuse::PostLto,
1136            _ => CguReuse::PreLto,
1137        }
1138    } else {
1139        CguReuse::No
1140    }
1141}