rustc_mir_transform/
validate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
//! Validates the MIR to ensure that invariants are upheld.

use rustc_data_structures::fx::{FxHashMap, FxHashSet};
use rustc_hir::LangItem;
use rustc_index::IndexVec;
use rustc_index::bit_set::BitSet;
use rustc_infer::infer::TyCtxtInferExt;
use rustc_infer::traits::{Obligation, ObligationCause, Reveal};
use rustc_middle::mir::coverage::CoverageKind;
use rustc_middle::mir::visit::{NonUseContext, PlaceContext, Visitor};
use rustc_middle::mir::*;
use rustc_middle::ty::adjustment::PointerCoercion;
use rustc_middle::ty::{
    self, CoroutineArgsExt, InstanceKind, ParamEnv, ScalarInt, Ty, TyCtxt, TypeVisitableExt,
    Variance,
};
use rustc_middle::{bug, span_bug};
use rustc_target::abi::{FIRST_VARIANT, Size};
use rustc_target::spec::abi::Abi;
use rustc_trait_selection::traits::ObligationCtxt;
use rustc_type_ir::Upcast;

use crate::util::{is_within_packed, relate_types};

#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum EdgeKind {
    Unwind,
    Normal,
}

pub(super) struct Validator {
    /// Describes at which point in the pipeline this validation is happening.
    pub when: String,
    /// The phase for which we are upholding the dialect. If the given phase forbids a specific
    /// element, this validator will now emit errors if that specific element is encountered.
    /// Note that phases that change the dialect cause all *following* phases to check the
    /// invariants of the new dialect. A phase that changes dialects never checks the new invariants
    /// itself.
    pub mir_phase: MirPhase,
}

impl<'tcx> crate::MirPass<'tcx> for Validator {
    fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
        // FIXME(JakobDegen): These bodies never instantiated in codegend anyway, so it's not
        // terribly important that they pass the validator. However, I think other passes might
        // still see them, in which case they might be surprised. It would probably be better if we
        // didn't put this through the MIR pipeline at all.
        if matches!(body.source.instance, InstanceKind::Intrinsic(..) | InstanceKind::Virtual(..)) {
            return;
        }
        let def_id = body.source.def_id();
        let mir_phase = self.mir_phase;
        let param_env = match mir_phase.reveal() {
            Reveal::UserFacing => tcx.param_env(def_id),
            Reveal::All => tcx.param_env_reveal_all_normalized(def_id),
        };

        let can_unwind = if mir_phase <= MirPhase::Runtime(RuntimePhase::Initial) {
            // In this case `AbortUnwindingCalls` haven't yet been executed.
            true
        } else if !tcx.def_kind(def_id).is_fn_like() {
            true
        } else {
            let body_ty = tcx.type_of(def_id).skip_binder();
            let body_abi = match body_ty.kind() {
                ty::FnDef(..) => body_ty.fn_sig(tcx).abi(),
                ty::Closure(..) => Abi::RustCall,
                ty::CoroutineClosure(..) => Abi::RustCall,
                ty::Coroutine(..) => Abi::Rust,
                // No need to do MIR validation on error bodies
                ty::Error(_) => return,
                _ => {
                    span_bug!(body.span, "unexpected body ty: {:?} phase {:?}", body_ty, mir_phase)
                }
            };

            ty::layout::fn_can_unwind(tcx, Some(def_id), body_abi)
        };

        let mut cfg_checker = CfgChecker {
            when: &self.when,
            body,
            tcx,
            mir_phase,
            unwind_edge_count: 0,
            reachable_blocks: traversal::reachable_as_bitset(body),
            value_cache: FxHashSet::default(),
            can_unwind,
        };
        cfg_checker.visit_body(body);
        cfg_checker.check_cleanup_control_flow();

        // Also run the TypeChecker.
        for (location, msg) in validate_types(tcx, self.mir_phase, param_env, body, body) {
            cfg_checker.fail(location, msg);
        }

        if let MirPhase::Runtime(_) = body.phase {
            if let ty::InstanceKind::Item(_) = body.source.instance {
                if body.has_free_regions() {
                    cfg_checker.fail(
                        Location::START,
                        format!("Free regions in optimized {} MIR", body.phase.name()),
                    );
                }
            }
        }
    }
}

struct CfgChecker<'a, 'tcx> {
    when: &'a str,
    body: &'a Body<'tcx>,
    tcx: TyCtxt<'tcx>,
    mir_phase: MirPhase,
    unwind_edge_count: usize,
    reachable_blocks: BitSet<BasicBlock>,
    value_cache: FxHashSet<u128>,
    // If `false`, then the MIR must not contain `UnwindAction::Continue` or
    // `TerminatorKind::Resume`.
    can_unwind: bool,
}

impl<'a, 'tcx> CfgChecker<'a, 'tcx> {
    #[track_caller]
    fn fail(&self, location: Location, msg: impl AsRef<str>) {
        // We might see broken MIR when other errors have already occurred.
        assert!(
            self.tcx.dcx().has_errors().is_some(),
            "broken MIR in {:?} ({}) at {:?}:\n{}",
            self.body.source.instance,
            self.when,
            location,
            msg.as_ref(),
        );
    }

    fn check_edge(&mut self, location: Location, bb: BasicBlock, edge_kind: EdgeKind) {
        if bb == START_BLOCK {
            self.fail(location, "start block must not have predecessors")
        }
        if let Some(bb) = self.body.basic_blocks.get(bb) {
            let src = self.body.basic_blocks.get(location.block).unwrap();
            match (src.is_cleanup, bb.is_cleanup, edge_kind) {
                // Non-cleanup blocks can jump to non-cleanup blocks along non-unwind edges
                (false, false, EdgeKind::Normal)
                // Cleanup blocks can jump to cleanup blocks along non-unwind edges
                | (true, true, EdgeKind::Normal) => {}
                // Non-cleanup blocks can jump to cleanup blocks along unwind edges
                (false, true, EdgeKind::Unwind) => {
                    self.unwind_edge_count += 1;
                }
                // All other jumps are invalid
                _ => {
                    self.fail(
                        location,
                        format!(
                            "{:?} edge to {:?} violates unwind invariants (cleanup {:?} -> {:?})",
                            edge_kind,
                            bb,
                            src.is_cleanup,
                            bb.is_cleanup,
                        )
                    )
                }
            }
        } else {
            self.fail(location, format!("encountered jump to invalid basic block {bb:?}"))
        }
    }

    fn check_cleanup_control_flow(&self) {
        if self.unwind_edge_count <= 1 {
            return;
        }
        let doms = self.body.basic_blocks.dominators();
        let mut post_contract_node = FxHashMap::default();
        // Reusing the allocation across invocations of the closure
        let mut dom_path = vec![];
        let mut get_post_contract_node = |mut bb| {
            let root = loop {
                if let Some(root) = post_contract_node.get(&bb) {
                    break *root;
                }
                let parent = doms.immediate_dominator(bb).unwrap();
                dom_path.push(bb);
                if !self.body.basic_blocks[parent].is_cleanup {
                    break bb;
                }
                bb = parent;
            };
            for bb in dom_path.drain(..) {
                post_contract_node.insert(bb, root);
            }
            root
        };

        let mut parent = IndexVec::from_elem(None, &self.body.basic_blocks);
        for (bb, bb_data) in self.body.basic_blocks.iter_enumerated() {
            if !bb_data.is_cleanup || !self.reachable_blocks.contains(bb) {
                continue;
            }
            let bb = get_post_contract_node(bb);
            for s in bb_data.terminator().successors() {
                let s = get_post_contract_node(s);
                if s == bb {
                    continue;
                }
                let parent = &mut parent[bb];
                match parent {
                    None => {
                        *parent = Some(s);
                    }
                    Some(e) if *e == s => (),
                    Some(e) => self.fail(
                        Location { block: bb, statement_index: 0 },
                        format!(
                            "Cleanup control flow violation: The blocks dominated by {:?} have edges to both {:?} and {:?}",
                            bb,
                            s,
                            *e
                        )
                    ),
                }
            }
        }

        // Check for cycles
        let mut stack = FxHashSet::default();
        for i in 0..parent.len() {
            let mut bb = BasicBlock::from_usize(i);
            stack.clear();
            stack.insert(bb);
            loop {
                let Some(parent) = parent[bb].take() else { break };
                let no_cycle = stack.insert(parent);
                if !no_cycle {
                    self.fail(
                        Location { block: bb, statement_index: 0 },
                        format!(
                            "Cleanup control flow violation: Cycle involving edge {bb:?} -> {parent:?}",
                        ),
                    );
                    break;
                }
                bb = parent;
            }
        }
    }

    fn check_unwind_edge(&mut self, location: Location, unwind: UnwindAction) {
        let is_cleanup = self.body.basic_blocks[location.block].is_cleanup;
        match unwind {
            UnwindAction::Cleanup(unwind) => {
                if is_cleanup {
                    self.fail(location, "`UnwindAction::Cleanup` in cleanup block");
                }
                self.check_edge(location, unwind, EdgeKind::Unwind);
            }
            UnwindAction::Continue => {
                if is_cleanup {
                    self.fail(location, "`UnwindAction::Continue` in cleanup block");
                }

                if !self.can_unwind {
                    self.fail(location, "`UnwindAction::Continue` in no-unwind function");
                }
            }
            UnwindAction::Terminate(UnwindTerminateReason::InCleanup) => {
                if !is_cleanup {
                    self.fail(
                        location,
                        "`UnwindAction::Terminate(InCleanup)` in a non-cleanup block",
                    );
                }
            }
            // These are allowed everywhere.
            UnwindAction::Unreachable | UnwindAction::Terminate(UnwindTerminateReason::Abi) => (),
        }
    }

    fn is_critical_call_edge(&self, target: Option<BasicBlock>, unwind: UnwindAction) -> bool {
        let Some(target) = target else { return false };
        matches!(unwind, UnwindAction::Cleanup(_) | UnwindAction::Terminate(_))
            && self.body.basic_blocks.predecessors()[target].len() > 1
    }
}

impl<'a, 'tcx> Visitor<'tcx> for CfgChecker<'a, 'tcx> {
    fn visit_local(&mut self, local: Local, _context: PlaceContext, location: Location) {
        if self.body.local_decls.get(local).is_none() {
            self.fail(
                location,
                format!("local {local:?} has no corresponding declaration in `body.local_decls`"),
            );
        }
    }

    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        match &statement.kind {
            StatementKind::AscribeUserType(..) => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`AscribeUserType` should have been removed after drop lowering phase",
                    );
                }
            }
            StatementKind::FakeRead(..) => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`FakeRead` should have been removed after drop lowering phase",
                    );
                }
            }
            StatementKind::SetDiscriminant { .. } => {
                if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(location, "`SetDiscriminant`is not allowed until deaggregation");
                }
            }
            StatementKind::Deinit(..) => {
                if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(location, "`Deinit`is not allowed until deaggregation");
                }
            }
            StatementKind::Retag(kind, _) => {
                // FIXME(JakobDegen) The validator should check that `self.mir_phase <
                // DropsLowered`. However, this causes ICEs with generation of drop shims, which
                // seem to fail to set their `MirPhase` correctly.
                if matches!(kind, RetagKind::TwoPhase) {
                    self.fail(location, format!("explicit `{kind:?}` is forbidden"));
                }
            }
            StatementKind::Coverage(kind) => {
                if self.mir_phase >= MirPhase::Analysis(AnalysisPhase::PostCleanup)
                    && let CoverageKind::BlockMarker { .. } | CoverageKind::SpanMarker { .. } = kind
                {
                    self.fail(
                        location,
                        format!("{kind:?} should have been removed after analysis"),
                    );
                }
            }
            StatementKind::Assign(..)
            | StatementKind::StorageLive(_)
            | StatementKind::StorageDead(_)
            | StatementKind::Intrinsic(_)
            | StatementKind::ConstEvalCounter
            | StatementKind::PlaceMention(..)
            | StatementKind::Nop => {}
        }

        self.super_statement(statement, location);
    }

    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
        match &terminator.kind {
            TerminatorKind::Goto { target } => {
                self.check_edge(location, *target, EdgeKind::Normal);
            }
            TerminatorKind::SwitchInt { targets, discr: _ } => {
                for (_, target) in targets.iter() {
                    self.check_edge(location, target, EdgeKind::Normal);
                }
                self.check_edge(location, targets.otherwise(), EdgeKind::Normal);

                self.value_cache.clear();
                self.value_cache.extend(targets.iter().map(|(value, _)| value));
                let has_duplicates = targets.iter().len() != self.value_cache.len();
                if has_duplicates {
                    self.fail(
                        location,
                        format!(
                            "duplicated values in `SwitchInt` terminator: {:?}",
                            terminator.kind,
                        ),
                    );
                }
            }
            TerminatorKind::Drop { target, unwind, .. } => {
                self.check_edge(location, *target, EdgeKind::Normal);
                self.check_unwind_edge(location, *unwind);
            }
            TerminatorKind::Call { args, .. } | TerminatorKind::TailCall { args, .. } => {
                // FIXME(explicit_tail_calls): refactor this & add tail-call specific checks
                if let TerminatorKind::Call { target, unwind, destination, .. } = terminator.kind {
                    if let Some(target) = target {
                        self.check_edge(location, target, EdgeKind::Normal);
                    }
                    self.check_unwind_edge(location, unwind);

                    // The code generation assumes that there are no critical call edges. The
                    // assumption is used to simplify inserting code that should be executed along
                    // the return edge from the call. FIXME(tmiasko): Since this is a strictly code
                    // generation concern, the code generation should be responsible for handling
                    // it.
                    if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Optimized)
                        && self.is_critical_call_edge(target, unwind)
                    {
                        self.fail(
                            location,
                            format!(
                                "encountered critical edge in `Call` terminator {:?}",
                                terminator.kind,
                            ),
                        );
                    }

                    // The call destination place and Operand::Move place used as an argument might
                    // be passed by a reference to the callee. Consequently they cannot be packed.
                    if is_within_packed(self.tcx, &self.body.local_decls, destination).is_some() {
                        // This is bad! The callee will expect the memory to be aligned.
                        self.fail(
                            location,
                            format!(
                                "encountered packed place in `Call` terminator destination: {:?}",
                                terminator.kind,
                            ),
                        );
                    }
                }

                for arg in args {
                    if let Operand::Move(place) = &arg.node {
                        if is_within_packed(self.tcx, &self.body.local_decls, *place).is_some() {
                            // This is bad! The callee will expect the memory to be aligned.
                            self.fail(
                                location,
                                format!(
                                    "encountered `Move` of a packed place in `Call` terminator: {:?}",
                                    terminator.kind,
                                ),
                            );
                        }
                    }
                }
            }
            TerminatorKind::Assert { target, unwind, .. } => {
                self.check_edge(location, *target, EdgeKind::Normal);
                self.check_unwind_edge(location, *unwind);
            }
            TerminatorKind::Yield { resume, drop, .. } => {
                if self.body.coroutine.is_none() {
                    self.fail(location, "`Yield` cannot appear outside coroutine bodies");
                }
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(location, "`Yield` should have been replaced by coroutine lowering");
                }
                self.check_edge(location, *resume, EdgeKind::Normal);
                if let Some(drop) = drop {
                    self.check_edge(location, *drop, EdgeKind::Normal);
                }
            }
            TerminatorKind::FalseEdge { real_target, imaginary_target } => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`FalseEdge` should have been removed after drop elaboration",
                    );
                }
                self.check_edge(location, *real_target, EdgeKind::Normal);
                self.check_edge(location, *imaginary_target, EdgeKind::Normal);
            }
            TerminatorKind::FalseUnwind { real_target, unwind } => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`FalseUnwind` should have been removed after drop elaboration",
                    );
                }
                self.check_edge(location, *real_target, EdgeKind::Normal);
                self.check_unwind_edge(location, *unwind);
            }
            TerminatorKind::InlineAsm { targets, unwind, .. } => {
                for &target in targets {
                    self.check_edge(location, target, EdgeKind::Normal);
                }
                self.check_unwind_edge(location, *unwind);
            }
            TerminatorKind::CoroutineDrop => {
                if self.body.coroutine.is_none() {
                    self.fail(location, "`CoroutineDrop` cannot appear outside coroutine bodies");
                }
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`CoroutineDrop` should have been replaced by coroutine lowering",
                    );
                }
            }
            TerminatorKind::UnwindResume => {
                let bb = location.block;
                if !self.body.basic_blocks[bb].is_cleanup {
                    self.fail(location, "Cannot `UnwindResume` from non-cleanup basic block")
                }
                if !self.can_unwind {
                    self.fail(location, "Cannot `UnwindResume` in a function that cannot unwind")
                }
            }
            TerminatorKind::UnwindTerminate(_) => {
                let bb = location.block;
                if !self.body.basic_blocks[bb].is_cleanup {
                    self.fail(location, "Cannot `UnwindTerminate` from non-cleanup basic block")
                }
            }
            TerminatorKind::Return => {
                let bb = location.block;
                if self.body.basic_blocks[bb].is_cleanup {
                    self.fail(location, "Cannot `Return` from cleanup basic block")
                }
            }
            TerminatorKind::Unreachable => {}
        }

        self.super_terminator(terminator, location);
    }

    fn visit_source_scope(&mut self, scope: SourceScope) {
        if self.body.source_scopes.get(scope).is_none() {
            self.tcx.dcx().span_bug(
                self.body.span,
                format!(
                    "broken MIR in {:?} ({}):\ninvalid source scope {:?}",
                    self.body.source.instance, self.when, scope,
                ),
            );
        }
    }
}

/// A faster version of the validation pass that only checks those things which may break when
/// instantiating any generic parameters.
///
/// `caller_body` is used to detect cycles in MIR inlining and MIR validation before
/// `optimized_mir` is available.
pub(super) fn validate_types<'tcx>(
    tcx: TyCtxt<'tcx>,
    mir_phase: MirPhase,
    param_env: ty::ParamEnv<'tcx>,
    body: &Body<'tcx>,
    caller_body: &Body<'tcx>,
) -> Vec<(Location, String)> {
    let mut type_checker =
        TypeChecker { body, caller_body, tcx, param_env, mir_phase, failures: Vec::new() };
    type_checker.visit_body(body);
    type_checker.failures
}

struct TypeChecker<'a, 'tcx> {
    body: &'a Body<'tcx>,
    caller_body: &'a Body<'tcx>,
    tcx: TyCtxt<'tcx>,
    param_env: ParamEnv<'tcx>,
    mir_phase: MirPhase,
    failures: Vec<(Location, String)>,
}

impl<'a, 'tcx> TypeChecker<'a, 'tcx> {
    fn fail(&mut self, location: Location, msg: impl Into<String>) {
        self.failures.push((location, msg.into()));
    }

    /// Check if src can be assigned into dest.
    /// This is not precise, it will accept some incorrect assignments.
    fn mir_assign_valid_types(&self, src: Ty<'tcx>, dest: Ty<'tcx>) -> bool {
        // Fast path before we normalize.
        if src == dest {
            // Equal types, all is good.
            return true;
        }

        // We sometimes have to use `defining_opaque_types` for subtyping
        // to succeed here and figuring out how exactly that should work
        // is annoying. It is harmless enough to just not validate anything
        // in that case. We still check this after analysis as all opaque
        // types have been revealed at this point.
        if (src, dest).has_opaque_types() {
            return true;
        }

        // After borrowck subtyping should be fully explicit via
        // `Subtype` projections.
        let variance = if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
            Variance::Invariant
        } else {
            Variance::Covariant
        };

        crate::util::relate_types(self.tcx, self.param_env, variance, src, dest)
    }

    /// Check that the given predicate definitely holds in the param-env of this MIR body.
    fn predicate_must_hold_modulo_regions(
        &self,
        pred: impl Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>>,
    ) -> bool {
        let infcx = self.tcx.infer_ctxt().build();
        let ocx = ObligationCtxt::new(&infcx);
        ocx.register_obligation(Obligation::new(
            self.tcx,
            ObligationCause::dummy(),
            self.param_env,
            pred,
        ));
        ocx.select_all_or_error().is_empty()
    }
}

impl<'a, 'tcx> Visitor<'tcx> for TypeChecker<'a, 'tcx> {
    fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) {
        // This check is somewhat expensive, so only run it when -Zvalidate-mir is passed.
        if self.tcx.sess.opts.unstable_opts.validate_mir
            && self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial)
        {
            // `Operand::Copy` is only supposed to be used with `Copy` types.
            if let Operand::Copy(place) = operand {
                let ty = place.ty(&self.body.local_decls, self.tcx).ty;

                if !ty.is_copy_modulo_regions(self.tcx, self.param_env) {
                    self.fail(location, format!("`Operand::Copy` with non-`Copy` type {ty}"));
                }
            }
        }

        self.super_operand(operand, location);
    }

    fn visit_projection_elem(
        &mut self,
        place_ref: PlaceRef<'tcx>,
        elem: PlaceElem<'tcx>,
        context: PlaceContext,
        location: Location,
    ) {
        match elem {
            ProjectionElem::OpaqueCast(ty)
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) =>
            {
                self.fail(
                    location,
                    format!("explicit opaque type cast to `{ty}` after `RevealAll`"),
                )
            }
            ProjectionElem::Index(index) => {
                let index_ty = self.body.local_decls[index].ty;
                if index_ty != self.tcx.types.usize {
                    self.fail(location, format!("bad index ({index_ty:?} != usize)"))
                }
            }
            ProjectionElem::Deref
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::PostCleanup) =>
            {
                let base_ty = place_ref.ty(&self.body.local_decls, self.tcx).ty;

                if base_ty.is_box() {
                    self.fail(
                        location,
                        format!("{base_ty:?} dereferenced after ElaborateBoxDerefs"),
                    )
                }
            }
            ProjectionElem::Field(f, ty) => {
                let parent_ty = place_ref.ty(&self.body.local_decls, self.tcx);
                let fail_out_of_bounds = |this: &mut Self, location| {
                    this.fail(location, format!("Out of bounds field {f:?} for {parent_ty:?}"));
                };
                let check_equal = |this: &mut Self, location, f_ty| {
                    if !this.mir_assign_valid_types(ty, f_ty) {
                        this.fail(
                            location,
                            format!(
                                "Field projection `{place_ref:?}.{f:?}` specified type `{ty:?}`, but actual type is `{f_ty:?}`"
                            )
                        )
                    }
                };

                let kind = match parent_ty.ty.kind() {
                    &ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
                        self.tcx.type_of(def_id).instantiate(self.tcx, args).kind()
                    }
                    kind => kind,
                };

                match kind {
                    ty::Tuple(fields) => {
                        let Some(f_ty) = fields.get(f.as_usize()) else {
                            fail_out_of_bounds(self, location);
                            return;
                        };
                        check_equal(self, location, *f_ty);
                    }
                    ty::Adt(adt_def, args) => {
                        // see <https://github.com/rust-lang/rust/blob/7601adcc764d42c9f2984082b49948af652df986/compiler/rustc_middle/src/ty/layout.rs#L861-L864>
                        if self.tcx.is_lang_item(adt_def.did(), LangItem::DynMetadata) {
                            self.fail(
                                location,
                                format!(
                                    "You can't project to field {f:?} of `DynMetadata` because \
                                     layout is weird and thinks it doesn't have fields."
                                ),
                            );
                        }

                        let var = parent_ty.variant_index.unwrap_or(FIRST_VARIANT);
                        let Some(field) = adt_def.variant(var).fields.get(f) else {
                            fail_out_of_bounds(self, location);
                            return;
                        };
                        check_equal(self, location, field.ty(self.tcx, args));
                    }
                    ty::Closure(_, args) => {
                        let args = args.as_closure();
                        let Some(&f_ty) = args.upvar_tys().get(f.as_usize()) else {
                            fail_out_of_bounds(self, location);
                            return;
                        };
                        check_equal(self, location, f_ty);
                    }
                    ty::CoroutineClosure(_, args) => {
                        let args = args.as_coroutine_closure();
                        let Some(&f_ty) = args.upvar_tys().get(f.as_usize()) else {
                            fail_out_of_bounds(self, location);
                            return;
                        };
                        check_equal(self, location, f_ty);
                    }
                    &ty::Coroutine(def_id, args) => {
                        let f_ty = if let Some(var) = parent_ty.variant_index {
                            // If we're currently validating an inlined copy of this body,
                            // then it will no longer be parameterized over the original
                            // args of the coroutine. Otherwise, we prefer to use this body
                            // since we may be in the process of computing this MIR in the
                            // first place.
                            let layout = if def_id == self.caller_body.source.def_id() {
                                self.caller_body.coroutine_layout_raw()
                            } else if self.tcx.needs_coroutine_by_move_body_def_id(def_id)
                                && let ty::ClosureKind::FnOnce =
                                    args.as_coroutine().kind_ty().to_opt_closure_kind().unwrap()
                                && self.caller_body.source.def_id()
                                    == self.tcx.coroutine_by_move_body_def_id(def_id)
                            {
                                // Same if this is the by-move body of a coroutine-closure.
                                self.caller_body.coroutine_layout_raw()
                            } else {
                                self.tcx.coroutine_layout(def_id, args.as_coroutine().kind_ty())
                            };

                            let Some(layout) = layout else {
                                self.fail(
                                    location,
                                    format!("No coroutine layout for {parent_ty:?}"),
                                );
                                return;
                            };

                            let Some(&local) = layout.variant_fields[var].get(f) else {
                                fail_out_of_bounds(self, location);
                                return;
                            };

                            let Some(f_ty) = layout.field_tys.get(local) else {
                                self.fail(
                                    location,
                                    format!("Out of bounds local {local:?} for {parent_ty:?}"),
                                );
                                return;
                            };

                            ty::EarlyBinder::bind(f_ty.ty).instantiate(self.tcx, args)
                        } else {
                            let Some(&f_ty) = args.as_coroutine().prefix_tys().get(f.index())
                            else {
                                fail_out_of_bounds(self, location);
                                return;
                            };

                            f_ty
                        };

                        check_equal(self, location, f_ty);
                    }
                    _ => {
                        self.fail(location, format!("{:?} does not have fields", parent_ty.ty));
                    }
                }
            }
            ProjectionElem::Subtype(ty) => {
                if !relate_types(
                    self.tcx,
                    self.param_env,
                    Variance::Covariant,
                    ty,
                    place_ref.ty(&self.body.local_decls, self.tcx).ty,
                ) {
                    self.fail(
                        location,
                        format!(
                            "Failed subtyping {ty:#?} and {:#?}",
                            place_ref.ty(&self.body.local_decls, self.tcx).ty
                        ),
                    )
                }
            }
            _ => {}
        }
        self.super_projection_elem(place_ref, elem, context, location);
    }

    fn visit_var_debug_info(&mut self, debuginfo: &VarDebugInfo<'tcx>) {
        if let Some(box VarDebugInfoFragment { ty, ref projection }) = debuginfo.composite {
            if ty.is_union() || ty.is_enum() {
                self.fail(
                    START_BLOCK.start_location(),
                    format!("invalid type {ty:?} in debuginfo for {:?}", debuginfo.name),
                );
            }
            if projection.is_empty() {
                self.fail(
                    START_BLOCK.start_location(),
                    format!("invalid empty projection in debuginfo for {:?}", debuginfo.name),
                );
            }
            if projection.iter().any(|p| !matches!(p, PlaceElem::Field(..))) {
                self.fail(
                    START_BLOCK.start_location(),
                    format!(
                        "illegal projection {:?} in debuginfo for {:?}",
                        projection, debuginfo.name
                    ),
                );
            }
        }
        match debuginfo.value {
            VarDebugInfoContents::Const(_) => {}
            VarDebugInfoContents::Place(place) => {
                if place.projection.iter().any(|p| !p.can_use_in_debuginfo()) {
                    self.fail(
                        START_BLOCK.start_location(),
                        format!("illegal place {:?} in debuginfo for {:?}", place, debuginfo.name),
                    );
                }
            }
        }
        self.super_var_debug_info(debuginfo);
    }

    fn visit_place(&mut self, place: &Place<'tcx>, cntxt: PlaceContext, location: Location) {
        // Set off any `bug!`s in the type computation code
        let _ = place.ty(&self.body.local_decls, self.tcx);

        if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial)
            && place.projection.len() > 1
            && cntxt != PlaceContext::NonUse(NonUseContext::VarDebugInfo)
            && place.projection[1..].contains(&ProjectionElem::Deref)
        {
            self.fail(
                location,
                format!("place {place:?} has deref as a later projection (it is only permitted as the first projection)"),
            );
        }

        // Ensure all downcast projections are followed by field projections.
        let mut projections_iter = place.projection.iter();
        while let Some(proj) = projections_iter.next() {
            if matches!(proj, ProjectionElem::Downcast(..)) {
                if !matches!(projections_iter.next(), Some(ProjectionElem::Field(..))) {
                    self.fail(
                        location,
                        format!(
                            "place {place:?} has `Downcast` projection not followed by `Field`"
                        ),
                    );
                }
            }
        }

        self.super_place(place, cntxt, location);
    }

    fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
        macro_rules! check_kinds {
            ($t:expr, $text:literal, $typat:pat) => {
                if !matches!(($t).kind(), $typat) {
                    self.fail(location, format!($text, $t));
                }
            };
        }
        match rvalue {
            Rvalue::Use(_) | Rvalue::CopyForDeref(_) => {}
            Rvalue::Aggregate(kind, fields) => match **kind {
                AggregateKind::Tuple => {}
                AggregateKind::Array(dest) => {
                    for src in fields {
                        if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest) {
                            self.fail(location, "array field has the wrong type");
                        }
                    }
                }
                AggregateKind::Adt(def_id, idx, args, _, Some(field)) => {
                    let adt_def = self.tcx.adt_def(def_id);
                    assert!(adt_def.is_union());
                    assert_eq!(idx, FIRST_VARIANT);
                    let dest_ty = self.tcx.normalize_erasing_regions(
                        self.param_env,
                        adt_def.non_enum_variant().fields[field].ty(self.tcx, args),
                    );
                    if let [field] = fields.raw.as_slice() {
                        let src_ty = field.ty(self.body, self.tcx);
                        if !self.mir_assign_valid_types(src_ty, dest_ty) {
                            self.fail(location, "union field has the wrong type");
                        }
                    } else {
                        self.fail(location, "unions should have one initialized field");
                    }
                }
                AggregateKind::Adt(def_id, idx, args, _, None) => {
                    let adt_def = self.tcx.adt_def(def_id);
                    assert!(!adt_def.is_union());
                    let variant = &adt_def.variants()[idx];
                    if variant.fields.len() != fields.len() {
                        self.fail(location, "adt has the wrong number of initialized fields");
                    }
                    for (src, dest) in std::iter::zip(fields, &variant.fields) {
                        let dest_ty = self
                            .tcx
                            .normalize_erasing_regions(self.param_env, dest.ty(self.tcx, args));
                        if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest_ty) {
                            self.fail(location, "adt field has the wrong type");
                        }
                    }
                }
                AggregateKind::Closure(_, args) => {
                    let upvars = args.as_closure().upvar_tys();
                    if upvars.len() != fields.len() {
                        self.fail(location, "closure has the wrong number of initialized fields");
                    }
                    for (src, dest) in std::iter::zip(fields, upvars) {
                        if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest) {
                            self.fail(location, "closure field has the wrong type");
                        }
                    }
                }
                AggregateKind::Coroutine(_, args) => {
                    let upvars = args.as_coroutine().upvar_tys();
                    if upvars.len() != fields.len() {
                        self.fail(location, "coroutine has the wrong number of initialized fields");
                    }
                    for (src, dest) in std::iter::zip(fields, upvars) {
                        if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest) {
                            self.fail(location, "coroutine field has the wrong type");
                        }
                    }
                }
                AggregateKind::CoroutineClosure(_, args) => {
                    let upvars = args.as_coroutine_closure().upvar_tys();
                    if upvars.len() != fields.len() {
                        self.fail(
                            location,
                            "coroutine-closure has the wrong number of initialized fields",
                        );
                    }
                    for (src, dest) in std::iter::zip(fields, upvars) {
                        if !self.mir_assign_valid_types(src.ty(self.body, self.tcx), dest) {
                            self.fail(location, "coroutine-closure field has the wrong type");
                        }
                    }
                }
                AggregateKind::RawPtr(pointee_ty, mutability) => {
                    if !matches!(self.mir_phase, MirPhase::Runtime(_)) {
                        // It would probably be fine to support this in earlier phases, but at the
                        // time of writing it's only ever introduced from intrinsic lowering, so
                        // earlier things just `bug!` on it.
                        self.fail(location, "RawPtr should be in runtime MIR only");
                    }

                    if let [data_ptr, metadata] = fields.raw.as_slice() {
                        let data_ptr_ty = data_ptr.ty(self.body, self.tcx);
                        let metadata_ty = metadata.ty(self.body, self.tcx);
                        if let ty::RawPtr(in_pointee, in_mut) = data_ptr_ty.kind() {
                            if *in_mut != mutability {
                                self.fail(location, "input and output mutability must match");
                            }

                            // FIXME: check `Thin` instead of `Sized`
                            if !in_pointee.is_sized(self.tcx, self.param_env) {
                                self.fail(location, "input pointer must be thin");
                            }
                        } else {
                            self.fail(
                                location,
                                "first operand to raw pointer aggregate must be a raw pointer",
                            );
                        }

                        // FIXME: Check metadata more generally
                        if pointee_ty.is_slice() {
                            if !self.mir_assign_valid_types(metadata_ty, self.tcx.types.usize) {
                                self.fail(location, "slice metadata must be usize");
                            }
                        } else if pointee_ty.is_sized(self.tcx, self.param_env) {
                            if metadata_ty != self.tcx.types.unit {
                                self.fail(location, "metadata for pointer-to-thin must be unit");
                            }
                        }
                    } else {
                        self.fail(location, "raw pointer aggregate must have 2 fields");
                    }
                }
            },
            Rvalue::Ref(_, BorrowKind::Fake(_), _) => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`Assign` statement with a `Fake` borrow should have been removed in runtime MIR",
                    );
                }
            }
            Rvalue::Ref(..) => {}
            Rvalue::Len(p) => {
                let pty = p.ty(&self.body.local_decls, self.tcx).ty;
                check_kinds!(
                    pty,
                    "Cannot compute length of non-array type {:?}",
                    ty::Array(..) | ty::Slice(..)
                );
            }
            Rvalue::BinaryOp(op, vals) => {
                use BinOp::*;
                let a = vals.0.ty(&self.body.local_decls, self.tcx);
                let b = vals.1.ty(&self.body.local_decls, self.tcx);
                if crate::util::binop_right_homogeneous(*op) {
                    if let Eq | Lt | Le | Ne | Ge | Gt = op {
                        // The function pointer types can have lifetimes
                        if !self.mir_assign_valid_types(a, b) {
                            self.fail(
                                location,
                                format!("Cannot {op:?} compare incompatible types {a:?} and {b:?}"),
                            );
                        }
                    } else if a != b {
                        self.fail(
                            location,
                            format!(
                                "Cannot perform binary op {op:?} on unequal types {a:?} and {b:?}"
                            ),
                        );
                    }
                }

                match op {
                    Offset => {
                        check_kinds!(a, "Cannot offset non-pointer type {:?}", ty::RawPtr(..));
                        if b != self.tcx.types.isize && b != self.tcx.types.usize {
                            self.fail(location, format!("Cannot offset by non-isize type {b:?}"));
                        }
                    }
                    Eq | Lt | Le | Ne | Ge | Gt => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot {op:?} compare type {:?}",
                                ty::Bool
                                    | ty::Char
                                    | ty::Int(..)
                                    | ty::Uint(..)
                                    | ty::Float(..)
                                    | ty::RawPtr(..)
                                    | ty::FnPtr(..)
                            )
                        }
                    }
                    Cmp => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot three-way compare non-integer type {:?}",
                                ty::Char | ty::Uint(..) | ty::Int(..)
                            )
                        }
                    }
                    AddUnchecked | AddWithOverflow | SubUnchecked | SubWithOverflow
                    | MulUnchecked | MulWithOverflow | Shl | ShlUnchecked | Shr | ShrUnchecked => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot {op:?} non-integer type {:?}",
                                ty::Uint(..) | ty::Int(..)
                            )
                        }
                    }
                    BitAnd | BitOr | BitXor => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot perform bitwise op {op:?} on type {:?}",
                                ty::Uint(..) | ty::Int(..) | ty::Bool
                            )
                        }
                    }
                    Add | Sub | Mul | Div | Rem => {
                        for x in [a, b] {
                            check_kinds!(
                                x,
                                "Cannot perform arithmetic {op:?} on type {:?}",
                                ty::Uint(..) | ty::Int(..) | ty::Float(..)
                            )
                        }
                    }
                }
            }
            Rvalue::UnaryOp(op, operand) => {
                let a = operand.ty(&self.body.local_decls, self.tcx);
                match op {
                    UnOp::Neg => {
                        check_kinds!(a, "Cannot negate type {:?}", ty::Int(..) | ty::Float(..))
                    }
                    UnOp::Not => {
                        check_kinds!(
                            a,
                            "Cannot binary not type {:?}",
                            ty::Int(..) | ty::Uint(..) | ty::Bool
                        );
                    }
                    UnOp::PtrMetadata => {
                        if !matches!(self.mir_phase, MirPhase::Runtime(_)) {
                            // It would probably be fine to support this in earlier phases, but at
                            // the time of writing it's only ever introduced from intrinsic
                            // lowering or other runtime-phase optimization passes, so earlier
                            // things can just `bug!` on it.
                            self.fail(location, "PtrMetadata should be in runtime MIR only");
                        }

                        check_kinds!(
                            a,
                            "Cannot PtrMetadata non-pointer non-reference type {:?}",
                            ty::RawPtr(..) | ty::Ref(..)
                        );
                    }
                }
            }
            Rvalue::ShallowInitBox(operand, _) => {
                let a = operand.ty(&self.body.local_decls, self.tcx);
                check_kinds!(a, "Cannot shallow init type {:?}", ty::RawPtr(..));
            }
            Rvalue::Cast(kind, operand, target_type) => {
                let op_ty = operand.ty(self.body, self.tcx);
                match kind {
                    // FIXME: Add Checks for these
                    CastKind::PointerWithExposedProvenance | CastKind::PointerExposeProvenance => {}
                    CastKind::PointerCoercion(PointerCoercion::ReifyFnPointer, _) => {
                        // FIXME: check signature compatibility.
                        check_kinds!(
                            op_ty,
                            "CastKind::{kind:?} input must be a fn item, not {:?}",
                            ty::FnDef(..)
                        );
                        check_kinds!(
                            target_type,
                            "CastKind::{kind:?} output must be a fn pointer, not {:?}",
                            ty::FnPtr(..)
                        );
                    }
                    CastKind::PointerCoercion(PointerCoercion::UnsafeFnPointer, _) => {
                        // FIXME: check safety and signature compatibility.
                        check_kinds!(
                            op_ty,
                            "CastKind::{kind:?} input must be a fn pointer, not {:?}",
                            ty::FnPtr(..)
                        );
                        check_kinds!(
                            target_type,
                            "CastKind::{kind:?} output must be a fn pointer, not {:?}",
                            ty::FnPtr(..)
                        );
                    }
                    CastKind::PointerCoercion(PointerCoercion::ClosureFnPointer(..), _) => {
                        // FIXME: check safety, captures, and signature compatibility.
                        check_kinds!(
                            op_ty,
                            "CastKind::{kind:?} input must be a closure, not {:?}",
                            ty::Closure(..)
                        );
                        check_kinds!(
                            target_type,
                            "CastKind::{kind:?} output must be a fn pointer, not {:?}",
                            ty::FnPtr(..)
                        );
                    }
                    CastKind::PointerCoercion(PointerCoercion::MutToConstPointer, _) => {
                        // FIXME: check same pointee?
                        check_kinds!(
                            op_ty,
                            "CastKind::{kind:?} input must be a raw mut pointer, not {:?}",
                            ty::RawPtr(_, Mutability::Mut)
                        );
                        check_kinds!(
                            target_type,
                            "CastKind::{kind:?} output must be a raw const pointer, not {:?}",
                            ty::RawPtr(_, Mutability::Not)
                        );
                        if self.mir_phase >= MirPhase::Analysis(AnalysisPhase::PostCleanup) {
                            self.fail(location, format!("After borrowck, MIR disallows {kind:?}"));
                        }
                    }
                    CastKind::PointerCoercion(PointerCoercion::ArrayToPointer, _) => {
                        // FIXME: Check pointee types
                        check_kinds!(
                            op_ty,
                            "CastKind::{kind:?} input must be a raw pointer, not {:?}",
                            ty::RawPtr(..)
                        );
                        check_kinds!(
                            target_type,
                            "CastKind::{kind:?} output must be a raw pointer, not {:?}",
                            ty::RawPtr(..)
                        );
                        if self.mir_phase >= MirPhase::Analysis(AnalysisPhase::PostCleanup) {
                            self.fail(location, format!("After borrowck, MIR disallows {kind:?}"));
                        }
                    }
                    CastKind::PointerCoercion(PointerCoercion::Unsize, _) => {
                        // Pointers being unsize coerced should at least implement
                        // `CoerceUnsized`.
                        if !self.predicate_must_hold_modulo_regions(ty::TraitRef::new(
                            self.tcx,
                            self.tcx.require_lang_item(
                                LangItem::CoerceUnsized,
                                Some(self.body.source_info(location).span),
                            ),
                            [op_ty, *target_type],
                        )) {
                            self.fail(location, format!("Unsize coercion, but `{op_ty}` isn't coercible to `{target_type}`"));
                        }
                    }
                    CastKind::PointerCoercion(PointerCoercion::DynStar, _) => {
                        // FIXME(dyn-star): make sure nothing needs to be done here.
                    }
                    CastKind::IntToInt | CastKind::IntToFloat => {
                        let input_valid = op_ty.is_integral() || op_ty.is_char() || op_ty.is_bool();
                        let target_valid = target_type.is_numeric() || target_type.is_char();
                        if !input_valid || !target_valid {
                            self.fail(
                                location,
                                format!("Wrong cast kind {kind:?} for the type {op_ty}"),
                            );
                        }
                    }
                    CastKind::FnPtrToPtr => {
                        check_kinds!(
                            op_ty,
                            "CastKind::{kind:?} input must be a fn pointer, not {:?}",
                            ty::FnPtr(..)
                        );
                        check_kinds!(
                            target_type,
                            "CastKind::{kind:?} output must be a raw pointer, not {:?}",
                            ty::RawPtr(..)
                        );
                    }
                    CastKind::PtrToPtr => {
                        check_kinds!(
                            op_ty,
                            "CastKind::{kind:?} input must be a raw pointer, not {:?}",
                            ty::RawPtr(..)
                        );
                        check_kinds!(
                            target_type,
                            "CastKind::{kind:?} output must be a raw pointer, not {:?}",
                            ty::RawPtr(..)
                        );
                    }
                    CastKind::FloatToFloat | CastKind::FloatToInt => {
                        if !op_ty.is_floating_point() || !target_type.is_numeric() {
                            self.fail(
                                location,
                                format!(
                                    "Trying to cast non 'Float' as {kind:?} into {target_type:?}"
                                ),
                            );
                        }
                    }
                    CastKind::Transmute => {
                        if let MirPhase::Runtime(..) = self.mir_phase {
                            // Unlike `mem::transmute`, a MIR `Transmute` is well-formed
                            // for any two `Sized` types, just potentially UB to run.

                            if !self
                                .tcx
                                .normalize_erasing_regions(self.param_env, op_ty)
                                .is_sized(self.tcx, self.param_env)
                            {
                                self.fail(
                                    location,
                                    format!("Cannot transmute from non-`Sized` type {op_ty:?}"),
                                );
                            }
                            if !self
                                .tcx
                                .normalize_erasing_regions(self.param_env, *target_type)
                                .is_sized(self.tcx, self.param_env)
                            {
                                self.fail(
                                    location,
                                    format!("Cannot transmute to non-`Sized` type {target_type:?}"),
                                );
                            }
                        } else {
                            self.fail(
                                location,
                                format!(
                                    "Transmute is not supported in non-runtime phase {:?}.",
                                    self.mir_phase
                                ),
                            );
                        }
                    }
                }
            }
            Rvalue::NullaryOp(NullOp::OffsetOf(indices), container) => {
                let fail_out_of_bounds = |this: &mut Self, location, field, ty| {
                    this.fail(location, format!("Out of bounds field {field:?} for {ty:?}"));
                };

                let mut current_ty = *container;

                for (variant, field) in indices.iter() {
                    match current_ty.kind() {
                        ty::Tuple(fields) => {
                            if variant != FIRST_VARIANT {
                                self.fail(
                                    location,
                                    format!("tried to get variant {variant:?} of tuple"),
                                );
                                return;
                            }
                            let Some(&f_ty) = fields.get(field.as_usize()) else {
                                fail_out_of_bounds(self, location, field, current_ty);
                                return;
                            };

                            current_ty = self.tcx.normalize_erasing_regions(self.param_env, f_ty);
                        }
                        ty::Adt(adt_def, args) => {
                            let Some(field) = adt_def.variant(variant).fields.get(field) else {
                                fail_out_of_bounds(self, location, field, current_ty);
                                return;
                            };

                            let f_ty = field.ty(self.tcx, args);
                            current_ty = self.tcx.normalize_erasing_regions(self.param_env, f_ty);
                        }
                        _ => {
                            self.fail(
                                location,
                                format!("Cannot get offset ({variant:?}, {field:?}) from type {current_ty:?}"),
                            );
                            return;
                        }
                    }
                }
            }
            Rvalue::Repeat(_, _)
            | Rvalue::ThreadLocalRef(_)
            | Rvalue::RawPtr(_, _)
            | Rvalue::NullaryOp(NullOp::SizeOf | NullOp::AlignOf | NullOp::UbChecks, _)
            | Rvalue::Discriminant(_) => {}
        }
        self.super_rvalue(rvalue, location);
    }

    fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) {
        match &statement.kind {
            StatementKind::Assign(box (dest, rvalue)) => {
                // LHS and RHS of the assignment must have the same type.
                let left_ty = dest.ty(&self.body.local_decls, self.tcx).ty;
                let right_ty = rvalue.ty(&self.body.local_decls, self.tcx);

                if !self.mir_assign_valid_types(right_ty, left_ty) {
                    self.fail(
                        location,
                        format!(
                            "encountered `{:?}` with incompatible types:\n\
                            left-hand side has type: {}\n\
                            right-hand side has type: {}",
                            statement.kind, left_ty, right_ty,
                        ),
                    );
                }
                if let Rvalue::CopyForDeref(place) = rvalue {
                    if place.ty(&self.body.local_decls, self.tcx).ty.builtin_deref(true).is_none() {
                        self.fail(
                            location,
                            "`CopyForDeref` should only be used for dereferenceable types",
                        )
                    }
                }
            }
            StatementKind::AscribeUserType(..) => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`AscribeUserType` should have been removed after drop lowering phase",
                    );
                }
            }
            StatementKind::FakeRead(..) => {
                if self.mir_phase >= MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(
                        location,
                        "`FakeRead` should have been removed after drop lowering phase",
                    );
                }
            }
            StatementKind::Intrinsic(box NonDivergingIntrinsic::Assume(op)) => {
                let ty = op.ty(&self.body.local_decls, self.tcx);
                if !ty.is_bool() {
                    self.fail(
                        location,
                        format!("`assume` argument must be `bool`, but got: `{ty}`"),
                    );
                }
            }
            StatementKind::Intrinsic(box NonDivergingIntrinsic::CopyNonOverlapping(
                CopyNonOverlapping { src, dst, count },
            )) => {
                let src_ty = src.ty(&self.body.local_decls, self.tcx);
                let op_src_ty = if let Some(src_deref) = src_ty.builtin_deref(true) {
                    src_deref
                } else {
                    self.fail(
                        location,
                        format!("Expected src to be ptr in copy_nonoverlapping, got: {src_ty}"),
                    );
                    return;
                };
                let dst_ty = dst.ty(&self.body.local_decls, self.tcx);
                let op_dst_ty = if let Some(dst_deref) = dst_ty.builtin_deref(true) {
                    dst_deref
                } else {
                    self.fail(
                        location,
                        format!("Expected dst to be ptr in copy_nonoverlapping, got: {dst_ty}"),
                    );
                    return;
                };
                // since CopyNonOverlapping is parametrized by 1 type,
                // we only need to check that they are equal and not keep an extra parameter.
                if !self.mir_assign_valid_types(op_src_ty, op_dst_ty) {
                    self.fail(location, format!("bad arg ({op_src_ty:?} != {op_dst_ty:?})"));
                }

                let op_cnt_ty = count.ty(&self.body.local_decls, self.tcx);
                if op_cnt_ty != self.tcx.types.usize {
                    self.fail(location, format!("bad arg ({op_cnt_ty:?} != usize)"))
                }
            }
            StatementKind::SetDiscriminant { place, .. } => {
                if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(location, "`SetDiscriminant`is not allowed until deaggregation");
                }
                let pty = place.ty(&self.body.local_decls, self.tcx).ty.kind();
                if !matches!(pty, ty::Adt(..) | ty::Coroutine(..) | ty::Alias(ty::Opaque, ..)) {
                    self.fail(
                        location,
                        format!(
                            "`SetDiscriminant` is only allowed on ADTs and coroutines, not {pty:?}"
                        ),
                    );
                }
            }
            StatementKind::Deinit(..) => {
                if self.mir_phase < MirPhase::Runtime(RuntimePhase::Initial) {
                    self.fail(location, "`Deinit`is not allowed until deaggregation");
                }
            }
            StatementKind::Retag(kind, _) => {
                // FIXME(JakobDegen) The validator should check that `self.mir_phase <
                // DropsLowered`. However, this causes ICEs with generation of drop shims, which
                // seem to fail to set their `MirPhase` correctly.
                if matches!(kind, RetagKind::TwoPhase) {
                    self.fail(location, format!("explicit `{kind:?}` is forbidden"));
                }
            }
            StatementKind::StorageLive(_)
            | StatementKind::StorageDead(_)
            | StatementKind::Coverage(_)
            | StatementKind::ConstEvalCounter
            | StatementKind::PlaceMention(..)
            | StatementKind::Nop => {}
        }

        self.super_statement(statement, location);
    }

    fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) {
        match &terminator.kind {
            TerminatorKind::SwitchInt { targets, discr } => {
                let switch_ty = discr.ty(&self.body.local_decls, self.tcx);

                let target_width = self.tcx.sess.target.pointer_width;

                let size = Size::from_bits(match switch_ty.kind() {
                    ty::Uint(uint) => uint.normalize(target_width).bit_width().unwrap(),
                    ty::Int(int) => int.normalize(target_width).bit_width().unwrap(),
                    ty::Char => 32,
                    ty::Bool => 1,
                    other => bug!("unhandled type: {:?}", other),
                });

                for (value, _) in targets.iter() {
                    if ScalarInt::try_from_uint(value, size).is_none() {
                        self.fail(
                            location,
                            format!("the value {value:#x} is not a proper {switch_ty:?}"),
                        )
                    }
                }
            }
            TerminatorKind::Call { func, .. } | TerminatorKind::TailCall { func, .. } => {
                let func_ty = func.ty(&self.body.local_decls, self.tcx);
                match func_ty.kind() {
                    ty::FnPtr(..) | ty::FnDef(..) => {}
                    _ => self.fail(
                        location,
                        format!(
                            "encountered non-callable type {func_ty} in `{}` terminator",
                            terminator.kind.name()
                        ),
                    ),
                }

                if let TerminatorKind::TailCall { .. } = terminator.kind {
                    // FIXME(explicit_tail_calls): implement tail-call specific checks here (such
                    // as signature matching, forbidding closures, etc)
                }
            }
            TerminatorKind::Assert { cond, .. } => {
                let cond_ty = cond.ty(&self.body.local_decls, self.tcx);
                if cond_ty != self.tcx.types.bool {
                    self.fail(
                        location,
                        format!(
                            "encountered non-boolean condition of type {cond_ty} in `Assert` terminator"
                        ),
                    );
                }
            }
            TerminatorKind::Goto { .. }
            | TerminatorKind::Drop { .. }
            | TerminatorKind::Yield { .. }
            | TerminatorKind::FalseEdge { .. }
            | TerminatorKind::FalseUnwind { .. }
            | TerminatorKind::InlineAsm { .. }
            | TerminatorKind::CoroutineDrop
            | TerminatorKind::UnwindResume
            | TerminatorKind::UnwindTerminate(_)
            | TerminatorKind::Return
            | TerminatorKind::Unreachable => {}
        }

        self.super_terminator(terminator, location);
    }
}