rustc_trait_selection/traits/select/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
//! Candidate selection. See the [rustc dev guide] for more information on how this works.
//!
//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection

use std::cell::{Cell, RefCell};
use std::fmt::{self, Display};
use std::ops::ControlFlow;
use std::{cmp, iter};

use hir::def::DefKind;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_data_structures::stack::ensure_sufficient_stack;
use rustc_errors::{Diag, EmissionGuarantee};
use rustc_hir as hir;
use rustc_hir::LangItem;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::BoundRegionConversionTime::{self, HigherRankedType};
use rustc_infer::infer::DefineOpaqueTypes;
use rustc_infer::infer::at::ToTrace;
use rustc_infer::infer::relate::TypeRelation;
use rustc_infer::traits::TraitObligation;
use rustc_middle::bug;
use rustc_middle::dep_graph::{DepNodeIndex, dep_kinds};
use rustc_middle::mir::interpret::ErrorHandled;
pub use rustc_middle::traits::select::*;
use rustc_middle::ty::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::error::TypeErrorToStringExt;
use rustc_middle::ty::print::{PrintTraitRefExt as _, with_no_trimmed_paths};
use rustc_middle::ty::{
    self, GenericArgsRef, PolyProjectionPredicate, Ty, TyCtxt, TypeFoldable, TypeVisitableExt,
    Upcast,
};
use rustc_span::Symbol;
use rustc_span::symbol::sym;
use tracing::{debug, instrument, trace};

use self::EvaluationResult::*;
use self::SelectionCandidate::*;
use super::coherence::{self, Conflict};
use super::project::ProjectionTermObligation;
use super::util::closure_trait_ref_and_return_type;
use super::{
    ImplDerivedCause, Normalized, Obligation, ObligationCause, ObligationCauseCode, Overflow,
    PolyTraitObligation, PredicateObligation, Selection, SelectionError, SelectionResult,
    TraitQueryMode, const_evaluatable, project, util, wf,
};
use crate::error_reporting::InferCtxtErrorExt;
use crate::infer::{InferCtxt, InferOk, TypeFreshener};
use crate::solve::InferCtxtSelectExt as _;
use crate::traits::normalize::{normalize_with_depth, normalize_with_depth_to};
use crate::traits::project::{ProjectAndUnifyResult, ProjectionCacheKeyExt};
use crate::traits::{ProjectionCacheKey, Unimplemented};

mod _match;
mod candidate_assembly;
mod confirmation;

#[derive(Clone, Debug, Eq, PartialEq, Hash)]
pub enum IntercrateAmbiguityCause<'tcx> {
    DownstreamCrate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
    UpstreamCrateUpdate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
    ReservationImpl { message: Symbol },
}

impl<'tcx> IntercrateAmbiguityCause<'tcx> {
    /// Emits notes when the overlap is caused by complex intercrate ambiguities.
    /// See #23980 for details.
    pub fn add_intercrate_ambiguity_hint<G: EmissionGuarantee>(&self, err: &mut Diag<'_, G>) {
        err.note(self.intercrate_ambiguity_hint());
    }

    pub fn intercrate_ambiguity_hint(&self) -> String {
        with_no_trimmed_paths!(match self {
            IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } => {
                format!(
                    "downstream crates may implement trait `{trait_desc}`{self_desc}",
                    trait_desc = trait_ref.print_trait_sugared(),
                    self_desc = if let Some(self_ty) = self_ty {
                        format!(" for type `{self_ty}`")
                    } else {
                        String::new()
                    }
                )
            }
            IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } => {
                format!(
                    "upstream crates may add a new impl of trait `{trait_desc}`{self_desc} \
                in future versions",
                    trait_desc = trait_ref.print_trait_sugared(),
                    self_desc = if let Some(self_ty) = self_ty {
                        format!(" for type `{self_ty}`")
                    } else {
                        String::new()
                    }
                )
            }
            IntercrateAmbiguityCause::ReservationImpl { message } => message.to_string(),
        })
    }
}

pub struct SelectionContext<'cx, 'tcx> {
    pub infcx: &'cx InferCtxt<'tcx>,

    /// Freshener used specifically for entries on the obligation
    /// stack. This ensures that all entries on the stack at one time
    /// will have the same set of placeholder entries, which is
    /// important for checking for trait bounds that recursively
    /// require themselves.
    freshener: TypeFreshener<'cx, 'tcx>,

    /// If `intercrate` is set, we remember predicates which were
    /// considered ambiguous because of impls potentially added in other crates.
    /// This is used in coherence to give improved diagnostics.
    /// We don't do his until we detect a coherence error because it can
    /// lead to false overflow results (#47139) and because always
    /// computing it may negatively impact performance.
    intercrate_ambiguity_causes: Option<FxIndexSet<IntercrateAmbiguityCause<'tcx>>>,

    /// The mode that trait queries run in, which informs our error handling
    /// policy. In essence, canonicalized queries need their errors propagated
    /// rather than immediately reported because we do not have accurate spans.
    query_mode: TraitQueryMode,
}

// A stack that walks back up the stack frame.
struct TraitObligationStack<'prev, 'tcx> {
    obligation: &'prev PolyTraitObligation<'tcx>,

    /// The trait predicate from `obligation` but "freshened" with the
    /// selection-context's freshener. Used to check for recursion.
    fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,

    /// Starts out equal to `depth` -- if, during evaluation, we
    /// encounter a cycle, then we will set this flag to the minimum
    /// depth of that cycle for all participants in the cycle. These
    /// participants will then forego caching their results. This is
    /// not the most efficient solution, but it addresses #60010. The
    /// problem we are trying to prevent:
    ///
    /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
    /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
    /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
    ///
    /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
    /// is `EvaluatedToOk`; this is because they were only considered
    /// ok on the premise that if `A: AutoTrait` held, but we indeed
    /// encountered a problem (later on) with `A: AutoTrait`. So we
    /// currently set a flag on the stack node for `B: AutoTrait` (as
    /// well as the second instance of `A: AutoTrait`) to suppress
    /// caching.
    ///
    /// This is a simple, targeted fix. A more-performant fix requires
    /// deeper changes, but would permit more caching: we could
    /// basically defer caching until we have fully evaluated the
    /// tree, and then cache the entire tree at once. In any case, the
    /// performance impact here shouldn't be so horrible: every time
    /// this is hit, we do cache at least one trait, so we only
    /// evaluate each member of a cycle up to N times, where N is the
    /// length of the cycle. This means the performance impact is
    /// bounded and we shouldn't have any terrible worst-cases.
    reached_depth: Cell<usize>,

    previous: TraitObligationStackList<'prev, 'tcx>,

    /// The number of parent frames plus one (thus, the topmost frame has depth 1).
    depth: usize,

    /// The depth-first number of this node in the search graph -- a
    /// pre-order index. Basically, a freshly incremented counter.
    dfn: usize,
}

struct SelectionCandidateSet<'tcx> {
    /// A list of candidates that definitely apply to the current
    /// obligation (meaning: types unify).
    vec: Vec<SelectionCandidate<'tcx>>,

    /// If `true`, then there were candidates that might or might
    /// not have applied, but we couldn't tell. This occurs when some
    /// of the input types are type variables, in which case there are
    /// various "builtin" rules that might or might not trigger.
    ambiguous: bool,
}

#[derive(PartialEq, Eq, Debug, Clone)]
struct EvaluatedCandidate<'tcx> {
    candidate: SelectionCandidate<'tcx>,
    evaluation: EvaluationResult,
}

/// When does the builtin impl for `T: Trait` apply?
#[derive(Debug)]
enum BuiltinImplConditions<'tcx> {
    /// The impl is conditional on `T1, T2, ...: Trait`.
    Where(ty::Binder<'tcx, Vec<Ty<'tcx>>>),
    /// There is no built-in impl. There may be some other
    /// candidate (a where-clause or user-defined impl).
    None,
    /// It is unknown whether there is an impl.
    Ambiguous,
}

impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
    pub fn new(infcx: &'cx InferCtxt<'tcx>) -> SelectionContext<'cx, 'tcx> {
        SelectionContext {
            infcx,
            freshener: infcx.freshener(),
            intercrate_ambiguity_causes: None,
            query_mode: TraitQueryMode::Standard,
        }
    }

    pub fn with_query_mode(
        infcx: &'cx InferCtxt<'tcx>,
        query_mode: TraitQueryMode,
    ) -> SelectionContext<'cx, 'tcx> {
        debug!(?query_mode, "with_query_mode");
        SelectionContext { query_mode, ..SelectionContext::new(infcx) }
    }

    /// Enables tracking of intercrate ambiguity causes. See
    /// the documentation of [`Self::intercrate_ambiguity_causes`] for more.
    pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
        assert!(self.is_intercrate());
        assert!(self.intercrate_ambiguity_causes.is_none());
        self.intercrate_ambiguity_causes = Some(FxIndexSet::default());
        debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
    }

    /// Gets the intercrate ambiguity causes collected since tracking
    /// was enabled and disables tracking at the same time. If
    /// tracking is not enabled, just returns an empty vector.
    pub fn take_intercrate_ambiguity_causes(
        &mut self,
    ) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> {
        assert!(self.is_intercrate());
        self.intercrate_ambiguity_causes.take().unwrap_or_default()
    }

    pub fn tcx(&self) -> TyCtxt<'tcx> {
        self.infcx.tcx
    }

    pub fn is_intercrate(&self) -> bool {
        self.infcx.intercrate
    }

    ///////////////////////////////////////////////////////////////////////////
    // Selection
    //
    // The selection phase tries to identify *how* an obligation will
    // be resolved. For example, it will identify which impl or
    // parameter bound is to be used. The process can be inconclusive
    // if the self type in the obligation is not fully inferred. Selection
    // can result in an error in one of two ways:
    //
    // 1. If no applicable impl or parameter bound can be found.
    // 2. If the output type parameters in the obligation do not match
    //    those specified by the impl/bound. For example, if the obligation
    //    is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
    //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.

    /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
    /// type environment by performing unification.
    #[instrument(level = "debug", skip(self), ret)]
    pub fn poly_select(
        &mut self,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> SelectionResult<'tcx, Selection<'tcx>> {
        if self.infcx.next_trait_solver() {
            return self.infcx.select_in_new_trait_solver(obligation);
        }

        let candidate = match self.select_from_obligation(obligation) {
            Err(SelectionError::Overflow(OverflowError::Canonical)) => {
                // In standard mode, overflow must have been caught and reported
                // earlier.
                assert!(self.query_mode == TraitQueryMode::Canonical);
                return Err(SelectionError::Overflow(OverflowError::Canonical));
            }
            Err(e) => {
                return Err(e);
            }
            Ok(None) => {
                return Ok(None);
            }
            Ok(Some(candidate)) => candidate,
        };

        match self.confirm_candidate(obligation, candidate) {
            Err(SelectionError::Overflow(OverflowError::Canonical)) => {
                assert!(self.query_mode == TraitQueryMode::Canonical);
                Err(SelectionError::Overflow(OverflowError::Canonical))
            }
            Err(e) => Err(e),
            Ok(candidate) => Ok(Some(candidate)),
        }
    }

    pub fn select(
        &mut self,
        obligation: &TraitObligation<'tcx>,
    ) -> SelectionResult<'tcx, Selection<'tcx>> {
        self.poly_select(&Obligation {
            cause: obligation.cause.clone(),
            param_env: obligation.param_env,
            predicate: ty::Binder::dummy(obligation.predicate),
            recursion_depth: obligation.recursion_depth,
        })
    }

    fn select_from_obligation(
        &mut self,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
        debug_assert!(!obligation.predicate.has_escaping_bound_vars());

        let pec = &ProvisionalEvaluationCache::default();
        let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);

        self.candidate_from_obligation(&stack)
    }

    #[instrument(level = "debug", skip(self), ret)]
    fn candidate_from_obligation<'o>(
        &mut self,
        stack: &TraitObligationStack<'o, 'tcx>,
    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
        debug_assert!(!self.infcx.next_trait_solver());
        // Watch out for overflow. This intentionally bypasses (and does
        // not update) the cache.
        self.check_recursion_limit(stack.obligation, stack.obligation)?;

        // Check the cache. Note that we freshen the trait-ref
        // separately rather than using `stack.fresh_trait_ref` --
        // this is because we want the unbound variables to be
        // replaced with fresh types starting from index 0.
        let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
        debug!(?cache_fresh_trait_pred);
        debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());

        if let Some(c) =
            self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
        {
            debug!("CACHE HIT");
            return c;
        }

        // If no match, compute result and insert into cache.
        //
        // FIXME(nikomatsakis) -- this cache is not taking into
        // account cycles that may have occurred in forming the
        // candidate. I don't know of any specific problems that
        // result but it seems awfully suspicious.
        let (candidate, dep_node) =
            self.in_task(|this| this.candidate_from_obligation_no_cache(stack));

        debug!("CACHE MISS");
        self.insert_candidate_cache(
            stack.obligation.param_env,
            cache_fresh_trait_pred,
            dep_node,
            candidate.clone(),
        );
        candidate
    }

    fn candidate_from_obligation_no_cache<'o>(
        &mut self,
        stack: &TraitObligationStack<'o, 'tcx>,
    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
        if let Err(conflict) = self.is_knowable(stack) {
            debug!("coherence stage: not knowable");
            if self.intercrate_ambiguity_causes.is_some() {
                debug!("evaluate_stack: intercrate_ambiguity_causes is some");
                // Heuristics: show the diagnostics when there are no candidates in crate.
                if let Ok(candidate_set) = self.assemble_candidates(stack) {
                    let mut no_candidates_apply = true;

                    for c in candidate_set.vec.iter() {
                        if self.evaluate_candidate(stack, c)?.may_apply() {
                            no_candidates_apply = false;
                            break;
                        }
                    }

                    if !candidate_set.ambiguous && no_candidates_apply {
                        let trait_ref = self.infcx.resolve_vars_if_possible(
                            stack.obligation.predicate.skip_binder().trait_ref,
                        );
                        if !trait_ref.references_error() {
                            let self_ty = trait_ref.self_ty();
                            let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty);
                            let cause = if let Conflict::Upstream = conflict {
                                IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty }
                            } else {
                                IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty }
                            };
                            debug!(?cause, "evaluate_stack: pushing cause");
                            self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
                        }
                    }
                }
            }
            return Ok(None);
        }

        let candidate_set = self.assemble_candidates(stack)?;

        if candidate_set.ambiguous {
            debug!("candidate set contains ambig");
            return Ok(None);
        }

        let candidates = candidate_set.vec;

        debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());

        // At this point, we know that each of the entries in the
        // candidate set is *individually* applicable. Now we have to
        // figure out if they contain mutual incompatibilities. This
        // frequently arises if we have an unconstrained input type --
        // for example, we are looking for `$0: Eq` where `$0` is some
        // unconstrained type variable. In that case, we'll get a
        // candidate which assumes $0 == int, one that assumes `$0 ==
        // usize`, etc. This spells an ambiguity.

        let mut candidates = self.filter_impls(candidates, stack.obligation);

        // If there is more than one candidate, first winnow them down
        // by considering extra conditions (nested obligations and so
        // forth). We don't winnow if there is exactly one
        // candidate. This is a relatively minor distinction but it
        // can lead to better inference and error-reporting. An
        // example would be if there was an impl:
        //
        //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
        //
        // and we were to see some code `foo.push_clone()` where `boo`
        // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
        // we were to winnow, we'd wind up with zero candidates.
        // Instead, we select the right impl now but report "`Bar` does
        // not implement `Clone`".
        if candidates.len() == 1 {
            return self.filter_reservation_impls(candidates.pop().unwrap());
        }

        // Winnow, but record the exact outcome of evaluation, which
        // is needed for specialization. Propagate overflow if it occurs.
        let mut candidates = candidates
            .into_iter()
            .map(|c| match self.evaluate_candidate(stack, &c) {
                Ok(eval) if eval.may_apply() => {
                    Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
                }
                Ok(_) => Ok(None),
                Err(OverflowError::Canonical) => Err(Overflow(OverflowError::Canonical)),
                Err(OverflowError::Error(e)) => Err(Overflow(OverflowError::Error(e))),
            })
            .flat_map(Result::transpose)
            .collect::<Result<Vec<_>, _>>()?;

        debug!(?stack, ?candidates, "winnowed to {} candidates", candidates.len());

        let has_non_region_infer = stack.obligation.predicate.has_non_region_infer();

        // If there are STILL multiple candidates, we can further
        // reduce the list by dropping duplicates -- including
        // resolving specializations.
        if candidates.len() > 1 {
            let mut i = 0;
            while i < candidates.len() {
                let should_drop_i = (0..candidates.len()).filter(|&j| i != j).any(|j| {
                    self.candidate_should_be_dropped_in_favor_of(
                        &candidates[i],
                        &candidates[j],
                        has_non_region_infer,
                    ) == DropVictim::Yes
                });
                if should_drop_i {
                    debug!(candidate = ?candidates[i], "Dropping candidate #{}/{}", i, candidates.len());
                    candidates.swap_remove(i);
                } else {
                    debug!(candidate = ?candidates[i], "Retaining candidate #{}/{}", i, candidates.len());
                    i += 1;

                    // If there are *STILL* multiple candidates, give up
                    // and report ambiguity.
                    if i > 1 {
                        debug!("multiple matches, ambig");
                        return Ok(None);
                    }
                }
            }
        }

        // If there are *NO* candidates, then there are no impls --
        // that we know of, anyway. Note that in the case where there
        // are unbound type variables within the obligation, it might
        // be the case that you could still satisfy the obligation
        // from another crate by instantiating the type variables with
        // a type from another crate that does have an impl. This case
        // is checked for in `evaluate_stack` (and hence users
        // who might care about this case, like coherence, should use
        // that function).
        if candidates.is_empty() {
            // If there's an error type, 'downgrade' our result from
            // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
            // emitting additional spurious errors, since we're guaranteed
            // to have emitted at least one.
            if stack.obligation.predicate.references_error() {
                debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
                return Ok(None);
            }
            return Err(Unimplemented);
        }

        // Just one candidate left.
        self.filter_reservation_impls(candidates.pop().unwrap().candidate)
    }

    ///////////////////////////////////////////////////////////////////////////
    // EVALUATION
    //
    // Tests whether an obligation can be selected or whether an impl
    // can be applied to particular types. It skips the "confirmation"
    // step and hence completely ignores output type parameters.
    //
    // The result is "true" if the obligation *may* hold and "false" if
    // we can be sure it does not.

    /// Evaluates whether the obligation `obligation` can be satisfied
    /// and returns an `EvaluationResult`. This is meant for the
    /// *initial* call.
    ///
    /// Do not use this directly, use `infcx.evaluate_obligation` instead.
    pub fn evaluate_root_obligation(
        &mut self,
        obligation: &PredicateObligation<'tcx>,
    ) -> Result<EvaluationResult, OverflowError> {
        debug_assert!(!self.infcx.next_trait_solver());
        self.evaluation_probe(|this| {
            let goal =
                this.infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
            let mut result = this.evaluate_predicate_recursively(
                TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
                obligation.clone(),
            )?;
            // If the predicate has done any inference, then downgrade the
            // result to ambiguous.
            if this.infcx.resolve_vars_if_possible(goal) != goal {
                result = result.max(EvaluatedToAmbig);
            }
            Ok(result)
        })
    }

    /// Computes the evaluation result of `op`, discarding any constraints.
    ///
    /// This also runs for leak check to allow higher ranked region errors to impact
    /// selection. By default it checks for leaks from all universes created inside of
    /// `op`, but this can be overwritten if necessary.
    fn evaluation_probe(
        &mut self,
        op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
    ) -> Result<EvaluationResult, OverflowError> {
        self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
            let outer_universe = self.infcx.universe();
            let result = op(self)?;

            match self.infcx.leak_check(outer_universe, Some(snapshot)) {
                Ok(()) => {}
                Err(_) => return Ok(EvaluatedToErr),
            }

            if self.infcx.opaque_types_added_in_snapshot(snapshot) {
                return Ok(result.max(EvaluatedToOkModuloOpaqueTypes));
            }

            if self.infcx.region_constraints_added_in_snapshot(snapshot) {
                Ok(result.max(EvaluatedToOkModuloRegions))
            } else {
                Ok(result)
            }
        })
    }

    /// Evaluates the predicates in `predicates` recursively. This may
    /// guide inference. If this is not desired, run it inside of a
    /// is run within an inference probe.
    /// `probe`.
    #[instrument(skip(self, stack), level = "debug")]
    fn evaluate_predicates_recursively<'o, I>(
        &mut self,
        stack: TraitObligationStackList<'o, 'tcx>,
        predicates: I,
    ) -> Result<EvaluationResult, OverflowError>
    where
        I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
    {
        let mut result = EvaluatedToOk;
        for mut obligation in predicates {
            obligation.set_depth_from_parent(stack.depth());
            let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
            if let EvaluatedToErr = eval {
                // fast-path - EvaluatedToErr is the top of the lattice,
                // so we don't need to look on the other predicates.
                return Ok(EvaluatedToErr);
            } else {
                result = cmp::max(result, eval);
            }
        }
        Ok(result)
    }

    #[instrument(
        level = "debug",
        skip(self, previous_stack),
        fields(previous_stack = ?previous_stack.head())
        ret,
    )]
    fn evaluate_predicate_recursively<'o>(
        &mut self,
        previous_stack: TraitObligationStackList<'o, 'tcx>,
        obligation: PredicateObligation<'tcx>,
    ) -> Result<EvaluationResult, OverflowError> {
        debug_assert!(!self.infcx.next_trait_solver());
        // `previous_stack` stores a `PolyTraitObligation`, while `obligation` is
        // a `PredicateObligation`. These are distinct types, so we can't
        // use any `Option` combinator method that would force them to be
        // the same.
        match previous_stack.head() {
            Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
            None => self.check_recursion_limit(&obligation, &obligation)?,
        }

        ensure_sufficient_stack(|| {
            let bound_predicate = obligation.predicate.kind();
            match bound_predicate.skip_binder() {
                ty::PredicateKind::Clause(ty::ClauseKind::Trait(t)) => {
                    let t = bound_predicate.rebind(t);
                    debug_assert!(!t.has_escaping_bound_vars());
                    let obligation = obligation.with(self.tcx(), t);
                    self.evaluate_trait_predicate_recursively(previous_stack, obligation)
                }

                ty::PredicateKind::Subtype(p) => {
                    let p = bound_predicate.rebind(p);
                    // Does this code ever run?
                    match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
                        Ok(Ok(InferOk { obligations, .. })) => {
                            self.evaluate_predicates_recursively(previous_stack, obligations)
                        }
                        Ok(Err(_)) => Ok(EvaluatedToErr),
                        Err(..) => Ok(EvaluatedToAmbig),
                    }
                }

                ty::PredicateKind::Coerce(p) => {
                    let p = bound_predicate.rebind(p);
                    // Does this code ever run?
                    match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
                        Ok(Ok(InferOk { obligations, .. })) => {
                            self.evaluate_predicates_recursively(previous_stack, obligations)
                        }
                        Ok(Err(_)) => Ok(EvaluatedToErr),
                        Err(..) => Ok(EvaluatedToAmbig),
                    }
                }

                ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(arg)) => {
                    // So, there is a bit going on here. First, `WellFormed` predicates
                    // are coinductive, like trait predicates with auto traits.
                    // This means that we need to detect if we have recursively
                    // evaluated `WellFormed(X)`. Otherwise, we would run into
                    // a "natural" overflow error.
                    //
                    // Now, the next question is whether we need to do anything
                    // special with caching. Considering the following tree:
                    // - `WF(Foo<T>)`
                    //   - `Bar<T>: Send`
                    //     - `WF(Foo<T>)`
                    //   - `Foo<T>: Trait`
                    // In this case, the innermost `WF(Foo<T>)` should return
                    // `EvaluatedToOk`, since it's coinductive. Then if
                    // `Bar<T>: Send` is resolved to `EvaluatedToOk`, it can be
                    // inserted into a cache (because without thinking about `WF`
                    // goals, it isn't in a cycle). If `Foo<T>: Trait` later doesn't
                    // hold, then `Bar<T>: Send` shouldn't hold. Therefore, we
                    // *do* need to keep track of coinductive cycles.

                    let cache = previous_stack.cache;
                    let dfn = cache.next_dfn();

                    for stack_arg in previous_stack.cache.wf_args.borrow().iter().rev() {
                        if stack_arg.0 != arg {
                            continue;
                        }
                        debug!("WellFormed({:?}) on stack", arg);
                        if let Some(stack) = previous_stack.head {
                            // Okay, let's imagine we have two different stacks:
                            //   `T: NonAutoTrait -> WF(T) -> T: NonAutoTrait`
                            //   `WF(T) -> T: NonAutoTrait -> WF(T)`
                            // Because of this, we need to check that all
                            // predicates between the WF goals are coinductive.
                            // Otherwise, we can say that `T: NonAutoTrait` is
                            // true.
                            // Let's imagine we have a predicate stack like
                            //         `Foo: Bar -> WF(T) -> T: NonAutoTrait -> T: Auto`
                            // depth   ^1                    ^2                 ^3
                            // and the current predicate is `WF(T)`. `wf_args`
                            // would contain `(T, 1)`. We want to check all
                            // trait predicates greater than `1`. The previous
                            // stack would be `T: Auto`.
                            let cycle = stack.iter().take_while(|s| s.depth > stack_arg.1);
                            let tcx = self.tcx();
                            let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
                            if self.coinductive_match(cycle) {
                                stack.update_reached_depth(stack_arg.1);
                                return Ok(EvaluatedToOk);
                            } else {
                                return Ok(EvaluatedToAmbigStackDependent);
                            }
                        }
                        return Ok(EvaluatedToOk);
                    }

                    match wf::obligations(
                        self.infcx,
                        obligation.param_env,
                        obligation.cause.body_id,
                        obligation.recursion_depth + 1,
                        arg,
                        obligation.cause.span,
                    ) {
                        Some(obligations) => {
                            cache.wf_args.borrow_mut().push((arg, previous_stack.depth()));
                            let result =
                                self.evaluate_predicates_recursively(previous_stack, obligations);
                            cache.wf_args.borrow_mut().pop();

                            let result = result?;

                            if !result.must_apply_modulo_regions() {
                                cache.on_failure(dfn);
                            }

                            cache.on_completion(dfn);

                            Ok(result)
                        }
                        None => Ok(EvaluatedToAmbig),
                    }
                }

                ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(pred)) => {
                    // A global type with no free lifetimes or generic parameters
                    // outlives anything.
                    if pred.0.has_free_regions()
                        || pred.0.has_bound_regions()
                        || pred.0.has_non_region_infer()
                        || pred.0.has_non_region_infer()
                    {
                        Ok(EvaluatedToOkModuloRegions)
                    } else {
                        Ok(EvaluatedToOk)
                    }
                }

                ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..)) => {
                    // We do not consider region relationships when evaluating trait matches.
                    Ok(EvaluatedToOkModuloRegions)
                }

                ty::PredicateKind::DynCompatible(trait_def_id) => {
                    if self.tcx().is_dyn_compatible(trait_def_id) {
                        Ok(EvaluatedToOk)
                    } else {
                        Ok(EvaluatedToErr)
                    }
                }

                ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
                    let data = bound_predicate.rebind(data);
                    let project_obligation = obligation.with(self.tcx(), data);
                    match project::poly_project_and_unify_term(self, &project_obligation) {
                        ProjectAndUnifyResult::Holds(mut subobligations) => {
                            'compute_res: {
                                // If we've previously marked this projection as 'complete', then
                                // use the final cached result (either `EvaluatedToOk` or
                                // `EvaluatedToOkModuloRegions`), and skip re-evaluating the
                                // sub-obligations.
                                if let Some(key) =
                                    ProjectionCacheKey::from_poly_projection_obligation(
                                        self,
                                        &project_obligation,
                                    )
                                {
                                    if let Some(cached_res) = self
                                        .infcx
                                        .inner
                                        .borrow_mut()
                                        .projection_cache()
                                        .is_complete(key)
                                    {
                                        break 'compute_res Ok(cached_res);
                                    }
                                }

                                // Need to explicitly set the depth of nested goals here as
                                // projection obligations can cycle by themselves and in
                                // `evaluate_predicates_recursively` we only add the depth
                                // for parent trait goals because only these get added to the
                                // `TraitObligationStackList`.
                                for subobligation in subobligations.iter_mut() {
                                    subobligation.set_depth_from_parent(obligation.recursion_depth);
                                }
                                let res = self.evaluate_predicates_recursively(
                                    previous_stack,
                                    subobligations,
                                );
                                if let Ok(eval_rslt) = res
                                    && (eval_rslt == EvaluatedToOk
                                        || eval_rslt == EvaluatedToOkModuloRegions)
                                    && let Some(key) =
                                        ProjectionCacheKey::from_poly_projection_obligation(
                                            self,
                                            &project_obligation,
                                        )
                                {
                                    // If the result is something that we can cache, then mark this
                                    // entry as 'complete'. This will allow us to skip evaluating the
                                    // subobligations at all the next time we evaluate the projection
                                    // predicate.
                                    self.infcx
                                        .inner
                                        .borrow_mut()
                                        .projection_cache()
                                        .complete(key, eval_rslt);
                                }
                                res
                            }
                        }
                        ProjectAndUnifyResult::FailedNormalization => Ok(EvaluatedToAmbig),
                        ProjectAndUnifyResult::Recursive => Ok(EvaluatedToAmbigStackDependent),
                        ProjectAndUnifyResult::MismatchedProjectionTypes(_) => Ok(EvaluatedToErr),
                    }
                }

                ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
                    match const_evaluatable::is_const_evaluatable(
                        self.infcx,
                        uv,
                        obligation.param_env,
                        obligation.cause.span,
                    ) {
                        Ok(()) => Ok(EvaluatedToOk),
                        Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
                        Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
                        Err(_) => Ok(EvaluatedToErr),
                    }
                }

                ty::PredicateKind::ConstEquate(c1, c2) => {
                    let tcx = self.tcx();
                    assert!(
                        tcx.features().generic_const_exprs,
                        "`ConstEquate` without a feature gate: {c1:?} {c2:?}",
                    );

                    {
                        let c1 = tcx.expand_abstract_consts(c1);
                        let c2 = tcx.expand_abstract_consts(c2);
                        debug!(
                            "evaluate_predicate_recursively: equating consts:\nc1= {:?}\nc2= {:?}",
                            c1, c2
                        );

                        use rustc_hir::def::DefKind;
                        use ty::Unevaluated;
                        match (c1.kind(), c2.kind()) {
                            (Unevaluated(a), Unevaluated(b))
                                if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
                            {
                                if let Ok(InferOk { obligations, value: () }) = self
                                    .infcx
                                    .at(&obligation.cause, obligation.param_env)
                                    // Can define opaque types as this is only reachable with
                                    // `generic_const_exprs`
                                    .eq(
                                        DefineOpaqueTypes::Yes,
                                        ty::AliasTerm::from(a),
                                        ty::AliasTerm::from(b),
                                    )
                                {
                                    return self.evaluate_predicates_recursively(
                                        previous_stack,
                                        obligations,
                                    );
                                }
                            }
                            (_, Unevaluated(_)) | (Unevaluated(_), _) => (),
                            (_, _) => {
                                if let Ok(InferOk { obligations, value: () }) = self
                                    .infcx
                                    .at(&obligation.cause, obligation.param_env)
                                    // Can define opaque types as this is only reachable with
                                    // `generic_const_exprs`
                                    .eq(DefineOpaqueTypes::Yes, c1, c2)
                                {
                                    return self.evaluate_predicates_recursively(
                                        previous_stack,
                                        obligations,
                                    );
                                }
                            }
                        }
                    }

                    let evaluate = |c: ty::Const<'tcx>| {
                        if let ty::ConstKind::Unevaluated(unevaluated) = c.kind() {
                            match self.infcx.try_const_eval_resolve(
                                obligation.param_env,
                                unevaluated,
                                obligation.cause.span,
                            ) {
                                Ok(val) => Ok(val),
                                Err(e) => Err(e),
                            }
                        } else {
                            Ok(c)
                        }
                    };

                    match (evaluate(c1), evaluate(c2)) {
                        (Ok(c1), Ok(c2)) => {
                            match self.infcx.at(&obligation.cause, obligation.param_env).eq(
                                // Can define opaque types as this is only reachable with
                                // `generic_const_exprs`
                                DefineOpaqueTypes::Yes,
                                c1,
                                c2,
                            ) {
                                Ok(inf_ok) => self.evaluate_predicates_recursively(
                                    previous_stack,
                                    inf_ok.into_obligations(),
                                ),
                                Err(_) => Ok(EvaluatedToErr),
                            }
                        }
                        (Err(ErrorHandled::Reported(..)), _)
                        | (_, Err(ErrorHandled::Reported(..))) => Ok(EvaluatedToErr),
                        (Err(ErrorHandled::TooGeneric(..)), _)
                        | (_, Err(ErrorHandled::TooGeneric(..))) => {
                            if c1.has_non_region_infer() || c2.has_non_region_infer() {
                                Ok(EvaluatedToAmbig)
                            } else {
                                // Two different constants using generic parameters ~> error.
                                Ok(EvaluatedToErr)
                            }
                        }
                    }
                }
                ty::PredicateKind::NormalizesTo(..) => {
                    bug!("NormalizesTo is only used by the new solver")
                }
                ty::PredicateKind::AliasRelate(..) => {
                    bug!("AliasRelate is only used by the new solver")
                }
                ty::PredicateKind::Ambiguous => Ok(EvaluatedToAmbig),
                ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
                    let ct = self.infcx.shallow_resolve_const(ct);
                    let ct_ty = match ct.kind() {
                        ty::ConstKind::Infer(_) => {
                            return Ok(EvaluatedToAmbig);
                        }
                        ty::ConstKind::Error(_) => return Ok(EvaluatedToOk),
                        ty::ConstKind::Value(ty, _) => ty,
                        ty::ConstKind::Unevaluated(uv) => {
                            self.tcx().type_of(uv.def).instantiate(self.tcx(), uv.args)
                        }
                        // FIXME(generic_const_exprs): See comment in `fulfill.rs`
                        ty::ConstKind::Expr(_) => return Ok(EvaluatedToOk),
                        ty::ConstKind::Placeholder(_) => {
                            bug!("placeholder const {:?} in old solver", ct)
                        }
                        ty::ConstKind::Bound(_, _) => bug!("escaping bound vars in {:?}", ct),
                        ty::ConstKind::Param(param_ct) => {
                            param_ct.find_ty_from_env(obligation.param_env)
                        }
                    };

                    match self.infcx.at(&obligation.cause, obligation.param_env).eq(
                        // Only really exercised by generic_const_exprs
                        DefineOpaqueTypes::Yes,
                        ct_ty,
                        ty,
                    ) {
                        Ok(inf_ok) => self.evaluate_predicates_recursively(
                            previous_stack,
                            inf_ok.into_obligations(),
                        ),
                        Err(_) => Ok(EvaluatedToErr),
                    }
                }
            }
        })
    }

    #[instrument(skip(self, previous_stack), level = "debug", ret)]
    fn evaluate_trait_predicate_recursively<'o>(
        &mut self,
        previous_stack: TraitObligationStackList<'o, 'tcx>,
        mut obligation: PolyTraitObligation<'tcx>,
    ) -> Result<EvaluationResult, OverflowError> {
        if !self.is_intercrate()
            && obligation.is_global()
            && obligation.param_env.caller_bounds().iter().all(|bound| bound.has_param())
        {
            // If a param env has no global bounds, global obligations do not
            // depend on its particular value in order to work, so we can clear
            // out the param env and get better caching.
            debug!("in global");
            obligation.param_env = obligation.param_env.without_caller_bounds();
        }

        let stack = self.push_stack(previous_stack, &obligation);
        let fresh_trait_pred = stack.fresh_trait_pred;
        let param_env = obligation.param_env;

        debug!(?fresh_trait_pred);

        // If a trait predicate is in the (local or global) evaluation cache,
        // then we know it holds without cycles.
        if let Some(result) = self.check_evaluation_cache(param_env, fresh_trait_pred) {
            debug!("CACHE HIT");
            return Ok(result);
        }

        if let Some(result) = stack.cache().get_provisional(fresh_trait_pred) {
            debug!("PROVISIONAL CACHE HIT");
            stack.update_reached_depth(result.reached_depth);
            return Ok(result.result);
        }

        // Check if this is a match for something already on the
        // stack. If so, we don't want to insert the result into the
        // main cache (it is cycle dependent) nor the provisional
        // cache (which is meant for things that have completed but
        // for a "backedge" -- this result *is* the backedge).
        if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
            return Ok(cycle_result);
        }

        let (result, dep_node) = self.in_task(|this| {
            let mut result = this.evaluate_stack(&stack)?;

            // fix issue #103563, we don't normalize
            // nested obligations which produced by `TraitDef` candidate
            // (i.e. using bounds on assoc items as assumptions).
            // because we don't have enough information to
            // normalize these obligations before evaluating.
            // so we will try to normalize the obligation and evaluate again.
            // we will replace it with new solver in the future.
            if EvaluationResult::EvaluatedToErr == result
                && fresh_trait_pred.has_aliases()
                && fresh_trait_pred.is_global()
            {
                let mut nested_obligations = Vec::new();
                let predicate = normalize_with_depth_to(
                    this,
                    param_env,
                    obligation.cause.clone(),
                    obligation.recursion_depth + 1,
                    obligation.predicate,
                    &mut nested_obligations,
                );
                if predicate != obligation.predicate {
                    let mut nested_result = EvaluationResult::EvaluatedToOk;
                    for obligation in nested_obligations {
                        nested_result = cmp::max(
                            this.evaluate_predicate_recursively(previous_stack, obligation)?,
                            nested_result,
                        );
                    }

                    if nested_result.must_apply_modulo_regions() {
                        let obligation = obligation.with(this.tcx(), predicate);
                        result = cmp::max(
                            nested_result,
                            this.evaluate_trait_predicate_recursively(previous_stack, obligation)?,
                        );
                    }
                }
            }

            Ok::<_, OverflowError>(result)
        });

        let result = result?;

        if !result.must_apply_modulo_regions() {
            stack.cache().on_failure(stack.dfn);
        }

        let reached_depth = stack.reached_depth.get();
        if reached_depth >= stack.depth {
            debug!("CACHE MISS");
            self.insert_evaluation_cache(param_env, fresh_trait_pred, dep_node, result);
            stack.cache().on_completion(stack.dfn);
        } else {
            debug!("PROVISIONAL");
            debug!(
                "caching provisionally because {:?} \
                 is a cycle participant (at depth {}, reached depth {})",
                fresh_trait_pred, stack.depth, reached_depth,
            );

            stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_pred, result);
        }

        Ok(result)
    }

    /// If there is any previous entry on the stack that precisely
    /// matches this obligation, then we can assume that the
    /// obligation is satisfied for now (still all other conditions
    /// must be met of course). One obvious case this comes up is
    /// marker traits like `Send`. Think of a linked list:
    ///
    ///     struct List<T> { data: T, next: Option<Box<List<T>>> }
    ///
    /// `Box<List<T>>` will be `Send` if `T` is `Send` and
    /// `Option<Box<List<T>>>` is `Send`, and in turn
    /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
    /// `Send`.
    ///
    /// Note that we do this comparison using the `fresh_trait_ref`
    /// fields. Because these have all been freshened using
    /// `self.freshener`, we can be sure that (a) this will not
    /// affect the inferencer state and (b) that if we see two
    /// fresh regions with the same index, they refer to the same
    /// unbound type variable.
    fn check_evaluation_cycle(
        &mut self,
        stack: &TraitObligationStack<'_, 'tcx>,
    ) -> Option<EvaluationResult> {
        if let Some(cycle_depth) = stack
            .iter()
            .skip(1) // Skip top-most frame.
            .find(|prev| {
                stack.obligation.param_env == prev.obligation.param_env
                    && stack.fresh_trait_pred == prev.fresh_trait_pred
            })
            .map(|stack| stack.depth)
        {
            debug!("evaluate_stack --> recursive at depth {}", cycle_depth);

            // If we have a stack like `A B C D E A`, where the top of
            // the stack is the final `A`, then this will iterate over
            // `A, E, D, C, B` -- i.e., all the participants apart
            // from the cycle head. We mark them as participating in a
            // cycle. This suppresses caching for those nodes. See
            // `in_cycle` field for more details.
            stack.update_reached_depth(cycle_depth);

            // Subtle: when checking for a coinductive cycle, we do
            // not compare using the "freshened trait refs" (which
            // have erased regions) but rather the fully explicit
            // trait refs. This is important because it's only a cycle
            // if the regions match exactly.
            let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
            let tcx = self.tcx();
            let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
            if self.coinductive_match(cycle) {
                debug!("evaluate_stack --> recursive, coinductive");
                Some(EvaluatedToOk)
            } else {
                debug!("evaluate_stack --> recursive, inductive");
                Some(EvaluatedToAmbigStackDependent)
            }
        } else {
            None
        }
    }

    fn evaluate_stack<'o>(
        &mut self,
        stack: &TraitObligationStack<'o, 'tcx>,
    ) -> Result<EvaluationResult, OverflowError> {
        debug_assert!(!self.infcx.next_trait_solver());
        // In intercrate mode, whenever any of the generics are unbound,
        // there can always be an impl. Even if there are no impls in
        // this crate, perhaps the type would be unified with
        // something from another crate that does provide an impl.
        //
        // In intra mode, we must still be conservative. The reason is
        // that we want to avoid cycles. Imagine an impl like:
        //
        //     impl<T:Eq> Eq for Vec<T>
        //
        // and a trait reference like `$0 : Eq` where `$0` is an
        // unbound variable. When we evaluate this trait-reference, we
        // will unify `$0` with `Vec<$1>` (for some fresh variable
        // `$1`), on the condition that `$1 : Eq`. We will then wind
        // up with many candidates (since that are other `Eq` impls
        // that apply) and try to winnow things down. This results in
        // a recursive evaluation that `$1 : Eq` -- as you can
        // imagine, this is just where we started. To avoid that, we
        // check for unbound variables and return an ambiguous (hence possible)
        // match if we've seen this trait before.
        //
        // This suffices to allow chains like `FnMut` implemented in
        // terms of `Fn` etc, but we could probably make this more
        // precise still.
        let unbound_input_types =
            stack.fresh_trait_pred.skip_binder().trait_ref.args.types().any(|ty| ty.is_fresh());

        if unbound_input_types
            && stack.iter().skip(1).any(|prev| {
                stack.obligation.param_env == prev.obligation.param_env
                    && self.match_fresh_trait_refs(stack.fresh_trait_pred, prev.fresh_trait_pred)
            })
        {
            debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
            return Ok(EvaluatedToAmbigStackDependent);
        }

        match self.candidate_from_obligation(stack) {
            Ok(Some(c)) => self.evaluate_candidate(stack, &c),
            Ok(None) => Ok(EvaluatedToAmbig),
            Err(Overflow(OverflowError::Canonical)) => Err(OverflowError::Canonical),
            Err(..) => Ok(EvaluatedToErr),
        }
    }

    /// For defaulted traits, we use a co-inductive strategy to solve, so
    /// that recursion is ok. This routine returns `true` if the top of the
    /// stack (`cycle[0]`):
    ///
    /// - is a defaulted trait,
    /// - it also appears in the backtrace at some position `X`,
    /// - all the predicates at positions `X..` between `X` and the top are
    ///   also defaulted traits.
    pub(crate) fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
    where
        I: Iterator<Item = ty::Predicate<'tcx>>,
    {
        cycle.all(|predicate| predicate.is_coinductive(self.tcx()))
    }

    /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
    /// obligations are met. Returns whether `candidate` remains viable after this further
    /// scrutiny.
    #[instrument(
        level = "debug",
        skip(self, stack),
        fields(depth = stack.obligation.recursion_depth),
        ret
    )]
    fn evaluate_candidate<'o>(
        &mut self,
        stack: &TraitObligationStack<'o, 'tcx>,
        candidate: &SelectionCandidate<'tcx>,
    ) -> Result<EvaluationResult, OverflowError> {
        let mut result = self.evaluation_probe(|this| {
            match this.confirm_candidate(stack.obligation, candidate.clone()) {
                Ok(selection) => {
                    debug!(?selection);
                    this.evaluate_predicates_recursively(
                        stack.list(),
                        selection.nested_obligations().into_iter(),
                    )
                }
                Err(..) => Ok(EvaluatedToErr),
            }
        })?;

        // If we erased any lifetimes, then we want to use
        // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
        // as your final result. The result will be cached using
        // the freshened trait predicate as a key, so we need
        // our result to be correct by *any* choice of original lifetimes,
        // not just the lifetime choice for this particular (non-erased)
        // predicate.
        // See issue #80691
        if stack.fresh_trait_pred.has_erased_regions() {
            result = result.max(EvaluatedToOkModuloRegions);
        }

        Ok(result)
    }

    fn check_evaluation_cache(
        &self,
        param_env: ty::ParamEnv<'tcx>,
        trait_pred: ty::PolyTraitPredicate<'tcx>,
    ) -> Option<EvaluationResult> {
        // Neither the global nor local cache is aware of intercrate
        // mode, so don't do any caching. In particular, we might
        // re-use the same `InferCtxt` with both an intercrate
        // and non-intercrate `SelectionContext`
        if self.is_intercrate() {
            return None;
        }

        let tcx = self.tcx();
        if self.can_use_global_caches(param_env) {
            if let Some(res) = tcx.evaluation_cache.get(&(param_env, trait_pred), tcx) {
                return Some(res);
            }
        }
        self.infcx.evaluation_cache.get(&(param_env, trait_pred), tcx)
    }

    fn insert_evaluation_cache(
        &mut self,
        param_env: ty::ParamEnv<'tcx>,
        trait_pred: ty::PolyTraitPredicate<'tcx>,
        dep_node: DepNodeIndex,
        result: EvaluationResult,
    ) {
        // Avoid caching results that depend on more than just the trait-ref
        // - the stack can create recursion.
        if result.is_stack_dependent() {
            return;
        }

        // Neither the global nor local cache is aware of intercrate
        // mode, so don't do any caching. In particular, we might
        // re-use the same `InferCtxt` with both an intercrate
        // and non-intercrate `SelectionContext`
        if self.is_intercrate() {
            return;
        }

        if self.can_use_global_caches(param_env) && !trait_pred.has_infer() {
            debug!(?trait_pred, ?result, "insert_evaluation_cache global");
            // This may overwrite the cache with the same value
            // FIXME: Due to #50507 this overwrites the different values
            // This should be changed to use HashMapExt::insert_same
            // when that is fixed
            self.tcx().evaluation_cache.insert((param_env, trait_pred), dep_node, result);
            return;
        }

        debug!(?trait_pred, ?result, "insert_evaluation_cache");
        self.infcx.evaluation_cache.insert((param_env, trait_pred), dep_node, result);
    }

    fn check_recursion_depth<T>(
        &self,
        depth: usize,
        error_obligation: &Obligation<'tcx, T>,
    ) -> Result<(), OverflowError>
    where
        T: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
    {
        if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
            match self.query_mode {
                TraitQueryMode::Standard => {
                    if let Some(e) = self.infcx.tainted_by_errors() {
                        return Err(OverflowError::Error(e));
                    }
                    self.infcx.err_ctxt().report_overflow_obligation(error_obligation, true);
                }
                TraitQueryMode::Canonical => {
                    return Err(OverflowError::Canonical);
                }
            }
        }
        Ok(())
    }

    /// Checks that the recursion limit has not been exceeded.
    ///
    /// The weird return type of this function allows it to be used with the `try` (`?`)
    /// operator within certain functions.
    #[inline(always)]
    fn check_recursion_limit<T: Display + TypeFoldable<TyCtxt<'tcx>>, V>(
        &self,
        obligation: &Obligation<'tcx, T>,
        error_obligation: &Obligation<'tcx, V>,
    ) -> Result<(), OverflowError>
    where
        V: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
    {
        self.check_recursion_depth(obligation.recursion_depth, error_obligation)
    }

    fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
    where
        OP: FnOnce(&mut Self) -> R,
    {
        let (result, dep_node) =
            self.tcx().dep_graph.with_anon_task(self.tcx(), dep_kinds::TraitSelect, || op(self));
        self.tcx().dep_graph.read_index(dep_node);
        (result, dep_node)
    }

    /// filter_impls filters candidates that have a positive impl for a negative
    /// goal and a negative impl for a positive goal
    #[instrument(level = "debug", skip(self, candidates))]
    fn filter_impls(
        &mut self,
        candidates: Vec<SelectionCandidate<'tcx>>,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> Vec<SelectionCandidate<'tcx>> {
        trace!("{candidates:#?}");
        let tcx = self.tcx();
        let mut result = Vec::with_capacity(candidates.len());

        for candidate in candidates {
            if let ImplCandidate(def_id) = candidate {
                match (tcx.impl_polarity(def_id), obligation.polarity()) {
                    (ty::ImplPolarity::Reservation, _)
                    | (ty::ImplPolarity::Positive, ty::PredicatePolarity::Positive)
                    | (ty::ImplPolarity::Negative, ty::PredicatePolarity::Negative) => {
                        result.push(candidate);
                    }
                    _ => {}
                }
            } else {
                result.push(candidate);
            }
        }

        trace!("{result:#?}");
        result
    }

    /// filter_reservation_impls filter reservation impl for any goal as ambiguous
    #[instrument(level = "debug", skip(self))]
    fn filter_reservation_impls(
        &mut self,
        candidate: SelectionCandidate<'tcx>,
    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
        let tcx = self.tcx();
        // Treat reservation impls as ambiguity.
        if let ImplCandidate(def_id) = candidate {
            if let ty::ImplPolarity::Reservation = tcx.impl_polarity(def_id) {
                if let Some(intercrate_ambiguity_clauses) = &mut self.intercrate_ambiguity_causes {
                    let message = tcx
                        .get_attr(def_id, sym::rustc_reservation_impl)
                        .and_then(|a| a.value_str());
                    if let Some(message) = message {
                        debug!(
                            "filter_reservation_impls: \
                                 reservation impl ambiguity on {:?}",
                            def_id
                        );
                        intercrate_ambiguity_clauses
                            .insert(IntercrateAmbiguityCause::ReservationImpl { message });
                    }
                }
                return Ok(None);
            }
        }
        Ok(Some(candidate))
    }

    fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Result<(), Conflict> {
        debug!("is_knowable(intercrate={:?})", self.is_intercrate());

        if !self.is_intercrate() {
            return Ok(());
        }

        let obligation = &stack.obligation;
        let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);

        // Okay to skip binder because of the nature of the
        // trait-ref-is-knowable check, which does not care about
        // bound regions.
        let trait_ref = predicate.skip_binder().trait_ref;

        coherence::trait_ref_is_knowable(self.infcx, trait_ref, |ty| Ok::<_, !>(ty)).into_ok()
    }

    /// Returns `true` if the global caches can be used.
    fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
        // If there are any inference variables in the `ParamEnv`, then we
        // always use a cache local to this particular scope. Otherwise, we
        // switch to a global cache.
        if param_env.has_infer() {
            return false;
        }

        // Avoid using the global cache during coherence and just rely
        // on the local cache. This effectively disables caching
        // during coherence. It is really just a simplification to
        // avoid us having to fear that coherence results "pollute"
        // the master cache. Since coherence executes pretty quickly,
        // it's not worth going to more trouble to increase the
        // hit-rate, I don't think.
        if self.is_intercrate() {
            return false;
        }

        // Avoid using the global cache when we're defining opaque types
        // as their hidden type may impact the result of candidate selection.
        if !self.infcx.defining_opaque_types().is_empty() {
            return false;
        }

        // Otherwise, we can use the global cache.
        true
    }

    fn check_candidate_cache(
        &mut self,
        param_env: ty::ParamEnv<'tcx>,
        cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
    ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
        // Neither the global nor local cache is aware of intercrate
        // mode, so don't do any caching. In particular, we might
        // re-use the same `InferCtxt` with both an intercrate
        // and non-intercrate `SelectionContext`
        if self.is_intercrate() {
            return None;
        }
        let tcx = self.tcx();
        let pred = cache_fresh_trait_pred.skip_binder();

        if self.can_use_global_caches(param_env) {
            if let Some(res) = tcx.selection_cache.get(&(param_env, pred), tcx) {
                return Some(res);
            }
        }
        self.infcx.selection_cache.get(&(param_env, pred), tcx)
    }

    /// Determines whether can we safely cache the result
    /// of selecting an obligation. This is almost always `true`,
    /// except when dealing with certain `ParamCandidate`s.
    ///
    /// Ordinarily, a `ParamCandidate` will contain no inference variables,
    /// since it was usually produced directly from a `DefId`. However,
    /// certain cases (currently only librustdoc's blanket impl finder),
    /// a `ParamEnv` may be explicitly constructed with inference types.
    /// When this is the case, we do *not* want to cache the resulting selection
    /// candidate. This is due to the fact that it might not always be possible
    /// to equate the obligation's trait ref and the candidate's trait ref,
    /// if more constraints end up getting added to an inference variable.
    ///
    /// Because of this, we always want to re-run the full selection
    /// process for our obligation the next time we see it, since
    /// we might end up picking a different `SelectionCandidate` (or none at all).
    fn can_cache_candidate(
        &self,
        result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
    ) -> bool {
        // Neither the global nor local cache is aware of intercrate
        // mode, so don't do any caching. In particular, we might
        // re-use the same `InferCtxt` with both an intercrate
        // and non-intercrate `SelectionContext`
        if self.is_intercrate() {
            return false;
        }
        match result {
            Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.has_infer(),
            _ => true,
        }
    }

    #[instrument(skip(self, param_env, cache_fresh_trait_pred, dep_node), level = "debug")]
    fn insert_candidate_cache(
        &mut self,
        param_env: ty::ParamEnv<'tcx>,
        cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
        dep_node: DepNodeIndex,
        candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
    ) {
        let tcx = self.tcx();
        let pred = cache_fresh_trait_pred.skip_binder();

        if !self.can_cache_candidate(&candidate) {
            debug!(?pred, ?candidate, "insert_candidate_cache - candidate is not cacheable");
            return;
        }

        if self.can_use_global_caches(param_env) {
            if let Err(Overflow(OverflowError::Canonical)) = candidate {
                // Don't cache overflow globally; we only produce this in certain modes.
            } else if !pred.has_infer() && !candidate.has_infer() {
                debug!(?pred, ?candidate, "insert_candidate_cache global");
                // This may overwrite the cache with the same value.
                tcx.selection_cache.insert((param_env, pred), dep_node, candidate);
                return;
            }
        }

        debug!(?pred, ?candidate, "insert_candidate_cache local");
        self.infcx.selection_cache.insert((param_env, pred), dep_node, candidate);
    }

    /// Looks at the item bounds of the projection or opaque type.
    /// If this is a nested rigid projection, such as
    /// `<<T as Tr1>::Assoc as Tr2>::Assoc`, consider the item bounds
    /// on both `Tr1::Assoc` and `Tr2::Assoc`, since we may encounter
    /// relative bounds on both via the `associated_type_bounds` feature.
    pub(super) fn for_each_item_bound<T>(
        &mut self,
        mut self_ty: Ty<'tcx>,
        mut for_each: impl FnMut(&mut Self, ty::Clause<'tcx>, usize) -> ControlFlow<T, ()>,
        on_ambiguity: impl FnOnce(),
    ) -> ControlFlow<T, ()> {
        let mut idx = 0;
        let mut in_parent_alias_type = false;

        loop {
            let (kind, alias_ty) = match *self_ty.kind() {
                ty::Alias(kind @ (ty::Projection | ty::Opaque), alias_ty) => (kind, alias_ty),
                ty::Infer(ty::TyVar(_)) => {
                    on_ambiguity();
                    return ControlFlow::Continue(());
                }
                _ => return ControlFlow::Continue(()),
            };

            // HACK: On subsequent recursions, we only care about bounds that don't
            // share the same type as `self_ty`. This is because for truly rigid
            // projections, we will never be able to equate, e.g. `<T as Tr>::A`
            // with `<<T as Tr>::A as Tr>::A`.
            let relevant_bounds = if in_parent_alias_type {
                self.tcx().item_non_self_assumptions(alias_ty.def_id)
            } else {
                self.tcx().item_super_predicates(alias_ty.def_id)
            };

            for bound in relevant_bounds.instantiate(self.tcx(), alias_ty.args) {
                for_each(self, bound, idx)?;
                idx += 1;
            }

            if kind == ty::Projection {
                self_ty = alias_ty.self_ty();
            } else {
                return ControlFlow::Continue(());
            }

            in_parent_alias_type = true;
        }
    }

    /// Equates the trait in `obligation` with trait bound. If the two traits
    /// can be equated and the normalized trait bound doesn't contain inference
    /// variables or placeholders, the normalized bound is returned.
    fn match_normalize_trait_ref(
        &mut self,
        obligation: &PolyTraitObligation<'tcx>,
        placeholder_trait_ref: ty::TraitRef<'tcx>,
        trait_bound: ty::PolyTraitRef<'tcx>,
    ) -> Result<Option<ty::TraitRef<'tcx>>, ()> {
        debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
        if placeholder_trait_ref.def_id != trait_bound.def_id() {
            // Avoid unnecessary normalization
            return Err(());
        }

        let trait_bound = self.infcx.instantiate_binder_with_fresh_vars(
            obligation.cause.span,
            HigherRankedType,
            trait_bound,
        );
        let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
            normalize_with_depth(
                self,
                obligation.param_env,
                obligation.cause.clone(),
                obligation.recursion_depth + 1,
                trait_bound,
            )
        });
        self.infcx
            .at(&obligation.cause, obligation.param_env)
            .eq(DefineOpaqueTypes::No, placeholder_trait_ref, trait_bound)
            .map(|InferOk { obligations: _, value: () }| {
                // This method is called within a probe, so we can't have
                // inference variables and placeholders escape.
                if !trait_bound.has_infer() && !trait_bound.has_placeholders() {
                    Some(trait_bound)
                } else {
                    None
                }
            })
            .map_err(|_| ())
    }

    fn where_clause_may_apply<'o>(
        &mut self,
        stack: &TraitObligationStack<'o, 'tcx>,
        where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
    ) -> Result<EvaluationResult, OverflowError> {
        self.evaluation_probe(|this| {
            match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
                Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
                Err(()) => Ok(EvaluatedToErr),
            }
        })
    }

    /// Return `Yes` if the obligation's predicate type applies to the env_predicate, and
    /// `No` if it does not. Return `Ambiguous` in the case that the projection type is a GAT,
    /// and applying this env_predicate constrains any of the obligation's GAT parameters.
    ///
    /// This behavior is a somewhat of a hack to prevent over-constraining inference variables
    /// in cases like #91762.
    pub(super) fn match_projection_projections(
        &mut self,
        obligation: &ProjectionTermObligation<'tcx>,
        env_predicate: PolyProjectionPredicate<'tcx>,
        potentially_unnormalized_candidates: bool,
    ) -> ProjectionMatchesProjection {
        debug_assert_eq!(obligation.predicate.def_id, env_predicate.projection_def_id());

        let mut nested_obligations = Vec::new();
        let infer_predicate = self.infcx.instantiate_binder_with_fresh_vars(
            obligation.cause.span,
            BoundRegionConversionTime::HigherRankedType,
            env_predicate,
        );
        let infer_projection = if potentially_unnormalized_candidates {
            ensure_sufficient_stack(|| {
                normalize_with_depth_to(
                    self,
                    obligation.param_env,
                    obligation.cause.clone(),
                    obligation.recursion_depth + 1,
                    infer_predicate.projection_term,
                    &mut nested_obligations,
                )
            })
        } else {
            infer_predicate.projection_term
        };

        let is_match = self
            .infcx
            .at(&obligation.cause, obligation.param_env)
            .eq(DefineOpaqueTypes::No, obligation.predicate, infer_projection)
            .is_ok_and(|InferOk { obligations, value: () }| {
                self.evaluate_predicates_recursively(
                    TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
                    nested_obligations.into_iter().chain(obligations),
                )
                .is_ok_and(|res| res.may_apply())
            });

        if is_match {
            let generics = self.tcx().generics_of(obligation.predicate.def_id);
            // FIXME(generic-associated-types): Addresses aggressive inference in #92917.
            // If this type is a GAT, and of the GAT args resolve to something new,
            // that means that we must have newly inferred something about the GAT.
            // We should give up in that case.
            // FIXME(generic-associated-types): This only detects one layer of inference,
            // which is probably not what we actually want, but fixing it causes some ambiguity:
            // <https://github.com/rust-lang/rust/issues/125196>.
            if !generics.is_own_empty()
                && obligation.predicate.args[generics.parent_count..].iter().any(|&p| {
                    p.has_non_region_infer()
                        && match p.unpack() {
                            ty::GenericArgKind::Const(ct) => {
                                self.infcx.shallow_resolve_const(ct) != ct
                            }
                            ty::GenericArgKind::Type(ty) => self.infcx.shallow_resolve(ty) != ty,
                            ty::GenericArgKind::Lifetime(_) => false,
                        }
                })
            {
                ProjectionMatchesProjection::Ambiguous
            } else {
                ProjectionMatchesProjection::Yes
            }
        } else {
            ProjectionMatchesProjection::No
        }
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum DropVictim {
    Yes,
    No,
}

impl DropVictim {
    fn drop_if(should_drop: bool) -> DropVictim {
        if should_drop { DropVictim::Yes } else { DropVictim::No }
    }
}

/// ## Winnowing
///
/// Winnowing is the process of attempting to resolve ambiguity by
/// probing further. During the winnowing process, we unify all
/// type variables and then we also attempt to evaluate recursive
/// bounds to see if they are satisfied.
impl<'tcx> SelectionContext<'_, 'tcx> {
    /// Returns `DropVictim::Yes` if `victim` should be dropped in favor of
    /// `other`. Generally speaking we will drop duplicate
    /// candidates and prefer where-clause candidates.
    ///
    /// See the comment for "SelectionCandidate" for more details.
    #[instrument(level = "debug", skip(self))]
    fn candidate_should_be_dropped_in_favor_of(
        &mut self,
        victim: &EvaluatedCandidate<'tcx>,
        other: &EvaluatedCandidate<'tcx>,
        has_non_region_infer: bool,
    ) -> DropVictim {
        if victim.candidate == other.candidate {
            return DropVictim::Yes;
        }

        // Check if a bound would previously have been removed when normalizing
        // the param_env so that it can be given the lowest priority. See
        // #50825 for the motivation for this.
        let is_global =
            |cand: ty::PolyTraitPredicate<'tcx>| cand.is_global() && !cand.has_bound_vars();

        // (*) Prefer `BuiltinCandidate { has_nested: false }`, `PointeeCandidate`,
        // `DiscriminantKindCandidate`, `ConstDestructCandidate`
        // to anything else.
        //
        // This is a fix for #53123 and prevents winnowing from accidentally extending the
        // lifetime of a variable.
        match (&other.candidate, &victim.candidate) {
            // FIXME(@jswrenn): this should probably be more sophisticated
            (TransmutabilityCandidate, _) | (_, TransmutabilityCandidate) => DropVictim::No,

            // (*)
            (BuiltinCandidate { has_nested: false } | ConstDestructCandidate(_), _) => {
                DropVictim::Yes
            }
            (_, BuiltinCandidate { has_nested: false } | ConstDestructCandidate(_)) => {
                DropVictim::No
            }

            (ParamCandidate(other), ParamCandidate(victim)) => {
                let same_except_bound_vars = other.skip_binder().trait_ref
                    == victim.skip_binder().trait_ref
                    && other.skip_binder().polarity == victim.skip_binder().polarity
                    && !other.skip_binder().trait_ref.has_escaping_bound_vars();
                if same_except_bound_vars {
                    // See issue #84398. In short, we can generate multiple ParamCandidates which are
                    // the same except for unused bound vars. Just pick the one with the fewest bound vars
                    // or the current one if tied (they should both evaluate to the same answer). This is
                    // probably best characterized as a "hack", since we might prefer to just do our
                    // best to *not* create essentially duplicate candidates in the first place.
                    DropVictim::drop_if(other.bound_vars().len() <= victim.bound_vars().len())
                } else {
                    DropVictim::No
                }
            }

            // Drop otherwise equivalent non-const fn pointer candidates
            (FnPointerCandidate { .. }, FnPointerCandidate { fn_host_effect }) => {
                DropVictim::drop_if(*fn_host_effect == self.tcx().consts.true_)
            }

            (
                ParamCandidate(other_cand),
                ImplCandidate(..)
                | AutoImplCandidate
                | ClosureCandidate { .. }
                | AsyncClosureCandidate
                | AsyncFnKindHelperCandidate
                | CoroutineCandidate
                | FutureCandidate
                | IteratorCandidate
                | AsyncIteratorCandidate
                | FnPointerCandidate { .. }
                | BuiltinObjectCandidate
                | BuiltinUnsizeCandidate
                | TraitUpcastingUnsizeCandidate(_)
                | BuiltinCandidate { .. }
                | TraitAliasCandidate
                | ObjectCandidate(_)
                | ProjectionCandidate(_),
            ) => {
                // We have a where clause so don't go around looking
                // for impls. Arbitrarily give param candidates priority
                // over projection and object candidates.
                //
                // Global bounds from the where clause should be ignored
                // here (see issue #50825).
                DropVictim::drop_if(!is_global(*other_cand))
            }
            (ObjectCandidate(_) | ProjectionCandidate(_), ParamCandidate(victim_cand)) => {
                // Prefer these to a global where-clause bound
                // (see issue #50825).
                if is_global(*victim_cand) { DropVictim::Yes } else { DropVictim::No }
            }
            (
                ImplCandidate(_)
                | AutoImplCandidate
                | ClosureCandidate { .. }
                | AsyncClosureCandidate
                | AsyncFnKindHelperCandidate
                | CoroutineCandidate
                | FutureCandidate
                | IteratorCandidate
                | AsyncIteratorCandidate
                | FnPointerCandidate { .. }
                | BuiltinObjectCandidate
                | BuiltinUnsizeCandidate
                | TraitUpcastingUnsizeCandidate(_)
                | BuiltinCandidate { has_nested: true }
                | TraitAliasCandidate,
                ParamCandidate(victim_cand),
            ) => {
                // Prefer these to a global where-clause bound
                // (see issue #50825).
                DropVictim::drop_if(
                    is_global(*victim_cand) && other.evaluation.must_apply_modulo_regions(),
                )
            }

            (ProjectionCandidate(i), ProjectionCandidate(j))
            | (ObjectCandidate(i), ObjectCandidate(j)) => {
                // Arbitrarily pick the lower numbered candidate for backwards
                // compatibility reasons. Don't let this affect inference.
                DropVictim::drop_if(i < j && !has_non_region_infer)
            }
            (ObjectCandidate(_), ProjectionCandidate(_))
            | (ProjectionCandidate(_), ObjectCandidate(_)) => {
                bug!("Have both object and projection candidate")
            }

            // Arbitrarily give projection and object candidates priority.
            (
                ObjectCandidate(_) | ProjectionCandidate(_),
                ImplCandidate(..)
                | AutoImplCandidate
                | ClosureCandidate { .. }
                | AsyncClosureCandidate
                | AsyncFnKindHelperCandidate
                | CoroutineCandidate
                | FutureCandidate
                | IteratorCandidate
                | AsyncIteratorCandidate
                | FnPointerCandidate { .. }
                | BuiltinObjectCandidate
                | BuiltinUnsizeCandidate
                | TraitUpcastingUnsizeCandidate(_)
                | BuiltinCandidate { .. }
                | TraitAliasCandidate,
            ) => DropVictim::Yes,

            (
                ImplCandidate(..)
                | AutoImplCandidate
                | ClosureCandidate { .. }
                | AsyncClosureCandidate
                | AsyncFnKindHelperCandidate
                | CoroutineCandidate
                | FutureCandidate
                | IteratorCandidate
                | AsyncIteratorCandidate
                | FnPointerCandidate { .. }
                | BuiltinObjectCandidate
                | BuiltinUnsizeCandidate
                | TraitUpcastingUnsizeCandidate(_)
                | BuiltinCandidate { .. }
                | TraitAliasCandidate,
                ObjectCandidate(_) | ProjectionCandidate(_),
            ) => DropVictim::No,

            (&ImplCandidate(other_def), &ImplCandidate(victim_def)) => {
                // See if we can toss out `victim` based on specialization.
                // While this requires us to know *for sure* that the `other` impl applies
                // we still use modulo regions here.
                //
                // This is fine as specialization currently assumes that specializing
                // impls have to be always applicable, meaning that the only allowed
                // region constraints may be constraints also present on the default impl.
                let tcx = self.tcx();
                if other.evaluation.must_apply_modulo_regions()
                    && tcx.specializes((other_def, victim_def))
                {
                    return DropVictim::Yes;
                }

                match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
                    // For #33140 the impl headers must be exactly equal, the trait must not have
                    // any associated items and there are no where-clauses.
                    //
                    // We can just arbitrarily drop one of the impls.
                    Some(ty::ImplOverlapKind::FutureCompatOrderDepTraitObjects) => {
                        assert_eq!(other.evaluation, victim.evaluation);
                        DropVictim::Yes
                    }
                    // For candidates which already reference errors it doesn't really
                    // matter what we do 🤷
                    Some(ty::ImplOverlapKind::Permitted { marker: false }) => {
                        DropVictim::drop_if(other.evaluation.must_apply_considering_regions())
                    }
                    Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
                        // Subtle: If the predicate we are evaluating has inference
                        // variables, do *not* allow discarding candidates due to
                        // marker trait impls.
                        //
                        // Without this restriction, we could end up accidentally
                        // constraining inference variables based on an arbitrarily
                        // chosen trait impl.
                        //
                        // Imagine we have the following code:
                        //
                        // ```rust
                        // #[marker] trait MyTrait {}
                        // impl MyTrait for u8 {}
                        // impl MyTrait for bool {}
                        // ```
                        //
                        // And we are evaluating the predicate `<_#0t as MyTrait>`.
                        //
                        // During selection, we will end up with one candidate for each
                        // impl of `MyTrait`. If we were to discard one impl in favor
                        // of the other, we would be left with one candidate, causing
                        // us to "successfully" select the predicate, unifying
                        // _#0t with (for example) `u8`.
                        //
                        // However, we have no reason to believe that this unification
                        // is correct - we've essentially just picked an arbitrary
                        // *possibility* for _#0t, and required that this be the *only*
                        // possibility.
                        //
                        // Eventually, we will either:
                        // 1) Unify all inference variables in the predicate through
                        // some other means (e.g. type-checking of a function). We will
                        // then be in a position to drop marker trait candidates
                        // without constraining inference variables (since there are
                        // none left to constrain)
                        // 2) Be left with some unconstrained inference variables. We
                        // will then correctly report an inference error, since the
                        // existence of multiple marker trait impls tells us nothing
                        // about which one should actually apply.
                        DropVictim::drop_if(
                            !has_non_region_infer
                                && other.evaluation.must_apply_considering_regions(),
                        )
                    }
                    None => DropVictim::No,
                }
            }

            (AutoImplCandidate, ImplCandidate(_)) | (ImplCandidate(_), AutoImplCandidate) => {
                DropVictim::No
            }

            (AutoImplCandidate, _) | (_, AutoImplCandidate) => {
                bug!(
                    "default implementations shouldn't be recorded \
                    when there are other global candidates: {:?} {:?}",
                    other,
                    victim
                );
            }

            // Everything else is ambiguous
            (
                ImplCandidate(_)
                | ClosureCandidate { .. }
                | AsyncClosureCandidate
                | AsyncFnKindHelperCandidate
                | CoroutineCandidate
                | FutureCandidate
                | IteratorCandidate
                | AsyncIteratorCandidate
                | FnPointerCandidate { .. }
                | BuiltinObjectCandidate
                | BuiltinUnsizeCandidate
                | TraitUpcastingUnsizeCandidate(_)
                | BuiltinCandidate { has_nested: true }
                | TraitAliasCandidate,
                ImplCandidate(_)
                | ClosureCandidate { .. }
                | AsyncClosureCandidate
                | AsyncFnKindHelperCandidate
                | CoroutineCandidate
                | FutureCandidate
                | IteratorCandidate
                | AsyncIteratorCandidate
                | FnPointerCandidate { .. }
                | BuiltinObjectCandidate
                | BuiltinUnsizeCandidate
                | TraitUpcastingUnsizeCandidate(_)
                | BuiltinCandidate { has_nested: true }
                | TraitAliasCandidate,
            ) => DropVictim::No,
        }
    }
}

impl<'tcx> SelectionContext<'_, 'tcx> {
    fn sized_conditions(
        &mut self,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> BuiltinImplConditions<'tcx> {
        use self::BuiltinImplConditions::{Ambiguous, None, Where};

        // NOTE: binder moved to (*)
        let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());

        match self_ty.kind() {
            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
            | ty::Uint(_)
            | ty::Int(_)
            | ty::Bool
            | ty::Float(_)
            | ty::FnDef(..)
            | ty::FnPtr(..)
            | ty::RawPtr(..)
            | ty::Char
            | ty::Ref(..)
            | ty::Coroutine(..)
            | ty::CoroutineWitness(..)
            | ty::Array(..)
            | ty::Closure(..)
            | ty::CoroutineClosure(..)
            | ty::Never
            | ty::Dynamic(_, _, ty::DynStar)
            | ty::Error(_) => {
                // safe for everything
                Where(ty::Binder::dummy(Vec::new()))
            }

            ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,

            ty::Tuple(tys) => Where(
                obligation.predicate.rebind(tys.last().map_or_else(Vec::new, |&last| vec![last])),
            ),

            ty::Pat(ty, _) => Where(obligation.predicate.rebind(vec![*ty])),

            ty::Adt(def, args) => {
                if let Some(sized_crit) = def.sized_constraint(self.tcx()) {
                    // (*) binder moved here
                    Where(
                        obligation.predicate.rebind(vec![sized_crit.instantiate(self.tcx(), args)]),
                    )
                } else {
                    Where(ty::Binder::dummy(Vec::new()))
                }
            }

            ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) => None,
            ty::Infer(ty::TyVar(_)) => Ambiguous,

            // We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
            ty::Bound(..) => None,

            ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
                bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
            }
        }
    }

    fn copy_clone_conditions(
        &mut self,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> BuiltinImplConditions<'tcx> {
        // NOTE: binder moved to (*)
        let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());

        use self::BuiltinImplConditions::{Ambiguous, None, Where};

        match *self_ty.kind() {
            ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) => Where(ty::Binder::dummy(Vec::new())),

            ty::Uint(_)
            | ty::Int(_)
            | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
            | ty::Bool
            | ty::Float(_)
            | ty::Char
            | ty::RawPtr(..)
            | ty::Never
            | ty::Ref(_, _, hir::Mutability::Not)
            | ty::Array(..) => {
                // Implementations provided in libcore
                None
            }

            ty::Dynamic(..)
            | ty::Str
            | ty::Slice(..)
            | ty::Foreign(..)
            | ty::Ref(_, _, hir::Mutability::Mut) => None,

            ty::Tuple(tys) => {
                // (*) binder moved here
                Where(obligation.predicate.rebind(tys.iter().collect()))
            }

            ty::Pat(ty, _) => {
                // (*) binder moved here
                Where(obligation.predicate.rebind(vec![ty]))
            }

            ty::Coroutine(coroutine_def_id, args) => {
                match self.tcx().coroutine_movability(coroutine_def_id) {
                    hir::Movability::Static => None,
                    hir::Movability::Movable => {
                        if self.tcx().features().coroutine_clone {
                            let resolved_upvars =
                                self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
                            let resolved_witness =
                                self.infcx.shallow_resolve(args.as_coroutine().witness());
                            if resolved_upvars.is_ty_var() || resolved_witness.is_ty_var() {
                                // Not yet resolved.
                                Ambiguous
                            } else {
                                let all = args
                                    .as_coroutine()
                                    .upvar_tys()
                                    .iter()
                                    .chain([args.as_coroutine().witness()])
                                    .collect::<Vec<_>>();
                                Where(obligation.predicate.rebind(all))
                            }
                        } else {
                            None
                        }
                    }
                }
            }

            ty::CoroutineWitness(def_id, args) => {
                let hidden_types = bind_coroutine_hidden_types_above(
                    self.infcx,
                    def_id,
                    args,
                    obligation.predicate.bound_vars(),
                );
                Where(hidden_types)
            }

            ty::Closure(_, args) => {
                // (*) binder moved here
                let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
                if let ty::Infer(ty::TyVar(_)) = ty.kind() {
                    // Not yet resolved.
                    Ambiguous
                } else {
                    Where(obligation.predicate.rebind(args.as_closure().upvar_tys().to_vec()))
                }
            }

            ty::CoroutineClosure(_, args) => {
                // (*) binder moved here
                let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
                if let ty::Infer(ty::TyVar(_)) = ty.kind() {
                    // Not yet resolved.
                    Ambiguous
                } else {
                    Where(
                        obligation
                            .predicate
                            .rebind(args.as_coroutine_closure().upvar_tys().to_vec()),
                    )
                }
            }

            // `Copy` and `Clone` are automatically implemented for an anonymous adt
            // if all of its fields are `Copy` and `Clone`
            ty::Adt(adt, args) if adt.is_anonymous() => {
                // (*) binder moved here
                Where(obligation.predicate.rebind(
                    adt.non_enum_variant().fields.iter().map(|f| f.ty(self.tcx(), args)).collect(),
                ))
            }

            ty::Adt(..) | ty::Alias(..) | ty::Param(..) | ty::Placeholder(..) => {
                // Fallback to whatever user-defined impls exist in this case.
                None
            }

            ty::Infer(ty::TyVar(_)) => {
                // Unbound type variable. Might or might not have
                // applicable impls and so forth, depending on what
                // those type variables wind up being bound to.
                Ambiguous
            }

            // We can make this an ICE if/once we actually instantiate the trait obligation eagerly.
            ty::Bound(..) => None,

            ty::Infer(ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
                bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
            }
        }
    }

    fn fused_iterator_conditions(
        &mut self,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> BuiltinImplConditions<'tcx> {
        let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
        if let ty::Coroutine(did, ..) = *self_ty.kind()
            && self.tcx().coroutine_is_gen(did)
        {
            BuiltinImplConditions::Where(ty::Binder::dummy(Vec::new()))
        } else {
            BuiltinImplConditions::None
        }
    }

    /// For default impls, we need to break apart a type into its
    /// "constituent types" -- meaning, the types that it contains.
    ///
    /// Here are some (simple) examples:
    ///
    /// ```ignore (illustrative)
    /// (i32, u32) -> [i32, u32]
    /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
    /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
    /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
    /// ```
    #[instrument(level = "debug", skip(self), ret)]
    fn constituent_types_for_ty(
        &self,
        t: ty::Binder<'tcx, Ty<'tcx>>,
    ) -> Result<ty::Binder<'tcx, Vec<Ty<'tcx>>>, SelectionError<'tcx>> {
        Ok(match *t.skip_binder().kind() {
            ty::Uint(_)
            | ty::Int(_)
            | ty::Bool
            | ty::Float(_)
            | ty::FnDef(..)
            | ty::FnPtr(..)
            | ty::Error(_)
            | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
            | ty::Never
            | ty::Char => ty::Binder::dummy(Vec::new()),

            // Treat this like `struct str([u8]);`
            ty::Str => ty::Binder::dummy(vec![Ty::new_slice(self.tcx(), self.tcx().types.u8)]),

            ty::Placeholder(..)
            | ty::Dynamic(..)
            | ty::Param(..)
            | ty::Foreign(..)
            | ty::Alias(ty::Projection | ty::Inherent | ty::Weak, ..)
            | ty::Bound(..)
            | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
                bug!("asked to assemble constituent types of unexpected type: {:?}", t);
            }

            ty::RawPtr(element_ty, _) | ty::Ref(_, element_ty, _) => t.rebind(vec![element_ty]),

            ty::Pat(ty, _) | ty::Array(ty, _) | ty::Slice(ty) => t.rebind(vec![ty]),

            ty::Tuple(tys) => {
                // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
                t.rebind(tys.iter().collect())
            }

            ty::Closure(_, args) => {
                let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
                t.rebind(vec![ty])
            }

            ty::CoroutineClosure(_, args) => {
                let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
                t.rebind(vec![ty])
            }

            ty::Coroutine(_, args) => {
                let ty = self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
                let witness = args.as_coroutine().witness();
                t.rebind([ty].into_iter().chain(iter::once(witness)).collect())
            }

            ty::CoroutineWitness(def_id, args) => {
                bind_coroutine_hidden_types_above(self.infcx, def_id, args, t.bound_vars())
            }

            // For `PhantomData<T>`, we pass `T`.
            ty::Adt(def, args) if def.is_phantom_data() => t.rebind(args.types().collect()),

            ty::Adt(def, args) => {
                t.rebind(def.all_fields().map(|f| f.ty(self.tcx(), args)).collect())
            }

            ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
                if self.infcx.can_define_opaque_ty(def_id) {
                    unreachable!()
                } else {
                    // We can resolve the `impl Trait` to its concrete type,
                    // which enforces a DAG between the functions requiring
                    // the auto trait bounds in question.
                    match self.tcx().type_of_opaque(def_id) {
                        Ok(ty) => t.rebind(vec![ty.instantiate(self.tcx(), args)]),
                        Err(_) => {
                            return Err(SelectionError::OpaqueTypeAutoTraitLeakageUnknown(def_id));
                        }
                    }
                }
            }
        })
    }

    fn collect_predicates_for_types(
        &mut self,
        param_env: ty::ParamEnv<'tcx>,
        cause: ObligationCause<'tcx>,
        recursion_depth: usize,
        trait_def_id: DefId,
        types: ty::Binder<'tcx, Vec<Ty<'tcx>>>,
    ) -> Vec<PredicateObligation<'tcx>> {
        // Because the types were potentially derived from
        // higher-ranked obligations they may reference late-bound
        // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
        // yield a type like `for<'a> &'a i32`. In general, we
        // maintain the invariant that we never manipulate bound
        // regions, so we have to process these bound regions somehow.
        //
        // The strategy is to:
        //
        // 1. Instantiate those regions to placeholder regions (e.g.,
        //    `for<'a> &'a i32` becomes `&0 i32`.
        // 2. Produce something like `&'0 i32 : Copy`
        // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`

        types
            .as_ref()
            .skip_binder() // binder moved -\
            .iter()
            .flat_map(|ty| {
                let ty: ty::Binder<'tcx, Ty<'tcx>> = types.rebind(*ty); // <----/

                let placeholder_ty = self.infcx.enter_forall_and_leak_universe(ty);
                let Normalized { value: normalized_ty, mut obligations } =
                    ensure_sufficient_stack(|| {
                        normalize_with_depth(
                            self,
                            param_env,
                            cause.clone(),
                            recursion_depth,
                            placeholder_ty,
                        )
                    });

                let tcx = self.tcx();
                let trait_ref = if tcx.generics_of(trait_def_id).own_params.len() == 1 {
                    ty::TraitRef::new(tcx, trait_def_id, [normalized_ty])
                } else {
                    // If this is an ill-formed auto/built-in trait, then synthesize
                    // new error args for the missing generics.
                    let err_args = ty::GenericArgs::extend_with_error(tcx, trait_def_id, &[
                        normalized_ty.into(),
                    ]);
                    ty::TraitRef::new_from_args(tcx, trait_def_id, err_args)
                };

                let obligation = Obligation::new(self.tcx(), cause.clone(), param_env, trait_ref);
                obligations.push(obligation);
                obligations
            })
            .collect()
    }

    ///////////////////////////////////////////////////////////////////////////
    // Matching
    //
    // Matching is a common path used for both evaluation and
    // confirmation. It basically unifies types that appear in impls
    // and traits. This does affect the surrounding environment;
    // therefore, when used during evaluation, match routines must be
    // run inside of a `probe()` so that their side-effects are
    // contained.

    fn rematch_impl(
        &mut self,
        impl_def_id: DefId,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> Normalized<'tcx, GenericArgsRef<'tcx>> {
        let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap();
        match self.match_impl(impl_def_id, impl_trait_header, obligation) {
            Ok(args) => args,
            Err(()) => {
                let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
                bug!("impl {impl_def_id:?} was matchable against {predicate:?} but now is not")
            }
        }
    }

    #[instrument(level = "debug", skip(self), ret)]
    fn match_impl(
        &mut self,
        impl_def_id: DefId,
        impl_trait_header: ty::ImplTraitHeader<'tcx>,
        obligation: &PolyTraitObligation<'tcx>,
    ) -> Result<Normalized<'tcx, GenericArgsRef<'tcx>>, ()> {
        let placeholder_obligation =
            self.infcx.enter_forall_and_leak_universe(obligation.predicate);
        let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;

        let impl_args = self.infcx.fresh_args_for_item(obligation.cause.span, impl_def_id);

        let trait_ref = impl_trait_header.trait_ref.instantiate(self.tcx(), impl_args);
        if trait_ref.references_error() {
            return Err(());
        }

        debug!(?impl_trait_header);

        let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
            ensure_sufficient_stack(|| {
                normalize_with_depth(
                    self,
                    obligation.param_env,
                    obligation.cause.clone(),
                    obligation.recursion_depth + 1,
                    trait_ref,
                )
            });

        debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);

        let cause = ObligationCause::new(
            obligation.cause.span,
            obligation.cause.body_id,
            ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
        );

        let InferOk { obligations, .. } = self
            .infcx
            .at(&cause, obligation.param_env)
            .eq(DefineOpaqueTypes::No, placeholder_obligation_trait_ref, impl_trait_ref)
            .map_err(|e| {
                debug!("match_impl: failed eq_trait_refs due to `{}`", e.to_string(self.tcx()))
            })?;
        nested_obligations.extend(obligations);

        if !self.is_intercrate() && impl_trait_header.polarity == ty::ImplPolarity::Reservation {
            debug!("reservation impls only apply in intercrate mode");
            return Err(());
        }

        Ok(Normalized { value: impl_args, obligations: nested_obligations })
    }

    fn match_upcast_principal(
        &mut self,
        obligation: &PolyTraitObligation<'tcx>,
        unnormalized_upcast_principal: ty::PolyTraitRef<'tcx>,
        a_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
        b_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
        a_region: ty::Region<'tcx>,
        b_region: ty::Region<'tcx>,
    ) -> SelectionResult<'tcx, Vec<PredicateObligation<'tcx>>> {
        let tcx = self.tcx();
        let mut nested = vec![];

        // We may upcast to auto traits that are either explicitly listed in
        // the object type's bounds, or implied by the principal trait ref's
        // supertraits.
        let a_auto_traits: FxIndexSet<DefId> = a_data
            .auto_traits()
            .chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
                tcx.supertrait_def_ids(principal_def_id).filter(|def_id| tcx.trait_is_auto(*def_id))
            }))
            .collect();

        let upcast_principal = normalize_with_depth_to(
            self,
            obligation.param_env,
            obligation.cause.clone(),
            obligation.recursion_depth + 1,
            unnormalized_upcast_principal,
            &mut nested,
        );

        for bound in b_data {
            match bound.skip_binder() {
                // Check that a_ty's supertrait (upcast_principal) is compatible
                // with the target (b_ty).
                ty::ExistentialPredicate::Trait(target_principal) => {
                    let hr_source_principal = upcast_principal.map_bound(|trait_ref| {
                        ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
                    });
                    let hr_target_principal = bound.rebind(target_principal);

                    nested.extend(
                        self.infcx
                            .enter_forall(hr_target_principal, |target_principal| {
                                let source_principal =
                                    self.infcx.instantiate_binder_with_fresh_vars(
                                        obligation.cause.span,
                                        HigherRankedType,
                                        hr_source_principal,
                                    );
                                self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
                                    DefineOpaqueTypes::Yes,
                                    ToTrace::to_trace(
                                        &obligation.cause,
                                        hr_target_principal,
                                        hr_source_principal,
                                    ),
                                    target_principal,
                                    source_principal,
                                )
                            })
                            .map_err(|_| SelectionError::Unimplemented)?
                            .into_obligations(),
                    );
                }
                // Check that b_ty's projection is satisfied by exactly one of
                // a_ty's projections. First, we look through the list to see if
                // any match. If not, error. Then, if *more* than one matches, we
                // return ambiguity. Otherwise, if exactly one matches, equate
                // it with b_ty's projection.
                ty::ExistentialPredicate::Projection(target_projection) => {
                    let hr_target_projection = bound.rebind(target_projection);

                    let mut matching_projections =
                        a_data.projection_bounds().filter(|&hr_source_projection| {
                            // Eager normalization means that we can just use can_eq
                            // here instead of equating and processing obligations.
                            hr_source_projection.item_def_id() == hr_target_projection.item_def_id()
                                && self.infcx.probe(|_| {
                                    self.infcx
                                        .enter_forall(hr_target_projection, |target_projection| {
                                            let source_projection =
                                                self.infcx.instantiate_binder_with_fresh_vars(
                                                    obligation.cause.span,
                                                    HigherRankedType,
                                                    hr_source_projection,
                                                );
                                            self.infcx
                                                .at(&obligation.cause, obligation.param_env)
                                                .eq_trace(
                                                    DefineOpaqueTypes::Yes,
                                                    ToTrace::to_trace(
                                                        &obligation.cause,
                                                        hr_target_projection,
                                                        hr_source_projection,
                                                    ),
                                                    target_projection,
                                                    source_projection,
                                                )
                                        })
                                        .is_ok()
                                })
                        });

                    let Some(hr_source_projection) = matching_projections.next() else {
                        return Err(SelectionError::Unimplemented);
                    };
                    if matching_projections.next().is_some() {
                        return Ok(None);
                    }
                    nested.extend(
                        self.infcx
                            .enter_forall(hr_target_projection, |target_projection| {
                                let source_projection =
                                    self.infcx.instantiate_binder_with_fresh_vars(
                                        obligation.cause.span,
                                        HigherRankedType,
                                        hr_source_projection,
                                    );
                                self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
                                    DefineOpaqueTypes::Yes,
                                    ToTrace::to_trace(
                                        &obligation.cause,
                                        hr_target_projection,
                                        hr_source_projection,
                                    ),
                                    target_projection,
                                    source_projection,
                                )
                            })
                            .map_err(|_| SelectionError::Unimplemented)?
                            .into_obligations(),
                    );
                }
                // Check that b_ty's auto traits are present in a_ty's bounds.
                ty::ExistentialPredicate::AutoTrait(def_id) => {
                    if !a_auto_traits.contains(&def_id) {
                        return Err(SelectionError::Unimplemented);
                    }
                }
            }
        }

        nested.push(Obligation::with_depth(
            tcx,
            obligation.cause.clone(),
            obligation.recursion_depth + 1,
            obligation.param_env,
            ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region)),
        ));

        Ok(Some(nested))
    }

    /// Normalize `where_clause_trait_ref` and try to match it against
    /// `obligation`. If successful, return any predicates that
    /// result from the normalization.
    fn match_where_clause_trait_ref(
        &mut self,
        obligation: &PolyTraitObligation<'tcx>,
        where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
    ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
        self.match_poly_trait_ref(obligation, where_clause_trait_ref)
    }

    /// Returns `Ok` if `poly_trait_ref` being true implies that the
    /// obligation is satisfied.
    #[instrument(skip(self), level = "debug")]
    fn match_poly_trait_ref(
        &mut self,
        obligation: &PolyTraitObligation<'tcx>,
        poly_trait_ref: ty::PolyTraitRef<'tcx>,
    ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
        let predicate = self.infcx.enter_forall_and_leak_universe(obligation.predicate);
        let trait_ref = self.infcx.instantiate_binder_with_fresh_vars(
            obligation.cause.span,
            HigherRankedType,
            poly_trait_ref,
        );
        self.infcx
            .at(&obligation.cause, obligation.param_env)
            .eq(DefineOpaqueTypes::No, predicate.trait_ref, trait_ref)
            .map(|InferOk { obligations, .. }| obligations)
            .map_err(|_| ())
    }

    ///////////////////////////////////////////////////////////////////////////
    // Miscellany

    fn match_fresh_trait_refs(
        &self,
        previous: ty::PolyTraitPredicate<'tcx>,
        current: ty::PolyTraitPredicate<'tcx>,
    ) -> bool {
        let mut matcher = _match::MatchAgainstFreshVars::new(self.tcx());
        matcher.relate(previous, current).is_ok()
    }

    fn push_stack<'o>(
        &mut self,
        previous_stack: TraitObligationStackList<'o, 'tcx>,
        obligation: &'o PolyTraitObligation<'tcx>,
    ) -> TraitObligationStack<'o, 'tcx> {
        let fresh_trait_pred = obligation.predicate.fold_with(&mut self.freshener);

        let dfn = previous_stack.cache.next_dfn();
        let depth = previous_stack.depth() + 1;
        TraitObligationStack {
            obligation,
            fresh_trait_pred,
            reached_depth: Cell::new(depth),
            previous: previous_stack,
            dfn,
            depth,
        }
    }

    #[instrument(skip(self), level = "debug")]
    fn closure_trait_ref_unnormalized(
        &mut self,
        self_ty: Ty<'tcx>,
        fn_trait_def_id: DefId,
        fn_host_effect: ty::Const<'tcx>,
    ) -> ty::PolyTraitRef<'tcx> {
        let ty::Closure(_, args) = *self_ty.kind() else {
            bug!("expected closure, found {self_ty}");
        };
        let closure_sig = args.as_closure().sig();

        closure_trait_ref_and_return_type(
            self.tcx(),
            fn_trait_def_id,
            self_ty,
            closure_sig,
            util::TupleArgumentsFlag::No,
            fn_host_effect,
        )
        .map_bound(|(trait_ref, _)| trait_ref)
    }

    /// Returns the obligations that are implied by instantiating an
    /// impl or trait. The obligations are instantiated and fully
    /// normalized. This is used when confirming an impl or default
    /// impl.
    #[instrument(level = "debug", skip(self, cause, param_env))]
    fn impl_or_trait_obligations(
        &mut self,
        cause: &ObligationCause<'tcx>,
        recursion_depth: usize,
        param_env: ty::ParamEnv<'tcx>,
        def_id: DefId,              // of impl or trait
        args: GenericArgsRef<'tcx>, // for impl or trait
        parent_trait_pred: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
    ) -> Vec<PredicateObligation<'tcx>> {
        let tcx = self.tcx();

        // To allow for one-pass evaluation of the nested obligation,
        // each predicate must be preceded by the obligations required
        // to normalize it.
        // for example, if we have:
        //    impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
        // the impl will have the following predicates:
        //    <V as Iterator>::Item = U,
        //    U: Iterator, U: Sized,
        //    V: Iterator, V: Sized,
        //    <U as Iterator>::Item: Copy
        // When we instantiate, say, `V => IntoIter<u32>, U => $0`, the last
        // obligation will normalize to `<$0 as Iterator>::Item = $1` and
        // `$1: Copy`, so we must ensure the obligations are emitted in
        // that order.
        let predicates = tcx.predicates_of(def_id);
        assert_eq!(predicates.parent, None);
        let predicates = predicates.instantiate_own(tcx, args);
        let mut obligations = Vec::with_capacity(predicates.len());
        for (index, (predicate, span)) in predicates.into_iter().enumerate() {
            let cause = if tcx.is_lang_item(parent_trait_pred.def_id(), LangItem::CoerceUnsized) {
                cause.clone()
            } else {
                cause.clone().derived_cause(parent_trait_pred, |derived| {
                    ObligationCauseCode::ImplDerived(Box::new(ImplDerivedCause {
                        derived,
                        impl_or_alias_def_id: def_id,
                        impl_def_predicate_index: Some(index),
                        span,
                    }))
                })
            };
            let clause = normalize_with_depth_to(
                self,
                param_env,
                cause.clone(),
                recursion_depth,
                predicate,
                &mut obligations,
            );
            obligations.push(Obligation {
                cause,
                recursion_depth,
                param_env,
                predicate: clause.as_predicate(),
            });
        }

        // Register any outlives obligations from the trait here, cc #124336.
        if matches!(tcx.def_kind(def_id), DefKind::Impl { of_trait: true }) {
            for clause in tcx.impl_super_outlives(def_id).iter_instantiated(tcx, args) {
                let clause = normalize_with_depth_to(
                    self,
                    param_env,
                    cause.clone(),
                    recursion_depth,
                    clause,
                    &mut obligations,
                );
                obligations.push(Obligation {
                    cause: cause.clone(),
                    recursion_depth,
                    param_env,
                    predicate: clause.as_predicate(),
                });
            }
        }

        obligations
    }
}

impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
    fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
        TraitObligationStackList::with(self)
    }

    fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
        self.previous.cache
    }

    fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
        self.list()
    }

    /// Indicates that attempting to evaluate this stack entry
    /// required accessing something from the stack at depth `reached_depth`.
    fn update_reached_depth(&self, reached_depth: usize) {
        assert!(
            self.depth >= reached_depth,
            "invoked `update_reached_depth` with something under this stack: \
             self.depth={} reached_depth={}",
            self.depth,
            reached_depth,
        );
        debug!(reached_depth, "update_reached_depth");
        let mut p = self;
        while reached_depth < p.depth {
            debug!(?p.fresh_trait_pred, "update_reached_depth: marking as cycle participant");
            p.reached_depth.set(p.reached_depth.get().min(reached_depth));
            p = p.previous.head.unwrap();
        }
    }
}

/// The "provisional evaluation cache" is used to store intermediate cache results
/// when solving auto traits. Auto traits are unusual in that they can support
/// cycles. So, for example, a "proof tree" like this would be ok:
///
/// - `Foo<T>: Send` :-
///   - `Bar<T>: Send` :-
///     - `Foo<T>: Send` -- cycle, but ok
///   - `Baz<T>: Send`
///
/// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
/// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
/// For non-auto traits, this cycle would be an error, but for auto traits (because
/// they are coinductive) it is considered ok.
///
/// However, there is a complication: at the point where we have
/// "proven" `Bar<T>: Send`, we have in fact only proven it
/// *provisionally*. In particular, we proved that `Bar<T>: Send`
/// *under the assumption* that `Foo<T>: Send`. But what if we later
/// find out this assumption is wrong?  Specifically, we could
/// encounter some kind of error proving `Baz<T>: Send`. In that case,
/// `Bar<T>: Send` didn't turn out to be true.
///
/// In Issue #60010, we found a bug in rustc where it would cache
/// these intermediate results. This was fixed in #60444 by disabling
/// *all* caching for things involved in a cycle -- in our example,
/// that would mean we don't cache that `Bar<T>: Send`. But this led
/// to large slowdowns.
///
/// Specifically, imagine this scenario, where proving `Baz<T>: Send`
/// first requires proving `Bar<T>: Send` (which is true:
///
/// - `Foo<T>: Send` :-
///   - `Bar<T>: Send` :-
///     - `Foo<T>: Send` -- cycle, but ok
///   - `Baz<T>: Send`
///     - `Bar<T>: Send` -- would be nice for this to be a cache hit!
///     - `*const T: Send` -- but what if we later encounter an error?
///
/// The *provisional evaluation cache* resolves this issue. It stores
/// cache results that we've proven but which were involved in a cycle
/// in some way. We track the minimal stack depth (i.e., the
/// farthest from the top of the stack) that we are dependent on.
/// The idea is that the cache results within are all valid -- so long as
/// none of the nodes in between the current node and the node at that minimum
/// depth result in an error (in which case the cached results are just thrown away).
///
/// During evaluation, we consult this provisional cache and rely on
/// it. Accessing a cached value is considered equivalent to accessing
/// a result at `reached_depth`, so it marks the *current* solution as
/// provisional as well. If an error is encountered, we toss out any
/// provisional results added from the subtree that encountered the
/// error. When we pop the node at `reached_depth` from the stack, we
/// can commit all the things that remain in the provisional cache.
struct ProvisionalEvaluationCache<'tcx> {
    /// next "depth first number" to issue -- just a counter
    dfn: Cell<usize>,

    /// Map from cache key to the provisionally evaluated thing.
    /// The cache entries contain the result but also the DFN in which they
    /// were added. The DFN is used to clear out values on failure.
    ///
    /// Imagine we have a stack like:
    ///
    /// - `A B C` and we add a cache for the result of C (DFN 2)
    /// - Then we have a stack `A B D` where `D` has DFN 3
    /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
    /// - `E` generates various cache entries which have cyclic dependencies on `B`
    ///   - `A B D E F` and so forth
    ///   - the DFN of `F` for example would be 5
    /// - then we determine that `E` is in error -- we will then clear
    ///   all cache values whose DFN is >= 4 -- in this case, that
    ///   means the cached value for `F`.
    map: RefCell<FxIndexMap<ty::PolyTraitPredicate<'tcx>, ProvisionalEvaluation>>,

    /// The stack of args that we assume to be true because a `WF(arg)` predicate
    /// is on the stack above (and because of wellformedness is coinductive).
    /// In an "ideal" world, this would share a stack with trait predicates in
    /// `TraitObligationStack`. However, trait predicates are *much* hotter than
    /// `WellFormed` predicates, and it's very likely that the additional matches
    /// will have a perf effect. The value here is the well-formed `GenericArg`
    /// and the depth of the trait predicate *above* that well-formed predicate.
    wf_args: RefCell<Vec<(ty::GenericArg<'tcx>, usize)>>,
}

/// A cache value for the provisional cache: contains the depth-first
/// number (DFN) and result.
#[derive(Copy, Clone, Debug)]
struct ProvisionalEvaluation {
    from_dfn: usize,
    reached_depth: usize,
    result: EvaluationResult,
}

impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
    fn default() -> Self {
        Self { dfn: Cell::new(0), map: Default::default(), wf_args: Default::default() }
    }
}

impl<'tcx> ProvisionalEvaluationCache<'tcx> {
    /// Get the next DFN in sequence (basically a counter).
    fn next_dfn(&self) -> usize {
        let result = self.dfn.get();
        self.dfn.set(result + 1);
        result
    }

    /// Check the provisional cache for any result for
    /// `fresh_trait_ref`. If there is a hit, then you must consider
    /// it an access to the stack slots at depth
    /// `reached_depth` (from the returned value).
    fn get_provisional(
        &self,
        fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
    ) -> Option<ProvisionalEvaluation> {
        debug!(
            ?fresh_trait_pred,
            "get_provisional = {:#?}",
            self.map.borrow().get(&fresh_trait_pred),
        );
        Some(*self.map.borrow().get(&fresh_trait_pred)?)
    }

    /// Insert a provisional result into the cache. The result came
    /// from the node with the given DFN. It accessed a minimum depth
    /// of `reached_depth` to compute. It evaluated `fresh_trait_pred`
    /// and resulted in `result`.
    fn insert_provisional(
        &self,
        from_dfn: usize,
        reached_depth: usize,
        fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
        result: EvaluationResult,
    ) {
        debug!(?from_dfn, ?fresh_trait_pred, ?result, "insert_provisional");

        let mut map = self.map.borrow_mut();

        // Subtle: when we complete working on the DFN `from_dfn`, anything
        // that remains in the provisional cache must be dependent on some older
        // stack entry than `from_dfn`. We have to update their depth with our transitive
        // depth in that case or else it would be referring to some popped note.
        //
        // Example:
        // A (reached depth 0)
        //   ...
        //      B // depth 1 -- reached depth = 0
        //          C // depth 2 -- reached depth = 1 (should be 0)
        //              B
        //          A // depth 0
        //   D (reached depth 1)
        //      C (cache -- reached depth = 2)
        for (_k, v) in &mut *map {
            if v.from_dfn >= from_dfn {
                v.reached_depth = reached_depth.min(v.reached_depth);
            }
        }

        map.insert(fresh_trait_pred, ProvisionalEvaluation { from_dfn, reached_depth, result });
    }

    /// Invoked when the node with dfn `dfn` does not get a successful
    /// result. This will clear out any provisional cache entries
    /// that were added since `dfn` was created. This is because the
    /// provisional entries are things which must assume that the
    /// things on the stack at the time of their creation succeeded --
    /// since the failing node is presently at the top of the stack,
    /// these provisional entries must either depend on it or some
    /// ancestor of it.
    fn on_failure(&self, dfn: usize) {
        debug!(?dfn, "on_failure");
        self.map.borrow_mut().retain(|key, eval| {
            if !eval.from_dfn >= dfn {
                debug!("on_failure: removing {:?}", key);
                false
            } else {
                true
            }
        });
    }

    /// Invoked when the node at depth `depth` completed without
    /// depending on anything higher in the stack (if that completion
    /// was a failure, then `on_failure` should have been invoked
    /// already).
    ///
    /// Note that we may still have provisional cache items remaining
    /// in the cache when this is done. For example, if there is a
    /// cycle:
    ///
    /// * A depends on...
    ///     * B depends on A
    ///     * C depends on...
    ///         * D depends on C
    ///     * ...
    ///
    /// Then as we complete the C node we will have a provisional cache
    /// with results for A, B, C, and D. This method would clear out
    /// the C and D results, but leave A and B provisional.
    ///
    /// This is determined based on the DFN: we remove any provisional
    /// results created since `dfn` started (e.g., in our example, dfn
    /// would be 2, representing the C node, and hence we would
    /// remove the result for D, which has DFN 3, but not the results for
    /// A and B, which have DFNs 0 and 1 respectively).
    ///
    /// Note that we *do not* attempt to cache these cycle participants
    /// in the evaluation cache. Doing so would require carefully computing
    /// the correct `DepNode` to store in the cache entry:
    /// cycle participants may implicitly depend on query results
    /// related to other participants in the cycle, due to our logic
    /// which examines the evaluation stack.
    ///
    /// We used to try to perform this caching,
    /// but it lead to multiple incremental compilation ICEs
    /// (see #92987 and #96319), and was very hard to understand.
    /// Fortunately, removing the caching didn't seem to
    /// have a performance impact in practice.
    fn on_completion(&self, dfn: usize) {
        debug!(?dfn, "on_completion");
        self.map.borrow_mut().retain(|fresh_trait_pred, eval| {
            if eval.from_dfn >= dfn {
                debug!(?fresh_trait_pred, ?eval, "on_completion");
                return false;
            }
            true
        });
    }
}

#[derive(Copy, Clone)]
struct TraitObligationStackList<'o, 'tcx> {
    cache: &'o ProvisionalEvaluationCache<'tcx>,
    head: Option<&'o TraitObligationStack<'o, 'tcx>>,
}

impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
    fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
        TraitObligationStackList { cache, head: None }
    }

    fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
        TraitObligationStackList { cache: r.cache(), head: Some(r) }
    }

    fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
        self.head
    }

    fn depth(&self) -> usize {
        if let Some(head) = self.head { head.depth } else { 0 }
    }
}

impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
    type Item = &'o TraitObligationStack<'o, 'tcx>;

    fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
        let o = self.head?;
        *self = o.previous;
        Some(o)
    }
}

impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "TraitObligationStack({:?})", self.obligation)
    }
}

pub(crate) enum ProjectionMatchesProjection {
    Yes,
    Ambiguous,
    No,
}

/// Replace all regions inside the coroutine interior with late bound regions.
/// Note that each region slot in the types gets a new fresh late bound region, which means that
/// none of the regions inside relate to any other, even if typeck had previously found constraints
/// that would cause them to be related.
#[instrument(level = "trace", skip(infcx), ret)]
fn bind_coroutine_hidden_types_above<'tcx>(
    infcx: &InferCtxt<'tcx>,
    def_id: DefId,
    args: ty::GenericArgsRef<'tcx>,
    bound_vars: &ty::List<ty::BoundVariableKind>,
) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
    let tcx = infcx.tcx;
    let mut seen_tys = FxHashSet::default();

    let considering_regions = infcx.considering_regions;

    let num_bound_variables = bound_vars.len() as u32;
    let mut counter = num_bound_variables;

    let hidden_types: Vec<_> = tcx
        .coroutine_hidden_types(def_id)
        // Deduplicate tys to avoid repeated work.
        .filter(|bty| seen_tys.insert(*bty))
        .map(|mut bty| {
            // Only remap erased regions if we use them.
            if considering_regions {
                bty = bty.map_bound(|ty| {
                    tcx.fold_regions(ty, |r, current_depth| match r.kind() {
                        ty::ReErased => {
                            let br = ty::BoundRegion {
                                var: ty::BoundVar::from_u32(counter),
                                kind: ty::BrAnon,
                            };
                            counter += 1;
                            ty::Region::new_bound(tcx, current_depth, br)
                        }
                        r => bug!("unexpected region: {r:?}"),
                    })
                })
            }

            bty.instantiate(tcx, args)
        })
        .collect();
    let bound_vars =
        tcx.mk_bound_variable_kinds_from_iter(bound_vars.iter().chain(
            (num_bound_variables..counter).map(|_| ty::BoundVariableKind::Region(ty::BrAnon)),
        ));
    ty::Binder::bind_with_vars(hidden_types, bound_vars)
}