rustc_trait_selection/traits/
auto_trait.rs

1//! Support code for rustdoc and external tools.
2//! You really don't want to be using this unless you need to.
3
4use std::collections::VecDeque;
5use std::iter;
6
7use rustc_data_structures::fx::{FxIndexMap, FxIndexSet, IndexEntry};
8use rustc_data_structures::unord::UnordSet;
9use rustc_hir::def_id::CRATE_DEF_ID;
10use rustc_infer::infer::DefineOpaqueTypes;
11use rustc_middle::ty::{Region, RegionVid};
12use tracing::debug;
13
14use super::*;
15use crate::errors::UnableToConstructConstantValue;
16use crate::infer::region_constraints::{Constraint, RegionConstraintData};
17use crate::regions::OutlivesEnvironmentBuildExt;
18use crate::traits::project::ProjectAndUnifyResult;
19
20// FIXME(twk): this is obviously not nice to duplicate like that
21#[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
22pub enum RegionTarget<'tcx> {
23    Region(Region<'tcx>),
24    RegionVid(RegionVid),
25}
26
27#[derive(Default, Debug, Clone)]
28pub struct RegionDeps<'tcx> {
29    pub larger: FxIndexSet<RegionTarget<'tcx>>,
30    pub smaller: FxIndexSet<RegionTarget<'tcx>>,
31}
32
33pub enum AutoTraitResult<A> {
34    ExplicitImpl,
35    PositiveImpl(A),
36    NegativeImpl,
37}
38
39pub struct AutoTraitInfo<'cx> {
40    pub full_user_env: ty::ParamEnv<'cx>,
41    pub region_data: RegionConstraintData<'cx>,
42    pub vid_to_region: FxIndexMap<ty::RegionVid, ty::Region<'cx>>,
43}
44
45pub struct AutoTraitFinder<'tcx> {
46    tcx: TyCtxt<'tcx>,
47}
48
49impl<'tcx> AutoTraitFinder<'tcx> {
50    pub fn new(tcx: TyCtxt<'tcx>) -> Self {
51        AutoTraitFinder { tcx }
52    }
53
54    /// Makes a best effort to determine whether and under which conditions an auto trait is
55    /// implemented for a type. For example, if you have
56    ///
57    /// ```
58    /// struct Foo<T> { data: Box<T> }
59    /// ```
60    ///
61    /// then this might return that `Foo<T>: Send` if `T: Send` (encoded in the AutoTraitResult
62    /// type). The analysis attempts to account for custom impls as well as other complex cases.
63    /// This result is intended for use by rustdoc and other such consumers.
64    ///
65    /// (Note that due to the coinductive nature of Send, the full and correct result is actually
66    /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
67    /// types are all Send. So, in our example, we might have that `Foo<T>: Send` if `Box<T>: Send`.
68    /// But this is often not the best way to present to the user.)
69    ///
70    /// Warning: The API should be considered highly unstable, and it may be refactored or removed
71    /// in the future.
72    pub fn find_auto_trait_generics<A>(
73        &self,
74        ty: Ty<'tcx>,
75        typing_env: ty::TypingEnv<'tcx>,
76        trait_did: DefId,
77        mut auto_trait_callback: impl FnMut(AutoTraitInfo<'tcx>) -> A,
78    ) -> AutoTraitResult<A> {
79        let tcx = self.tcx;
80
81        let trait_ref = ty::TraitRef::new(tcx, trait_did, [ty]);
82
83        let (infcx, orig_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
84        let mut selcx = SelectionContext::new(&infcx);
85        for polarity in [ty::PredicatePolarity::Positive, ty::PredicatePolarity::Negative] {
86            let result = selcx.select(&Obligation::new(
87                tcx,
88                ObligationCause::dummy(),
89                orig_env,
90                ty::TraitPredicate { trait_ref, polarity },
91            ));
92            if let Ok(Some(ImplSource::UserDefined(_))) = result {
93                debug!("find_auto_trait_generics({trait_ref:?}): manual impl found, bailing out");
94                // If an explicit impl exists, it always takes priority over an auto impl
95                return AutoTraitResult::ExplicitImpl;
96            }
97        }
98
99        let (infcx, orig_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
100        let mut fresh_preds = FxIndexSet::default();
101
102        // Due to the way projections are handled by SelectionContext, we need to run
103        // evaluate_predicates twice: once on the original param env, and once on the result of
104        // the first evaluate_predicates call.
105        //
106        // The problem is this: most of rustc, including SelectionContext and traits::project,
107        // are designed to work with a concrete usage of a type (e.g., Vec<u8>
108        // fn<T>() { Vec<T> }. This information will generally never change - given
109        // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
110        // If we're unable to prove that 'T' implements a particular trait, we're done -
111        // there's nothing left to do but error out.
112        //
113        // However, synthesizing an auto trait impl works differently. Here, we start out with
114        // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
115        // with - and progressively discover the conditions we need to fulfill for it to
116        // implement a certain auto trait. This ends up breaking two assumptions made by trait
117        // selection and projection:
118        //
119        // * We can always cache the result of a particular trait selection for the lifetime of
120        // an InfCtxt
121        // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
122        // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
123        //
124        // We fix the first assumption by manually clearing out all of the InferCtxt's caches
125        // in between calls to SelectionContext.select. This allows us to keep all of the
126        // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
127        // them between calls.
128        //
129        // We fix the second assumption by reprocessing the result of our first call to
130        // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
131        // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
132        // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
133        // SelectionContext to return it back to us.
134
135        let Some((new_env, user_env)) =
136            self.evaluate_predicates(&infcx, trait_did, ty, orig_env, orig_env, &mut fresh_preds)
137        else {
138            return AutoTraitResult::NegativeImpl;
139        };
140
141        let (full_env, full_user_env) = self
142            .evaluate_predicates(&infcx, trait_did, ty, new_env, user_env, &mut fresh_preds)
143            .unwrap_or_else(|| {
144                panic!("Failed to fully process: {ty:?} {trait_did:?} {orig_env:?}")
145            });
146
147        debug!(
148            "find_auto_trait_generics({:?}): fulfilling \
149             with {:?}",
150            trait_ref, full_env
151        );
152
153        // At this point, we already have all of the bounds we need. FulfillmentContext is used
154        // to store all of the necessary region/lifetime bounds in the InferContext, as well as
155        // an additional sanity check.
156        let ocx = ObligationCtxt::new(&infcx);
157        ocx.register_bound(ObligationCause::dummy(), full_env, ty, trait_did);
158        let errors = ocx.select_all_or_error();
159        if !errors.is_empty() {
160            panic!("Unable to fulfill trait {trait_did:?} for '{ty:?}': {errors:?}");
161        }
162
163        let outlives_env = OutlivesEnvironment::new(&infcx, CRATE_DEF_ID, full_env, []);
164        let _ = infcx.process_registered_region_obligations(&outlives_env, |ty, _| Ok(ty));
165
166        let region_data = infcx.inner.borrow_mut().unwrap_region_constraints().data().clone();
167
168        let vid_to_region = self.map_vid_to_region(&region_data);
169
170        let info = AutoTraitInfo { full_user_env, region_data, vid_to_region };
171
172        AutoTraitResult::PositiveImpl(auto_trait_callback(info))
173    }
174
175    /// The core logic responsible for computing the bounds for our synthesized impl.
176    ///
177    /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
178    /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
179    /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
180    /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
181    /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
182    ///
183    /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
184    /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
185    /// user code. According, it considers all possible ways that a `Predicate` could be met, which
186    /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
187    /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
188    /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
189    /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
190    /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
191    /// like this:
192    /// ```ignore (illustrative)
193    /// impl<T> Send for Foo<T> where T: IntoIterator
194    /// ```
195    /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
196    /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
197    ///
198    /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
199    /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
200    /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
201    /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
202    /// needs to hold.
203    ///
204    /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
205    /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
206    /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
207    /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
208    /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate`, or
209    /// else `SelectionContext` will choke on the missing predicates. However, this should never
210    /// show up in the final synthesized generics: we don't want our generated docs page to contain
211    /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
212    /// separate `user_env`, which only holds the predicates that will actually be displayed to the
213    /// user.
214    fn evaluate_predicates(
215        &self,
216        infcx: &InferCtxt<'tcx>,
217        trait_did: DefId,
218        ty: Ty<'tcx>,
219        param_env: ty::ParamEnv<'tcx>,
220        user_env: ty::ParamEnv<'tcx>,
221        fresh_preds: &mut FxIndexSet<ty::Predicate<'tcx>>,
222    ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
223        let tcx = infcx.tcx;
224
225        // Don't try to process any nested obligations involving predicates
226        // that are already in the `ParamEnv` (modulo regions): we already
227        // know that they must hold.
228        for predicate in param_env.caller_bounds() {
229            fresh_preds.insert(self.clean_pred(infcx, predicate.as_predicate()));
230        }
231
232        let mut select = SelectionContext::new(infcx);
233
234        let mut already_visited = UnordSet::new();
235        let mut predicates = VecDeque::new();
236        predicates.push_back(ty::Binder::dummy(ty::TraitPredicate {
237            trait_ref: ty::TraitRef::new(infcx.tcx, trait_did, [ty]),
238
239            // Auto traits are positive
240            polarity: ty::PredicatePolarity::Positive,
241        }));
242
243        let computed_preds = param_env.caller_bounds().iter().map(|c| c.as_predicate());
244        let mut user_computed_preds: FxIndexSet<_> =
245            user_env.caller_bounds().iter().map(|c| c.as_predicate()).collect();
246
247        let mut new_env = param_env;
248        let dummy_cause = ObligationCause::dummy();
249
250        while let Some(pred) = predicates.pop_front() {
251            if !already_visited.insert(pred) {
252                continue;
253            }
254
255            // Call `infcx.resolve_vars_if_possible` to see if we can
256            // get rid of any inference variables.
257            let obligation = infcx.resolve_vars_if_possible(Obligation::new(
258                tcx,
259                dummy_cause.clone(),
260                new_env,
261                pred,
262            ));
263            let result = select.poly_select(&obligation);
264
265            match result {
266                Ok(Some(ref impl_source)) => {
267                    // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
268                    // we immediately bail out, since it's impossible for us to continue.
269
270                    if let ImplSource::UserDefined(ImplSourceUserDefinedData {
271                        impl_def_id, ..
272                    }) = impl_source
273                    {
274                        // Blame 'tidy' for the weird bracket placement.
275                        if infcx.tcx.impl_polarity(*impl_def_id) != ty::ImplPolarity::Positive {
276                            debug!(
277                                "evaluate_nested_obligations: found explicit negative impl\
278                                        {:?}, bailing out",
279                                impl_def_id
280                            );
281                            return None;
282                        }
283                    }
284
285                    let obligations = impl_source.borrow_nested_obligations().iter().cloned();
286
287                    if !self.evaluate_nested_obligations(
288                        ty,
289                        obligations,
290                        &mut user_computed_preds,
291                        fresh_preds,
292                        &mut predicates,
293                        &mut select,
294                    ) {
295                        return None;
296                    }
297                }
298                Ok(None) => {}
299                Err(SelectionError::Unimplemented) => {
300                    if self.is_param_no_infer(pred.skip_binder().trait_ref.args) {
301                        already_visited.remove(&pred);
302                        self.add_user_pred(&mut user_computed_preds, pred.upcast(self.tcx));
303                        predicates.push_back(pred);
304                    } else {
305                        debug!(
306                            "evaluate_nested_obligations: `Unimplemented` found, bailing: \
307                             {:?} {:?} {:?}",
308                            ty,
309                            pred,
310                            pred.skip_binder().trait_ref.args
311                        );
312                        return None;
313                    }
314                }
315                _ => panic!("Unexpected error for '{ty:?}': {result:?}"),
316            };
317
318            let normalized_preds =
319                elaborate(tcx, computed_preds.clone().chain(user_computed_preds.iter().cloned()));
320            new_env = ty::ParamEnv::new(
321                tcx.mk_clauses_from_iter(normalized_preds.filter_map(|p| p.as_clause())),
322            );
323        }
324
325        let final_user_env = ty::ParamEnv::new(
326            tcx.mk_clauses_from_iter(user_computed_preds.into_iter().filter_map(|p| p.as_clause())),
327        );
328        debug!(
329            "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
330             '{:?}'",
331            ty, trait_did, new_env, final_user_env
332        );
333
334        Some((new_env, final_user_env))
335    }
336
337    /// This method is designed to work around the following issue:
338    /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
339    /// progressively building a `ParamEnv` based on the results we get.
340    /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
341    /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
342    ///
343    /// This can lead to a corner case when dealing with region parameters.
344    /// During our selection loop in `evaluate_predicates`, we might end up with
345    /// two trait predicates that differ only in their region parameters:
346    /// one containing a HRTB lifetime parameter, and one containing a 'normal'
347    /// lifetime parameter. For example:
348    /// ```ignore (illustrative)
349    /// T as MyTrait<'a>
350    /// T as MyTrait<'static>
351    /// ```
352    /// If we put both of these predicates in our computed `ParamEnv`, we'll
353    /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
354    ///
355    /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
356    /// Our end goal is to generate a user-visible description of the conditions
357    /// under which a type implements an auto trait. A trait predicate involving
358    /// a HRTB means that the type needs to work with any choice of lifetime,
359    /// not just one specific lifetime (e.g., `'static`).
360    fn add_user_pred(
361        &self,
362        user_computed_preds: &mut FxIndexSet<ty::Predicate<'tcx>>,
363        new_pred: ty::Predicate<'tcx>,
364    ) {
365        let mut should_add_new = true;
366        user_computed_preds.retain(|&old_pred| {
367            if let (
368                ty::PredicateKind::Clause(ty::ClauseKind::Trait(new_trait)),
369                ty::PredicateKind::Clause(ty::ClauseKind::Trait(old_trait)),
370            ) = (new_pred.kind().skip_binder(), old_pred.kind().skip_binder())
371            {
372                if new_trait.def_id() == old_trait.def_id() {
373                    let new_args = new_trait.trait_ref.args;
374                    let old_args = old_trait.trait_ref.args;
375
376                    if !new_args.types().eq(old_args.types()) {
377                        // We can't compare lifetimes if the types are different,
378                        // so skip checking `old_pred`.
379                        return true;
380                    }
381
382                    for (new_region, old_region) in
383                        iter::zip(new_args.regions(), old_args.regions())
384                    {
385                        match (*new_region, *old_region) {
386                            // If both predicates have an `ReBound` (a HRTB) in the
387                            // same spot, we do nothing.
388                            (ty::ReBound(_, _), ty::ReBound(_, _)) => {}
389
390                            (ty::ReBound(_, _), _) | (_, ty::ReVar(_)) => {
391                                // One of these is true:
392                                // The new predicate has a HRTB in a spot where the old
393                                // predicate does not (if they both had a HRTB, the previous
394                                // match arm would have executed). A HRBT is a 'stricter'
395                                // bound than anything else, so we want to keep the newer
396                                // predicate (with the HRBT) in place of the old predicate.
397                                //
398                                // OR
399                                //
400                                // The old predicate has a region variable where the new
401                                // predicate has some other kind of region. An region
402                                // variable isn't something we can actually display to a user,
403                                // so we choose their new predicate (which doesn't have a region
404                                // variable).
405                                //
406                                // In both cases, we want to remove the old predicate,
407                                // from `user_computed_preds`, and replace it with the new
408                                // one. Having both the old and the new
409                                // predicate in a `ParamEnv` would confuse `SelectionContext`.
410                                //
411                                // We're currently in the predicate passed to 'retain',
412                                // so we return `false` to remove the old predicate from
413                                // `user_computed_preds`.
414                                return false;
415                            }
416                            (_, ty::ReBound(_, _)) | (ty::ReVar(_), _) => {
417                                // This is the opposite situation as the previous arm.
418                                // One of these is true:
419                                //
420                                // The old predicate has a HRTB lifetime in a place where the
421                                // new predicate does not.
422                                //
423                                // OR
424                                //
425                                // The new predicate has a region variable where the old
426                                // predicate has some other type of region.
427                                //
428                                // We want to leave the old
429                                // predicate in `user_computed_preds`, and skip adding
430                                // new_pred to `user_computed_params`.
431                                should_add_new = false
432                            }
433                            _ => {}
434                        }
435                    }
436                }
437            }
438            true
439        });
440
441        if should_add_new {
442            user_computed_preds.insert(new_pred);
443        }
444    }
445
446    /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
447    /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
448    fn map_vid_to_region<'cx>(
449        &self,
450        regions: &RegionConstraintData<'cx>,
451    ) -> FxIndexMap<ty::RegionVid, ty::Region<'cx>> {
452        let mut vid_map = FxIndexMap::<RegionTarget<'cx>, RegionDeps<'cx>>::default();
453        let mut finished_map = FxIndexMap::default();
454
455        for (constraint, _) in &regions.constraints {
456            match constraint {
457                &Constraint::VarSubVar(r1, r2) => {
458                    {
459                        let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
460                        deps1.larger.insert(RegionTarget::RegionVid(r2));
461                    }
462
463                    let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
464                    deps2.smaller.insert(RegionTarget::RegionVid(r1));
465                }
466                &Constraint::RegSubVar(region, vid) => {
467                    {
468                        let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
469                        deps1.larger.insert(RegionTarget::RegionVid(vid));
470                    }
471
472                    let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
473                    deps2.smaller.insert(RegionTarget::Region(region));
474                }
475                &Constraint::VarSubReg(vid, region) => {
476                    finished_map.insert(vid, region);
477                }
478                &Constraint::RegSubReg(r1, r2) => {
479                    {
480                        let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
481                        deps1.larger.insert(RegionTarget::Region(r2));
482                    }
483
484                    let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
485                    deps2.smaller.insert(RegionTarget::Region(r1));
486                }
487            }
488        }
489
490        while !vid_map.is_empty() {
491            let target = *vid_map.keys().next().unwrap();
492            let deps = vid_map.swap_remove(&target).unwrap();
493
494            for smaller in deps.smaller.iter() {
495                for larger in deps.larger.iter() {
496                    match (smaller, larger) {
497                        (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
498                            if let IndexEntry::Occupied(v) = vid_map.entry(*smaller) {
499                                let smaller_deps = v.into_mut();
500                                smaller_deps.larger.insert(*larger);
501                                smaller_deps.larger.swap_remove(&target);
502                            }
503
504                            if let IndexEntry::Occupied(v) = vid_map.entry(*larger) {
505                                let larger_deps = v.into_mut();
506                                larger_deps.smaller.insert(*smaller);
507                                larger_deps.smaller.swap_remove(&target);
508                            }
509                        }
510                        (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
511                            finished_map.insert(v1, r1);
512                        }
513                        (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
514                            // Do nothing; we don't care about regions that are smaller than vids.
515                        }
516                        (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
517                            if let IndexEntry::Occupied(v) = vid_map.entry(*smaller) {
518                                let smaller_deps = v.into_mut();
519                                smaller_deps.larger.insert(*larger);
520                                smaller_deps.larger.swap_remove(&target);
521                            }
522
523                            if let IndexEntry::Occupied(v) = vid_map.entry(*larger) {
524                                let larger_deps = v.into_mut();
525                                larger_deps.smaller.insert(*smaller);
526                                larger_deps.smaller.swap_remove(&target);
527                            }
528                        }
529                    }
530                }
531            }
532        }
533
534        finished_map
535    }
536
537    fn is_param_no_infer(&self, args: GenericArgsRef<'tcx>) -> bool {
538        self.is_of_param(args.type_at(0)) && !args.types().any(|t| t.has_infer_types())
539    }
540
541    pub fn is_of_param(&self, ty: Ty<'tcx>) -> bool {
542        match ty.kind() {
543            ty::Param(_) => true,
544            ty::Alias(ty::Projection, p) => self.is_of_param(p.self_ty()),
545            _ => false,
546        }
547    }
548
549    fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'tcx>) -> bool {
550        if let Some(ty) = p.term().skip_binder().as_type() {
551            matches!(ty.kind(), ty::Alias(ty::Projection, proj) if proj == &p.skip_binder().projection_term.expect_ty(self.tcx))
552        } else {
553            false
554        }
555    }
556
557    fn evaluate_nested_obligations(
558        &self,
559        ty: Ty<'_>,
560        nested: impl Iterator<Item = PredicateObligation<'tcx>>,
561        computed_preds: &mut FxIndexSet<ty::Predicate<'tcx>>,
562        fresh_preds: &mut FxIndexSet<ty::Predicate<'tcx>>,
563        predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
564        selcx: &mut SelectionContext<'_, 'tcx>,
565    ) -> bool {
566        let dummy_cause = ObligationCause::dummy();
567
568        for obligation in nested {
569            let is_new_pred =
570                fresh_preds.insert(self.clean_pred(selcx.infcx, obligation.predicate));
571
572            // Resolve any inference variables that we can, to help selection succeed
573            let predicate = selcx.infcx.resolve_vars_if_possible(obligation.predicate);
574
575            // We only add a predicate as a user-displayable bound if
576            // it involves a generic parameter, and doesn't contain
577            // any inference variables.
578            //
579            // Displaying a bound involving a concrete type (instead of a generic
580            // parameter) would be pointless, since it's always true
581            // (e.g. u8: Copy)
582            // Displaying an inference variable is impossible, since they're
583            // an internal compiler detail without a defined visual representation
584            //
585            // We check this by calling is_of_param on the relevant types
586            // from the various possible predicates
587
588            let bound_predicate = predicate.kind();
589            match bound_predicate.skip_binder() {
590                ty::PredicateKind::Clause(ty::ClauseKind::Trait(p)) => {
591                    // Add this to `predicates` so that we end up calling `select`
592                    // with it. If this predicate ends up being unimplemented,
593                    // then `evaluate_predicates` will handle adding it the `ParamEnv`
594                    // if possible.
595                    predicates.push_back(bound_predicate.rebind(p));
596                }
597                ty::PredicateKind::Clause(ty::ClauseKind::Projection(p)) => {
598                    let p = bound_predicate.rebind(p);
599                    debug!(
600                        "evaluate_nested_obligations: examining projection predicate {:?}",
601                        predicate
602                    );
603
604                    // As described above, we only want to display
605                    // bounds which include a generic parameter but don't include
606                    // an inference variable.
607                    // Additionally, we check if we've seen this predicate before,
608                    // to avoid rendering duplicate bounds to the user.
609                    if self.is_param_no_infer(p.skip_binder().projection_term.args)
610                        && !p.term().skip_binder().has_infer_types()
611                        && is_new_pred
612                    {
613                        debug!(
614                            "evaluate_nested_obligations: adding projection predicate \
615                            to computed_preds: {:?}",
616                            predicate
617                        );
618
619                        // Under unusual circumstances, we can end up with a self-referential
620                        // projection predicate. For example:
621                        // <T as MyType>::Value == <T as MyType>::Value
622                        // Not only is displaying this to the user pointless,
623                        // having it in the ParamEnv will cause an issue if we try to call
624                        // poly_project_and_unify_type on the predicate, since this kind of
625                        // predicate will normally never end up in a ParamEnv.
626                        //
627                        // For these reasons, we ignore these weird predicates,
628                        // ensuring that we're able to properly synthesize an auto trait impl
629                        if self.is_self_referential_projection(p) {
630                            debug!(
631                                "evaluate_nested_obligations: encountered a projection
632                                 predicate equating a type with itself! Skipping"
633                            );
634                        } else {
635                            self.add_user_pred(computed_preds, predicate);
636                        }
637                    }
638
639                    // There are three possible cases when we project a predicate:
640                    //
641                    // 1. We encounter an error. This means that it's impossible for
642                    // our current type to implement the auto trait - there's bound
643                    // that we could add to our ParamEnv that would 'fix' this kind
644                    // of error, as it's not caused by an unimplemented type.
645                    //
646                    // 2. We successfully project the predicate (Ok(Some(_))), generating
647                    //  some subobligations. We then process these subobligations
648                    //  like any other generated sub-obligations.
649                    //
650                    // 3. We receive an 'ambiguous' result (Ok(None))
651                    // If we were actually trying to compile a crate,
652                    // we would need to re-process this obligation later.
653                    // However, all we care about is finding out what bounds
654                    // are needed for our type to implement a particular auto trait.
655                    // We've already added this obligation to our computed ParamEnv
656                    // above (if it was necessary). Therefore, we don't need
657                    // to do any further processing of the obligation.
658                    //
659                    // Note that we *must* try to project *all* projection predicates
660                    // we encounter, even ones without inference variable.
661                    // This ensures that we detect any projection errors,
662                    // which indicate that our type can *never* implement the given
663                    // auto trait. In that case, we will generate an explicit negative
664                    // impl (e.g. 'impl !Send for MyType'). However, we don't
665                    // try to process any of the generated subobligations -
666                    // they contain no new information, since we already know
667                    // that our type implements the projected-through trait,
668                    // and can lead to weird region issues.
669                    //
670                    // Normally, we'll generate a negative impl as a result of encountering
671                    // a type with an explicit negative impl of an auto trait
672                    // (for example, raw pointers have !Send and !Sync impls)
673                    // However, through some **interesting** manipulations of the type
674                    // system, it's actually possible to write a type that never
675                    // implements an auto trait due to a projection error, not a normal
676                    // negative impl error. To properly handle this case, we need
677                    // to ensure that we catch any potential projection errors,
678                    // and turn them into an explicit negative impl for our type.
679                    debug!("Projecting and unifying projection predicate {:?}", predicate);
680
681                    match project::poly_project_and_unify_term(selcx, &obligation.with(self.tcx, p))
682                    {
683                        ProjectAndUnifyResult::MismatchedProjectionTypes(e) => {
684                            debug!(
685                                "evaluate_nested_obligations: Unable to unify predicate \
686                                 '{:?}' '{:?}', bailing out",
687                                ty, e
688                            );
689                            return false;
690                        }
691                        ProjectAndUnifyResult::Recursive => {
692                            debug!("evaluate_nested_obligations: recursive projection predicate");
693                            return false;
694                        }
695                        ProjectAndUnifyResult::Holds(v) => {
696                            // We only care about sub-obligations
697                            // when we started out trying to unify
698                            // some inference variables. See the comment above
699                            // for more information
700                            if p.term().skip_binder().has_infer_types() {
701                                if !self.evaluate_nested_obligations(
702                                    ty,
703                                    v.into_iter(),
704                                    computed_preds,
705                                    fresh_preds,
706                                    predicates,
707                                    selcx,
708                                ) {
709                                    return false;
710                                }
711                            }
712                        }
713                        ProjectAndUnifyResult::FailedNormalization => {
714                            // It's ok not to make progress when have no inference variables -
715                            // in that case, we were only performing unification to check if an
716                            // error occurred (which would indicate that it's impossible for our
717                            // type to implement the auto trait).
718                            // However, we should always make progress (either by generating
719                            // subobligations or getting an error) when we started off with
720                            // inference variables
721                            if p.term().skip_binder().has_infer_types() {
722                                panic!("Unexpected result when selecting {ty:?} {obligation:?}")
723                            }
724                        }
725                    }
726                }
727                ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(binder)) => {
728                    let binder = bound_predicate.rebind(binder);
729                    selcx.infcx.region_outlives_predicate(&dummy_cause, binder)
730                }
731                ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(binder)) => {
732                    let binder = bound_predicate.rebind(binder);
733                    match (
734                        binder.no_bound_vars(),
735                        binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
736                    ) {
737                        (None, Some(t_a)) => {
738                            selcx.infcx.register_region_obligation_with_cause(
739                                t_a,
740                                selcx.infcx.tcx.lifetimes.re_static,
741                                &dummy_cause,
742                            );
743                        }
744                        (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
745                            selcx.infcx.register_region_obligation_with_cause(
746                                t_a,
747                                r_b,
748                                &dummy_cause,
749                            );
750                        }
751                        _ => {}
752                    };
753                }
754                ty::PredicateKind::ConstEquate(c1, c2) => {
755                    let evaluate = |c: ty::Const<'tcx>| {
756                        if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
757                            let ct = super::try_evaluate_const(
758                                selcx.infcx,
759                                c,
760                                obligation.param_env,
761                            );
762
763                            if let Err(EvaluateConstErr::InvalidConstParamTy(_)) = ct {
764                                self.tcx.dcx().emit_err(UnableToConstructConstantValue {
765                                    span: self.tcx.def_span(unevaluated.def),
766                                    unevaluated,
767                                });
768                            }
769
770                            ct
771                        } else {
772                            Ok(c)
773                        }
774                    };
775
776                    match (evaluate(c1), evaluate(c2)) {
777                        (Ok(c1), Ok(c2)) => {
778                            match selcx.infcx.at(&obligation.cause, obligation.param_env).eq(DefineOpaqueTypes::Yes,c1, c2)
779                            {
780                                Ok(_) => (),
781                                Err(_) => return false,
782                            }
783                        }
784                        _ => return false,
785                    }
786                }
787
788                // There's not really much we can do with these predicates -
789                // we start out with a `ParamEnv` with no inference variables,
790                // and these don't correspond to adding any new bounds to
791                // the `ParamEnv`.
792                ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(..))
793                | ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(..))
794                | ty::PredicateKind::NormalizesTo(..)
795                | ty::PredicateKind::AliasRelate(..)
796                | ty::PredicateKind::DynCompatible(..)
797                | ty::PredicateKind::Subtype(..)
798                // FIXME(generic_const_exprs): you can absolutely add this as a where clauses
799                | ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(..))
800                | ty::PredicateKind::Coerce(..)
801                | ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(..)) => {}
802                ty::PredicateKind::Ambiguous => return false,
803            };
804        }
805        true
806    }
807
808    pub fn clean_pred(
809        &self,
810        infcx: &InferCtxt<'tcx>,
811        p: ty::Predicate<'tcx>,
812    ) -> ty::Predicate<'tcx> {
813        infcx.freshen(p)
814    }
815}