rustc_trait_selection/traits/select/mod.rs
1//! Candidate selection. See the [rustc dev guide] for more information on how this works.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5use std::assert_matches::assert_matches;
6use std::cell::{Cell, RefCell};
7use std::fmt::{self, Display};
8use std::ops::ControlFlow;
9use std::{cmp, iter};
10
11use hir::def::DefKind;
12use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
13use rustc_data_structures::stack::ensure_sufficient_stack;
14use rustc_errors::{Diag, EmissionGuarantee};
15use rustc_hir as hir;
16use rustc_hir::LangItem;
17use rustc_hir::def_id::DefId;
18use rustc_infer::infer::BoundRegionConversionTime::{self, HigherRankedType};
19use rustc_infer::infer::DefineOpaqueTypes;
20use rustc_infer::infer::at::ToTrace;
21use rustc_infer::infer::relate::TypeRelation;
22use rustc_infer::traits::{PredicateObligations, TraitObligation};
23use rustc_middle::bug;
24use rustc_middle::dep_graph::{DepNodeIndex, dep_kinds};
25pub use rustc_middle::traits::select::*;
26use rustc_middle::ty::abstract_const::NotConstEvaluatable;
27use rustc_middle::ty::error::TypeErrorToStringExt;
28use rustc_middle::ty::fold::fold_regions;
29use rustc_middle::ty::print::{PrintTraitRefExt as _, with_no_trimmed_paths};
30use rustc_middle::ty::{
31 self, GenericArgsRef, PolyProjectionPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitableExt,
32 TypingMode, Upcast,
33};
34use rustc_span::{Symbol, sym};
35use rustc_type_ir::elaborate;
36use tracing::{debug, instrument, trace};
37
38use self::EvaluationResult::*;
39use self::SelectionCandidate::*;
40use super::coherence::{self, Conflict};
41use super::project::ProjectionTermObligation;
42use super::util::closure_trait_ref_and_return_type;
43use super::{
44 ImplDerivedCause, Normalized, Obligation, ObligationCause, ObligationCauseCode, Overflow,
45 PolyTraitObligation, PredicateObligation, Selection, SelectionError, SelectionResult,
46 TraitQueryMode, const_evaluatable, project, util, wf,
47};
48use crate::error_reporting::InferCtxtErrorExt;
49use crate::infer::{InferCtxt, InferOk, TypeFreshener};
50use crate::solve::InferCtxtSelectExt as _;
51use crate::traits::normalize::{normalize_with_depth, normalize_with_depth_to};
52use crate::traits::project::{ProjectAndUnifyResult, ProjectionCacheKeyExt};
53use crate::traits::{EvaluateConstErr, ProjectionCacheKey, Unimplemented, effects};
54
55mod _match;
56mod candidate_assembly;
57mod confirmation;
58
59#[derive(Clone, Debug, Eq, PartialEq, Hash)]
60pub enum IntercrateAmbiguityCause<'tcx> {
61 DownstreamCrate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
62 UpstreamCrateUpdate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
63 ReservationImpl { message: Symbol },
64}
65
66impl<'tcx> IntercrateAmbiguityCause<'tcx> {
67 /// Emits notes when the overlap is caused by complex intercrate ambiguities.
68 /// See #23980 for details.
69 pub fn add_intercrate_ambiguity_hint<G: EmissionGuarantee>(&self, err: &mut Diag<'_, G>) {
70 err.note(self.intercrate_ambiguity_hint());
71 }
72
73 pub fn intercrate_ambiguity_hint(&self) -> String {
74 with_no_trimmed_paths!(match self {
75 IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } => {
76 format!(
77 "downstream crates may implement trait `{trait_desc}`{self_desc}",
78 trait_desc = trait_ref.print_trait_sugared(),
79 self_desc = if let Some(self_ty) = self_ty {
80 format!(" for type `{self_ty}`")
81 } else {
82 String::new()
83 }
84 )
85 }
86 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } => {
87 format!(
88 "upstream crates may add a new impl of trait `{trait_desc}`{self_desc} \
89 in future versions",
90 trait_desc = trait_ref.print_trait_sugared(),
91 self_desc = if let Some(self_ty) = self_ty {
92 format!(" for type `{self_ty}`")
93 } else {
94 String::new()
95 }
96 )
97 }
98 IntercrateAmbiguityCause::ReservationImpl { message } => message.to_string(),
99 })
100 }
101}
102
103pub struct SelectionContext<'cx, 'tcx> {
104 pub infcx: &'cx InferCtxt<'tcx>,
105
106 /// Freshener used specifically for entries on the obligation
107 /// stack. This ensures that all entries on the stack at one time
108 /// will have the same set of placeholder entries, which is
109 /// important for checking for trait bounds that recursively
110 /// require themselves.
111 freshener: TypeFreshener<'cx, 'tcx>,
112
113 /// If `intercrate` is set, we remember predicates which were
114 /// considered ambiguous because of impls potentially added in other crates.
115 /// This is used in coherence to give improved diagnostics.
116 /// We don't do his until we detect a coherence error because it can
117 /// lead to false overflow results (#47139) and because always
118 /// computing it may negatively impact performance.
119 intercrate_ambiguity_causes: Option<FxIndexSet<IntercrateAmbiguityCause<'tcx>>>,
120
121 /// The mode that trait queries run in, which informs our error handling
122 /// policy. In essence, canonicalized queries need their errors propagated
123 /// rather than immediately reported because we do not have accurate spans.
124 query_mode: TraitQueryMode,
125}
126
127// A stack that walks back up the stack frame.
128struct TraitObligationStack<'prev, 'tcx> {
129 obligation: &'prev PolyTraitObligation<'tcx>,
130
131 /// The trait predicate from `obligation` but "freshened" with the
132 /// selection-context's freshener. Used to check for recursion.
133 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
134
135 /// Starts out equal to `depth` -- if, during evaluation, we
136 /// encounter a cycle, then we will set this flag to the minimum
137 /// depth of that cycle for all participants in the cycle. These
138 /// participants will then forego caching their results. This is
139 /// not the most efficient solution, but it addresses #60010. The
140 /// problem we are trying to prevent:
141 ///
142 /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
143 /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
144 /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
145 ///
146 /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
147 /// is `EvaluatedToOk`; this is because they were only considered
148 /// ok on the premise that if `A: AutoTrait` held, but we indeed
149 /// encountered a problem (later on) with `A: AutoTrait`. So we
150 /// currently set a flag on the stack node for `B: AutoTrait` (as
151 /// well as the second instance of `A: AutoTrait`) to suppress
152 /// caching.
153 ///
154 /// This is a simple, targeted fix. A more-performant fix requires
155 /// deeper changes, but would permit more caching: we could
156 /// basically defer caching until we have fully evaluated the
157 /// tree, and then cache the entire tree at once. In any case, the
158 /// performance impact here shouldn't be so horrible: every time
159 /// this is hit, we do cache at least one trait, so we only
160 /// evaluate each member of a cycle up to N times, where N is the
161 /// length of the cycle. This means the performance impact is
162 /// bounded and we shouldn't have any terrible worst-cases.
163 reached_depth: Cell<usize>,
164
165 previous: TraitObligationStackList<'prev, 'tcx>,
166
167 /// The number of parent frames plus one (thus, the topmost frame has depth 1).
168 depth: usize,
169
170 /// The depth-first number of this node in the search graph -- a
171 /// pre-order index. Basically, a freshly incremented counter.
172 dfn: usize,
173}
174
175struct SelectionCandidateSet<'tcx> {
176 /// A list of candidates that definitely apply to the current
177 /// obligation (meaning: types unify).
178 vec: Vec<SelectionCandidate<'tcx>>,
179
180 /// If `true`, then there were candidates that might or might
181 /// not have applied, but we couldn't tell. This occurs when some
182 /// of the input types are type variables, in which case there are
183 /// various "builtin" rules that might or might not trigger.
184 ambiguous: bool,
185}
186
187#[derive(PartialEq, Eq, Debug, Clone)]
188struct EvaluatedCandidate<'tcx> {
189 candidate: SelectionCandidate<'tcx>,
190 evaluation: EvaluationResult,
191}
192
193/// When does the builtin impl for `T: Trait` apply?
194#[derive(Debug)]
195enum BuiltinImplConditions<'tcx> {
196 /// The impl is conditional on `T1, T2, ...: Trait`.
197 Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
198 /// There is no built-in impl. There may be some other
199 /// candidate (a where-clause or user-defined impl).
200 None,
201 /// It is unknown whether there is an impl.
202 Ambiguous,
203}
204
205impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
206 pub fn new(infcx: &'cx InferCtxt<'tcx>) -> SelectionContext<'cx, 'tcx> {
207 SelectionContext {
208 infcx,
209 freshener: infcx.freshener(),
210 intercrate_ambiguity_causes: None,
211 query_mode: TraitQueryMode::Standard,
212 }
213 }
214
215 pub fn with_query_mode(
216 infcx: &'cx InferCtxt<'tcx>,
217 query_mode: TraitQueryMode,
218 ) -> SelectionContext<'cx, 'tcx> {
219 debug!(?query_mode, "with_query_mode");
220 SelectionContext { query_mode, ..SelectionContext::new(infcx) }
221 }
222
223 /// Enables tracking of intercrate ambiguity causes. See
224 /// the documentation of [`Self::intercrate_ambiguity_causes`] for more.
225 pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
226 assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
227 assert!(self.intercrate_ambiguity_causes.is_none());
228 self.intercrate_ambiguity_causes = Some(FxIndexSet::default());
229 debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
230 }
231
232 /// Gets the intercrate ambiguity causes collected since tracking
233 /// was enabled and disables tracking at the same time. If
234 /// tracking is not enabled, just returns an empty vector.
235 pub fn take_intercrate_ambiguity_causes(
236 &mut self,
237 ) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> {
238 assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
239 self.intercrate_ambiguity_causes.take().unwrap_or_default()
240 }
241
242 pub fn tcx(&self) -> TyCtxt<'tcx> {
243 self.infcx.tcx
244 }
245
246 ///////////////////////////////////////////////////////////////////////////
247 // Selection
248 //
249 // The selection phase tries to identify *how* an obligation will
250 // be resolved. For example, it will identify which impl or
251 // parameter bound is to be used. The process can be inconclusive
252 // if the self type in the obligation is not fully inferred. Selection
253 // can result in an error in one of two ways:
254 //
255 // 1. If no applicable impl or parameter bound can be found.
256 // 2. If the output type parameters in the obligation do not match
257 // those specified by the impl/bound. For example, if the obligation
258 // is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
259 // `impl<T> Iterable<T> for Vec<T>`, than an error would result.
260
261 /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
262 /// type environment by performing unification.
263 #[instrument(level = "debug", skip(self), ret)]
264 pub fn poly_select(
265 &mut self,
266 obligation: &PolyTraitObligation<'tcx>,
267 ) -> SelectionResult<'tcx, Selection<'tcx>> {
268 if self.infcx.next_trait_solver() {
269 return self.infcx.select_in_new_trait_solver(obligation);
270 }
271
272 let candidate = match self.select_from_obligation(obligation) {
273 Err(SelectionError::Overflow(OverflowError::Canonical)) => {
274 // In standard mode, overflow must have been caught and reported
275 // earlier.
276 assert!(self.query_mode == TraitQueryMode::Canonical);
277 return Err(SelectionError::Overflow(OverflowError::Canonical));
278 }
279 Err(e) => {
280 return Err(e);
281 }
282 Ok(None) => {
283 return Ok(None);
284 }
285 Ok(Some(candidate)) => candidate,
286 };
287
288 match self.confirm_candidate(obligation, candidate) {
289 Err(SelectionError::Overflow(OverflowError::Canonical)) => {
290 assert!(self.query_mode == TraitQueryMode::Canonical);
291 Err(SelectionError::Overflow(OverflowError::Canonical))
292 }
293 Err(e) => Err(e),
294 Ok(candidate) => Ok(Some(candidate)),
295 }
296 }
297
298 pub fn select(
299 &mut self,
300 obligation: &TraitObligation<'tcx>,
301 ) -> SelectionResult<'tcx, Selection<'tcx>> {
302 self.poly_select(&Obligation {
303 cause: obligation.cause.clone(),
304 param_env: obligation.param_env,
305 predicate: ty::Binder::dummy(obligation.predicate),
306 recursion_depth: obligation.recursion_depth,
307 })
308 }
309
310 fn select_from_obligation(
311 &mut self,
312 obligation: &PolyTraitObligation<'tcx>,
313 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
314 debug_assert!(!obligation.predicate.has_escaping_bound_vars());
315
316 let pec = &ProvisionalEvaluationCache::default();
317 let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
318
319 self.candidate_from_obligation(&stack)
320 }
321
322 #[instrument(level = "debug", skip(self), ret)]
323 fn candidate_from_obligation<'o>(
324 &mut self,
325 stack: &TraitObligationStack<'o, 'tcx>,
326 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
327 debug_assert!(!self.infcx.next_trait_solver());
328 // Watch out for overflow. This intentionally bypasses (and does
329 // not update) the cache.
330 self.check_recursion_limit(stack.obligation, stack.obligation)?;
331
332 // Check the cache. Note that we freshen the trait-ref
333 // separately rather than using `stack.fresh_trait_ref` --
334 // this is because we want the unbound variables to be
335 // replaced with fresh types starting from index 0.
336 let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
337 debug!(?cache_fresh_trait_pred);
338 debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
339
340 if let Some(c) =
341 self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
342 {
343 debug!("CACHE HIT");
344 return c;
345 }
346
347 // If no match, compute result and insert into cache.
348 //
349 // FIXME(nikomatsakis) -- this cache is not taking into
350 // account cycles that may have occurred in forming the
351 // candidate. I don't know of any specific problems that
352 // result but it seems awfully suspicious.
353 let (candidate, dep_node) =
354 self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
355
356 debug!("CACHE MISS");
357 self.insert_candidate_cache(
358 stack.obligation.param_env,
359 cache_fresh_trait_pred,
360 dep_node,
361 candidate.clone(),
362 );
363 candidate
364 }
365
366 fn candidate_from_obligation_no_cache<'o>(
367 &mut self,
368 stack: &TraitObligationStack<'o, 'tcx>,
369 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
370 if let Err(conflict) = self.is_knowable(stack) {
371 debug!("coherence stage: not knowable");
372 if self.intercrate_ambiguity_causes.is_some() {
373 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
374 // Heuristics: show the diagnostics when there are no candidates in crate.
375 if let Ok(candidate_set) = self.assemble_candidates(stack) {
376 let mut no_candidates_apply = true;
377
378 for c in candidate_set.vec.iter() {
379 if self.evaluate_candidate(stack, c)?.may_apply() {
380 no_candidates_apply = false;
381 break;
382 }
383 }
384
385 if !candidate_set.ambiguous && no_candidates_apply {
386 let trait_ref = self.infcx.resolve_vars_if_possible(
387 stack.obligation.predicate.skip_binder().trait_ref,
388 );
389 if !trait_ref.references_error() {
390 let self_ty = trait_ref.self_ty();
391 let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty);
392 let cause = if let Conflict::Upstream = conflict {
393 IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty }
394 } else {
395 IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty }
396 };
397 debug!(?cause, "evaluate_stack: pushing cause");
398 self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
399 }
400 }
401 }
402 }
403 return Ok(None);
404 }
405
406 let candidate_set = self.assemble_candidates(stack)?;
407
408 if candidate_set.ambiguous {
409 debug!("candidate set contains ambig");
410 return Ok(None);
411 }
412
413 let candidates = candidate_set.vec;
414
415 debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
416
417 // At this point, we know that each of the entries in the
418 // candidate set is *individually* applicable. Now we have to
419 // figure out if they contain mutual incompatibilities. This
420 // frequently arises if we have an unconstrained input type --
421 // for example, we are looking for `$0: Eq` where `$0` is some
422 // unconstrained type variable. In that case, we'll get a
423 // candidate which assumes $0 == int, one that assumes `$0 ==
424 // usize`, etc. This spells an ambiguity.
425
426 let mut candidates = self.filter_impls(candidates, stack.obligation);
427
428 // If there is more than one candidate, first winnow them down
429 // by considering extra conditions (nested obligations and so
430 // forth). We don't winnow if there is exactly one
431 // candidate. This is a relatively minor distinction but it
432 // can lead to better inference and error-reporting. An
433 // example would be if there was an impl:
434 //
435 // impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
436 //
437 // and we were to see some code `foo.push_clone()` where `boo`
438 // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
439 // we were to winnow, we'd wind up with zero candidates.
440 // Instead, we select the right impl now but report "`Bar` does
441 // not implement `Clone`".
442 if candidates.len() == 1 {
443 return self.filter_reservation_impls(candidates.pop().unwrap());
444 }
445
446 // Winnow, but record the exact outcome of evaluation, which
447 // is needed for specialization. Propagate overflow if it occurs.
448 let candidates = candidates
449 .into_iter()
450 .map(|c| match self.evaluate_candidate(stack, &c) {
451 Ok(eval) if eval.may_apply() => {
452 Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
453 }
454 Ok(_) => Ok(None),
455 Err(OverflowError::Canonical) => Err(Overflow(OverflowError::Canonical)),
456 Err(OverflowError::Error(e)) => Err(Overflow(OverflowError::Error(e))),
457 })
458 .flat_map(Result::transpose)
459 .collect::<Result<Vec<_>, _>>()?;
460
461 debug!(?stack, ?candidates, "{} potentially applicable candidates", candidates.len());
462 // If there are *NO* candidates, then there are no impls --
463 // that we know of, anyway. Note that in the case where there
464 // are unbound type variables within the obligation, it might
465 // be the case that you could still satisfy the obligation
466 // from another crate by instantiating the type variables with
467 // a type from another crate that does have an impl. This case
468 // is checked for in `evaluate_stack` (and hence users
469 // who might care about this case, like coherence, should use
470 // that function).
471 if candidates.is_empty() {
472 // If there's an error type, 'downgrade' our result from
473 // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
474 // emitting additional spurious errors, since we're guaranteed
475 // to have emitted at least one.
476 if stack.obligation.predicate.references_error() {
477 debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
478 Ok(None)
479 } else {
480 Err(Unimplemented)
481 }
482 } else {
483 let has_non_region_infer = stack.obligation.predicate.has_non_region_infer();
484 if let Some(candidate) = self.winnow_candidates(has_non_region_infer, candidates) {
485 self.filter_reservation_impls(candidate)
486 } else {
487 Ok(None)
488 }
489 }
490 }
491
492 ///////////////////////////////////////////////////////////////////////////
493 // EVALUATION
494 //
495 // Tests whether an obligation can be selected or whether an impl
496 // can be applied to particular types. It skips the "confirmation"
497 // step and hence completely ignores output type parameters.
498 //
499 // The result is "true" if the obligation *may* hold and "false" if
500 // we can be sure it does not.
501
502 /// Evaluates whether the obligation `obligation` can be satisfied
503 /// and returns an `EvaluationResult`. This is meant for the
504 /// *initial* call.
505 ///
506 /// Do not use this directly, use `infcx.evaluate_obligation` instead.
507 pub fn evaluate_root_obligation(
508 &mut self,
509 obligation: &PredicateObligation<'tcx>,
510 ) -> Result<EvaluationResult, OverflowError> {
511 debug_assert!(!self.infcx.next_trait_solver());
512 self.evaluation_probe(|this| {
513 let goal =
514 this.infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
515 let mut result = this.evaluate_predicate_recursively(
516 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
517 obligation.clone(),
518 )?;
519 // If the predicate has done any inference, then downgrade the
520 // result to ambiguous.
521 if this.infcx.resolve_vars_if_possible(goal) != goal {
522 result = result.max(EvaluatedToAmbig);
523 }
524 Ok(result)
525 })
526 }
527
528 /// Computes the evaluation result of `op`, discarding any constraints.
529 ///
530 /// This also runs for leak check to allow higher ranked region errors to impact
531 /// selection. By default it checks for leaks from all universes created inside of
532 /// `op`, but this can be overwritten if necessary.
533 fn evaluation_probe(
534 &mut self,
535 op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
536 ) -> Result<EvaluationResult, OverflowError> {
537 self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
538 let outer_universe = self.infcx.universe();
539 let result = op(self)?;
540
541 match self.infcx.leak_check(outer_universe, Some(snapshot)) {
542 Ok(()) => {}
543 Err(_) => return Ok(EvaluatedToErr),
544 }
545
546 if self.infcx.opaque_types_added_in_snapshot(snapshot) {
547 return Ok(result.max(EvaluatedToOkModuloOpaqueTypes));
548 }
549
550 if self.infcx.region_constraints_added_in_snapshot(snapshot) {
551 Ok(result.max(EvaluatedToOkModuloRegions))
552 } else {
553 Ok(result)
554 }
555 })
556 }
557
558 /// Evaluates the predicates in `predicates` recursively. This may
559 /// guide inference. If this is not desired, run it inside of a
560 /// is run within an inference probe.
561 /// `probe`.
562 #[instrument(skip(self, stack), level = "debug")]
563 fn evaluate_predicates_recursively<'o, I>(
564 &mut self,
565 stack: TraitObligationStackList<'o, 'tcx>,
566 predicates: I,
567 ) -> Result<EvaluationResult, OverflowError>
568 where
569 I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
570 {
571 let mut result = EvaluatedToOk;
572 for mut obligation in predicates {
573 obligation.set_depth_from_parent(stack.depth());
574 let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
575 if let EvaluatedToErr = eval {
576 // fast-path - EvaluatedToErr is the top of the lattice,
577 // so we don't need to look on the other predicates.
578 return Ok(EvaluatedToErr);
579 } else {
580 result = cmp::max(result, eval);
581 }
582 }
583 Ok(result)
584 }
585
586 #[instrument(
587 level = "debug",
588 skip(self, previous_stack),
589 fields(previous_stack = ?previous_stack.head())
590 ret,
591 )]
592 fn evaluate_predicate_recursively<'o>(
593 &mut self,
594 previous_stack: TraitObligationStackList<'o, 'tcx>,
595 obligation: PredicateObligation<'tcx>,
596 ) -> Result<EvaluationResult, OverflowError> {
597 debug_assert!(!self.infcx.next_trait_solver());
598 // `previous_stack` stores a `PolyTraitObligation`, while `obligation` is
599 // a `PredicateObligation`. These are distinct types, so we can't
600 // use any `Option` combinator method that would force them to be
601 // the same.
602 match previous_stack.head() {
603 Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
604 None => self.check_recursion_limit(&obligation, &obligation)?,
605 }
606
607 ensure_sufficient_stack(|| {
608 let bound_predicate = obligation.predicate.kind();
609 match bound_predicate.skip_binder() {
610 ty::PredicateKind::Clause(ty::ClauseKind::Trait(t)) => {
611 let t = bound_predicate.rebind(t);
612 debug_assert!(!t.has_escaping_bound_vars());
613 let obligation = obligation.with(self.tcx(), t);
614 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
615 }
616
617 ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(data)) => {
618 self.infcx.enter_forall(bound_predicate.rebind(data), |data| {
619 match effects::evaluate_host_effect_obligation(
620 self,
621 &obligation.with(self.tcx(), data),
622 ) {
623 Ok(nested) => {
624 self.evaluate_predicates_recursively(previous_stack, nested)
625 }
626 Err(effects::EvaluationFailure::Ambiguous) => Ok(EvaluatedToAmbig),
627 Err(effects::EvaluationFailure::NoSolution) => Ok(EvaluatedToErr),
628 }
629 })
630 }
631
632 ty::PredicateKind::Subtype(p) => {
633 let p = bound_predicate.rebind(p);
634 // Does this code ever run?
635 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
636 Ok(Ok(InferOk { obligations, .. })) => {
637 self.evaluate_predicates_recursively(previous_stack, obligations)
638 }
639 Ok(Err(_)) => Ok(EvaluatedToErr),
640 Err(..) => Ok(EvaluatedToAmbig),
641 }
642 }
643
644 ty::PredicateKind::Coerce(p) => {
645 let p = bound_predicate.rebind(p);
646 // Does this code ever run?
647 match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
648 Ok(Ok(InferOk { obligations, .. })) => {
649 self.evaluate_predicates_recursively(previous_stack, obligations)
650 }
651 Ok(Err(_)) => Ok(EvaluatedToErr),
652 Err(..) => Ok(EvaluatedToAmbig),
653 }
654 }
655
656 ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
657 // So, there is a bit going on here. First, `WellFormed` predicates
658 // are coinductive, like trait predicates with auto traits.
659 // This means that we need to detect if we have recursively
660 // evaluated `WellFormed(X)`. Otherwise, we would run into
661 // a "natural" overflow error.
662 //
663 // Now, the next question is whether we need to do anything
664 // special with caching. Considering the following tree:
665 // - `WF(Foo<T>)`
666 // - `Bar<T>: Send`
667 // - `WF(Foo<T>)`
668 // - `Foo<T>: Trait`
669 // In this case, the innermost `WF(Foo<T>)` should return
670 // `EvaluatedToOk`, since it's coinductive. Then if
671 // `Bar<T>: Send` is resolved to `EvaluatedToOk`, it can be
672 // inserted into a cache (because without thinking about `WF`
673 // goals, it isn't in a cycle). If `Foo<T>: Trait` later doesn't
674 // hold, then `Bar<T>: Send` shouldn't hold. Therefore, we
675 // *do* need to keep track of coinductive cycles.
676
677 let cache = previous_stack.cache;
678 let dfn = cache.next_dfn();
679
680 for stack_arg in previous_stack.cache.wf_args.borrow().iter().rev() {
681 if stack_arg.0 != arg {
682 continue;
683 }
684 debug!("WellFormed({:?}) on stack", arg);
685 if let Some(stack) = previous_stack.head {
686 // Okay, let's imagine we have two different stacks:
687 // `T: NonAutoTrait -> WF(T) -> T: NonAutoTrait`
688 // `WF(T) -> T: NonAutoTrait -> WF(T)`
689 // Because of this, we need to check that all
690 // predicates between the WF goals are coinductive.
691 // Otherwise, we can say that `T: NonAutoTrait` is
692 // true.
693 // Let's imagine we have a predicate stack like
694 // `Foo: Bar -> WF(T) -> T: NonAutoTrait -> T: Auto`
695 // depth ^1 ^2 ^3
696 // and the current predicate is `WF(T)`. `wf_args`
697 // would contain `(T, 1)`. We want to check all
698 // trait predicates greater than `1`. The previous
699 // stack would be `T: Auto`.
700 let cycle = stack.iter().take_while(|s| s.depth > stack_arg.1);
701 let tcx = self.tcx();
702 let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
703 if self.coinductive_match(cycle) {
704 stack.update_reached_depth(stack_arg.1);
705 return Ok(EvaluatedToOk);
706 } else {
707 return Ok(EvaluatedToAmbigStackDependent);
708 }
709 }
710 return Ok(EvaluatedToOk);
711 }
712
713 match wf::obligations(
714 self.infcx,
715 obligation.param_env,
716 obligation.cause.body_id,
717 obligation.recursion_depth + 1,
718 arg,
719 obligation.cause.span,
720 ) {
721 Some(obligations) => {
722 cache.wf_args.borrow_mut().push((arg, previous_stack.depth()));
723 let result =
724 self.evaluate_predicates_recursively(previous_stack, obligations);
725 cache.wf_args.borrow_mut().pop();
726
727 let result = result?;
728
729 if !result.must_apply_modulo_regions() {
730 cache.on_failure(dfn);
731 }
732
733 cache.on_completion(dfn);
734
735 Ok(result)
736 }
737 None => Ok(EvaluatedToAmbig),
738 }
739 }
740
741 ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(pred)) => {
742 // A global type with no free lifetimes or generic parameters
743 // outlives anything.
744 if pred.0.has_free_regions()
745 || pred.0.has_bound_regions()
746 || pred.0.has_non_region_infer()
747 || pred.0.has_non_region_infer()
748 {
749 Ok(EvaluatedToOkModuloRegions)
750 } else {
751 Ok(EvaluatedToOk)
752 }
753 }
754
755 ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..)) => {
756 // We do not consider region relationships when evaluating trait matches.
757 Ok(EvaluatedToOkModuloRegions)
758 }
759
760 ty::PredicateKind::DynCompatible(trait_def_id) => {
761 if self.tcx().is_dyn_compatible(trait_def_id) {
762 Ok(EvaluatedToOk)
763 } else {
764 Ok(EvaluatedToErr)
765 }
766 }
767
768 ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
769 let data = bound_predicate.rebind(data);
770 let project_obligation = obligation.with(self.tcx(), data);
771 match project::poly_project_and_unify_term(self, &project_obligation) {
772 ProjectAndUnifyResult::Holds(mut subobligations) => {
773 'compute_res: {
774 // If we've previously marked this projection as 'complete', then
775 // use the final cached result (either `EvaluatedToOk` or
776 // `EvaluatedToOkModuloRegions`), and skip re-evaluating the
777 // sub-obligations.
778 if let Some(key) =
779 ProjectionCacheKey::from_poly_projection_obligation(
780 self,
781 &project_obligation,
782 )
783 {
784 if let Some(cached_res) = self
785 .infcx
786 .inner
787 .borrow_mut()
788 .projection_cache()
789 .is_complete(key)
790 {
791 break 'compute_res Ok(cached_res);
792 }
793 }
794
795 // Need to explicitly set the depth of nested goals here as
796 // projection obligations can cycle by themselves and in
797 // `evaluate_predicates_recursively` we only add the depth
798 // for parent trait goals because only these get added to the
799 // `TraitObligationStackList`.
800 for subobligation in subobligations.iter_mut() {
801 subobligation.set_depth_from_parent(obligation.recursion_depth);
802 }
803 let res = self.evaluate_predicates_recursively(
804 previous_stack,
805 subobligations,
806 );
807 if let Ok(eval_rslt) = res
808 && (eval_rslt == EvaluatedToOk
809 || eval_rslt == EvaluatedToOkModuloRegions)
810 && let Some(key) =
811 ProjectionCacheKey::from_poly_projection_obligation(
812 self,
813 &project_obligation,
814 )
815 {
816 // If the result is something that we can cache, then mark this
817 // entry as 'complete'. This will allow us to skip evaluating the
818 // subobligations at all the next time we evaluate the projection
819 // predicate.
820 self.infcx
821 .inner
822 .borrow_mut()
823 .projection_cache()
824 .complete(key, eval_rslt);
825 }
826 res
827 }
828 }
829 ProjectAndUnifyResult::FailedNormalization => Ok(EvaluatedToAmbig),
830 ProjectAndUnifyResult::Recursive => Ok(EvaluatedToAmbigStackDependent),
831 ProjectAndUnifyResult::MismatchedProjectionTypes(_) => Ok(EvaluatedToErr),
832 }
833 }
834
835 ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
836 match const_evaluatable::is_const_evaluatable(
837 self.infcx,
838 uv,
839 obligation.param_env,
840 obligation.cause.span,
841 ) {
842 Ok(()) => Ok(EvaluatedToOk),
843 Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
844 Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
845 Err(_) => Ok(EvaluatedToErr),
846 }
847 }
848
849 ty::PredicateKind::ConstEquate(c1, c2) => {
850 let tcx = self.tcx();
851 assert!(
852 tcx.features().generic_const_exprs(),
853 "`ConstEquate` without a feature gate: {c1:?} {c2:?}",
854 );
855
856 {
857 let c1 = tcx.expand_abstract_consts(c1);
858 let c2 = tcx.expand_abstract_consts(c2);
859 debug!(
860 "evaluate_predicate_recursively: equating consts:\nc1= {:?}\nc2= {:?}",
861 c1, c2
862 );
863
864 use rustc_hir::def::DefKind;
865 match (c1.kind(), c2.kind()) {
866 (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b))
867 if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
868 {
869 if let Ok(InferOk { obligations, value: () }) = self
870 .infcx
871 .at(&obligation.cause, obligation.param_env)
872 // Can define opaque types as this is only reachable with
873 // `generic_const_exprs`
874 .eq(
875 DefineOpaqueTypes::Yes,
876 ty::AliasTerm::from(a),
877 ty::AliasTerm::from(b),
878 )
879 {
880 return self.evaluate_predicates_recursively(
881 previous_stack,
882 obligations,
883 );
884 }
885 }
886 (_, ty::ConstKind::Unevaluated(_))
887 | (ty::ConstKind::Unevaluated(_), _) => (),
888 (_, _) => {
889 if let Ok(InferOk { obligations, value: () }) = self
890 .infcx
891 .at(&obligation.cause, obligation.param_env)
892 // Can define opaque types as this is only reachable with
893 // `generic_const_exprs`
894 .eq(DefineOpaqueTypes::Yes, c1, c2)
895 {
896 return self.evaluate_predicates_recursively(
897 previous_stack,
898 obligations,
899 );
900 }
901 }
902 }
903 }
904
905 let evaluate = |c: ty::Const<'tcx>| {
906 if let ty::ConstKind::Unevaluated(_) = c.kind() {
907 match crate::traits::try_evaluate_const(
908 self.infcx,
909 c,
910 obligation.param_env,
911 ) {
912 Ok(val) => Ok(val),
913 Err(e) => Err(e),
914 }
915 } else {
916 Ok(c)
917 }
918 };
919
920 match (evaluate(c1), evaluate(c2)) {
921 (Ok(c1), Ok(c2)) => {
922 match self.infcx.at(&obligation.cause, obligation.param_env).eq(
923 // Can define opaque types as this is only reachable with
924 // `generic_const_exprs`
925 DefineOpaqueTypes::Yes,
926 c1,
927 c2,
928 ) {
929 Ok(inf_ok) => self.evaluate_predicates_recursively(
930 previous_stack,
931 inf_ok.into_obligations(),
932 ),
933 Err(_) => Ok(EvaluatedToErr),
934 }
935 }
936 (Err(EvaluateConstErr::InvalidConstParamTy(..)), _)
937 | (_, Err(EvaluateConstErr::InvalidConstParamTy(..))) => Ok(EvaluatedToErr),
938 (Err(EvaluateConstErr::EvaluationFailure(..)), _)
939 | (_, Err(EvaluateConstErr::EvaluationFailure(..))) => Ok(EvaluatedToErr),
940 (Err(EvaluateConstErr::HasGenericsOrInfers), _)
941 | (_, Err(EvaluateConstErr::HasGenericsOrInfers)) => {
942 if c1.has_non_region_infer() || c2.has_non_region_infer() {
943 Ok(EvaluatedToAmbig)
944 } else {
945 // Two different constants using generic parameters ~> error.
946 Ok(EvaluatedToErr)
947 }
948 }
949 }
950 }
951 ty::PredicateKind::NormalizesTo(..) => {
952 bug!("NormalizesTo is only used by the new solver")
953 }
954 ty::PredicateKind::AliasRelate(..) => {
955 bug!("AliasRelate is only used by the new solver")
956 }
957 ty::PredicateKind::Ambiguous => Ok(EvaluatedToAmbig),
958 ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
959 let ct = self.infcx.shallow_resolve_const(ct);
960 let ct_ty = match ct.kind() {
961 ty::ConstKind::Infer(_) => {
962 return Ok(EvaluatedToAmbig);
963 }
964 ty::ConstKind::Error(_) => return Ok(EvaluatedToOk),
965 ty::ConstKind::Value(cv) => cv.ty,
966 ty::ConstKind::Unevaluated(uv) => {
967 self.tcx().type_of(uv.def).instantiate(self.tcx(), uv.args)
968 }
969 // FIXME(generic_const_exprs): See comment in `fulfill.rs`
970 ty::ConstKind::Expr(_) => return Ok(EvaluatedToOk),
971 ty::ConstKind::Placeholder(_) => {
972 bug!("placeholder const {:?} in old solver", ct)
973 }
974 ty::ConstKind::Bound(_, _) => bug!("escaping bound vars in {:?}", ct),
975 ty::ConstKind::Param(param_ct) => {
976 param_ct.find_ty_from_env(obligation.param_env)
977 }
978 };
979
980 match self.infcx.at(&obligation.cause, obligation.param_env).eq(
981 // Only really exercised by generic_const_exprs
982 DefineOpaqueTypes::Yes,
983 ct_ty,
984 ty,
985 ) {
986 Ok(inf_ok) => self.evaluate_predicates_recursively(
987 previous_stack,
988 inf_ok.into_obligations(),
989 ),
990 Err(_) => Ok(EvaluatedToErr),
991 }
992 }
993 }
994 })
995 }
996
997 #[instrument(skip(self, previous_stack), level = "debug", ret)]
998 fn evaluate_trait_predicate_recursively<'o>(
999 &mut self,
1000 previous_stack: TraitObligationStackList<'o, 'tcx>,
1001 mut obligation: PolyTraitObligation<'tcx>,
1002 ) -> Result<EvaluationResult, OverflowError> {
1003 if !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
1004 && obligation.is_global()
1005 && obligation.param_env.caller_bounds().iter().all(|bound| bound.has_param())
1006 {
1007 // If a param env has no global bounds, global obligations do not
1008 // depend on its particular value in order to work, so we can clear
1009 // out the param env and get better caching.
1010 debug!("in global");
1011 obligation.param_env = obligation.param_env.without_caller_bounds();
1012 }
1013
1014 let stack = self.push_stack(previous_stack, &obligation);
1015 let fresh_trait_pred = stack.fresh_trait_pred;
1016 let param_env = obligation.param_env;
1017
1018 debug!(?fresh_trait_pred);
1019
1020 // If a trait predicate is in the (local or global) evaluation cache,
1021 // then we know it holds without cycles.
1022 if let Some(result) = self.check_evaluation_cache(param_env, fresh_trait_pred) {
1023 debug!("CACHE HIT");
1024 return Ok(result);
1025 }
1026
1027 if let Some(result) = stack.cache().get_provisional(fresh_trait_pred) {
1028 debug!("PROVISIONAL CACHE HIT");
1029 stack.update_reached_depth(result.reached_depth);
1030 return Ok(result.result);
1031 }
1032
1033 // Check if this is a match for something already on the
1034 // stack. If so, we don't want to insert the result into the
1035 // main cache (it is cycle dependent) nor the provisional
1036 // cache (which is meant for things that have completed but
1037 // for a "backedge" -- this result *is* the backedge).
1038 if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
1039 return Ok(cycle_result);
1040 }
1041
1042 let (result, dep_node) = self.in_task(|this| {
1043 let mut result = this.evaluate_stack(&stack)?;
1044
1045 // fix issue #103563, we don't normalize
1046 // nested obligations which produced by `TraitDef` candidate
1047 // (i.e. using bounds on assoc items as assumptions).
1048 // because we don't have enough information to
1049 // normalize these obligations before evaluating.
1050 // so we will try to normalize the obligation and evaluate again.
1051 // we will replace it with new solver in the future.
1052 if EvaluationResult::EvaluatedToErr == result
1053 && fresh_trait_pred.has_aliases()
1054 && fresh_trait_pred.is_global()
1055 {
1056 let mut nested_obligations = PredicateObligations::new();
1057 let predicate = normalize_with_depth_to(
1058 this,
1059 param_env,
1060 obligation.cause.clone(),
1061 obligation.recursion_depth + 1,
1062 obligation.predicate,
1063 &mut nested_obligations,
1064 );
1065 if predicate != obligation.predicate {
1066 let mut nested_result = EvaluationResult::EvaluatedToOk;
1067 for obligation in nested_obligations {
1068 nested_result = cmp::max(
1069 this.evaluate_predicate_recursively(previous_stack, obligation)?,
1070 nested_result,
1071 );
1072 }
1073
1074 if nested_result.must_apply_modulo_regions() {
1075 let obligation = obligation.with(this.tcx(), predicate);
1076 result = cmp::max(
1077 nested_result,
1078 this.evaluate_trait_predicate_recursively(previous_stack, obligation)?,
1079 );
1080 }
1081 }
1082 }
1083
1084 Ok::<_, OverflowError>(result)
1085 });
1086
1087 let result = result?;
1088
1089 if !result.must_apply_modulo_regions() {
1090 stack.cache().on_failure(stack.dfn);
1091 }
1092
1093 let reached_depth = stack.reached_depth.get();
1094 if reached_depth >= stack.depth {
1095 debug!("CACHE MISS");
1096 self.insert_evaluation_cache(param_env, fresh_trait_pred, dep_node, result);
1097 stack.cache().on_completion(stack.dfn);
1098 } else {
1099 debug!("PROVISIONAL");
1100 debug!(
1101 "caching provisionally because {:?} \
1102 is a cycle participant (at depth {}, reached depth {})",
1103 fresh_trait_pred, stack.depth, reached_depth,
1104 );
1105
1106 stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_pred, result);
1107 }
1108
1109 Ok(result)
1110 }
1111
1112 /// If there is any previous entry on the stack that precisely
1113 /// matches this obligation, then we can assume that the
1114 /// obligation is satisfied for now (still all other conditions
1115 /// must be met of course). One obvious case this comes up is
1116 /// marker traits like `Send`. Think of a linked list:
1117 ///
1118 /// struct List<T> { data: T, next: Option<Box<List<T>>> }
1119 ///
1120 /// `Box<List<T>>` will be `Send` if `T` is `Send` and
1121 /// `Option<Box<List<T>>>` is `Send`, and in turn
1122 /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
1123 /// `Send`.
1124 ///
1125 /// Note that we do this comparison using the `fresh_trait_ref`
1126 /// fields. Because these have all been freshened using
1127 /// `self.freshener`, we can be sure that (a) this will not
1128 /// affect the inferencer state and (b) that if we see two
1129 /// fresh regions with the same index, they refer to the same
1130 /// unbound type variable.
1131 fn check_evaluation_cycle(
1132 &mut self,
1133 stack: &TraitObligationStack<'_, 'tcx>,
1134 ) -> Option<EvaluationResult> {
1135 if let Some(cycle_depth) = stack
1136 .iter()
1137 .skip(1) // Skip top-most frame.
1138 .find(|prev| {
1139 stack.obligation.param_env == prev.obligation.param_env
1140 && stack.fresh_trait_pred == prev.fresh_trait_pred
1141 })
1142 .map(|stack| stack.depth)
1143 {
1144 debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
1145
1146 // If we have a stack like `A B C D E A`, where the top of
1147 // the stack is the final `A`, then this will iterate over
1148 // `A, E, D, C, B` -- i.e., all the participants apart
1149 // from the cycle head. We mark them as participating in a
1150 // cycle. This suppresses caching for those nodes. See
1151 // `in_cycle` field for more details.
1152 stack.update_reached_depth(cycle_depth);
1153
1154 // Subtle: when checking for a coinductive cycle, we do
1155 // not compare using the "freshened trait refs" (which
1156 // have erased regions) but rather the fully explicit
1157 // trait refs. This is important because it's only a cycle
1158 // if the regions match exactly.
1159 let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
1160 let tcx = self.tcx();
1161 let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
1162 if self.coinductive_match(cycle) {
1163 debug!("evaluate_stack --> recursive, coinductive");
1164 Some(EvaluatedToOk)
1165 } else {
1166 debug!("evaluate_stack --> recursive, inductive");
1167 Some(EvaluatedToAmbigStackDependent)
1168 }
1169 } else {
1170 None
1171 }
1172 }
1173
1174 fn evaluate_stack<'o>(
1175 &mut self,
1176 stack: &TraitObligationStack<'o, 'tcx>,
1177 ) -> Result<EvaluationResult, OverflowError> {
1178 debug_assert!(!self.infcx.next_trait_solver());
1179 // In intercrate mode, whenever any of the generics are unbound,
1180 // there can always be an impl. Even if there are no impls in
1181 // this crate, perhaps the type would be unified with
1182 // something from another crate that does provide an impl.
1183 //
1184 // In intra mode, we must still be conservative. The reason is
1185 // that we want to avoid cycles. Imagine an impl like:
1186 //
1187 // impl<T:Eq> Eq for Vec<T>
1188 //
1189 // and a trait reference like `$0 : Eq` where `$0` is an
1190 // unbound variable. When we evaluate this trait-reference, we
1191 // will unify `$0` with `Vec<$1>` (for some fresh variable
1192 // `$1`), on the condition that `$1 : Eq`. We will then wind
1193 // up with many candidates (since that are other `Eq` impls
1194 // that apply) and try to winnow things down. This results in
1195 // a recursive evaluation that `$1 : Eq` -- as you can
1196 // imagine, this is just where we started. To avoid that, we
1197 // check for unbound variables and return an ambiguous (hence possible)
1198 // match if we've seen this trait before.
1199 //
1200 // This suffices to allow chains like `FnMut` implemented in
1201 // terms of `Fn` etc, but we could probably make this more
1202 // precise still.
1203 let unbound_input_types =
1204 stack.fresh_trait_pred.skip_binder().trait_ref.args.types().any(|ty| ty.is_fresh());
1205
1206 if unbound_input_types
1207 && stack.iter().skip(1).any(|prev| {
1208 stack.obligation.param_env == prev.obligation.param_env
1209 && self.match_fresh_trait_refs(stack.fresh_trait_pred, prev.fresh_trait_pred)
1210 })
1211 {
1212 debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
1213 return Ok(EvaluatedToAmbigStackDependent);
1214 }
1215
1216 match self.candidate_from_obligation(stack) {
1217 Ok(Some(c)) => self.evaluate_candidate(stack, &c),
1218 Ok(None) => Ok(EvaluatedToAmbig),
1219 Err(Overflow(OverflowError::Canonical)) => Err(OverflowError::Canonical),
1220 Err(..) => Ok(EvaluatedToErr),
1221 }
1222 }
1223
1224 /// For defaulted traits, we use a co-inductive strategy to solve, so
1225 /// that recursion is ok. This routine returns `true` if the top of the
1226 /// stack (`cycle[0]`):
1227 ///
1228 /// - is a defaulted trait,
1229 /// - it also appears in the backtrace at some position `X`,
1230 /// - all the predicates at positions `X..` between `X` and the top are
1231 /// also defaulted traits.
1232 pub(crate) fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
1233 where
1234 I: Iterator<Item = ty::Predicate<'tcx>>,
1235 {
1236 cycle.all(|predicate| predicate.is_coinductive(self.tcx()))
1237 }
1238
1239 /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
1240 /// obligations are met. Returns whether `candidate` remains viable after this further
1241 /// scrutiny.
1242 #[instrument(
1243 level = "debug",
1244 skip(self, stack),
1245 fields(depth = stack.obligation.recursion_depth),
1246 ret
1247 )]
1248 fn evaluate_candidate<'o>(
1249 &mut self,
1250 stack: &TraitObligationStack<'o, 'tcx>,
1251 candidate: &SelectionCandidate<'tcx>,
1252 ) -> Result<EvaluationResult, OverflowError> {
1253 let mut result = self.evaluation_probe(|this| {
1254 match this.confirm_candidate(stack.obligation, candidate.clone()) {
1255 Ok(selection) => {
1256 debug!(?selection);
1257 this.evaluate_predicates_recursively(
1258 stack.list(),
1259 selection.nested_obligations().into_iter(),
1260 )
1261 }
1262 Err(..) => Ok(EvaluatedToErr),
1263 }
1264 })?;
1265
1266 // If we erased any lifetimes, then we want to use
1267 // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
1268 // as your final result. The result will be cached using
1269 // the freshened trait predicate as a key, so we need
1270 // our result to be correct by *any* choice of original lifetimes,
1271 // not just the lifetime choice for this particular (non-erased)
1272 // predicate.
1273 // See issue #80691
1274 if stack.fresh_trait_pred.has_erased_regions() {
1275 result = result.max(EvaluatedToOkModuloRegions);
1276 }
1277
1278 Ok(result)
1279 }
1280
1281 fn check_evaluation_cache(
1282 &self,
1283 param_env: ty::ParamEnv<'tcx>,
1284 trait_pred: ty::PolyTraitPredicate<'tcx>,
1285 ) -> Option<EvaluationResult> {
1286 let infcx = self.infcx;
1287 let tcx = infcx.tcx;
1288 if self.can_use_global_caches(param_env, trait_pred) {
1289 let key = (infcx.typing_env(param_env), trait_pred);
1290 if let Some(res) = tcx.evaluation_cache.get(&key, tcx) {
1291 Some(res)
1292 } else {
1293 debug_assert_eq!(infcx.evaluation_cache.get(&(param_env, trait_pred), tcx), None);
1294 None
1295 }
1296 } else {
1297 self.infcx.evaluation_cache.get(&(param_env, trait_pred), tcx)
1298 }
1299 }
1300
1301 fn insert_evaluation_cache(
1302 &mut self,
1303 param_env: ty::ParamEnv<'tcx>,
1304 trait_pred: ty::PolyTraitPredicate<'tcx>,
1305 dep_node: DepNodeIndex,
1306 result: EvaluationResult,
1307 ) {
1308 // Avoid caching results that depend on more than just the trait-ref
1309 // - the stack can create recursion.
1310 if result.is_stack_dependent() {
1311 return;
1312 }
1313
1314 let infcx = self.infcx;
1315 let tcx = infcx.tcx;
1316 if self.can_use_global_caches(param_env, trait_pred) {
1317 debug!(?trait_pred, ?result, "insert_evaluation_cache global");
1318 // This may overwrite the cache with the same value
1319 tcx.evaluation_cache.insert(
1320 (infcx.typing_env(param_env), trait_pred),
1321 dep_node,
1322 result,
1323 );
1324 return;
1325 } else {
1326 debug!(?trait_pred, ?result, "insert_evaluation_cache local");
1327 self.infcx.evaluation_cache.insert((param_env, trait_pred), dep_node, result);
1328 }
1329 }
1330
1331 fn check_recursion_depth<T>(
1332 &self,
1333 depth: usize,
1334 error_obligation: &Obligation<'tcx, T>,
1335 ) -> Result<(), OverflowError>
1336 where
1337 T: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1338 {
1339 if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
1340 match self.query_mode {
1341 TraitQueryMode::Standard => {
1342 if let Some(e) = self.infcx.tainted_by_errors() {
1343 return Err(OverflowError::Error(e));
1344 }
1345 self.infcx.err_ctxt().report_overflow_obligation(error_obligation, true);
1346 }
1347 TraitQueryMode::Canonical => {
1348 return Err(OverflowError::Canonical);
1349 }
1350 }
1351 }
1352 Ok(())
1353 }
1354
1355 /// Checks that the recursion limit has not been exceeded.
1356 ///
1357 /// The weird return type of this function allows it to be used with the `try` (`?`)
1358 /// operator within certain functions.
1359 #[inline(always)]
1360 fn check_recursion_limit<T: Display + TypeFoldable<TyCtxt<'tcx>>, V>(
1361 &self,
1362 obligation: &Obligation<'tcx, T>,
1363 error_obligation: &Obligation<'tcx, V>,
1364 ) -> Result<(), OverflowError>
1365 where
1366 V: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1367 {
1368 self.check_recursion_depth(obligation.recursion_depth, error_obligation)
1369 }
1370
1371 fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1372 where
1373 OP: FnOnce(&mut Self) -> R,
1374 {
1375 self.tcx().dep_graph.with_anon_task(self.tcx(), dep_kinds::TraitSelect, || op(self))
1376 }
1377
1378 /// filter_impls filters candidates that have a positive impl for a negative
1379 /// goal and a negative impl for a positive goal
1380 #[instrument(level = "debug", skip(self, candidates))]
1381 fn filter_impls(
1382 &mut self,
1383 candidates: Vec<SelectionCandidate<'tcx>>,
1384 obligation: &PolyTraitObligation<'tcx>,
1385 ) -> Vec<SelectionCandidate<'tcx>> {
1386 trace!("{candidates:#?}");
1387 let tcx = self.tcx();
1388 let mut result = Vec::with_capacity(candidates.len());
1389
1390 for candidate in candidates {
1391 if let ImplCandidate(def_id) = candidate {
1392 match (tcx.impl_polarity(def_id), obligation.polarity()) {
1393 (ty::ImplPolarity::Reservation, _)
1394 | (ty::ImplPolarity::Positive, ty::PredicatePolarity::Positive)
1395 | (ty::ImplPolarity::Negative, ty::PredicatePolarity::Negative) => {
1396 result.push(candidate);
1397 }
1398 _ => {}
1399 }
1400 } else {
1401 result.push(candidate);
1402 }
1403 }
1404
1405 trace!("{result:#?}");
1406 result
1407 }
1408
1409 /// filter_reservation_impls filter reservation impl for any goal as ambiguous
1410 #[instrument(level = "debug", skip(self))]
1411 fn filter_reservation_impls(
1412 &mut self,
1413 candidate: SelectionCandidate<'tcx>,
1414 ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1415 let tcx = self.tcx();
1416 // Treat reservation impls as ambiguity.
1417 if let ImplCandidate(def_id) = candidate {
1418 if let ty::ImplPolarity::Reservation = tcx.impl_polarity(def_id) {
1419 if let Some(intercrate_ambiguity_clauses) = &mut self.intercrate_ambiguity_causes {
1420 let message = tcx
1421 .get_attr(def_id, sym::rustc_reservation_impl)
1422 .and_then(|a| a.value_str());
1423 if let Some(message) = message {
1424 debug!(
1425 "filter_reservation_impls: \
1426 reservation impl ambiguity on {:?}",
1427 def_id
1428 );
1429 intercrate_ambiguity_clauses
1430 .insert(IntercrateAmbiguityCause::ReservationImpl { message });
1431 }
1432 }
1433 return Ok(None);
1434 }
1435 }
1436 Ok(Some(candidate))
1437 }
1438
1439 fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Result<(), Conflict> {
1440 let obligation = &stack.obligation;
1441 match self.infcx.typing_mode() {
1442 TypingMode::Coherence => {}
1443 TypingMode::Analysis { .. }
1444 | TypingMode::PostBorrowckAnalysis { .. }
1445 | TypingMode::PostAnalysis => return Ok(()),
1446 }
1447
1448 debug!("is_knowable()");
1449
1450 let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
1451
1452 // Okay to skip binder because of the nature of the
1453 // trait-ref-is-knowable check, which does not care about
1454 // bound regions.
1455 let trait_ref = predicate.skip_binder().trait_ref;
1456
1457 coherence::trait_ref_is_knowable(self.infcx, trait_ref, |ty| Ok::<_, !>(ty)).into_ok()
1458 }
1459
1460 /// Returns `true` if the global caches can be used.
1461 fn can_use_global_caches(
1462 &self,
1463 param_env: ty::ParamEnv<'tcx>,
1464 pred: ty::PolyTraitPredicate<'tcx>,
1465 ) -> bool {
1466 // If there are any inference variables in the `ParamEnv`, then we
1467 // always use a cache local to this particular scope. Otherwise, we
1468 // switch to a global cache.
1469 if param_env.has_infer() || pred.has_infer() {
1470 return false;
1471 }
1472
1473 match self.infcx.typing_mode() {
1474 // Avoid using the global cache during coherence and just rely
1475 // on the local cache. It is really just a simplification to
1476 // avoid us having to fear that coherence results "pollute"
1477 // the master cache. Since coherence executes pretty quickly,
1478 // it's not worth going to more trouble to increase the
1479 // hit-rate, I don't think.
1480 TypingMode::Coherence => false,
1481 // Avoid using the global cache when we're defining opaque types
1482 // as their hidden type may impact the result of candidate selection.
1483 //
1484 // HACK: This is still theoretically unsound. Goals can indirectly rely
1485 // on opaques in the defining scope, and it's easier to do so with TAIT.
1486 // However, if we disqualify *all* goals from being cached, perf suffers.
1487 // This is likely fixed by better caching in general in the new solver.
1488 // See: <https://github.com/rust-lang/rust/issues/132064>.
1489 TypingMode::Analysis { defining_opaque_types } => {
1490 defining_opaque_types.is_empty() || !pred.has_opaque_types()
1491 }
1492 // The hidden types of `defined_opaque_types` is not local to the current
1493 // inference context, so we can freely move this to the global cache.
1494 TypingMode::PostBorrowckAnalysis { .. } => true,
1495 // The global cache is only used if there are no opaque types in
1496 // the defining scope or we're outside of analysis.
1497 //
1498 // FIXME(#132279): This is still incorrect as we treat opaque types
1499 // and default associated items differently between these two modes.
1500 TypingMode::PostAnalysis => true,
1501 }
1502 }
1503
1504 fn check_candidate_cache(
1505 &mut self,
1506 param_env: ty::ParamEnv<'tcx>,
1507 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1508 ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1509 let infcx = self.infcx;
1510 let tcx = infcx.tcx;
1511 let pred = cache_fresh_trait_pred.skip_binder();
1512
1513 if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1514 if let Some(res) = tcx.selection_cache.get(&(infcx.typing_env(param_env), pred), tcx) {
1515 return Some(res);
1516 } else if cfg!(debug_assertions) {
1517 match infcx.selection_cache.get(&(param_env, pred), tcx) {
1518 None | Some(Err(Overflow(OverflowError::Canonical))) => {}
1519 res => bug!("unexpected local cache result: {res:?}"),
1520 }
1521 }
1522 }
1523
1524 // Subtle: we need to check the local cache even if we're able to use the
1525 // global cache as we don't cache overflow in the global cache but need to
1526 // cache it as otherwise rustdoc hangs when compiling diesel.
1527 infcx.selection_cache.get(&(param_env, pred), tcx)
1528 }
1529
1530 /// Determines whether can we safely cache the result
1531 /// of selecting an obligation. This is almost always `true`,
1532 /// except when dealing with certain `ParamCandidate`s.
1533 ///
1534 /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1535 /// since it was usually produced directly from a `DefId`. However,
1536 /// certain cases (currently only librustdoc's blanket impl finder),
1537 /// a `ParamEnv` may be explicitly constructed with inference types.
1538 /// When this is the case, we do *not* want to cache the resulting selection
1539 /// candidate. This is due to the fact that it might not always be possible
1540 /// to equate the obligation's trait ref and the candidate's trait ref,
1541 /// if more constraints end up getting added to an inference variable.
1542 ///
1543 /// Because of this, we always want to re-run the full selection
1544 /// process for our obligation the next time we see it, since
1545 /// we might end up picking a different `SelectionCandidate` (or none at all).
1546 fn can_cache_candidate(
1547 &self,
1548 result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1549 ) -> bool {
1550 match result {
1551 Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.has_infer(),
1552 _ => true,
1553 }
1554 }
1555
1556 #[instrument(skip(self, param_env, cache_fresh_trait_pred, dep_node), level = "debug")]
1557 fn insert_candidate_cache(
1558 &mut self,
1559 param_env: ty::ParamEnv<'tcx>,
1560 cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1561 dep_node: DepNodeIndex,
1562 candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1563 ) {
1564 let infcx = self.infcx;
1565 let tcx = infcx.tcx;
1566 let pred = cache_fresh_trait_pred.skip_binder();
1567
1568 if !self.can_cache_candidate(&candidate) {
1569 debug!(?pred, ?candidate, "insert_candidate_cache - candidate is not cacheable");
1570 return;
1571 }
1572
1573 if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1574 if let Err(Overflow(OverflowError::Canonical)) = candidate {
1575 // Don't cache overflow globally; we only produce this in certain modes.
1576 } else {
1577 debug!(?pred, ?candidate, "insert_candidate_cache global");
1578 debug_assert!(!candidate.has_infer());
1579
1580 // This may overwrite the cache with the same value.
1581 tcx.selection_cache.insert(
1582 (infcx.typing_env(param_env), pred),
1583 dep_node,
1584 candidate,
1585 );
1586 return;
1587 }
1588 }
1589
1590 debug!(?pred, ?candidate, "insert_candidate_cache local");
1591 self.infcx.selection_cache.insert((param_env, pred), dep_node, candidate);
1592 }
1593
1594 /// Looks at the item bounds of the projection or opaque type.
1595 /// If this is a nested rigid projection, such as
1596 /// `<<T as Tr1>::Assoc as Tr2>::Assoc`, consider the item bounds
1597 /// on both `Tr1::Assoc` and `Tr2::Assoc`, since we may encounter
1598 /// relative bounds on both via the `associated_type_bounds` feature.
1599 pub(super) fn for_each_item_bound<T>(
1600 &mut self,
1601 mut self_ty: Ty<'tcx>,
1602 mut for_each: impl FnMut(&mut Self, ty::Clause<'tcx>, usize) -> ControlFlow<T, ()>,
1603 on_ambiguity: impl FnOnce(),
1604 ) -> ControlFlow<T, ()> {
1605 let mut idx = 0;
1606 let mut in_parent_alias_type = false;
1607
1608 loop {
1609 let (kind, alias_ty) = match *self_ty.kind() {
1610 ty::Alias(kind @ (ty::Projection | ty::Opaque), alias_ty) => (kind, alias_ty),
1611 ty::Infer(ty::TyVar(_)) => {
1612 on_ambiguity();
1613 return ControlFlow::Continue(());
1614 }
1615 _ => return ControlFlow::Continue(()),
1616 };
1617
1618 // HACK: On subsequent recursions, we only care about bounds that don't
1619 // share the same type as `self_ty`. This is because for truly rigid
1620 // projections, we will never be able to equate, e.g. `<T as Tr>::A`
1621 // with `<<T as Tr>::A as Tr>::A`.
1622 let relevant_bounds = if in_parent_alias_type {
1623 self.tcx().item_non_self_bounds(alias_ty.def_id)
1624 } else {
1625 self.tcx().item_self_bounds(alias_ty.def_id)
1626 };
1627
1628 for bound in relevant_bounds.instantiate(self.tcx(), alias_ty.args) {
1629 for_each(self, bound, idx)?;
1630 idx += 1;
1631 }
1632
1633 if kind == ty::Projection {
1634 self_ty = alias_ty.self_ty();
1635 } else {
1636 return ControlFlow::Continue(());
1637 }
1638
1639 in_parent_alias_type = true;
1640 }
1641 }
1642
1643 /// Equates the trait in `obligation` with trait bound. If the two traits
1644 /// can be equated and the normalized trait bound doesn't contain inference
1645 /// variables or placeholders, the normalized bound is returned.
1646 fn match_normalize_trait_ref(
1647 &mut self,
1648 obligation: &PolyTraitObligation<'tcx>,
1649 placeholder_trait_ref: ty::TraitRef<'tcx>,
1650 trait_bound: ty::PolyTraitRef<'tcx>,
1651 ) -> Result<Option<ty::TraitRef<'tcx>>, ()> {
1652 debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1653 if placeholder_trait_ref.def_id != trait_bound.def_id() {
1654 // Avoid unnecessary normalization
1655 return Err(());
1656 }
1657
1658 let trait_bound = self.infcx.instantiate_binder_with_fresh_vars(
1659 obligation.cause.span,
1660 HigherRankedType,
1661 trait_bound,
1662 );
1663 let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
1664 normalize_with_depth(
1665 self,
1666 obligation.param_env,
1667 obligation.cause.clone(),
1668 obligation.recursion_depth + 1,
1669 trait_bound,
1670 )
1671 });
1672 self.infcx
1673 .at(&obligation.cause, obligation.param_env)
1674 .eq(DefineOpaqueTypes::No, placeholder_trait_ref, trait_bound)
1675 .map(|InferOk { obligations: _, value: () }| {
1676 // This method is called within a probe, so we can't have
1677 // inference variables and placeholders escape.
1678 if !trait_bound.has_infer() && !trait_bound.has_placeholders() {
1679 Some(trait_bound)
1680 } else {
1681 None
1682 }
1683 })
1684 .map_err(|_| ())
1685 }
1686
1687 fn where_clause_may_apply<'o>(
1688 &mut self,
1689 stack: &TraitObligationStack<'o, 'tcx>,
1690 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1691 ) -> Result<EvaluationResult, OverflowError> {
1692 self.evaluation_probe(|this| {
1693 match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1694 Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1695 Err(()) => Ok(EvaluatedToErr),
1696 }
1697 })
1698 }
1699
1700 /// Return `Yes` if the obligation's predicate type applies to the env_predicate, and
1701 /// `No` if it does not. Return `Ambiguous` in the case that the projection type is a GAT,
1702 /// and applying this env_predicate constrains any of the obligation's GAT parameters.
1703 ///
1704 /// This behavior is a somewhat of a hack to prevent over-constraining inference variables
1705 /// in cases like #91762.
1706 pub(super) fn match_projection_projections(
1707 &mut self,
1708 obligation: &ProjectionTermObligation<'tcx>,
1709 env_predicate: PolyProjectionPredicate<'tcx>,
1710 potentially_unnormalized_candidates: bool,
1711 ) -> ProjectionMatchesProjection {
1712 debug_assert_eq!(obligation.predicate.def_id, env_predicate.item_def_id());
1713
1714 let mut nested_obligations = PredicateObligations::new();
1715 let infer_predicate = self.infcx.instantiate_binder_with_fresh_vars(
1716 obligation.cause.span,
1717 BoundRegionConversionTime::HigherRankedType,
1718 env_predicate,
1719 );
1720 let infer_projection = if potentially_unnormalized_candidates {
1721 ensure_sufficient_stack(|| {
1722 normalize_with_depth_to(
1723 self,
1724 obligation.param_env,
1725 obligation.cause.clone(),
1726 obligation.recursion_depth + 1,
1727 infer_predicate.projection_term,
1728 &mut nested_obligations,
1729 )
1730 })
1731 } else {
1732 infer_predicate.projection_term
1733 };
1734
1735 let is_match = self
1736 .infcx
1737 .at(&obligation.cause, obligation.param_env)
1738 .eq(DefineOpaqueTypes::No, obligation.predicate, infer_projection)
1739 .is_ok_and(|InferOk { obligations, value: () }| {
1740 self.evaluate_predicates_recursively(
1741 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1742 nested_obligations.into_iter().chain(obligations),
1743 )
1744 .is_ok_and(|res| res.may_apply())
1745 });
1746
1747 if is_match {
1748 let generics = self.tcx().generics_of(obligation.predicate.def_id);
1749 // FIXME(generic-associated-types): Addresses aggressive inference in #92917.
1750 // If this type is a GAT, and of the GAT args resolve to something new,
1751 // that means that we must have newly inferred something about the GAT.
1752 // We should give up in that case.
1753 // FIXME(generic-associated-types): This only detects one layer of inference,
1754 // which is probably not what we actually want, but fixing it causes some ambiguity:
1755 // <https://github.com/rust-lang/rust/issues/125196>.
1756 if !generics.is_own_empty()
1757 && obligation.predicate.args[generics.parent_count..].iter().any(|&p| {
1758 p.has_non_region_infer()
1759 && match p.unpack() {
1760 ty::GenericArgKind::Const(ct) => {
1761 self.infcx.shallow_resolve_const(ct) != ct
1762 }
1763 ty::GenericArgKind::Type(ty) => self.infcx.shallow_resolve(ty) != ty,
1764 ty::GenericArgKind::Lifetime(_) => false,
1765 }
1766 })
1767 {
1768 ProjectionMatchesProjection::Ambiguous
1769 } else {
1770 ProjectionMatchesProjection::Yes
1771 }
1772 } else {
1773 ProjectionMatchesProjection::No
1774 }
1775 }
1776}
1777
1778/// ## Winnowing
1779///
1780/// Winnowing is the process of attempting to resolve ambiguity by
1781/// probing further. During the winnowing process, we unify all
1782/// type variables and then we also attempt to evaluate recursive
1783/// bounds to see if they are satisfied.
1784impl<'tcx> SelectionContext<'_, 'tcx> {
1785 /// If there are multiple ways to prove a trait goal, we make some
1786 /// *fairly arbitrary* choices about which candidate is actually used.
1787 ///
1788 /// For more details, look at the implementation of this method :)
1789 #[instrument(level = "debug", skip(self), ret)]
1790 fn winnow_candidates(
1791 &mut self,
1792 has_non_region_infer: bool,
1793 mut candidates: Vec<EvaluatedCandidate<'tcx>>,
1794 ) -> Option<SelectionCandidate<'tcx>> {
1795 if candidates.len() == 1 {
1796 return Some(candidates.pop().unwrap().candidate);
1797 }
1798
1799 // We prefer trivial builtin candidates, i.e. builtin impls without any nested
1800 // requirements, over all others. This is a fix for #53123 and prevents winnowing
1801 // from accidentally extending the lifetime of a variable.
1802 let mut trivial_builtin = candidates
1803 .iter()
1804 .filter(|c| matches!(c.candidate, BuiltinCandidate { has_nested: false }));
1805 if let Some(_trivial) = trivial_builtin.next() {
1806 // There should only ever be a single trivial builtin candidate
1807 // as they would otherwise overlap.
1808 debug_assert_eq!(trivial_builtin.next(), None);
1809 return Some(BuiltinCandidate { has_nested: false });
1810 }
1811
1812 // Before we consider where-bounds, we have to deduplicate them here and also
1813 // drop where-bounds in case the same where-bound exists without bound vars.
1814 // This is necessary as elaborating super-trait bounds may result in duplicates.
1815 'search_victim: loop {
1816 for (i, this) in candidates.iter().enumerate() {
1817 let ParamCandidate(this) = this.candidate else { continue };
1818 for (j, other) in candidates.iter().enumerate() {
1819 if i == j {
1820 continue;
1821 }
1822
1823 let ParamCandidate(other) = other.candidate else { continue };
1824 if this == other {
1825 candidates.remove(j);
1826 continue 'search_victim;
1827 }
1828
1829 if this.skip_binder().trait_ref == other.skip_binder().trait_ref
1830 && this.skip_binder().polarity == other.skip_binder().polarity
1831 && !this.skip_binder().trait_ref.has_escaping_bound_vars()
1832 {
1833 candidates.remove(j);
1834 continue 'search_victim;
1835 }
1836 }
1837 }
1838
1839 break;
1840 }
1841
1842 // The next highest priority is for non-global where-bounds. However, while we don't
1843 // prefer global where-clauses here, we do bail with ambiguity when encountering both
1844 // a global and a non-global where-clause.
1845 //
1846 // Our handling of where-bounds is generally fairly messy but necessary for backwards
1847 // compatibility, see #50825 for why we need to handle global where-bounds like this.
1848 let is_global = |c: ty::PolyTraitPredicate<'tcx>| c.is_global() && !c.has_bound_vars();
1849 let param_candidates = candidates
1850 .iter()
1851 .filter_map(|c| if let ParamCandidate(p) = c.candidate { Some(p) } else { None });
1852 let mut has_global_bounds = false;
1853 let mut param_candidate = None;
1854 for c in param_candidates {
1855 if is_global(c) {
1856 has_global_bounds = true;
1857 } else if param_candidate.replace(c).is_some() {
1858 // Ambiguity, two potentially different where-clauses
1859 return None;
1860 }
1861 }
1862 if let Some(predicate) = param_candidate {
1863 // Ambiguity, a global and a non-global where-bound.
1864 if has_global_bounds {
1865 return None;
1866 } else {
1867 return Some(ParamCandidate(predicate));
1868 }
1869 }
1870
1871 // Prefer alias-bounds over blanket impls for rigid associated types. This is
1872 // fairly arbitrary but once again necessary for backwards compatibility.
1873 // If there are multiple applicable candidates which don't affect type inference,
1874 // choose the one with the lowest index.
1875 let alias_bound = candidates
1876 .iter()
1877 .filter_map(|c| if let ProjectionCandidate(i) = c.candidate { Some(i) } else { None })
1878 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1879 match alias_bound {
1880 Some(Some(index)) => return Some(ProjectionCandidate(index)),
1881 Some(None) => {}
1882 None => return None,
1883 }
1884
1885 // Need to prioritize builtin trait object impls as `<dyn Any as Any>::type_id`
1886 // should use the vtable method and not the method provided by the user-defined
1887 // impl `impl<T: ?Sized> Any for T { .. }`. This really shouldn't exist but is
1888 // necessary due to #57893. We again arbitrarily prefer the applicable candidate
1889 // with the lowest index.
1890 let object_bound = candidates
1891 .iter()
1892 .filter_map(|c| if let ObjectCandidate(i) = c.candidate { Some(i) } else { None })
1893 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1894 match object_bound {
1895 Some(Some(index)) => return Some(ObjectCandidate(index)),
1896 Some(None) => {}
1897 None => return None,
1898 }
1899 // Same for upcasting.
1900 let upcast_bound = candidates
1901 .iter()
1902 .filter_map(|c| {
1903 if let TraitUpcastingUnsizeCandidate(i) = c.candidate { Some(i) } else { None }
1904 })
1905 .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1906 match upcast_bound {
1907 Some(Some(index)) => return Some(TraitUpcastingUnsizeCandidate(index)),
1908 Some(None) => {}
1909 None => return None,
1910 }
1911
1912 // Finally, handle overlapping user-written impls.
1913 let impls = candidates.iter().filter_map(|c| {
1914 if let ImplCandidate(def_id) = c.candidate {
1915 Some((def_id, c.evaluation))
1916 } else {
1917 None
1918 }
1919 });
1920 let mut impl_candidate = None;
1921 for c in impls {
1922 if let Some(prev) = impl_candidate.replace(c) {
1923 if self.prefer_lhs_over_victim(has_non_region_infer, c, prev) {
1924 // Ok, prefer `c` over the previous entry
1925 } else if self.prefer_lhs_over_victim(has_non_region_infer, prev, c) {
1926 // Ok, keep `prev` instead of the new entry
1927 impl_candidate = Some(prev);
1928 } else {
1929 // Ambiguity, two potentially different where-clauses
1930 return None;
1931 }
1932 }
1933 }
1934 if let Some((def_id, _evaluation)) = impl_candidate {
1935 // Don't use impl candidates which overlap with other candidates.
1936 // This should pretty much only ever happen with malformed impls.
1937 if candidates.iter().all(|c| match c.candidate {
1938 BuiltinCandidate { has_nested: _ }
1939 | TransmutabilityCandidate
1940 | AutoImplCandidate
1941 | ClosureCandidate { .. }
1942 | AsyncClosureCandidate
1943 | AsyncFnKindHelperCandidate
1944 | CoroutineCandidate
1945 | FutureCandidate
1946 | IteratorCandidate
1947 | AsyncIteratorCandidate
1948 | FnPointerCandidate
1949 | TraitAliasCandidate
1950 | TraitUpcastingUnsizeCandidate(_)
1951 | BuiltinObjectCandidate
1952 | BuiltinUnsizeCandidate
1953 | BikeshedGuaranteedNoDropCandidate => false,
1954 // Non-global param candidates have already been handled, global
1955 // where-bounds get ignored.
1956 ParamCandidate(_) | ImplCandidate(_) => true,
1957 ProjectionCandidate(_) | ObjectCandidate(_) => unreachable!(),
1958 }) {
1959 return Some(ImplCandidate(def_id));
1960 } else {
1961 return None;
1962 }
1963 }
1964
1965 if candidates.len() == 1 {
1966 Some(candidates.pop().unwrap().candidate)
1967 } else {
1968 // Also try ignoring all global where-bounds and check whether we end
1969 // with a unique candidate in this case.
1970 let mut not_a_global_where_bound = candidates
1971 .into_iter()
1972 .filter(|c| !matches!(c.candidate, ParamCandidate(p) if is_global(p)));
1973 not_a_global_where_bound
1974 .next()
1975 .map(|c| c.candidate)
1976 .filter(|_| not_a_global_where_bound.next().is_none())
1977 }
1978 }
1979
1980 fn prefer_lhs_over_victim(
1981 &self,
1982 has_non_region_infer: bool,
1983 (lhs, lhs_evaluation): (DefId, EvaluationResult),
1984 (victim, victim_evaluation): (DefId, EvaluationResult),
1985 ) -> bool {
1986 let tcx = self.tcx();
1987 // See if we can toss out `victim` based on specialization.
1988 //
1989 // While this requires us to know *for sure* that the `lhs` impl applies
1990 // we still use modulo regions here. This is fine as specialization currently
1991 // assumes that specializing impls have to be always applicable, meaning that
1992 // the only allowed region constraints may be constraints also present on the default impl.
1993 if lhs_evaluation.must_apply_modulo_regions() {
1994 if tcx.specializes((lhs, victim)) {
1995 return true;
1996 }
1997 }
1998
1999 match tcx.impls_are_allowed_to_overlap(lhs, victim) {
2000 // For #33140 the impl headers must be exactly equal, the trait must not have
2001 // any associated items and there are no where-clauses.
2002 //
2003 // We can just arbitrarily drop one of the impls.
2004 Some(ty::ImplOverlapKind::FutureCompatOrderDepTraitObjects) => {
2005 assert_eq!(lhs_evaluation, victim_evaluation);
2006 true
2007 }
2008 // For candidates which already reference errors it doesn't really
2009 // matter what we do 🤷
2010 Some(ty::ImplOverlapKind::Permitted { marker: false }) => {
2011 lhs_evaluation.must_apply_considering_regions()
2012 }
2013 Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
2014 // Subtle: If the predicate we are evaluating has inference
2015 // variables, do *not* allow discarding candidates due to
2016 // marker trait impls.
2017 //
2018 // Without this restriction, we could end up accidentally
2019 // constraining inference variables based on an arbitrarily
2020 // chosen trait impl.
2021 //
2022 // Imagine we have the following code:
2023 //
2024 // ```rust
2025 // #[marker] trait MyTrait {}
2026 // impl MyTrait for u8 {}
2027 // impl MyTrait for bool {}
2028 // ```
2029 //
2030 // And we are evaluating the predicate `<_#0t as MyTrait>`.
2031 //
2032 // During selection, we will end up with one candidate for each
2033 // impl of `MyTrait`. If we were to discard one impl in favor
2034 // of the other, we would be left with one candidate, causing
2035 // us to "successfully" select the predicate, unifying
2036 // _#0t with (for example) `u8`.
2037 //
2038 // However, we have no reason to believe that this unification
2039 // is correct - we've essentially just picked an arbitrary
2040 // *possibility* for _#0t, and required that this be the *only*
2041 // possibility.
2042 //
2043 // Eventually, we will either:
2044 // 1) Unify all inference variables in the predicate through
2045 // some other means (e.g. type-checking of a function). We will
2046 // then be in a position to drop marker trait candidates
2047 // without constraining inference variables (since there are
2048 // none left to constrain)
2049 // 2) Be left with some unconstrained inference variables. We
2050 // will then correctly report an inference error, since the
2051 // existence of multiple marker trait impls tells us nothing
2052 // about which one should actually apply.
2053 !has_non_region_infer && lhs_evaluation.must_apply_considering_regions()
2054 }
2055 None => false,
2056 }
2057 }
2058}
2059
2060impl<'tcx> SelectionContext<'_, 'tcx> {
2061 fn sized_conditions(
2062 &mut self,
2063 obligation: &PolyTraitObligation<'tcx>,
2064 ) -> BuiltinImplConditions<'tcx> {
2065 use self::BuiltinImplConditions::{Ambiguous, None, Where};
2066
2067 // NOTE: binder moved to (*)
2068 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2069
2070 match self_ty.kind() {
2071 ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2072 | ty::Uint(_)
2073 | ty::Int(_)
2074 | ty::Bool
2075 | ty::Float(_)
2076 | ty::FnDef(..)
2077 | ty::FnPtr(..)
2078 | ty::RawPtr(..)
2079 | ty::Char
2080 | ty::Ref(..)
2081 | ty::Coroutine(..)
2082 | ty::CoroutineWitness(..)
2083 | ty::Array(..)
2084 | ty::Closure(..)
2085 | ty::CoroutineClosure(..)
2086 | ty::Never
2087 | ty::Dynamic(_, _, ty::DynStar)
2088 | ty::Error(_) => {
2089 // safe for everything
2090 Where(ty::Binder::dummy(Vec::new()))
2091 }
2092
2093 ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
2094
2095 ty::Tuple(tys) => Where(
2096 obligation.predicate.rebind(tys.last().map_or_else(Vec::new, |&last| vec![last])),
2097 ),
2098
2099 ty::Pat(ty, _) => Where(obligation.predicate.rebind(vec![*ty])),
2100
2101 ty::Adt(def, args) => {
2102 if let Some(sized_crit) = def.sized_constraint(self.tcx()) {
2103 // (*) binder moved here
2104 Where(
2105 obligation.predicate.rebind(vec![sized_crit.instantiate(self.tcx(), args)]),
2106 )
2107 } else {
2108 Where(ty::Binder::dummy(Vec::new()))
2109 }
2110 }
2111
2112 // FIXME(unsafe_binders): This binder needs to be squashed
2113 ty::UnsafeBinder(binder_ty) => Where(binder_ty.map_bound(|ty| vec![ty])),
2114
2115 ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => None,
2116 ty::Infer(ty::TyVar(_)) => Ambiguous,
2117
2118 // We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
2119 ty::Bound(..) => None,
2120
2121 ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2122 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2123 }
2124 }
2125 }
2126
2127 fn copy_clone_conditions(
2128 &mut self,
2129 obligation: &PolyTraitObligation<'tcx>,
2130 ) -> BuiltinImplConditions<'tcx> {
2131 // NOTE: binder moved to (*)
2132 let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2133
2134 use self::BuiltinImplConditions::{Ambiguous, None, Where};
2135
2136 match *self_ty.kind() {
2137 ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),
2138
2139 ty::Uint(_)
2140 | ty::Int(_)
2141 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2142 | ty::Bool
2143 | ty::Float(_)
2144 | ty::Char
2145 | ty::RawPtr(..)
2146 | ty::Never
2147 | ty::Ref(_, _, hir::Mutability::Not)
2148 | ty::Array(..) => {
2149 // Implementations provided in libcore
2150 None
2151 }
2152
2153 // FIXME(unsafe_binder): Should we conditionally
2154 // (i.e. universally) implement copy/clone?
2155 ty::UnsafeBinder(_) => None,
2156
2157 ty::Dynamic(..)
2158 | ty::Str
2159 | ty::Slice(..)
2160 | ty::Foreign(..)
2161 | ty::Ref(_, _, hir::Mutability::Mut) => None,
2162
2163 ty::Tuple(tys) => {
2164 // (*) binder moved here
2165 Where(obligation.predicate.rebind(tys.iter().collect()))
2166 }
2167
2168 ty::Pat(ty, _) => {
2169 // (*) binder moved here
2170 Where(obligation.predicate.rebind(vec![ty]))
2171 }
2172
2173 ty::Coroutine(coroutine_def_id, args) => {
2174 match self.tcx().coroutine_movability(coroutine_def_id) {
2175 hir::Movability::Static => None,
2176 hir::Movability::Movable => {
2177 if self.tcx().features().coroutine_clone() {
2178 let resolved_upvars =
2179 self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
2180 let resolved_witness =
2181 self.infcx.shallow_resolve(args.as_coroutine().witness());
2182 if resolved_upvars.is_ty_var() || resolved_witness.is_ty_var() {
2183 // Not yet resolved.
2184 Ambiguous
2185 } else {
2186 let all = args
2187 .as_coroutine()
2188 .upvar_tys()
2189 .iter()
2190 .chain([args.as_coroutine().witness()])
2191 .collect::<Vec<_>>();
2192 Where(obligation.predicate.rebind(all))
2193 }
2194 } else {
2195 None
2196 }
2197 }
2198 }
2199 }
2200
2201 ty::CoroutineWitness(def_id, args) => {
2202 let hidden_types = bind_coroutine_hidden_types_above(
2203 self.infcx,
2204 def_id,
2205 args,
2206 obligation.predicate.bound_vars(),
2207 );
2208 Where(hidden_types)
2209 }
2210
2211 ty::Closure(_, args) => {
2212 // (*) binder moved here
2213 let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
2214 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
2215 // Not yet resolved.
2216 Ambiguous
2217 } else {
2218 Where(obligation.predicate.rebind(args.as_closure().upvar_tys().to_vec()))
2219 }
2220 }
2221
2222 ty::CoroutineClosure(_, args) => {
2223 // (*) binder moved here
2224 let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
2225 if let ty::Infer(ty::TyVar(_)) = ty.kind() {
2226 // Not yet resolved.
2227 Ambiguous
2228 } else {
2229 Where(
2230 obligation
2231 .predicate
2232 .rebind(args.as_coroutine_closure().upvar_tys().to_vec()),
2233 )
2234 }
2235 }
2236
2237 // `Copy` and `Clone` are automatically implemented for an anonymous adt
2238 // if all of its fields are `Copy` and `Clone`
2239 ty::Adt(adt, args) if adt.is_anonymous() => {
2240 // (*) binder moved here
2241 Where(obligation.predicate.rebind(
2242 adt.non_enum_variant().fields.iter().map(|f| f.ty(self.tcx(), args)).collect(),
2243 ))
2244 }
2245
2246 ty::Adt(..) | ty::Alias(..) | ty::Param(..) | ty::Placeholder(..) => {
2247 // Fallback to whatever user-defined impls exist in this case.
2248 None
2249 }
2250
2251 ty::Infer(ty::TyVar(_)) => {
2252 // Unbound type variable. Might or might not have
2253 // applicable impls and so forth, depending on what
2254 // those type variables wind up being bound to.
2255 Ambiguous
2256 }
2257
2258 // We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
2259 ty::Bound(..) => None,
2260
2261 ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2262 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2263 }
2264 }
2265 }
2266
2267 fn fused_iterator_conditions(
2268 &mut self,
2269 obligation: &PolyTraitObligation<'tcx>,
2270 ) -> BuiltinImplConditions<'tcx> {
2271 let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
2272 if let ty::Coroutine(did, ..) = *self_ty.kind()
2273 && self.tcx().coroutine_is_gen(did)
2274 {
2275 BuiltinImplConditions::Where(ty::Binder::dummy(Vec::new()))
2276 } else {
2277 BuiltinImplConditions::None
2278 }
2279 }
2280
2281 /// For default impls, we need to break apart a type into its
2282 /// "constituent types" -- meaning, the types that it contains.
2283 ///
2284 /// Here are some (simple) examples:
2285 ///
2286 /// ```ignore (illustrative)
2287 /// (i32, u32) -> [i32, u32]
2288 /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2289 /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2290 /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2291 /// ```
2292 #[instrument(level = "debug", skip(self), ret)]
2293 fn constituent_types_for_ty(
2294 &self,
2295 t: ty::Binder<'tcx, Ty<'tcx>>,
2296 ) -> Result<ty::Binder<'tcx, Vec<Ty<'tcx>>>, SelectionError<'tcx>> {
2297 Ok(match *t.skip_binder().kind() {
2298 ty::Uint(_)
2299 | ty::Int(_)
2300 | ty::Bool
2301 | ty::Float(_)
2302 | ty::FnDef(..)
2303 | ty::FnPtr(..)
2304 | ty::Error(_)
2305 | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2306 | ty::Never
2307 | ty::Char => ty::Binder::dummy(Vec::new()),
2308
2309 // FIXME(unsafe_binders): Squash the double binder for now, I guess.
2310 ty::UnsafeBinder(_) => return Err(SelectionError::Unimplemented),
2311
2312 // Treat this like `struct str([u8]);`
2313 ty::Str => ty::Binder::dummy(vec![Ty::new_slice(self.tcx(), self.tcx().types.u8)]),
2314
2315 ty::Placeholder(..)
2316 | ty::Dynamic(..)
2317 | ty::Param(..)
2318 | ty::Foreign(..)
2319 | ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..)
2320 | ty::Bound(..)
2321 | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2322 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
2323 }
2324
2325 ty::RawPtr(element_ty, _) | ty::Ref(_, element_ty, _) => t.rebind(vec![element_ty]),
2326
2327 ty::Pat(ty, _) | ty::Array(ty, _) | ty::Slice(ty) => t.rebind(vec![ty]),
2328
2329 ty::Tuple(tys) => {
2330 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2331 t.rebind(tys.iter().collect())
2332 }
2333
2334 ty::Closure(_, args) => {
2335 let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
2336 t.rebind(vec![ty])
2337 }
2338
2339 ty::CoroutineClosure(_, args) => {
2340 let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
2341 t.rebind(vec![ty])
2342 }
2343
2344 ty::Coroutine(_, args) => {
2345 let ty = self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
2346 let witness = args.as_coroutine().witness();
2347 t.rebind([ty].into_iter().chain(iter::once(witness)).collect())
2348 }
2349
2350 ty::CoroutineWitness(def_id, args) => {
2351 bind_coroutine_hidden_types_above(self.infcx, def_id, args, t.bound_vars())
2352 }
2353
2354 // For `PhantomData<T>`, we pass `T`.
2355 ty::Adt(def, args) if def.is_phantom_data() => t.rebind(args.types().collect()),
2356
2357 ty::Adt(def, args) => {
2358 t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), args)).collect())
2359 }
2360
2361 ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2362 if self.infcx.can_define_opaque_ty(def_id) {
2363 unreachable!()
2364 } else {
2365 // We can resolve the `impl Trait` to its concrete type,
2366 // which enforces a DAG between the functions requiring
2367 // the auto trait bounds in question.
2368 match self.tcx().type_of_opaque(def_id) {
2369 Ok(ty) => t.rebind(vec![ty.instantiate(self.tcx(), args)]),
2370 Err(_) => {
2371 return Err(SelectionError::OpaqueTypeAutoTraitLeakageUnknown(def_id));
2372 }
2373 }
2374 }
2375 }
2376 })
2377 }
2378
2379 fn collect_predicates_for_types(
2380 &mut self,
2381 param_env: ty::ParamEnv<'tcx>,
2382 cause: ObligationCause<'tcx>,
2383 recursion_depth: usize,
2384 trait_def_id: DefId,
2385 types: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
2386 ) -> PredicateObligations<'tcx> {
2387 // Because the types were potentially derived from
2388 // higher-ranked obligations they may reference late-bound
2389 // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
2390 // yield a type like `for<'a> &'a i32`. In general, we
2391 // maintain the invariant that we never manipulate bound
2392 // regions, so we have to process these bound regions somehow.
2393 //
2394 // The strategy is to:
2395 //
2396 // 1. Instantiate those regions to placeholder regions (e.g.,
2397 // `for<'a> &'a i32` becomes `&0 i32`.
2398 // 2. Produce something like `&'0 i32 : Copy`
2399 // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
2400
2401 types
2402 .as_ref()
2403 .skip_binder() // binder moved -\
2404 .iter()
2405 .flat_map(|ty| {
2406 let ty: ty::Binder<'tcx, Ty<'tcx>> = types.rebind(*ty); // <----/
2407
2408 let placeholder_ty = self.infcx.enter_forall_and_leak_universe(ty);
2409 let Normalized { value: normalized_ty, mut obligations } =
2410 ensure_sufficient_stack(|| {
2411 normalize_with_depth(
2412 self,
2413 param_env,
2414 cause.clone(),
2415 recursion_depth,
2416 placeholder_ty,
2417 )
2418 });
2419
2420 let tcx = self.tcx();
2421 let trait_ref = if tcx.generics_of(trait_def_id).own_params.len() == 1 {
2422 ty::TraitRef::new(tcx, trait_def_id, [normalized_ty])
2423 } else {
2424 // If this is an ill-formed auto/built-in trait, then synthesize
2425 // new error args for the missing generics.
2426 let err_args = ty::GenericArgs::extend_with_error(
2427 tcx,
2428 trait_def_id,
2429 &[normalized_ty.into()],
2430 );
2431 ty::TraitRef::new_from_args(tcx, trait_def_id, err_args)
2432 };
2433
2434 let obligation = Obligation::new(self.tcx(), cause.clone(), param_env, trait_ref);
2435 obligations.push(obligation);
2436 obligations
2437 })
2438 .collect()
2439 }
2440
2441 ///////////////////////////////////////////////////////////////////////////
2442 // Matching
2443 //
2444 // Matching is a common path used for both evaluation and
2445 // confirmation. It basically unifies types that appear in impls
2446 // and traits. This does affect the surrounding environment;
2447 // therefore, when used during evaluation, match routines must be
2448 // run inside of a `probe()` so that their side-effects are
2449 // contained.
2450
2451 fn rematch_impl(
2452 &mut self,
2453 impl_def_id: DefId,
2454 obligation: &PolyTraitObligation<'tcx>,
2455 ) -> Normalized<'tcx, GenericArgsRef<'tcx>> {
2456 let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap();
2457 match self.match_impl(impl_def_id, impl_trait_header, obligation) {
2458 Ok(args) => args,
2459 Err(()) => {
2460 let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
2461 bug!("impl {impl_def_id:?} was matchable against {predicate:?} but now is not")
2462 }
2463 }
2464 }
2465
2466 #[instrument(level = "debug", skip(self), ret)]
2467 fn match_impl(
2468 &mut self,
2469 impl_def_id: DefId,
2470 impl_trait_header: ty::ImplTraitHeader<'tcx>,
2471 obligation: &PolyTraitObligation<'tcx>,
2472 ) -> Result<Normalized<'tcx, GenericArgsRef<'tcx>>, ()> {
2473 let placeholder_obligation =
2474 self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2475 let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
2476
2477 let impl_args = self.infcx.fresh_args_for_item(obligation.cause.span, impl_def_id);
2478
2479 let trait_ref = impl_trait_header.trait_ref.instantiate(self.tcx(), impl_args);
2480 debug!(?impl_trait_header);
2481
2482 let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
2483 ensure_sufficient_stack(|| {
2484 normalize_with_depth(
2485 self,
2486 obligation.param_env,
2487 obligation.cause.clone(),
2488 obligation.recursion_depth + 1,
2489 trait_ref,
2490 )
2491 });
2492
2493 debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
2494
2495 let cause = ObligationCause::new(
2496 obligation.cause.span,
2497 obligation.cause.body_id,
2498 ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
2499 );
2500
2501 let InferOk { obligations, .. } = self
2502 .infcx
2503 .at(&cause, obligation.param_env)
2504 .eq(DefineOpaqueTypes::No, placeholder_obligation_trait_ref, impl_trait_ref)
2505 .map_err(|e| {
2506 debug!("match_impl: failed eq_trait_refs due to `{}`", e.to_string(self.tcx()))
2507 })?;
2508 nested_obligations.extend(obligations);
2509
2510 if impl_trait_header.polarity == ty::ImplPolarity::Reservation
2511 && !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
2512 {
2513 debug!("reservation impls only apply in intercrate mode");
2514 return Err(());
2515 }
2516
2517 Ok(Normalized { value: impl_args, obligations: nested_obligations })
2518 }
2519
2520 fn match_upcast_principal(
2521 &mut self,
2522 obligation: &PolyTraitObligation<'tcx>,
2523 unnormalized_upcast_principal: ty::PolyTraitRef<'tcx>,
2524 a_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2525 b_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2526 a_region: ty::Region<'tcx>,
2527 b_region: ty::Region<'tcx>,
2528 ) -> SelectionResult<'tcx, PredicateObligations<'tcx>> {
2529 let tcx = self.tcx();
2530 let mut nested = PredicateObligations::new();
2531
2532 // We may upcast to auto traits that are either explicitly listed in
2533 // the object type's bounds, or implied by the principal trait ref's
2534 // supertraits.
2535 let a_auto_traits: FxIndexSet<DefId> = a_data
2536 .auto_traits()
2537 .chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
2538 elaborate::supertrait_def_ids(tcx, principal_def_id)
2539 .filter(|def_id| tcx.trait_is_auto(*def_id))
2540 }))
2541 .collect();
2542
2543 let upcast_principal = normalize_with_depth_to(
2544 self,
2545 obligation.param_env,
2546 obligation.cause.clone(),
2547 obligation.recursion_depth + 1,
2548 unnormalized_upcast_principal,
2549 &mut nested,
2550 );
2551
2552 for bound in b_data {
2553 match bound.skip_binder() {
2554 // Check that a_ty's supertrait (upcast_principal) is compatible
2555 // with the target (b_ty).
2556 ty::ExistentialPredicate::Trait(target_principal) => {
2557 let hr_source_principal = upcast_principal.map_bound(|trait_ref| {
2558 ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
2559 });
2560 let hr_target_principal = bound.rebind(target_principal);
2561
2562 nested.extend(
2563 self.infcx
2564 .enter_forall(hr_target_principal, |target_principal| {
2565 let source_principal =
2566 self.infcx.instantiate_binder_with_fresh_vars(
2567 obligation.cause.span,
2568 HigherRankedType,
2569 hr_source_principal,
2570 );
2571 self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2572 DefineOpaqueTypes::Yes,
2573 ToTrace::to_trace(
2574 &obligation.cause,
2575 hr_target_principal,
2576 hr_source_principal,
2577 ),
2578 target_principal,
2579 source_principal,
2580 )
2581 })
2582 .map_err(|_| SelectionError::Unimplemented)?
2583 .into_obligations(),
2584 );
2585 }
2586 // Check that b_ty's projection is satisfied by exactly one of
2587 // a_ty's projections. First, we look through the list to see if
2588 // any match. If not, error. Then, if *more* than one matches, we
2589 // return ambiguity. Otherwise, if exactly one matches, equate
2590 // it with b_ty's projection.
2591 ty::ExistentialPredicate::Projection(target_projection) => {
2592 let hr_target_projection = bound.rebind(target_projection);
2593
2594 let mut matching_projections =
2595 a_data.projection_bounds().filter(|&hr_source_projection| {
2596 // Eager normalization means that we can just use can_eq
2597 // here instead of equating and processing obligations.
2598 hr_source_projection.item_def_id() == hr_target_projection.item_def_id()
2599 && self.infcx.probe(|_| {
2600 self.infcx
2601 .enter_forall(hr_target_projection, |target_projection| {
2602 let source_projection =
2603 self.infcx.instantiate_binder_with_fresh_vars(
2604 obligation.cause.span,
2605 HigherRankedType,
2606 hr_source_projection,
2607 );
2608 self.infcx
2609 .at(&obligation.cause, obligation.param_env)
2610 .eq_trace(
2611 DefineOpaqueTypes::Yes,
2612 ToTrace::to_trace(
2613 &obligation.cause,
2614 hr_target_projection,
2615 hr_source_projection,
2616 ),
2617 target_projection,
2618 source_projection,
2619 )
2620 })
2621 .is_ok()
2622 })
2623 });
2624
2625 let Some(hr_source_projection) = matching_projections.next() else {
2626 return Err(SelectionError::Unimplemented);
2627 };
2628 if matching_projections.next().is_some() {
2629 return Ok(None);
2630 }
2631 nested.extend(
2632 self.infcx
2633 .enter_forall(hr_target_projection, |target_projection| {
2634 let source_projection =
2635 self.infcx.instantiate_binder_with_fresh_vars(
2636 obligation.cause.span,
2637 HigherRankedType,
2638 hr_source_projection,
2639 );
2640 self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2641 DefineOpaqueTypes::Yes,
2642 ToTrace::to_trace(
2643 &obligation.cause,
2644 hr_target_projection,
2645 hr_source_projection,
2646 ),
2647 target_projection,
2648 source_projection,
2649 )
2650 })
2651 .map_err(|_| SelectionError::Unimplemented)?
2652 .into_obligations(),
2653 );
2654 }
2655 // Check that b_ty's auto traits are present in a_ty's bounds.
2656 ty::ExistentialPredicate::AutoTrait(def_id) => {
2657 if !a_auto_traits.contains(&def_id) {
2658 return Err(SelectionError::Unimplemented);
2659 }
2660 }
2661 }
2662 }
2663
2664 nested.push(Obligation::with_depth(
2665 tcx,
2666 obligation.cause.clone(),
2667 obligation.recursion_depth + 1,
2668 obligation.param_env,
2669 ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region)),
2670 ));
2671
2672 Ok(Some(nested))
2673 }
2674
2675 /// Normalize `where_clause_trait_ref` and try to match it against
2676 /// `obligation`. If successful, return any predicates that
2677 /// result from the normalization.
2678 fn match_where_clause_trait_ref(
2679 &mut self,
2680 obligation: &PolyTraitObligation<'tcx>,
2681 where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
2682 ) -> Result<PredicateObligations<'tcx>, ()> {
2683 self.match_poly_trait_ref(obligation, where_clause_trait_ref)
2684 }
2685
2686 /// Returns `Ok` if `poly_trait_ref` being true implies that the
2687 /// obligation is satisfied.
2688 #[instrument(skip(self), level = "debug")]
2689 fn match_poly_trait_ref(
2690 &mut self,
2691 obligation: &PolyTraitObligation<'tcx>,
2692 poly_trait_ref: ty::PolyTraitRef<'tcx>,
2693 ) -> Result<PredicateObligations<'tcx>, ()> {
2694 let predicate = self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2695 let trait_ref = self.infcx.instantiate_binder_with_fresh_vars(
2696 obligation.cause.span,
2697 HigherRankedType,
2698 poly_trait_ref,
2699 );
2700 self.infcx
2701 .at(&obligation.cause, obligation.param_env)
2702 .eq(DefineOpaqueTypes::No, predicate.trait_ref, trait_ref)
2703 .map(|InferOk { obligations, .. }| obligations)
2704 .map_err(|_| ())
2705 }
2706
2707 ///////////////////////////////////////////////////////////////////////////
2708 // Miscellany
2709
2710 fn match_fresh_trait_refs(
2711 &self,
2712 previous: ty::PolyTraitPredicate<'tcx>,
2713 current: ty::PolyTraitPredicate<'tcx>,
2714 ) -> bool {
2715 let mut matcher = _match::MatchAgainstFreshVars::new(self.tcx());
2716 matcher.relate(previous, current).is_ok()
2717 }
2718
2719 fn push_stack<'o>(
2720 &mut self,
2721 previous_stack: TraitObligationStackList<'o, 'tcx>,
2722 obligation: &'o PolyTraitObligation<'tcx>,
2723 ) -> TraitObligationStack<'o, 'tcx> {
2724 let fresh_trait_pred = obligation.predicate.fold_with(&mut self.freshener);
2725
2726 let dfn = previous_stack.cache.next_dfn();
2727 let depth = previous_stack.depth() + 1;
2728 TraitObligationStack {
2729 obligation,
2730 fresh_trait_pred,
2731 reached_depth: Cell::new(depth),
2732 previous: previous_stack,
2733 dfn,
2734 depth,
2735 }
2736 }
2737
2738 #[instrument(skip(self), level = "debug")]
2739 fn closure_trait_ref_unnormalized(
2740 &mut self,
2741 self_ty: Ty<'tcx>,
2742 fn_trait_def_id: DefId,
2743 ) -> ty::PolyTraitRef<'tcx> {
2744 let ty::Closure(_, args) = *self_ty.kind() else {
2745 bug!("expected closure, found {self_ty}");
2746 };
2747 let closure_sig = args.as_closure().sig();
2748
2749 closure_trait_ref_and_return_type(
2750 self.tcx(),
2751 fn_trait_def_id,
2752 self_ty,
2753 closure_sig,
2754 util::TupleArgumentsFlag::No,
2755 )
2756 .map_bound(|(trait_ref, _)| trait_ref)
2757 }
2758
2759 /// Returns the obligations that are implied by instantiating an
2760 /// impl or trait. The obligations are instantiated and fully
2761 /// normalized. This is used when confirming an impl or default
2762 /// impl.
2763 #[instrument(level = "debug", skip(self, cause, param_env))]
2764 fn impl_or_trait_obligations(
2765 &mut self,
2766 cause: &ObligationCause<'tcx>,
2767 recursion_depth: usize,
2768 param_env: ty::ParamEnv<'tcx>,
2769 def_id: DefId, // of impl or trait
2770 args: GenericArgsRef<'tcx>, // for impl or trait
2771 parent_trait_pred: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
2772 ) -> PredicateObligations<'tcx> {
2773 let tcx = self.tcx();
2774
2775 // To allow for one-pass evaluation of the nested obligation,
2776 // each predicate must be preceded by the obligations required
2777 // to normalize it.
2778 // for example, if we have:
2779 // impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2780 // the impl will have the following predicates:
2781 // <V as Iterator>::Item = U,
2782 // U: Iterator, U: Sized,
2783 // V: Iterator, V: Sized,
2784 // <U as Iterator>::Item: Copy
2785 // When we instantiate, say, `V => IntoIter<u32>, U => $0`, the last
2786 // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2787 // `$1: Copy`, so we must ensure the obligations are emitted in
2788 // that order.
2789 let predicates = tcx.predicates_of(def_id);
2790 assert_eq!(predicates.parent, None);
2791 let predicates = predicates.instantiate_own(tcx, args);
2792 let mut obligations = PredicateObligations::with_capacity(predicates.len());
2793 for (index, (predicate, span)) in predicates.into_iter().enumerate() {
2794 let cause = if tcx.is_lang_item(parent_trait_pred.def_id(), LangItem::CoerceUnsized) {
2795 cause.clone()
2796 } else {
2797 cause.clone().derived_cause(parent_trait_pred, |derived| {
2798 ObligationCauseCode::ImplDerived(Box::new(ImplDerivedCause {
2799 derived,
2800 impl_or_alias_def_id: def_id,
2801 impl_def_predicate_index: Some(index),
2802 span,
2803 }))
2804 })
2805 };
2806 let clause = normalize_with_depth_to(
2807 self,
2808 param_env,
2809 cause.clone(),
2810 recursion_depth,
2811 predicate,
2812 &mut obligations,
2813 );
2814 obligations.push(Obligation {
2815 cause,
2816 recursion_depth,
2817 param_env,
2818 predicate: clause.as_predicate(),
2819 });
2820 }
2821
2822 // Register any outlives obligations from the trait here, cc #124336.
2823 if matches!(tcx.def_kind(def_id), DefKind::Impl { of_trait: true }) {
2824 for clause in tcx.impl_super_outlives(def_id).iter_instantiated(tcx, args) {
2825 let clause = normalize_with_depth_to(
2826 self,
2827 param_env,
2828 cause.clone(),
2829 recursion_depth,
2830 clause,
2831 &mut obligations,
2832 );
2833 obligations.push(Obligation {
2834 cause: cause.clone(),
2835 recursion_depth,
2836 param_env,
2837 predicate: clause.as_predicate(),
2838 });
2839 }
2840 }
2841
2842 obligations
2843 }
2844}
2845
2846impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2847 fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2848 TraitObligationStackList::with(self)
2849 }
2850
2851 fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2852 self.previous.cache
2853 }
2854
2855 fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2856 self.list()
2857 }
2858
2859 /// Indicates that attempting to evaluate this stack entry
2860 /// required accessing something from the stack at depth `reached_depth`.
2861 fn update_reached_depth(&self, reached_depth: usize) {
2862 assert!(
2863 self.depth >= reached_depth,
2864 "invoked `update_reached_depth` with something under this stack: \
2865 self.depth={} reached_depth={}",
2866 self.depth,
2867 reached_depth,
2868 );
2869 debug!(reached_depth, "update_reached_depth");
2870 let mut p = self;
2871 while reached_depth < p.depth {
2872 debug!(?p.fresh_trait_pred, "update_reached_depth: marking as cycle participant");
2873 p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2874 p = p.previous.head.unwrap();
2875 }
2876 }
2877}
2878
2879/// The "provisional evaluation cache" is used to store intermediate cache results
2880/// when solving auto traits. Auto traits are unusual in that they can support
2881/// cycles. So, for example, a "proof tree" like this would be ok:
2882///
2883/// - `Foo<T>: Send` :-
2884/// - `Bar<T>: Send` :-
2885/// - `Foo<T>: Send` -- cycle, but ok
2886/// - `Baz<T>: Send`
2887///
2888/// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2889/// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2890/// For non-auto traits, this cycle would be an error, but for auto traits (because
2891/// they are coinductive) it is considered ok.
2892///
2893/// However, there is a complication: at the point where we have
2894/// "proven" `Bar<T>: Send`, we have in fact only proven it
2895/// *provisionally*. In particular, we proved that `Bar<T>: Send`
2896/// *under the assumption* that `Foo<T>: Send`. But what if we later
2897/// find out this assumption is wrong? Specifically, we could
2898/// encounter some kind of error proving `Baz<T>: Send`. In that case,
2899/// `Bar<T>: Send` didn't turn out to be true.
2900///
2901/// In Issue #60010, we found a bug in rustc where it would cache
2902/// these intermediate results. This was fixed in #60444 by disabling
2903/// *all* caching for things involved in a cycle -- in our example,
2904/// that would mean we don't cache that `Bar<T>: Send`. But this led
2905/// to large slowdowns.
2906///
2907/// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2908/// first requires proving `Bar<T>: Send` (which is true:
2909///
2910/// - `Foo<T>: Send` :-
2911/// - `Bar<T>: Send` :-
2912/// - `Foo<T>: Send` -- cycle, but ok
2913/// - `Baz<T>: Send`
2914/// - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2915/// - `*const T: Send` -- but what if we later encounter an error?
2916///
2917/// The *provisional evaluation cache* resolves this issue. It stores
2918/// cache results that we've proven but which were involved in a cycle
2919/// in some way. We track the minimal stack depth (i.e., the
2920/// farthest from the top of the stack) that we are dependent on.
2921/// The idea is that the cache results within are all valid -- so long as
2922/// none of the nodes in between the current node and the node at that minimum
2923/// depth result in an error (in which case the cached results are just thrown away).
2924///
2925/// During evaluation, we consult this provisional cache and rely on
2926/// it. Accessing a cached value is considered equivalent to accessing
2927/// a result at `reached_depth`, so it marks the *current* solution as
2928/// provisional as well. If an error is encountered, we toss out any
2929/// provisional results added from the subtree that encountered the
2930/// error. When we pop the node at `reached_depth` from the stack, we
2931/// can commit all the things that remain in the provisional cache.
2932struct ProvisionalEvaluationCache<'tcx> {
2933 /// next "depth first number" to issue -- just a counter
2934 dfn: Cell<usize>,
2935
2936 /// Map from cache key to the provisionally evaluated thing.
2937 /// The cache entries contain the result but also the DFN in which they
2938 /// were added. The DFN is used to clear out values on failure.
2939 ///
2940 /// Imagine we have a stack like:
2941 ///
2942 /// - `A B C` and we add a cache for the result of C (DFN 2)
2943 /// - Then we have a stack `A B D` where `D` has DFN 3
2944 /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2945 /// - `E` generates various cache entries which have cyclic dependencies on `B`
2946 /// - `A B D E F` and so forth
2947 /// - the DFN of `F` for example would be 5
2948 /// - then we determine that `E` is in error -- we will then clear
2949 /// all cache values whose DFN is >= 4 -- in this case, that
2950 /// means the cached value for `F`.
2951 map: RefCell<FxIndexMap<ty::PolyTraitPredicate<'tcx>, ProvisionalEvaluation>>,
2952
2953 /// The stack of args that we assume to be true because a `WF(arg)` predicate
2954 /// is on the stack above (and because of wellformedness is coinductive).
2955 /// In an "ideal" world, this would share a stack with trait predicates in
2956 /// `TraitObligationStack`. However, trait predicates are *much* hotter than
2957 /// `WellFormed` predicates, and it's very likely that the additional matches
2958 /// will have a perf effect. The value here is the well-formed `GenericArg`
2959 /// and the depth of the trait predicate *above* that well-formed predicate.
2960 wf_args: RefCell<Vec<(ty::GenericArg<'tcx>, usize)>>,
2961}
2962
2963/// A cache value for the provisional cache: contains the depth-first
2964/// number (DFN) and result.
2965#[derive(Copy, Clone, Debug)]
2966struct ProvisionalEvaluation {
2967 from_dfn: usize,
2968 reached_depth: usize,
2969 result: EvaluationResult,
2970}
2971
2972impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2973 fn default() -> Self {
2974 Self { dfn: Cell::new(0), map: Default::default(), wf_args: Default::default() }
2975 }
2976}
2977
2978impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2979 /// Get the next DFN in sequence (basically a counter).
2980 fn next_dfn(&self) -> usize {
2981 let result = self.dfn.get();
2982 self.dfn.set(result + 1);
2983 result
2984 }
2985
2986 /// Check the provisional cache for any result for
2987 /// `fresh_trait_ref`. If there is a hit, then you must consider
2988 /// it an access to the stack slots at depth
2989 /// `reached_depth` (from the returned value).
2990 fn get_provisional(
2991 &self,
2992 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
2993 ) -> Option<ProvisionalEvaluation> {
2994 debug!(
2995 ?fresh_trait_pred,
2996 "get_provisional = {:#?}",
2997 self.map.borrow().get(&fresh_trait_pred),
2998 );
2999 Some(*self.map.borrow().get(&fresh_trait_pred)?)
3000 }
3001
3002 /// Insert a provisional result into the cache. The result came
3003 /// from the node with the given DFN. It accessed a minimum depth
3004 /// of `reached_depth` to compute. It evaluated `fresh_trait_pred`
3005 /// and resulted in `result`.
3006 fn insert_provisional(
3007 &self,
3008 from_dfn: usize,
3009 reached_depth: usize,
3010 fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
3011 result: EvaluationResult,
3012 ) {
3013 debug!(?from_dfn, ?fresh_trait_pred, ?result, "insert_provisional");
3014
3015 let mut map = self.map.borrow_mut();
3016
3017 // Subtle: when we complete working on the DFN `from_dfn`, anything
3018 // that remains in the provisional cache must be dependent on some older
3019 // stack entry than `from_dfn`. We have to update their depth with our transitive
3020 // depth in that case or else it would be referring to some popped note.
3021 //
3022 // Example:
3023 // A (reached depth 0)
3024 // ...
3025 // B // depth 1 -- reached depth = 0
3026 // C // depth 2 -- reached depth = 1 (should be 0)
3027 // B
3028 // A // depth 0
3029 // D (reached depth 1)
3030 // C (cache -- reached depth = 2)
3031 for (_k, v) in &mut *map {
3032 if v.from_dfn >= from_dfn {
3033 v.reached_depth = reached_depth.min(v.reached_depth);
3034 }
3035 }
3036
3037 map.insert(fresh_trait_pred, ProvisionalEvaluation { from_dfn, reached_depth, result });
3038 }
3039
3040 /// Invoked when the node with dfn `dfn` does not get a successful
3041 /// result. This will clear out any provisional cache entries
3042 /// that were added since `dfn` was created. This is because the
3043 /// provisional entries are things which must assume that the
3044 /// things on the stack at the time of their creation succeeded --
3045 /// since the failing node is presently at the top of the stack,
3046 /// these provisional entries must either depend on it or some
3047 /// ancestor of it.
3048 fn on_failure(&self, dfn: usize) {
3049 debug!(?dfn, "on_failure");
3050 self.map.borrow_mut().retain(|key, eval| {
3051 if !eval.from_dfn >= dfn {
3052 debug!("on_failure: removing {:?}", key);
3053 false
3054 } else {
3055 true
3056 }
3057 });
3058 }
3059
3060 /// Invoked when the node at depth `depth` completed without
3061 /// depending on anything higher in the stack (if that completion
3062 /// was a failure, then `on_failure` should have been invoked
3063 /// already).
3064 ///
3065 /// Note that we may still have provisional cache items remaining
3066 /// in the cache when this is done. For example, if there is a
3067 /// cycle:
3068 ///
3069 /// * A depends on...
3070 /// * B depends on A
3071 /// * C depends on...
3072 /// * D depends on C
3073 /// * ...
3074 ///
3075 /// Then as we complete the C node we will have a provisional cache
3076 /// with results for A, B, C, and D. This method would clear out
3077 /// the C and D results, but leave A and B provisional.
3078 ///
3079 /// This is determined based on the DFN: we remove any provisional
3080 /// results created since `dfn` started (e.g., in our example, dfn
3081 /// would be 2, representing the C node, and hence we would
3082 /// remove the result for D, which has DFN 3, but not the results for
3083 /// A and B, which have DFNs 0 and 1 respectively).
3084 ///
3085 /// Note that we *do not* attempt to cache these cycle participants
3086 /// in the evaluation cache. Doing so would require carefully computing
3087 /// the correct `DepNode` to store in the cache entry:
3088 /// cycle participants may implicitly depend on query results
3089 /// related to other participants in the cycle, due to our logic
3090 /// which examines the evaluation stack.
3091 ///
3092 /// We used to try to perform this caching,
3093 /// but it lead to multiple incremental compilation ICEs
3094 /// (see #92987 and #96319), and was very hard to understand.
3095 /// Fortunately, removing the caching didn't seem to
3096 /// have a performance impact in practice.
3097 fn on_completion(&self, dfn: usize) {
3098 debug!(?dfn, "on_completion");
3099 self.map.borrow_mut().retain(|fresh_trait_pred, eval| {
3100 if eval.from_dfn >= dfn {
3101 debug!(?fresh_trait_pred, ?eval, "on_completion");
3102 return false;
3103 }
3104 true
3105 });
3106 }
3107}
3108
3109#[derive(Copy, Clone)]
3110struct TraitObligationStackList<'o, 'tcx> {
3111 cache: &'o ProvisionalEvaluationCache<'tcx>,
3112 head: Option<&'o TraitObligationStack<'o, 'tcx>>,
3113}
3114
3115impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
3116 fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3117 TraitObligationStackList { cache, head: None }
3118 }
3119
3120 fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3121 TraitObligationStackList { cache: r.cache(), head: Some(r) }
3122 }
3123
3124 fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3125 self.head
3126 }
3127
3128 fn depth(&self) -> usize {
3129 if let Some(head) = self.head { head.depth } else { 0 }
3130 }
3131}
3132
3133impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
3134 type Item = &'o TraitObligationStack<'o, 'tcx>;
3135
3136 fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3137 let o = self.head?;
3138 *self = o.previous;
3139 Some(o)
3140 }
3141}
3142
3143impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
3144 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3145 write!(f, "TraitObligationStack({:?})", self.obligation)
3146 }
3147}
3148
3149pub(crate) enum ProjectionMatchesProjection {
3150 Yes,
3151 Ambiguous,
3152 No,
3153}
3154
3155/// Replace all regions inside the coroutine interior with late bound regions.
3156/// Note that each region slot in the types gets a new fresh late bound region, which means that
3157/// none of the regions inside relate to any other, even if typeck had previously found constraints
3158/// that would cause them to be related.
3159#[instrument(level = "trace", skip(infcx), ret)]
3160fn bind_coroutine_hidden_types_above<'tcx>(
3161 infcx: &InferCtxt<'tcx>,
3162 def_id: DefId,
3163 args: ty::GenericArgsRef<'tcx>,
3164 bound_vars: &ty::List<ty::BoundVariableKind>,
3165) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
3166 let tcx = infcx.tcx;
3167 let mut seen_tys = FxHashSet::default();
3168
3169 let considering_regions = infcx.considering_regions;
3170
3171 let num_bound_variables = bound_vars.len() as u32;
3172 let mut counter = num_bound_variables;
3173
3174 let hidden_types: Vec<_> = tcx
3175 .coroutine_hidden_types(def_id)
3176 // Deduplicate tys to avoid repeated work.
3177 .filter(|bty| seen_tys.insert(*bty))
3178 .map(|mut bty| {
3179 // Only remap erased regions if we use them.
3180 if considering_regions {
3181 bty = bty.map_bound(|ty| {
3182 fold_regions(tcx, ty, |r, current_depth| match r.kind() {
3183 ty::ReErased => {
3184 let br = ty::BoundRegion {
3185 var: ty::BoundVar::from_u32(counter),
3186 kind: ty::BoundRegionKind::Anon,
3187 };
3188 counter += 1;
3189 ty::Region::new_bound(tcx, current_depth, br)
3190 }
3191 r => bug!("unexpected region: {r:?}"),
3192 })
3193 })
3194 }
3195
3196 bty.instantiate(tcx, args)
3197 })
3198 .collect();
3199 let bound_vars = tcx.mk_bound_variable_kinds_from_iter(
3200 bound_vars.iter().chain(
3201 (num_bound_variables..counter)
3202 .map(|_| ty::BoundVariableKind::Region(ty::BoundRegionKind::Anon)),
3203 ),
3204 );
3205 ty::Binder::bind_with_vars(hidden_types, bound_vars)
3206}