rustc_hir_analysis/check/region.rs
1//! This file builds up the `ScopeTree`, which describes
2//! the parent links in the region hierarchy.
3//!
4//! For more information about how MIR-based region-checking works,
5//! see the [rustc dev guide].
6//!
7//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/borrow_check.html
8
9use std::mem;
10
11use rustc_data_structures::fx::FxHashMap;
12use rustc_hir as hir;
13use rustc_hir::def::{CtorKind, DefKind, Res};
14use rustc_hir::def_id::DefId;
15use rustc_hir::intravisit::{self, Visitor};
16use rustc_hir::{Arm, Block, Expr, LetStmt, Pat, PatKind, Stmt};
17use rustc_index::Idx;
18use rustc_middle::middle::region::*;
19use rustc_middle::ty::TyCtxt;
20use rustc_session::lint;
21use rustc_span::source_map;
22use tracing::debug;
23
24#[derive(Debug, Copy, Clone)]
25struct Context {
26 /// The scope that contains any new variables declared.
27 var_parent: (Option<Scope>, ScopeCompatibility),
28
29 /// Region parent of expressions, etc.
30 parent: Option<Scope>,
31}
32
33struct ScopeResolutionVisitor<'tcx> {
34 tcx: TyCtxt<'tcx>,
35
36 // The generated scope tree.
37 scope_tree: ScopeTree,
38
39 cx: Context,
40
41 extended_super_lets: FxHashMap<hir::ItemLocalId, ExtendedTemporaryScope>,
42}
43
44#[derive(Copy, Clone)]
45struct ExtendedTemporaryScope {
46 /// The scope of extended temporaries.
47 scope: Option<Scope>,
48 /// Whether this lifetime originated from a regular `let` or a `super let` initializer. In the
49 /// latter case, this scope may shorten after #145838 if applied to temporaries within block
50 /// tail expressions.
51 let_kind: LetKind,
52 /// Whether this scope will shorten after #145838. If this is applied to a temporary value,
53 /// we'll emit the `macro_extended_temporary_scopes` lint.
54 compat: ScopeCompatibility,
55}
56
57/// Records the lifetime of a local variable as `cx.var_parent`
58fn record_var_lifetime(visitor: &mut ScopeResolutionVisitor<'_>, var_id: hir::ItemLocalId) {
59 let (var_parent_scope, var_parent_compat) = visitor.cx.var_parent;
60 match var_parent_scope {
61 None => {
62 // this can happen in extern fn declarations like
63 //
64 // extern fn isalnum(c: c_int) -> c_int
65 }
66 Some(parent_scope) => visitor.scope_tree.record_var_scope(var_id, parent_scope),
67 }
68 if let ScopeCompatibility::FutureIncompatible { shortens_to } = var_parent_compat {
69 visitor.scope_tree.record_future_incompatible_var_scope(var_id, shortens_to);
70 }
71}
72
73fn resolve_block<'tcx>(
74 visitor: &mut ScopeResolutionVisitor<'tcx>,
75 blk: &'tcx hir::Block<'tcx>,
76 terminating: bool,
77) {
78 debug!("resolve_block(blk.hir_id={:?})", blk.hir_id);
79
80 let prev_cx = visitor.cx;
81
82 // We treat the tail expression in the block (if any) somewhat
83 // differently from the statements. The issue has to do with
84 // temporary lifetimes. Consider the following:
85 //
86 // quux({
87 // let inner = ... (&bar()) ...;
88 //
89 // (... (&foo()) ...) // (the tail expression)
90 // }, other_argument());
91 //
92 // Each of the statements within the block is a terminating
93 // scope, and thus a temporary (e.g., the result of calling
94 // `bar()` in the initializer expression for `let inner = ...;`)
95 // will be cleaned up immediately after its corresponding
96 // statement (i.e., `let inner = ...;`) executes.
97 //
98 // On the other hand, temporaries associated with evaluating the
99 // tail expression for the block are assigned lifetimes so that
100 // they will be cleaned up as part of the terminating scope
101 // *surrounding* the block expression. Here, the terminating
102 // scope for the block expression is the `quux(..)` call; so
103 // those temporaries will only be cleaned up *after* both
104 // `other_argument()` has run and also the call to `quux(..)`
105 // itself has returned.
106
107 visitor.enter_node_scope_with_dtor(blk.hir_id.local_id, terminating);
108 visitor.cx.var_parent = (visitor.cx.parent, ScopeCompatibility::FutureCompatible);
109
110 {
111 // This block should be kept approximately in sync with
112 // `intravisit::walk_block`. (We manually walk the block, rather
113 // than call `walk_block`, in order to maintain precise
114 // index information.)
115
116 for (i, statement) in blk.stmts.iter().enumerate() {
117 match statement.kind {
118 hir::StmtKind::Let(LetStmt { els: Some(els), .. }) => {
119 // Let-else has a special lexical structure for variables.
120 // First we take a checkpoint of the current scope context here.
121 let mut prev_cx = visitor.cx;
122
123 visitor.enter_scope(Scope {
124 local_id: blk.hir_id.local_id,
125 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
126 });
127 visitor.cx.var_parent =
128 (visitor.cx.parent, ScopeCompatibility::FutureCompatible);
129 visitor.visit_stmt(statement);
130 // We need to back out temporarily to the last enclosing scope
131 // for the `else` block, so that even the temporaries receiving
132 // extended lifetime will be dropped inside this block.
133 // We are visiting the `else` block in this order so that
134 // the sequence of visits agree with the order in the default
135 // `hir::intravisit` visitor.
136 mem::swap(&mut prev_cx, &mut visitor.cx);
137 resolve_block(visitor, els, true);
138 // From now on, we continue normally.
139 visitor.cx = prev_cx;
140 }
141 hir::StmtKind::Let(..) => {
142 // Each declaration introduces a subscope for bindings
143 // introduced by the declaration; this subscope covers a
144 // suffix of the block. Each subscope in a block has the
145 // previous subscope in the block as a parent, except for
146 // the first such subscope, which has the block itself as a
147 // parent.
148 visitor.enter_scope(Scope {
149 local_id: blk.hir_id.local_id,
150 data: ScopeData::Remainder(FirstStatementIndex::new(i)),
151 });
152 visitor.cx.var_parent =
153 (visitor.cx.parent, ScopeCompatibility::FutureCompatible);
154 visitor.visit_stmt(statement)
155 }
156 hir::StmtKind::Item(..) => {
157 // Don't create scopes for items, since they won't be
158 // lowered to THIR and MIR.
159 }
160 hir::StmtKind::Expr(..) | hir::StmtKind::Semi(..) => visitor.visit_stmt(statement),
161 }
162 }
163 if let Some(tail_expr) = blk.expr {
164 let local_id = tail_expr.hir_id.local_id;
165 let edition = blk.span.edition();
166 let terminating = edition.at_least_rust_2024();
167 if !terminating
168 && !visitor
169 .tcx
170 .lints_that_dont_need_to_run(())
171 .contains(&lint::LintId::of(lint::builtin::TAIL_EXPR_DROP_ORDER))
172 {
173 // If this temporary scope will be changing once the codebase adopts Rust 2024,
174 // and we are linting about possible semantic changes that would result,
175 // then record this node-id in the field `backwards_incompatible_scope`
176 // for future reference.
177 visitor
178 .scope_tree
179 .backwards_incompatible_scope
180 .insert(local_id, Scope { local_id, data: ScopeData::Node });
181 }
182 resolve_expr(visitor, tail_expr, terminating);
183 }
184 }
185
186 visitor.cx = prev_cx;
187}
188
189/// Resolve a condition from an `if` expression or match guard so that it is a terminating scope
190/// if it doesn't contain `let` expressions.
191fn resolve_cond<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, cond: &'tcx hir::Expr<'tcx>) {
192 let terminate = match cond.kind {
193 // Temporaries for `let` expressions must live into the success branch.
194 hir::ExprKind::Let(_) => false,
195 // Logical operator chains are handled in `resolve_expr`. Since logical operator chains in
196 // conditions are lowered to control-flow rather than boolean temporaries, there's no
197 // temporary to drop for logical operators themselves. `resolve_expr` will also recursively
198 // wrap any operands in terminating scopes, other than `let` expressions (which we shouldn't
199 // terminate) and other logical operators (which don't need a terminating scope, since their
200 // operands will be terminated). Any temporaries that would need to be dropped will be
201 // dropped before we leave this operator's scope; terminating them here would be redundant.
202 hir::ExprKind::Binary(
203 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
204 _,
205 _,
206 ) => false,
207 // Otherwise, conditions should always drop their temporaries.
208 _ => true,
209 };
210 resolve_expr(visitor, cond, terminate);
211}
212
213fn resolve_arm<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, arm: &'tcx hir::Arm<'tcx>) {
214 let prev_cx = visitor.cx;
215
216 visitor.enter_node_scope_with_dtor(arm.hir_id.local_id, true);
217 visitor.cx.var_parent = (visitor.cx.parent, ScopeCompatibility::FutureCompatible);
218
219 resolve_pat(visitor, arm.pat);
220 if let Some(guard) = arm.guard {
221 // We introduce a new scope to contain bindings and temporaries from `if let` guards, to
222 // ensure they're dropped before the arm's pattern's bindings. This extends to the end of
223 // the arm body and is the scope of its locals as well.
224 visitor.enter_scope(Scope { local_id: arm.hir_id.local_id, data: ScopeData::MatchGuard });
225 visitor.cx.var_parent = (visitor.cx.parent, ScopeCompatibility::FutureCompatible);
226 resolve_cond(visitor, guard);
227 }
228 resolve_expr(visitor, arm.body, false);
229
230 visitor.cx = prev_cx;
231}
232
233#[tracing::instrument(level = "debug", skip(visitor))]
234fn resolve_pat<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, pat: &'tcx hir::Pat<'tcx>) {
235 // If this is a binding then record the lifetime of that binding.
236 if let PatKind::Binding(..) = pat.kind {
237 record_var_lifetime(visitor, pat.hir_id.local_id);
238 }
239
240 intravisit::walk_pat(visitor, pat);
241}
242
243fn resolve_stmt<'tcx>(visitor: &mut ScopeResolutionVisitor<'tcx>, stmt: &'tcx hir::Stmt<'tcx>) {
244 let stmt_id = stmt.hir_id.local_id;
245 debug!("resolve_stmt(stmt.id={:?})", stmt_id);
246
247 if let hir::StmtKind::Let(LetStmt { super_: Some(_), .. }) = stmt.kind {
248 // `super let` statement does not start a new scope, such that
249 //
250 // { super let x = identity(&temp()); &x }.method();
251 //
252 // behaves exactly as
253 //
254 // (&identity(&temp()).method();
255 intravisit::walk_stmt(visitor, stmt);
256 } else {
257 // Every statement will clean up the temporaries created during
258 // execution of that statement. Therefore each statement has an
259 // associated destruction scope that represents the scope of the
260 // statement plus its destructors, and thus the scope for which
261 // regions referenced by the destructors need to survive.
262
263 let prev_parent = visitor.cx.parent;
264 visitor.enter_node_scope_with_dtor(stmt_id, true);
265
266 intravisit::walk_stmt(visitor, stmt);
267
268 visitor.cx.parent = prev_parent;
269 }
270}
271
272#[tracing::instrument(level = "debug", skip(visitor))]
273fn resolve_expr<'tcx>(
274 visitor: &mut ScopeResolutionVisitor<'tcx>,
275 expr: &'tcx hir::Expr<'tcx>,
276 terminating: bool,
277) {
278 let prev_cx = visitor.cx;
279 visitor.enter_node_scope_with_dtor(expr.hir_id.local_id, terminating);
280
281 match expr.kind {
282 // Conditional or repeating scopes are always terminating
283 // scopes, meaning that temporaries cannot outlive them.
284 // This ensures fixed size stacks.
285 hir::ExprKind::Binary(
286 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
287 left,
288 right,
289 ) => {
290 // expr is a short circuiting operator (|| or &&). As its
291 // functionality can't be overridden by traits, it always
292 // processes bool sub-expressions. bools are Copy and thus we
293 // can drop any temporaries in evaluation (read) order
294 // (with the exception of potentially failing let expressions).
295 // We achieve this by enclosing the operands in a terminating
296 // scope, both the LHS and the RHS.
297
298 // We optimize this a little in the presence of chains.
299 // Chains like a && b && c get lowered to AND(AND(a, b), c).
300 // In here, b and c are RHS, while a is the only LHS operand in
301 // that chain. This holds true for longer chains as well: the
302 // leading operand is always the only LHS operand that is not a
303 // binop itself. Putting a binop like AND(a, b) into a
304 // terminating scope is not useful, thus we only put the LHS
305 // into a terminating scope if it is not a binop.
306
307 let terminate_lhs = match left.kind {
308 // let expressions can create temporaries that live on
309 hir::ExprKind::Let(_) => false,
310 // binops already drop their temporaries, so there is no
311 // need to put them into a terminating scope.
312 // This is purely an optimization to reduce the number of
313 // terminating scopes.
314 hir::ExprKind::Binary(
315 source_map::Spanned { node: hir::BinOpKind::And | hir::BinOpKind::Or, .. },
316 ..,
317 ) => false,
318 // otherwise: mark it as terminating
319 _ => true,
320 };
321
322 // `Let` expressions (in a let-chain) shouldn't be terminating, as their temporaries
323 // should live beyond the immediate expression
324 let terminate_rhs = !matches!(right.kind, hir::ExprKind::Let(_));
325
326 resolve_expr(visitor, left, terminate_lhs);
327 resolve_expr(visitor, right, terminate_rhs);
328 }
329 // Manually recurse over closures, because they are nested bodies
330 // that share the parent environment. We handle const blocks in
331 // `visit_inline_const`.
332 hir::ExprKind::Closure(&hir::Closure { body, .. }) => {
333 let body = visitor.tcx.hir_body(body);
334 visitor.visit_body(body);
335 }
336 // Ordinarily, we can rely on the visit order of HIR intravisit
337 // to correspond to the actual execution order of statements.
338 // However, there's a weird corner case with compound assignment
339 // operators (e.g. `a += b`). The evaluation order depends on whether
340 // or not the operator is overloaded (e.g. whether or not a trait
341 // like AddAssign is implemented).
342 //
343 // For primitive types (which, despite having a trait impl, don't actually
344 // end up calling it), the evaluation order is right-to-left. For example,
345 // the following code snippet:
346 //
347 // let y = &mut 0;
348 // *{println!("LHS!"); y} += {println!("RHS!"); 1};
349 //
350 // will print:
351 //
352 // RHS!
353 // LHS!
354 //
355 // However, if the operator is used on a non-primitive type,
356 // the evaluation order will be left-to-right, since the operator
357 // actually get desugared to a method call. For example, this
358 // nearly identical code snippet:
359 //
360 // let y = &mut String::new();
361 // *{println!("LHS String"); y} += {println!("RHS String"); "hi"};
362 //
363 // will print:
364 // LHS String
365 // RHS String
366 //
367 // To determine the actual execution order, we need to perform
368 // trait resolution. Fortunately, we don't need to know the actual execution order.
369 hir::ExprKind::AssignOp(_, left_expr, right_expr) => {
370 visitor.visit_expr(right_expr);
371 visitor.visit_expr(left_expr);
372 }
373
374 hir::ExprKind::If(cond, then, Some(otherwise)) => {
375 let expr_cx = visitor.cx;
376 let data = if expr.span.at_least_rust_2024() {
377 ScopeData::IfThenRescope
378 } else {
379 ScopeData::IfThen
380 };
381 visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data });
382 visitor.cx.var_parent = (visitor.cx.parent, ScopeCompatibility::FutureCompatible);
383 resolve_cond(visitor, cond);
384 resolve_expr(visitor, then, true);
385 visitor.cx = expr_cx;
386 resolve_expr(visitor, otherwise, true);
387 }
388
389 hir::ExprKind::If(cond, then, None) => {
390 let expr_cx = visitor.cx;
391 let data = if expr.span.at_least_rust_2024() {
392 ScopeData::IfThenRescope
393 } else {
394 ScopeData::IfThen
395 };
396 visitor.enter_scope(Scope { local_id: then.hir_id.local_id, data });
397 visitor.cx.var_parent = (visitor.cx.parent, ScopeCompatibility::FutureCompatible);
398 resolve_cond(visitor, cond);
399 resolve_expr(visitor, then, true);
400 visitor.cx = expr_cx;
401 }
402
403 hir::ExprKind::Loop(body, _, _, _) => {
404 resolve_block(visitor, body, true);
405 }
406
407 hir::ExprKind::DropTemps(expr) => {
408 // `DropTemps(expr)` does not denote a conditional scope.
409 // Rather, we want to achieve the same behavior as `{ let _t = expr; _t }`.
410 resolve_expr(visitor, expr, true);
411 }
412
413 _ => intravisit::walk_expr(visitor, expr),
414 }
415
416 visitor.cx = prev_cx;
417}
418
419#[derive(Copy, Clone, PartialEq, Eq, Debug)]
420enum LetKind {
421 Regular,
422 Super,
423}
424
425fn resolve_local<'tcx>(
426 visitor: &mut ScopeResolutionVisitor<'tcx>,
427 pat: Option<&'tcx hir::Pat<'tcx>>,
428 init: Option<&'tcx hir::Expr<'tcx>>,
429 let_kind: LetKind,
430) {
431 debug!("resolve_local(pat={:?}, init={:?}, let_kind={:?})", pat, init, let_kind);
432
433 // As an exception to the normal rules governing temporary
434 // lifetimes, initializers in a let have a temporary lifetime
435 // of the enclosing block. This means that e.g., a program
436 // like the following is legal:
437 //
438 // let ref x = HashMap::new();
439 //
440 // Because the hash map will be freed in the enclosing block.
441 //
442 // We express the rules more formally based on 3 grammars (defined
443 // fully in the helpers below that implement them):
444 //
445 // 1. `E&`, which matches expressions like `&<rvalue>` that
446 // own a pointer into the stack.
447 //
448 // 2. `P&`, which matches patterns like `ref x` or `(ref x, ref
449 // y)` that produce ref bindings into the value they are
450 // matched against or something (at least partially) owned by
451 // the value they are matched against. (By partially owned,
452 // I mean that creating a binding into a ref-counted or managed value
453 // would still count.)
454 //
455 // 3. `ET`, which matches both rvalues like `foo()` as well as places
456 // based on rvalues like `foo().x[2].y`.
457 //
458 // A subexpression `<rvalue>` that appears in a let initializer
459 // `let pat [: ty] = expr` has an extended temporary lifetime if
460 // any of the following conditions are met:
461 //
462 // A. `pat` matches `P&` and `expr` matches `ET`
463 // (covers cases where `pat` creates ref bindings into an rvalue
464 // produced by `expr`)
465 // B. `ty` is a borrowed pointer and `expr` matches `ET`
466 // (covers cases where coercion creates a borrow)
467 // C. `expr` matches `E&`
468 // (covers cases `expr` borrows an rvalue that is then assigned
469 // to memory (at least partially) owned by the binding)
470 //
471 // Here are some examples hopefully giving an intuition where each
472 // rule comes into play and why:
473 //
474 // Rule A. `let (ref x, ref y) = (foo().x, 44)`. The rvalue `(22, 44)`
475 // would have an extended lifetime, but not `foo()`.
476 //
477 // Rule B. `let x = &foo().x`. The rvalue `foo()` would have extended
478 // lifetime.
479 //
480 // In some cases, multiple rules may apply (though not to the same
481 // rvalue). For example:
482 //
483 // let ref x = [&a(), &b()];
484 //
485 // Here, the expression `[...]` has an extended lifetime due to rule
486 // A, but the inner rvalues `a()` and `b()` have an extended lifetime
487 // due to rule C.
488
489 let (source_let_kind, compat) = match let_kind {
490 // Normal `let` initializers are unaffected by #145838.
491 LetKind::Regular => {
492 (LetKind::Regular, ScopeCompatibility::FutureCompatible)
493 }
494 LetKind::Super => {
495 if let Some(scope) = visitor.extended_super_lets.remove(&pat.unwrap().hir_id.local_id) {
496 // This expression was lifetime-extended by a parent let binding. E.g.
497 //
498 // let a = {
499 // super let b = temp();
500 // &b
501 // };
502 //
503 // (Which needs to behave exactly as: let a = &temp();)
504 //
505 // Processing of `let a` will have already decided to extend the lifetime of this
506 // `super let` to its own var_scope. We use that scope.
507 visitor.cx.var_parent = (scope.scope, scope.compat);
508 // Inherit compatibility from the original `let` statement. If the original `let`
509 // was regular, lifetime extension should apply as normal. If the original `let` was
510 // `super`, blocks within the initializer will be affected by #145838.
511 (scope.let_kind, scope.compat)
512 } else {
513 // This `super let` is not subject to lifetime extension from a parent let binding. E.g.
514 //
515 // identity({ super let x = temp(); &x }).method();
516 //
517 // (Which needs to behave exactly as: identity(&temp()).method();)
518 //
519 // Iterate up to the enclosing destruction scope to find the same scope that will also
520 // be used for the result of the block itself.
521 if let (Some(inner_scope), _) = visitor.cx.var_parent {
522 // NB(@dianne): This could use the incompatibility reported by
523 // `default_temporary_scope` to make `tail_expr_drop_order` more comprehensive.
524 visitor.cx.var_parent =
525 (visitor.scope_tree.default_temporary_scope(inner_scope).0, ScopeCompatibility::FutureCompatible);
526 }
527 // Blocks within the initializer will be affected by #145838.
528 (LetKind::Super, ScopeCompatibility::FutureCompatible)
529 }
530 }
531 };
532
533 if let Some(expr) = init {
534 let scope = ExtendedTemporaryScope {
535 scope: visitor.cx.var_parent.0,
536 let_kind: source_let_kind,
537 compat,
538 };
539 record_rvalue_scope_if_borrow_expr(visitor, expr, scope);
540
541 if let Some(pat) = pat {
542 if is_binding_pat(pat) {
543 visitor.scope_tree.record_rvalue_candidate(
544 expr.hir_id,
545 RvalueCandidate {
546 target: expr.hir_id.local_id,
547 lifetime: visitor.cx.var_parent.0,
548 compat: visitor.cx.var_parent.1,
549 },
550 );
551 }
552 }
553 }
554
555 // Make sure we visit the initializer first.
556 // The correct order, as shared between drop_ranges and intravisitor,
557 // is to walk initializer, followed by pattern bindings, finally followed by the `else` block.
558 if let Some(expr) = init {
559 visitor.visit_expr(expr);
560 }
561
562 if let Some(pat) = pat {
563 visitor.visit_pat(pat);
564 }
565
566 /// Returns `true` if `pat` match the `P&` non-terminal.
567 ///
568 /// ```text
569 /// P& = ref X
570 /// | StructName { ..., P&, ... }
571 /// | VariantName(..., P&, ...)
572 /// | [ ..., P&, ... ]
573 /// | ( ..., P&, ... )
574 /// | ... "|" P& "|" ...
575 /// | box P&
576 /// | P& if ...
577 /// ```
578 fn is_binding_pat(pat: &hir::Pat<'_>) -> bool {
579 // Note that the code below looks for *explicit* refs only, that is, it won't
580 // know about *implicit* refs as introduced in #42640.
581 //
582 // This is not a problem. For example, consider
583 //
584 // let (ref x, ref y) = (Foo { .. }, Bar { .. });
585 //
586 // Due to the explicit refs on the left hand side, the below code would signal
587 // that the temporary value on the right hand side should live until the end of
588 // the enclosing block (as opposed to being dropped after the let is complete).
589 //
590 // To create an implicit ref, however, you must have a borrowed value on the RHS
591 // already, as in this example (which won't compile before #42640):
592 //
593 // let Foo { x, .. } = &Foo { x: ..., ... };
594 //
595 // in place of
596 //
597 // let Foo { ref x, .. } = Foo { ... };
598 //
599 // In the former case (the implicit ref version), the temporary is created by the
600 // & expression, and its lifetime would be extended to the end of the block (due
601 // to a different rule, not the below code).
602 match pat.kind {
603 PatKind::Binding(hir::BindingMode(hir::ByRef::Yes(_), _), ..) => true,
604
605 PatKind::Struct(_, field_pats, _) => field_pats.iter().any(|fp| is_binding_pat(fp.pat)),
606
607 PatKind::Slice(pats1, pats2, pats3) => {
608 pats1.iter().any(|p| is_binding_pat(p))
609 || pats2.iter().any(|p| is_binding_pat(p))
610 || pats3.iter().any(|p| is_binding_pat(p))
611 }
612
613 PatKind::Or(subpats)
614 | PatKind::TupleStruct(_, subpats, _)
615 | PatKind::Tuple(subpats, _) => subpats.iter().any(|p| is_binding_pat(p)),
616
617 PatKind::Box(subpat) | PatKind::Deref(subpat) | PatKind::Guard(subpat, _) => {
618 is_binding_pat(subpat)
619 }
620
621 PatKind::Ref(_, _)
622 | PatKind::Binding(hir::BindingMode(hir::ByRef::No, _), ..)
623 | PatKind::Missing
624 | PatKind::Wild
625 | PatKind::Never
626 | PatKind::Expr(_)
627 | PatKind::Range(_, _, _)
628 | PatKind::Err(_) => false,
629 }
630 }
631
632 /// If `expr` matches the `E&` grammar, then records an extended rvalue scope as appropriate:
633 ///
634 /// ```text
635 /// E& = & ET
636 /// | StructName { ..., f: E&, ... }
637 /// | [ ..., E&, ... ]
638 /// | ( ..., E&, ... )
639 /// | {...; E&}
640 /// | { super let ... = E&; ... }
641 /// | if _ { ...; E& } else { ...; E& }
642 /// | match _ { ..., _ => E&, ... }
643 /// | box E&
644 /// | E& as ...
645 /// | ( E& )
646 /// ```
647 fn record_rvalue_scope_if_borrow_expr<'tcx>(
648 visitor: &mut ScopeResolutionVisitor<'tcx>,
649 expr: &hir::Expr<'_>,
650 scope: ExtendedTemporaryScope,
651 ) {
652 match expr.kind {
653 hir::ExprKind::AddrOf(_, _, subexpr) => {
654 record_rvalue_scope_if_borrow_expr(visitor, subexpr, scope);
655 visitor.scope_tree.record_rvalue_candidate(
656 subexpr.hir_id,
657 RvalueCandidate {
658 target: subexpr.hir_id.local_id,
659 lifetime: scope.scope,
660 compat: scope.compat,
661 },
662 );
663 }
664 hir::ExprKind::Struct(_, fields, _) => {
665 for field in fields {
666 record_rvalue_scope_if_borrow_expr(visitor, field.expr, scope);
667 }
668 }
669 hir::ExprKind::Array(subexprs) | hir::ExprKind::Tup(subexprs) => {
670 for subexpr in subexprs {
671 record_rvalue_scope_if_borrow_expr(visitor, subexpr, scope);
672 }
673 }
674 hir::ExprKind::Cast(subexpr, _) => {
675 record_rvalue_scope_if_borrow_expr(visitor, subexpr, scope)
676 }
677 hir::ExprKind::Block(block, _) => {
678 if let Some(subexpr) = block.expr {
679 let tail_expr_scope =
680 if scope.let_kind == LetKind::Super && block.span.at_least_rust_2024() {
681 // The tail expression will no longer be extending after #145838.
682 // Since tail expressions are temporary scopes in Rust 2024, lint on
683 // temporaries that acquire this (longer) lifetime.
684 ExtendedTemporaryScope {
685 compat: ScopeCompatibility::FutureIncompatible {
686 shortens_to: Scope {
687 local_id: subexpr.hir_id.local_id,
688 data: ScopeData::Node,
689 },
690 },
691 ..scope
692 }
693 } else {
694 // This is extended by a regular `let`, so it won't be changed.
695 scope
696 };
697 record_rvalue_scope_if_borrow_expr(visitor, subexpr, tail_expr_scope);
698 }
699 for stmt in block.stmts {
700 if let hir::StmtKind::Let(local) = stmt.kind
701 && let Some(_) = local.super_
702 {
703 visitor.extended_super_lets.insert(local.pat.hir_id.local_id, scope);
704 }
705 }
706 }
707 hir::ExprKind::If(_, then_block, else_block) => {
708 let then_scope = if scope.let_kind == LetKind::Super {
709 // The then and else blocks will no longer be extending after #145838.
710 // Since `if` blocks are temporary scopes in all editions, lint on temporaries
711 // that acquire this (longer) lifetime.
712 ExtendedTemporaryScope {
713 compat: ScopeCompatibility::FutureIncompatible {
714 shortens_to: Scope {
715 local_id: then_block.hir_id.local_id,
716 data: ScopeData::Node,
717 },
718 },
719 ..scope
720 }
721 } else {
722 // This is extended by a regular `let`, so it won't be changed.
723 scope
724 };
725 record_rvalue_scope_if_borrow_expr(visitor, then_block, then_scope);
726 if let Some(else_block) = else_block {
727 let else_scope = if scope.let_kind == LetKind::Super {
728 // The then and else blocks will no longer be extending after #145838.
729 // Since `if` blocks are temporary scopes in all editions, lint on temporaries
730 // that acquire this (longer) lifetime.
731 ExtendedTemporaryScope {
732 compat: ScopeCompatibility::FutureIncompatible {
733 shortens_to: Scope {
734 local_id: else_block.hir_id.local_id,
735 data: ScopeData::Node,
736 },
737 },
738 ..scope
739 }
740 } else {
741 // This is extended by a regular `let`, so it won't be changed.
742 scope
743 };
744 record_rvalue_scope_if_borrow_expr(visitor, else_block, else_scope);
745 }
746 }
747 hir::ExprKind::Match(_, arms, _) => {
748 for arm in arms {
749 record_rvalue_scope_if_borrow_expr(visitor, arm.body, scope);
750 }
751 }
752 hir::ExprKind::Call(func, args) => {
753 // Recurse into tuple constructors, such as `Some(&temp())`.
754 //
755 // That way, there is no difference between `Some(..)` and `Some { 0: .. }`,
756 // even though the former is syntactically a function call.
757 if let hir::ExprKind::Path(path) = &func.kind
758 && let hir::QPath::Resolved(None, path) = path
759 && let Res::SelfCtor(_) | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) = path.res
760 {
761 for arg in args {
762 record_rvalue_scope_if_borrow_expr(visitor, arg, scope);
763 }
764 }
765 }
766 _ => {}
767 }
768 }
769}
770
771impl<'tcx> ScopeResolutionVisitor<'tcx> {
772 /// Records the current parent (if any) as the parent of `child_scope`.
773 fn record_child_scope(&mut self, child_scope: Scope) {
774 let parent = self.cx.parent;
775 self.scope_tree.record_scope_parent(child_scope, parent);
776 }
777
778 /// Records the current parent (if any) as the parent of `child_scope`,
779 /// and sets `child_scope` as the new current parent.
780 fn enter_scope(&mut self, child_scope: Scope) {
781 self.record_child_scope(child_scope);
782 self.cx.parent = Some(child_scope);
783 }
784
785 fn enter_node_scope_with_dtor(&mut self, id: hir::ItemLocalId, terminating: bool) {
786 // If node was previously marked as a terminating scope during the
787 // recursive visit of its parent node in the HIR, then we need to
788 // account for the destruction scope representing the scope of
789 // the destructors that run immediately after it completes.
790 if terminating {
791 self.enter_scope(Scope { local_id: id, data: ScopeData::Destruction });
792 }
793 self.enter_scope(Scope { local_id: id, data: ScopeData::Node });
794 }
795
796 fn enter_body(&mut self, hir_id: hir::HirId, f: impl FnOnce(&mut Self)) {
797 let outer_cx = self.cx;
798
799 self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::CallSite });
800 self.enter_scope(Scope { local_id: hir_id.local_id, data: ScopeData::Arguments });
801
802 f(self);
803
804 // Restore context we had at the start.
805 self.cx = outer_cx;
806 }
807}
808
809impl<'tcx> Visitor<'tcx> for ScopeResolutionVisitor<'tcx> {
810 fn visit_block(&mut self, b: &'tcx Block<'tcx>) {
811 resolve_block(self, b, false);
812 }
813
814 fn visit_body(&mut self, body: &hir::Body<'tcx>) {
815 let body_id = body.id();
816 let owner_id = self.tcx.hir_body_owner_def_id(body_id);
817
818 debug!(
819 "visit_body(id={:?}, span={:?}, body.id={:?}, cx.parent={:?})",
820 owner_id,
821 self.tcx.sess.source_map().span_to_diagnostic_string(body.value.span),
822 body_id,
823 self.cx.parent
824 );
825
826 self.enter_body(body.value.hir_id, |this| {
827 if this.tcx.hir_body_owner_kind(owner_id).is_fn_or_closure() {
828 // The arguments and `self` are parented to the fn.
829 this.cx.var_parent = (this.cx.parent, ScopeCompatibility::FutureCompatible);
830 for param in body.params {
831 this.visit_pat(param.pat);
832 }
833
834 // The body of the every fn is a root scope.
835 resolve_expr(this, body.value, true);
836 } else {
837 // Only functions have an outer terminating (drop) scope, while
838 // temporaries in constant initializers may be 'static, but only
839 // according to rvalue lifetime semantics, using the same
840 // syntactical rules used for let initializers.
841 //
842 // e.g., in `let x = &f();`, the temporary holding the result from
843 // the `f()` call lives for the entirety of the surrounding block.
844 //
845 // Similarly, `const X: ... = &f();` would have the result of `f()`
846 // live for `'static`, implying (if Drop restrictions on constants
847 // ever get lifted) that the value *could* have a destructor, but
848 // it'd get leaked instead of the destructor running during the
849 // evaluation of `X` (if at all allowed by CTFE).
850 //
851 // However, `const Y: ... = g(&f());`, like `let y = g(&f());`,
852 // would *not* let the `f()` temporary escape into an outer scope
853 // (i.e., `'static`), which means that after `g` returns, it drops,
854 // and all the associated destruction scope rules apply.
855 this.cx.var_parent = (None, ScopeCompatibility::FutureCompatible);
856 this.enter_scope(Scope {
857 local_id: body.value.hir_id.local_id,
858 data: ScopeData::Destruction,
859 });
860 resolve_local(this, None, Some(body.value), LetKind::Regular);
861 }
862 })
863 }
864
865 fn visit_arm(&mut self, a: &'tcx Arm<'tcx>) {
866 resolve_arm(self, a);
867 }
868 fn visit_pat(&mut self, p: &'tcx Pat<'tcx>) {
869 resolve_pat(self, p);
870 }
871 fn visit_stmt(&mut self, s: &'tcx Stmt<'tcx>) {
872 resolve_stmt(self, s);
873 }
874 fn visit_expr(&mut self, ex: &'tcx Expr<'tcx>) {
875 resolve_expr(self, ex, false);
876 }
877 fn visit_local(&mut self, l: &'tcx LetStmt<'tcx>) {
878 let let_kind = match l.super_ {
879 Some(_) => LetKind::Super,
880 None => LetKind::Regular,
881 };
882 resolve_local(self, Some(l.pat), l.init, let_kind);
883 }
884 fn visit_inline_const(&mut self, c: &'tcx hir::ConstBlock) {
885 let body = self.tcx.hir_body(c.body);
886 self.visit_body(body);
887 }
888}
889
890/// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body;
891/// in the case of closures, this will be redirected to the enclosing function.
892///
893/// Performance: This is a query rather than a simple function to enable
894/// re-use in incremental scenarios. We may sometimes need to rerun the
895/// type checker even when the HIR hasn't changed, and in those cases
896/// we can avoid reconstructing the region scope tree.
897pub(crate) fn region_scope_tree(tcx: TyCtxt<'_>, def_id: DefId) -> &ScopeTree {
898 let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
899 if typeck_root_def_id != def_id {
900 return tcx.region_scope_tree(typeck_root_def_id);
901 }
902
903 let scope_tree = if let Some(body) = tcx.hir_maybe_body_owned_by(def_id.expect_local()) {
904 let mut visitor = ScopeResolutionVisitor {
905 tcx,
906 scope_tree: ScopeTree::default(),
907 cx: Context { parent: None, var_parent: (None, ScopeCompatibility::FutureCompatible) },
908 extended_super_lets: Default::default(),
909 };
910
911 visitor.scope_tree.root_body = Some(body.value.hir_id);
912 visitor.visit_body(&body);
913 visitor.scope_tree
914 } else {
915 ScopeTree::default()
916 };
917
918 tcx.arena.alloc(scope_tree)
919}