rustc_trait_selection/traits/select/
mod.rs

1//! Candidate selection. See the [rustc dev guide] for more information on how this works.
2//!
3//! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html#selection
4
5use std::assert_matches::assert_matches;
6use std::cell::{Cell, RefCell};
7use std::cmp;
8use std::fmt::{self, Display};
9use std::ops::ControlFlow;
10
11use hir::def::DefKind;
12use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
13use rustc_data_structures::stack::ensure_sufficient_stack;
14use rustc_errors::{Diag, EmissionGuarantee};
15use rustc_hir as hir;
16use rustc_hir::LangItem;
17use rustc_hir::def_id::DefId;
18use rustc_infer::infer::BoundRegionConversionTime::{self, HigherRankedType};
19use rustc_infer::infer::DefineOpaqueTypes;
20use rustc_infer::infer::at::ToTrace;
21use rustc_infer::infer::relate::TypeRelation;
22use rustc_infer::traits::{PredicateObligations, TraitObligation};
23use rustc_macros::{TypeFoldable, TypeVisitable};
24use rustc_middle::bug;
25use rustc_middle::dep_graph::{DepNodeIndex, dep_kinds};
26pub use rustc_middle::traits::select::*;
27use rustc_middle::ty::abstract_const::NotConstEvaluatable;
28use rustc_middle::ty::error::TypeErrorToStringExt;
29use rustc_middle::ty::print::{PrintTraitRefExt as _, with_no_trimmed_paths};
30use rustc_middle::ty::{
31    self, DeepRejectCtxt, GenericArgsRef, PolyProjectionPredicate, SizedTraitKind, Ty, TyCtxt,
32    TypeFoldable, TypeVisitableExt, TypingMode, Upcast, elaborate, may_use_unstable_feature,
33};
34use rustc_span::{Symbol, sym};
35use tracing::{debug, instrument, trace};
36
37use self::EvaluationResult::*;
38use self::SelectionCandidate::*;
39use super::coherence::{self, Conflict};
40use super::project::ProjectionTermObligation;
41use super::util::closure_trait_ref_and_return_type;
42use super::{
43    ImplDerivedCause, Normalized, Obligation, ObligationCause, ObligationCauseCode,
44    PolyTraitObligation, PredicateObligation, Selection, SelectionError, SelectionResult,
45    TraitQueryMode, const_evaluatable, project, util, wf,
46};
47use crate::error_reporting::InferCtxtErrorExt;
48use crate::infer::{InferCtxt, InferOk, TypeFreshener};
49use crate::solve::InferCtxtSelectExt as _;
50use crate::traits::normalize::{normalize_with_depth, normalize_with_depth_to};
51use crate::traits::project::{ProjectAndUnifyResult, ProjectionCacheKeyExt};
52use crate::traits::{EvaluateConstErr, ProjectionCacheKey, effects, sizedness_fast_path};
53
54mod _match;
55mod candidate_assembly;
56mod confirmation;
57
58#[derive(Clone, Debug, Eq, PartialEq, Hash)]
59pub enum IntercrateAmbiguityCause<'tcx> {
60    DownstreamCrate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
61    UpstreamCrateUpdate { trait_ref: ty::TraitRef<'tcx>, self_ty: Option<Ty<'tcx>> },
62    ReservationImpl { message: Symbol },
63}
64
65impl<'tcx> IntercrateAmbiguityCause<'tcx> {
66    /// Emits notes when the overlap is caused by complex intercrate ambiguities.
67    /// See #23980 for details.
68    pub fn add_intercrate_ambiguity_hint<G: EmissionGuarantee>(&self, err: &mut Diag<'_, G>) {
69        err.note(self.intercrate_ambiguity_hint());
70    }
71
72    pub fn intercrate_ambiguity_hint(&self) -> String {
73        with_no_trimmed_paths!(match self {
74            IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty } => {
75                format!(
76                    "downstream crates may implement trait `{trait_desc}`{self_desc}",
77                    trait_desc = trait_ref.print_trait_sugared(),
78                    self_desc = if let Some(self_ty) = self_ty {
79                        format!(" for type `{self_ty}`")
80                    } else {
81                        String::new()
82                    }
83                )
84            }
85            IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty } => {
86                format!(
87                    "upstream crates may add a new impl of trait `{trait_desc}`{self_desc} \
88                in future versions",
89                    trait_desc = trait_ref.print_trait_sugared(),
90                    self_desc = if let Some(self_ty) = self_ty {
91                        format!(" for type `{self_ty}`")
92                    } else {
93                        String::new()
94                    }
95                )
96            }
97            IntercrateAmbiguityCause::ReservationImpl { message } => message.to_string(),
98        })
99    }
100}
101
102pub struct SelectionContext<'cx, 'tcx> {
103    pub infcx: &'cx InferCtxt<'tcx>,
104
105    /// Freshener used specifically for entries on the obligation
106    /// stack. This ensures that all entries on the stack at one time
107    /// will have the same set of placeholder entries, which is
108    /// important for checking for trait bounds that recursively
109    /// require themselves.
110    freshener: TypeFreshener<'cx, 'tcx>,
111
112    /// If `intercrate` is set, we remember predicates which were
113    /// considered ambiguous because of impls potentially added in other crates.
114    /// This is used in coherence to give improved diagnostics.
115    /// We don't do his until we detect a coherence error because it can
116    /// lead to false overflow results (#47139) and because always
117    /// computing it may negatively impact performance.
118    intercrate_ambiguity_causes: Option<FxIndexSet<IntercrateAmbiguityCause<'tcx>>>,
119
120    /// The mode that trait queries run in, which informs our error handling
121    /// policy. In essence, canonicalized queries need their errors propagated
122    /// rather than immediately reported because we do not have accurate spans.
123    query_mode: TraitQueryMode,
124}
125
126// A stack that walks back up the stack frame.
127struct TraitObligationStack<'prev, 'tcx> {
128    obligation: &'prev PolyTraitObligation<'tcx>,
129
130    /// The trait predicate from `obligation` but "freshened" with the
131    /// selection-context's freshener. Used to check for recursion.
132    fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
133
134    /// Starts out equal to `depth` -- if, during evaluation, we
135    /// encounter a cycle, then we will set this flag to the minimum
136    /// depth of that cycle for all participants in the cycle. These
137    /// participants will then forego caching their results. This is
138    /// not the most efficient solution, but it addresses #60010. The
139    /// problem we are trying to prevent:
140    ///
141    /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
142    /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
143    /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
144    ///
145    /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
146    /// is `EvaluatedToOk`; this is because they were only considered
147    /// ok on the premise that if `A: AutoTrait` held, but we indeed
148    /// encountered a problem (later on) with `A: AutoTrait`. So we
149    /// currently set a flag on the stack node for `B: AutoTrait` (as
150    /// well as the second instance of `A: AutoTrait`) to suppress
151    /// caching.
152    ///
153    /// This is a simple, targeted fix. A more-performant fix requires
154    /// deeper changes, but would permit more caching: we could
155    /// basically defer caching until we have fully evaluated the
156    /// tree, and then cache the entire tree at once. In any case, the
157    /// performance impact here shouldn't be so horrible: every time
158    /// this is hit, we do cache at least one trait, so we only
159    /// evaluate each member of a cycle up to N times, where N is the
160    /// length of the cycle. This means the performance impact is
161    /// bounded and we shouldn't have any terrible worst-cases.
162    reached_depth: Cell<usize>,
163
164    previous: TraitObligationStackList<'prev, 'tcx>,
165
166    /// The number of parent frames plus one (thus, the topmost frame has depth 1).
167    depth: usize,
168
169    /// The depth-first number of this node in the search graph -- a
170    /// pre-order index. Basically, a freshly incremented counter.
171    dfn: usize,
172}
173
174struct SelectionCandidateSet<'tcx> {
175    /// A list of candidates that definitely apply to the current
176    /// obligation (meaning: types unify).
177    vec: Vec<SelectionCandidate<'tcx>>,
178
179    /// If `true`, then there were candidates that might or might
180    /// not have applied, but we couldn't tell. This occurs when some
181    /// of the input types are type variables, in which case there are
182    /// various "builtin" rules that might or might not trigger.
183    ambiguous: bool,
184}
185
186#[derive(PartialEq, Eq, Debug, Clone)]
187struct EvaluatedCandidate<'tcx> {
188    candidate: SelectionCandidate<'tcx>,
189    evaluation: EvaluationResult,
190}
191
192impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
193    pub fn new(infcx: &'cx InferCtxt<'tcx>) -> SelectionContext<'cx, 'tcx> {
194        SelectionContext {
195            infcx,
196            freshener: infcx.freshener(),
197            intercrate_ambiguity_causes: None,
198            query_mode: TraitQueryMode::Standard,
199        }
200    }
201
202    pub fn with_query_mode(
203        infcx: &'cx InferCtxt<'tcx>,
204        query_mode: TraitQueryMode,
205    ) -> SelectionContext<'cx, 'tcx> {
206        debug!(?query_mode, "with_query_mode");
207        SelectionContext { query_mode, ..SelectionContext::new(infcx) }
208    }
209
210    /// Enables tracking of intercrate ambiguity causes. See
211    /// the documentation of [`Self::intercrate_ambiguity_causes`] for more.
212    pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
213        assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
214        assert!(self.intercrate_ambiguity_causes.is_none());
215        self.intercrate_ambiguity_causes = Some(FxIndexSet::default());
216        debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
217    }
218
219    /// Gets the intercrate ambiguity causes collected since tracking
220    /// was enabled and disables tracking at the same time. If
221    /// tracking is not enabled, just returns an empty vector.
222    pub fn take_intercrate_ambiguity_causes(
223        &mut self,
224    ) -> FxIndexSet<IntercrateAmbiguityCause<'tcx>> {
225        assert_matches!(self.infcx.typing_mode(), TypingMode::Coherence);
226        self.intercrate_ambiguity_causes.take().unwrap_or_default()
227    }
228
229    pub fn tcx(&self) -> TyCtxt<'tcx> {
230        self.infcx.tcx
231    }
232
233    ///////////////////////////////////////////////////////////////////////////
234    // Selection
235    //
236    // The selection phase tries to identify *how* an obligation will
237    // be resolved. For example, it will identify which impl or
238    // parameter bound is to be used. The process can be inconclusive
239    // if the self type in the obligation is not fully inferred. Selection
240    // can result in an error in one of two ways:
241    //
242    // 1. If no applicable impl or parameter bound can be found.
243    // 2. If the output type parameters in the obligation do not match
244    //    those specified by the impl/bound. For example, if the obligation
245    //    is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
246    //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
247
248    /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
249    /// type environment by performing unification.
250    #[instrument(level = "debug", skip(self), ret)]
251    pub fn poly_select(
252        &mut self,
253        obligation: &PolyTraitObligation<'tcx>,
254    ) -> SelectionResult<'tcx, Selection<'tcx>> {
255        assert!(!self.infcx.next_trait_solver());
256
257        let candidate = match self.select_from_obligation(obligation) {
258            Err(SelectionError::Overflow(OverflowError::Canonical)) => {
259                // In standard mode, overflow must have been caught and reported
260                // earlier.
261                assert!(self.query_mode == TraitQueryMode::Canonical);
262                return Err(SelectionError::Overflow(OverflowError::Canonical));
263            }
264            Err(e) => {
265                return Err(e);
266            }
267            Ok(None) => {
268                return Ok(None);
269            }
270            Ok(Some(candidate)) => candidate,
271        };
272
273        match self.confirm_candidate(obligation, candidate) {
274            Err(SelectionError::Overflow(OverflowError::Canonical)) => {
275                assert!(self.query_mode == TraitQueryMode::Canonical);
276                Err(SelectionError::Overflow(OverflowError::Canonical))
277            }
278            Err(e) => Err(e),
279            Ok(candidate) => Ok(Some(candidate)),
280        }
281    }
282
283    pub fn select(
284        &mut self,
285        obligation: &TraitObligation<'tcx>,
286    ) -> SelectionResult<'tcx, Selection<'tcx>> {
287        if self.infcx.next_trait_solver() {
288            return self.infcx.select_in_new_trait_solver(obligation);
289        }
290
291        self.poly_select(&Obligation {
292            cause: obligation.cause.clone(),
293            param_env: obligation.param_env,
294            predicate: ty::Binder::dummy(obligation.predicate),
295            recursion_depth: obligation.recursion_depth,
296        })
297    }
298
299    fn select_from_obligation(
300        &mut self,
301        obligation: &PolyTraitObligation<'tcx>,
302    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
303        debug_assert!(!obligation.predicate.has_escaping_bound_vars());
304
305        let pec = &ProvisionalEvaluationCache::default();
306        let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
307
308        self.candidate_from_obligation(&stack)
309    }
310
311    #[instrument(level = "debug", skip(self), ret)]
312    fn candidate_from_obligation<'o>(
313        &mut self,
314        stack: &TraitObligationStack<'o, 'tcx>,
315    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
316        debug_assert!(!self.infcx.next_trait_solver());
317        // Watch out for overflow. This intentionally bypasses (and does
318        // not update) the cache.
319        self.check_recursion_limit(stack.obligation, stack.obligation)?;
320
321        // Check the cache. Note that we freshen the trait-ref
322        // separately rather than using `stack.fresh_trait_ref` --
323        // this is because we want the unbound variables to be
324        // replaced with fresh types starting from index 0.
325        let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate);
326        debug!(?cache_fresh_trait_pred);
327        debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
328
329        if let Some(c) =
330            self.check_candidate_cache(stack.obligation.param_env, cache_fresh_trait_pred)
331        {
332            debug!("CACHE HIT");
333            return c;
334        }
335
336        // If no match, compute result and insert into cache.
337        //
338        // FIXME(nikomatsakis) -- this cache is not taking into
339        // account cycles that may have occurred in forming the
340        // candidate. I don't know of any specific problems that
341        // result but it seems awfully suspicious.
342        let (candidate, dep_node) =
343            self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
344
345        debug!("CACHE MISS");
346        self.insert_candidate_cache(
347            stack.obligation.param_env,
348            cache_fresh_trait_pred,
349            dep_node,
350            candidate.clone(),
351        );
352        candidate
353    }
354
355    fn candidate_from_obligation_no_cache<'o>(
356        &mut self,
357        stack: &TraitObligationStack<'o, 'tcx>,
358    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
359        if let Err(conflict) = self.is_knowable(stack) {
360            debug!("coherence stage: not knowable");
361            if self.intercrate_ambiguity_causes.is_some() {
362                debug!("evaluate_stack: intercrate_ambiguity_causes is some");
363                // Heuristics: show the diagnostics when there are no candidates in crate.
364                if let Ok(candidate_set) = self.assemble_candidates(stack) {
365                    let mut no_candidates_apply = true;
366
367                    for c in candidate_set.vec.iter() {
368                        if self.evaluate_candidate(stack, c)?.may_apply() {
369                            no_candidates_apply = false;
370                            break;
371                        }
372                    }
373
374                    if !candidate_set.ambiguous && no_candidates_apply {
375                        let trait_ref = self.infcx.resolve_vars_if_possible(
376                            stack.obligation.predicate.skip_binder().trait_ref,
377                        );
378                        if !trait_ref.references_error() {
379                            let self_ty = trait_ref.self_ty();
380                            let self_ty = self_ty.has_concrete_skeleton().then(|| self_ty);
381                            let cause = if let Conflict::Upstream = conflict {
382                                IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_ref, self_ty }
383                            } else {
384                                IntercrateAmbiguityCause::DownstreamCrate { trait_ref, self_ty }
385                            };
386                            debug!(?cause, "evaluate_stack: pushing cause");
387                            self.intercrate_ambiguity_causes.as_mut().unwrap().insert(cause);
388                        }
389                    }
390                }
391            }
392            return Ok(None);
393        }
394
395        let candidate_set = self.assemble_candidates(stack)?;
396
397        if candidate_set.ambiguous {
398            debug!("candidate set contains ambig");
399            return Ok(None);
400        }
401
402        let candidates = candidate_set.vec;
403
404        debug!(?stack, ?candidates, "assembled {} candidates", candidates.len());
405
406        // At this point, we know that each of the entries in the
407        // candidate set is *individually* applicable. Now we have to
408        // figure out if they contain mutual incompatibilities. This
409        // frequently arises if we have an unconstrained input type --
410        // for example, we are looking for `$0: Eq` where `$0` is some
411        // unconstrained type variable. In that case, we'll get a
412        // candidate which assumes $0 == int, one that assumes `$0 ==
413        // usize`, etc. This spells an ambiguity.
414
415        let mut candidates = self.filter_impls(candidates, stack.obligation);
416
417        // If there is more than one candidate, first winnow them down
418        // by considering extra conditions (nested obligations and so
419        // forth). We don't winnow if there is exactly one
420        // candidate. This is a relatively minor distinction but it
421        // can lead to better inference and error-reporting. An
422        // example would be if there was an impl:
423        //
424        //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
425        //
426        // and we were to see some code `foo.push_clone()` where `boo`
427        // is a `Vec<Bar>` and `Bar` does not implement `Clone`. If
428        // we were to winnow, we'd wind up with zero candidates.
429        // Instead, we select the right impl now but report "`Bar` does
430        // not implement `Clone`".
431        if candidates.len() == 1 {
432            return self.filter_reservation_impls(candidates.pop().unwrap());
433        }
434
435        // Winnow, but record the exact outcome of evaluation, which
436        // is needed for specialization. Propagate overflow if it occurs.
437        let candidates = candidates
438            .into_iter()
439            .map(|c| match self.evaluate_candidate(stack, &c) {
440                Ok(eval) if eval.may_apply() => {
441                    Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
442                }
443                Ok(_) => Ok(None),
444                Err(OverflowError::Canonical) => {
445                    Err(SelectionError::Overflow(OverflowError::Canonical))
446                }
447                Err(OverflowError::Error(e)) => {
448                    Err(SelectionError::Overflow(OverflowError::Error(e)))
449                }
450            })
451            .flat_map(Result::transpose)
452            .collect::<Result<Vec<_>, _>>()?;
453
454        debug!(?stack, ?candidates, "{} potentially applicable candidates", candidates.len());
455        // If there are *NO* candidates, then there are no impls --
456        // that we know of, anyway. Note that in the case where there
457        // are unbound type variables within the obligation, it might
458        // be the case that you could still satisfy the obligation
459        // from another crate by instantiating the type variables with
460        // a type from another crate that does have an impl. This case
461        // is checked for in `evaluate_stack` (and hence users
462        // who might care about this case, like coherence, should use
463        // that function).
464        if candidates.is_empty() {
465            // If there's an error type, 'downgrade' our result from
466            // `Err(Unimplemented)` to `Ok(None)`. This helps us avoid
467            // emitting additional spurious errors, since we're guaranteed
468            // to have emitted at least one.
469            if stack.obligation.predicate.references_error() {
470                debug!(?stack.obligation.predicate, "found error type in predicate, treating as ambiguous");
471                Ok(None)
472            } else {
473                Err(SelectionError::Unimplemented)
474            }
475        } else {
476            let has_non_region_infer = stack.obligation.predicate.has_non_region_infer();
477            if let Some(candidate) = self.winnow_candidates(has_non_region_infer, candidates) {
478                self.filter_reservation_impls(candidate)
479            } else {
480                Ok(None)
481            }
482        }
483    }
484
485    ///////////////////////////////////////////////////////////////////////////
486    // EVALUATION
487    //
488    // Tests whether an obligation can be selected or whether an impl
489    // can be applied to particular types. It skips the "confirmation"
490    // step and hence completely ignores output type parameters.
491    //
492    // The result is "true" if the obligation *may* hold and "false" if
493    // we can be sure it does not.
494
495    /// Evaluates whether the obligation `obligation` can be satisfied
496    /// and returns an `EvaluationResult`. This is meant for the
497    /// *initial* call.
498    ///
499    /// Do not use this directly, use `infcx.evaluate_obligation` instead.
500    pub fn evaluate_root_obligation(
501        &mut self,
502        obligation: &PredicateObligation<'tcx>,
503    ) -> Result<EvaluationResult, OverflowError> {
504        debug_assert!(!self.infcx.next_trait_solver());
505        self.evaluation_probe(|this| {
506            let goal =
507                this.infcx.resolve_vars_if_possible((obligation.predicate, obligation.param_env));
508            let mut result = this.evaluate_predicate_recursively(
509                TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
510                obligation.clone(),
511            )?;
512            // If the predicate has done any inference, then downgrade the
513            // result to ambiguous.
514            if this.infcx.resolve_vars_if_possible(goal) != goal {
515                result = result.max(EvaluatedToAmbig);
516            }
517            Ok(result)
518        })
519    }
520
521    /// Computes the evaluation result of `op`, discarding any constraints.
522    ///
523    /// This also runs for leak check to allow higher ranked region errors to impact
524    /// selection. By default it checks for leaks from all universes created inside of
525    /// `op`, but this can be overwritten if necessary.
526    fn evaluation_probe(
527        &mut self,
528        op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
529    ) -> Result<EvaluationResult, OverflowError> {
530        self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
531            let outer_universe = self.infcx.universe();
532            let result = op(self)?;
533
534            match self.infcx.leak_check(outer_universe, Some(snapshot)) {
535                Ok(()) => {}
536                Err(_) => return Ok(EvaluatedToErr),
537            }
538
539            if self.infcx.opaque_types_added_in_snapshot(snapshot) {
540                return Ok(result.max(EvaluatedToOkModuloOpaqueTypes));
541            }
542
543            if self.infcx.region_constraints_added_in_snapshot(snapshot) {
544                Ok(result.max(EvaluatedToOkModuloRegions))
545            } else {
546                Ok(result)
547            }
548        })
549    }
550
551    /// Evaluates the predicates in `predicates` recursively. This may
552    /// guide inference. If this is not desired, run it inside of a
553    /// is run within an inference probe.
554    /// `probe`.
555    #[instrument(skip(self, stack), level = "debug")]
556    fn evaluate_predicates_recursively<'o, I>(
557        &mut self,
558        stack: TraitObligationStackList<'o, 'tcx>,
559        predicates: I,
560    ) -> Result<EvaluationResult, OverflowError>
561    where
562        I: IntoIterator<Item = PredicateObligation<'tcx>> + std::fmt::Debug,
563    {
564        let mut result = EvaluatedToOk;
565        for mut obligation in predicates {
566            obligation.set_depth_from_parent(stack.depth());
567            let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
568            if let EvaluatedToErr = eval {
569                // fast-path - EvaluatedToErr is the top of the lattice,
570                // so we don't need to look on the other predicates.
571                return Ok(EvaluatedToErr);
572            } else {
573                result = cmp::max(result, eval);
574            }
575        }
576        Ok(result)
577    }
578
579    #[instrument(
580        level = "debug",
581        skip(self, previous_stack),
582        fields(previous_stack = ?previous_stack.head())
583        ret,
584    )]
585    fn evaluate_predicate_recursively<'o>(
586        &mut self,
587        previous_stack: TraitObligationStackList<'o, 'tcx>,
588        obligation: PredicateObligation<'tcx>,
589    ) -> Result<EvaluationResult, OverflowError> {
590        debug_assert!(!self.infcx.next_trait_solver());
591        // `previous_stack` stores a `PolyTraitObligation`, while `obligation` is
592        // a `PredicateObligation`. These are distinct types, so we can't
593        // use any `Option` combinator method that would force them to be
594        // the same.
595        match previous_stack.head() {
596            Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
597            None => self.check_recursion_limit(&obligation, &obligation)?,
598        }
599
600        if sizedness_fast_path(self.tcx(), obligation.predicate, obligation.param_env) {
601            return Ok(EvaluatedToOk);
602        }
603
604        ensure_sufficient_stack(|| {
605            let bound_predicate = obligation.predicate.kind();
606            match bound_predicate.skip_binder() {
607                ty::PredicateKind::Clause(ty::ClauseKind::Trait(t)) => {
608                    let t = bound_predicate.rebind(t);
609                    debug_assert!(!t.has_escaping_bound_vars());
610                    let obligation = obligation.with(self.tcx(), t);
611                    self.evaluate_trait_predicate_recursively(previous_stack, obligation)
612                }
613
614                ty::PredicateKind::Clause(ty::ClauseKind::HostEffect(data)) => {
615                    self.infcx.enter_forall(bound_predicate.rebind(data), |data| {
616                        match effects::evaluate_host_effect_obligation(
617                            self,
618                            &obligation.with(self.tcx(), data),
619                        ) {
620                            Ok(nested) => {
621                                self.evaluate_predicates_recursively(previous_stack, nested)
622                            }
623                            Err(effects::EvaluationFailure::Ambiguous) => Ok(EvaluatedToAmbig),
624                            Err(effects::EvaluationFailure::NoSolution) => Ok(EvaluatedToErr),
625                        }
626                    })
627                }
628
629                ty::PredicateKind::Subtype(p) => {
630                    let p = bound_predicate.rebind(p);
631                    // Does this code ever run?
632                    match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
633                        Ok(Ok(InferOk { obligations, .. })) => {
634                            self.evaluate_predicates_recursively(previous_stack, obligations)
635                        }
636                        Ok(Err(_)) => Ok(EvaluatedToErr),
637                        Err(..) => Ok(EvaluatedToAmbig),
638                    }
639                }
640
641                ty::PredicateKind::Coerce(p) => {
642                    let p = bound_predicate.rebind(p);
643                    // Does this code ever run?
644                    match self.infcx.coerce_predicate(&obligation.cause, obligation.param_env, p) {
645                        Ok(Ok(InferOk { obligations, .. })) => {
646                            self.evaluate_predicates_recursively(previous_stack, obligations)
647                        }
648                        Ok(Err(_)) => Ok(EvaluatedToErr),
649                        Err(..) => Ok(EvaluatedToAmbig),
650                    }
651                }
652
653                ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(term)) => {
654                    if term.is_trivially_wf(self.tcx()) {
655                        return Ok(EvaluatedToOk);
656                    }
657
658                    // So, there is a bit going on here. First, `WellFormed` predicates
659                    // are coinductive, like trait predicates with auto traits.
660                    // This means that we need to detect if we have recursively
661                    // evaluated `WellFormed(X)`. Otherwise, we would run into
662                    // a "natural" overflow error.
663                    //
664                    // Now, the next question is whether we need to do anything
665                    // special with caching. Considering the following tree:
666                    // - `WF(Foo<T>)`
667                    //   - `Bar<T>: Send`
668                    //     - `WF(Foo<T>)`
669                    //   - `Foo<T>: Trait`
670                    // In this case, the innermost `WF(Foo<T>)` should return
671                    // `EvaluatedToOk`, since it's coinductive. Then if
672                    // `Bar<T>: Send` is resolved to `EvaluatedToOk`, it can be
673                    // inserted into a cache (because without thinking about `WF`
674                    // goals, it isn't in a cycle). If `Foo<T>: Trait` later doesn't
675                    // hold, then `Bar<T>: Send` shouldn't hold. Therefore, we
676                    // *do* need to keep track of coinductive cycles.
677
678                    let cache = previous_stack.cache;
679                    let dfn = cache.next_dfn();
680
681                    for stack_term in previous_stack.cache.wf_args.borrow().iter().rev() {
682                        if stack_term.0 != term {
683                            continue;
684                        }
685                        debug!("WellFormed({:?}) on stack", term);
686                        if let Some(stack) = previous_stack.head {
687                            // Okay, let's imagine we have two different stacks:
688                            //   `T: NonAutoTrait -> WF(T) -> T: NonAutoTrait`
689                            //   `WF(T) -> T: NonAutoTrait -> WF(T)`
690                            // Because of this, we need to check that all
691                            // predicates between the WF goals are coinductive.
692                            // Otherwise, we can say that `T: NonAutoTrait` is
693                            // true.
694                            // Let's imagine we have a predicate stack like
695                            //         `Foo: Bar -> WF(T) -> T: NonAutoTrait -> T: Auto`
696                            // depth   ^1                    ^2                 ^3
697                            // and the current predicate is `WF(T)`. `wf_args`
698                            // would contain `(T, 1)`. We want to check all
699                            // trait predicates greater than `1`. The previous
700                            // stack would be `T: Auto`.
701                            let cycle = stack.iter().take_while(|s| s.depth > stack_term.1);
702                            let tcx = self.tcx();
703                            let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
704                            if self.coinductive_match(cycle) {
705                                stack.update_reached_depth(stack_term.1);
706                                return Ok(EvaluatedToOk);
707                            } else {
708                                return Ok(EvaluatedToAmbigStackDependent);
709                            }
710                        }
711                        return Ok(EvaluatedToOk);
712                    }
713
714                    match wf::obligations(
715                        self.infcx,
716                        obligation.param_env,
717                        obligation.cause.body_id,
718                        obligation.recursion_depth + 1,
719                        term,
720                        obligation.cause.span,
721                    ) {
722                        Some(obligations) => {
723                            cache.wf_args.borrow_mut().push((term, previous_stack.depth()));
724                            let result =
725                                self.evaluate_predicates_recursively(previous_stack, obligations);
726                            cache.wf_args.borrow_mut().pop();
727
728                            let result = result?;
729
730                            if !result.must_apply_modulo_regions() {
731                                cache.on_failure(dfn);
732                            }
733
734                            cache.on_completion(dfn);
735
736                            Ok(result)
737                        }
738                        None => Ok(EvaluatedToAmbig),
739                    }
740                }
741
742                ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(pred)) => {
743                    // A global type with no free lifetimes or generic parameters
744                    // outlives anything.
745                    if pred.0.has_free_regions()
746                        || pred.0.has_bound_regions()
747                        || pred.0.has_non_region_infer()
748                        || pred.0.has_non_region_infer()
749                    {
750                        Ok(EvaluatedToOkModuloRegions)
751                    } else {
752                        Ok(EvaluatedToOk)
753                    }
754                }
755
756                ty::PredicateKind::Clause(ty::ClauseKind::RegionOutlives(..)) => {
757                    // We do not consider region relationships when evaluating trait matches.
758                    Ok(EvaluatedToOkModuloRegions)
759                }
760
761                ty::PredicateKind::DynCompatible(trait_def_id) => {
762                    if self.tcx().is_dyn_compatible(trait_def_id) {
763                        Ok(EvaluatedToOk)
764                    } else {
765                        Ok(EvaluatedToErr)
766                    }
767                }
768
769                ty::PredicateKind::Clause(ty::ClauseKind::Projection(data)) => {
770                    let data = bound_predicate.rebind(data);
771                    let project_obligation = obligation.with(self.tcx(), data);
772                    match project::poly_project_and_unify_term(self, &project_obligation) {
773                        ProjectAndUnifyResult::Holds(mut subobligations) => {
774                            'compute_res: {
775                                // If we've previously marked this projection as 'complete', then
776                                // use the final cached result (either `EvaluatedToOk` or
777                                // `EvaluatedToOkModuloRegions`), and skip re-evaluating the
778                                // sub-obligations.
779                                if let Some(key) =
780                                    ProjectionCacheKey::from_poly_projection_obligation(
781                                        self,
782                                        &project_obligation,
783                                    )
784                                    && let Some(cached_res) = self
785                                        .infcx
786                                        .inner
787                                        .borrow_mut()
788                                        .projection_cache()
789                                        .is_complete(key)
790                                {
791                                    break 'compute_res Ok(cached_res);
792                                }
793
794                                // Need to explicitly set the depth of nested goals here as
795                                // projection obligations can cycle by themselves and in
796                                // `evaluate_predicates_recursively` we only add the depth
797                                // for parent trait goals because only these get added to the
798                                // `TraitObligationStackList`.
799                                for subobligation in subobligations.iter_mut() {
800                                    subobligation.set_depth_from_parent(obligation.recursion_depth);
801                                }
802                                let res = self.evaluate_predicates_recursively(
803                                    previous_stack,
804                                    subobligations,
805                                );
806                                if let Ok(eval_rslt) = res
807                                    && (eval_rslt == EvaluatedToOk
808                                        || eval_rslt == EvaluatedToOkModuloRegions)
809                                    && let Some(key) =
810                                        ProjectionCacheKey::from_poly_projection_obligation(
811                                            self,
812                                            &project_obligation,
813                                        )
814                                {
815                                    // If the result is something that we can cache, then mark this
816                                    // entry as 'complete'. This will allow us to skip evaluating the
817                                    // subobligations at all the next time we evaluate the projection
818                                    // predicate.
819                                    self.infcx
820                                        .inner
821                                        .borrow_mut()
822                                        .projection_cache()
823                                        .complete(key, eval_rslt);
824                                }
825                                res
826                            }
827                        }
828                        ProjectAndUnifyResult::FailedNormalization => Ok(EvaluatedToAmbig),
829                        ProjectAndUnifyResult::Recursive => Ok(EvaluatedToAmbigStackDependent),
830                        ProjectAndUnifyResult::MismatchedProjectionTypes(_) => Ok(EvaluatedToErr),
831                    }
832                }
833
834                ty::PredicateKind::Clause(ty::ClauseKind::UnstableFeature(symbol)) => {
835                    if may_use_unstable_feature(self.infcx, obligation.param_env, symbol) {
836                        Ok(EvaluatedToOk)
837                    } else {
838                        Ok(EvaluatedToAmbig)
839                    }
840                }
841
842                ty::PredicateKind::Clause(ty::ClauseKind::ConstEvaluatable(uv)) => {
843                    match const_evaluatable::is_const_evaluatable(
844                        self.infcx,
845                        uv,
846                        obligation.param_env,
847                        obligation.cause.span,
848                    ) {
849                        Ok(()) => Ok(EvaluatedToOk),
850                        Err(NotConstEvaluatable::MentionsInfer) => Ok(EvaluatedToAmbig),
851                        Err(NotConstEvaluatable::MentionsParam) => Ok(EvaluatedToErr),
852                        Err(_) => Ok(EvaluatedToErr),
853                    }
854                }
855
856                ty::PredicateKind::ConstEquate(c1, c2) => {
857                    let tcx = self.tcx();
858                    assert!(
859                        tcx.features().generic_const_exprs(),
860                        "`ConstEquate` without a feature gate: {c1:?} {c2:?}",
861                    );
862
863                    {
864                        let c1 = tcx.expand_abstract_consts(c1);
865                        let c2 = tcx.expand_abstract_consts(c2);
866                        debug!(
867                            "evaluate_predicate_recursively: equating consts:\nc1= {:?}\nc2= {:?}",
868                            c1, c2
869                        );
870
871                        use rustc_hir::def::DefKind;
872                        match (c1.kind(), c2.kind()) {
873                            (ty::ConstKind::Unevaluated(a), ty::ConstKind::Unevaluated(b))
874                                if a.def == b.def && tcx.def_kind(a.def) == DefKind::AssocConst =>
875                            {
876                                if let Ok(InferOk { obligations, value: () }) = self
877                                    .infcx
878                                    .at(&obligation.cause, obligation.param_env)
879                                    // Can define opaque types as this is only reachable with
880                                    // `generic_const_exprs`
881                                    .eq(
882                                        DefineOpaqueTypes::Yes,
883                                        ty::AliasTerm::from(a),
884                                        ty::AliasTerm::from(b),
885                                    )
886                                {
887                                    return self.evaluate_predicates_recursively(
888                                        previous_stack,
889                                        obligations,
890                                    );
891                                }
892                            }
893                            (_, ty::ConstKind::Unevaluated(_))
894                            | (ty::ConstKind::Unevaluated(_), _) => (),
895                            (_, _) => {
896                                if let Ok(InferOk { obligations, value: () }) = self
897                                    .infcx
898                                    .at(&obligation.cause, obligation.param_env)
899                                    // Can define opaque types as this is only reachable with
900                                    // `generic_const_exprs`
901                                    .eq(DefineOpaqueTypes::Yes, c1, c2)
902                                {
903                                    return self.evaluate_predicates_recursively(
904                                        previous_stack,
905                                        obligations,
906                                    );
907                                }
908                            }
909                        }
910                    }
911
912                    let evaluate = |c: ty::Const<'tcx>| {
913                        if let ty::ConstKind::Unevaluated(_) = c.kind() {
914                            match crate::traits::try_evaluate_const(
915                                self.infcx,
916                                c,
917                                obligation.param_env,
918                            ) {
919                                Ok(val) => Ok(val),
920                                Err(e) => Err(e),
921                            }
922                        } else {
923                            Ok(c)
924                        }
925                    };
926
927                    match (evaluate(c1), evaluate(c2)) {
928                        (Ok(c1), Ok(c2)) => {
929                            match self.infcx.at(&obligation.cause, obligation.param_env).eq(
930                                // Can define opaque types as this is only reachable with
931                                // `generic_const_exprs`
932                                DefineOpaqueTypes::Yes,
933                                c1,
934                                c2,
935                            ) {
936                                Ok(inf_ok) => self.evaluate_predicates_recursively(
937                                    previous_stack,
938                                    inf_ok.into_obligations(),
939                                ),
940                                Err(_) => Ok(EvaluatedToErr),
941                            }
942                        }
943                        (Err(EvaluateConstErr::InvalidConstParamTy(..)), _)
944                        | (_, Err(EvaluateConstErr::InvalidConstParamTy(..))) => Ok(EvaluatedToErr),
945                        (Err(EvaluateConstErr::EvaluationFailure(..)), _)
946                        | (_, Err(EvaluateConstErr::EvaluationFailure(..))) => Ok(EvaluatedToErr),
947                        (Err(EvaluateConstErr::HasGenericsOrInfers), _)
948                        | (_, Err(EvaluateConstErr::HasGenericsOrInfers)) => {
949                            if c1.has_non_region_infer() || c2.has_non_region_infer() {
950                                Ok(EvaluatedToAmbig)
951                            } else {
952                                // Two different constants using generic parameters ~> error.
953                                Ok(EvaluatedToErr)
954                            }
955                        }
956                    }
957                }
958                ty::PredicateKind::NormalizesTo(..) => {
959                    bug!("NormalizesTo is only used by the new solver")
960                }
961                ty::PredicateKind::AliasRelate(..) => {
962                    bug!("AliasRelate is only used by the new solver")
963                }
964                ty::PredicateKind::Ambiguous => Ok(EvaluatedToAmbig),
965                ty::PredicateKind::Clause(ty::ClauseKind::ConstArgHasType(ct, ty)) => {
966                    let ct = self.infcx.shallow_resolve_const(ct);
967                    let ct_ty = match ct.kind() {
968                        ty::ConstKind::Infer(_) => {
969                            return Ok(EvaluatedToAmbig);
970                        }
971                        ty::ConstKind::Error(_) => return Ok(EvaluatedToOk),
972                        ty::ConstKind::Value(cv) => cv.ty,
973                        ty::ConstKind::Unevaluated(uv) => {
974                            self.tcx().type_of(uv.def).instantiate(self.tcx(), uv.args)
975                        }
976                        // FIXME(generic_const_exprs): See comment in `fulfill.rs`
977                        ty::ConstKind::Expr(_) => return Ok(EvaluatedToOk),
978                        ty::ConstKind::Placeholder(_) => {
979                            bug!("placeholder const {:?} in old solver", ct)
980                        }
981                        ty::ConstKind::Bound(_, _) => bug!("escaping bound vars in {:?}", ct),
982                        ty::ConstKind::Param(param_ct) => {
983                            param_ct.find_const_ty_from_env(obligation.param_env)
984                        }
985                    };
986
987                    match self.infcx.at(&obligation.cause, obligation.param_env).eq(
988                        // Only really exercised by generic_const_exprs
989                        DefineOpaqueTypes::Yes,
990                        ct_ty,
991                        ty,
992                    ) {
993                        Ok(inf_ok) => self.evaluate_predicates_recursively(
994                            previous_stack,
995                            inf_ok.into_obligations(),
996                        ),
997                        Err(_) => Ok(EvaluatedToErr),
998                    }
999                }
1000            }
1001        })
1002    }
1003
1004    #[instrument(skip(self, previous_stack), level = "debug", ret)]
1005    fn evaluate_trait_predicate_recursively<'o>(
1006        &mut self,
1007        previous_stack: TraitObligationStackList<'o, 'tcx>,
1008        mut obligation: PolyTraitObligation<'tcx>,
1009    ) -> Result<EvaluationResult, OverflowError> {
1010        if !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
1011            && obligation.is_global()
1012            && obligation.param_env.caller_bounds().iter().all(|bound| bound.has_param())
1013        {
1014            // If a param env has no global bounds, global obligations do not
1015            // depend on its particular value in order to work, so we can clear
1016            // out the param env and get better caching.
1017            debug!("in global");
1018            obligation.param_env = ty::ParamEnv::empty();
1019        }
1020
1021        let stack = self.push_stack(previous_stack, &obligation);
1022        let fresh_trait_pred = stack.fresh_trait_pred;
1023        let param_env = obligation.param_env;
1024
1025        debug!(?fresh_trait_pred);
1026
1027        // If a trait predicate is in the (local or global) evaluation cache,
1028        // then we know it holds without cycles.
1029        if let Some(result) = self.check_evaluation_cache(param_env, fresh_trait_pred) {
1030            debug!("CACHE HIT");
1031            return Ok(result);
1032        }
1033
1034        if let Some(result) = stack.cache().get_provisional(fresh_trait_pred) {
1035            debug!("PROVISIONAL CACHE HIT");
1036            stack.update_reached_depth(result.reached_depth);
1037            return Ok(result.result);
1038        }
1039
1040        // Check if this is a match for something already on the
1041        // stack. If so, we don't want to insert the result into the
1042        // main cache (it is cycle dependent) nor the provisional
1043        // cache (which is meant for things that have completed but
1044        // for a "backedge" -- this result *is* the backedge).
1045        if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
1046            return Ok(cycle_result);
1047        }
1048
1049        let (result, dep_node) = self.in_task(|this| {
1050            let mut result = this.evaluate_stack(&stack)?;
1051
1052            // fix issue #103563, we don't normalize
1053            // nested obligations which produced by `TraitDef` candidate
1054            // (i.e. using bounds on assoc items as assumptions).
1055            // because we don't have enough information to
1056            // normalize these obligations before evaluating.
1057            // so we will try to normalize the obligation and evaluate again.
1058            // we will replace it with new solver in the future.
1059            if EvaluationResult::EvaluatedToErr == result
1060                && fresh_trait_pred.has_aliases()
1061                && fresh_trait_pred.is_global()
1062            {
1063                let mut nested_obligations = PredicateObligations::new();
1064                let predicate = normalize_with_depth_to(
1065                    this,
1066                    param_env,
1067                    obligation.cause.clone(),
1068                    obligation.recursion_depth + 1,
1069                    obligation.predicate,
1070                    &mut nested_obligations,
1071                );
1072                if predicate != obligation.predicate {
1073                    let mut nested_result = EvaluationResult::EvaluatedToOk;
1074                    for obligation in nested_obligations {
1075                        nested_result = cmp::max(
1076                            this.evaluate_predicate_recursively(previous_stack, obligation)?,
1077                            nested_result,
1078                        );
1079                    }
1080
1081                    if nested_result.must_apply_modulo_regions() {
1082                        let obligation = obligation.with(this.tcx(), predicate);
1083                        result = cmp::max(
1084                            nested_result,
1085                            this.evaluate_trait_predicate_recursively(previous_stack, obligation)?,
1086                        );
1087                    }
1088                }
1089            }
1090
1091            Ok::<_, OverflowError>(result)
1092        });
1093
1094        let result = result?;
1095
1096        if !result.must_apply_modulo_regions() {
1097            stack.cache().on_failure(stack.dfn);
1098        }
1099
1100        let reached_depth = stack.reached_depth.get();
1101        if reached_depth >= stack.depth {
1102            debug!("CACHE MISS");
1103            self.insert_evaluation_cache(param_env, fresh_trait_pred, dep_node, result);
1104            stack.cache().on_completion(stack.dfn);
1105        } else {
1106            debug!("PROVISIONAL");
1107            debug!(
1108                "caching provisionally because {:?} \
1109                 is a cycle participant (at depth {}, reached depth {})",
1110                fresh_trait_pred, stack.depth, reached_depth,
1111            );
1112
1113            stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_pred, result);
1114        }
1115
1116        Ok(result)
1117    }
1118
1119    /// If there is any previous entry on the stack that precisely
1120    /// matches this obligation, then we can assume that the
1121    /// obligation is satisfied for now (still all other conditions
1122    /// must be met of course). One obvious case this comes up is
1123    /// marker traits like `Send`. Think of a linked list:
1124    ///
1125    ///     struct List<T> { data: T, next: Option<Box<List<T>>> }
1126    ///
1127    /// `Box<List<T>>` will be `Send` if `T` is `Send` and
1128    /// `Option<Box<List<T>>>` is `Send`, and in turn
1129    /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
1130    /// `Send`.
1131    ///
1132    /// Note that we do this comparison using the `fresh_trait_ref`
1133    /// fields. Because these have all been freshened using
1134    /// `self.freshener`, we can be sure that (a) this will not
1135    /// affect the inferencer state and (b) that if we see two
1136    /// fresh regions with the same index, they refer to the same
1137    /// unbound type variable.
1138    fn check_evaluation_cycle(
1139        &mut self,
1140        stack: &TraitObligationStack<'_, 'tcx>,
1141    ) -> Option<EvaluationResult> {
1142        if let Some(cycle_depth) = stack
1143            .iter()
1144            .skip(1) // Skip top-most frame.
1145            .find(|prev| {
1146                stack.obligation.param_env == prev.obligation.param_env
1147                    && stack.fresh_trait_pred == prev.fresh_trait_pred
1148            })
1149            .map(|stack| stack.depth)
1150        {
1151            debug!("evaluate_stack --> recursive at depth {}", cycle_depth);
1152
1153            // If we have a stack like `A B C D E A`, where the top of
1154            // the stack is the final `A`, then this will iterate over
1155            // `A, E, D, C, B` -- i.e., all the participants apart
1156            // from the cycle head. We mark them as participating in a
1157            // cycle. This suppresses caching for those nodes. See
1158            // `in_cycle` field for more details.
1159            stack.update_reached_depth(cycle_depth);
1160
1161            // Subtle: when checking for a coinductive cycle, we do
1162            // not compare using the "freshened trait refs" (which
1163            // have erased regions) but rather the fully explicit
1164            // trait refs. This is important because it's only a cycle
1165            // if the regions match exactly.
1166            let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
1167            let tcx = self.tcx();
1168            let cycle = cycle.map(|stack| stack.obligation.predicate.upcast(tcx));
1169            if self.coinductive_match(cycle) {
1170                debug!("evaluate_stack --> recursive, coinductive");
1171                Some(EvaluatedToOk)
1172            } else {
1173                debug!("evaluate_stack --> recursive, inductive");
1174                Some(EvaluatedToAmbigStackDependent)
1175            }
1176        } else {
1177            None
1178        }
1179    }
1180
1181    fn evaluate_stack<'o>(
1182        &mut self,
1183        stack: &TraitObligationStack<'o, 'tcx>,
1184    ) -> Result<EvaluationResult, OverflowError> {
1185        debug_assert!(!self.infcx.next_trait_solver());
1186        // In intercrate mode, whenever any of the generics are unbound,
1187        // there can always be an impl. Even if there are no impls in
1188        // this crate, perhaps the type would be unified with
1189        // something from another crate that does provide an impl.
1190        //
1191        // In intra mode, we must still be conservative. The reason is
1192        // that we want to avoid cycles. Imagine an impl like:
1193        //
1194        //     impl<T:Eq> Eq for Vec<T>
1195        //
1196        // and a trait reference like `$0 : Eq` where `$0` is an
1197        // unbound variable. When we evaluate this trait-reference, we
1198        // will unify `$0` with `Vec<$1>` (for some fresh variable
1199        // `$1`), on the condition that `$1 : Eq`. We will then wind
1200        // up with many candidates (since that are other `Eq` impls
1201        // that apply) and try to winnow things down. This results in
1202        // a recursive evaluation that `$1 : Eq` -- as you can
1203        // imagine, this is just where we started. To avoid that, we
1204        // check for unbound variables and return an ambiguous (hence possible)
1205        // match if we've seen this trait before.
1206        //
1207        // This suffices to allow chains like `FnMut` implemented in
1208        // terms of `Fn` etc, but we could probably make this more
1209        // precise still.
1210        let unbound_input_types =
1211            stack.fresh_trait_pred.skip_binder().trait_ref.args.types().any(|ty| ty.is_fresh());
1212
1213        if unbound_input_types
1214            && stack.iter().skip(1).any(|prev| {
1215                stack.obligation.param_env == prev.obligation.param_env
1216                    && self.match_fresh_trait_refs(stack.fresh_trait_pred, prev.fresh_trait_pred)
1217            })
1218        {
1219            debug!("evaluate_stack --> unbound argument, recursive --> giving up",);
1220            return Ok(EvaluatedToAmbigStackDependent);
1221        }
1222
1223        match self.candidate_from_obligation(stack) {
1224            Ok(Some(c)) => self.evaluate_candidate(stack, &c),
1225            Ok(None) => Ok(EvaluatedToAmbig),
1226            Err(SelectionError::Overflow(OverflowError::Canonical)) => {
1227                Err(OverflowError::Canonical)
1228            }
1229            Err(..) => Ok(EvaluatedToErr),
1230        }
1231    }
1232
1233    /// For defaulted traits, we use a co-inductive strategy to solve, so
1234    /// that recursion is ok. This routine returns `true` if the top of the
1235    /// stack (`cycle[0]`):
1236    ///
1237    /// - is a coinductive trait: an auto-trait or `Sized`,
1238    /// - it also appears in the backtrace at some position `X`,
1239    /// - all the predicates at positions `X..` between `X` and the top are
1240    ///   also coinductive traits.
1241    pub(crate) fn coinductive_match<I>(&mut self, mut cycle: I) -> bool
1242    where
1243        I: Iterator<Item = ty::Predicate<'tcx>>,
1244    {
1245        cycle.all(|p| match p.kind().skip_binder() {
1246            ty::PredicateKind::Clause(ty::ClauseKind::Trait(data)) => {
1247                self.infcx.tcx.trait_is_coinductive(data.def_id())
1248            }
1249            ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(_)) => {
1250                // FIXME(generic_const_exprs): GCE needs well-formedness predicates to be
1251                // coinductive, but GCE is on the way out anyways, so this should eventually
1252                // be replaced with `false`.
1253                self.infcx.tcx.features().generic_const_exprs()
1254            }
1255            _ => false,
1256        })
1257    }
1258
1259    /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
1260    /// obligations are met. Returns whether `candidate` remains viable after this further
1261    /// scrutiny.
1262    #[instrument(
1263        level = "debug",
1264        skip(self, stack),
1265        fields(depth = stack.obligation.recursion_depth),
1266        ret
1267    )]
1268    fn evaluate_candidate<'o>(
1269        &mut self,
1270        stack: &TraitObligationStack<'o, 'tcx>,
1271        candidate: &SelectionCandidate<'tcx>,
1272    ) -> Result<EvaluationResult, OverflowError> {
1273        let mut result = self.evaluation_probe(|this| {
1274            match this.confirm_candidate(stack.obligation, candidate.clone()) {
1275                Ok(selection) => {
1276                    debug!(?selection);
1277                    this.evaluate_predicates_recursively(
1278                        stack.list(),
1279                        selection.nested_obligations().into_iter(),
1280                    )
1281                }
1282                Err(..) => Ok(EvaluatedToErr),
1283            }
1284        })?;
1285
1286        // If we erased any lifetimes, then we want to use
1287        // `EvaluatedToOkModuloRegions` instead of `EvaluatedToOk`
1288        // as your final result. The result will be cached using
1289        // the freshened trait predicate as a key, so we need
1290        // our result to be correct by *any* choice of original lifetimes,
1291        // not just the lifetime choice for this particular (non-erased)
1292        // predicate.
1293        // See issue #80691
1294        if stack.fresh_trait_pred.has_erased_regions() {
1295            result = result.max(EvaluatedToOkModuloRegions);
1296        }
1297
1298        Ok(result)
1299    }
1300
1301    fn check_evaluation_cache(
1302        &self,
1303        param_env: ty::ParamEnv<'tcx>,
1304        trait_pred: ty::PolyTraitPredicate<'tcx>,
1305    ) -> Option<EvaluationResult> {
1306        let infcx = self.infcx;
1307        let tcx = infcx.tcx;
1308        if self.can_use_global_caches(param_env, trait_pred) {
1309            let key = (infcx.typing_env(param_env), trait_pred);
1310            if let Some(res) = tcx.evaluation_cache.get(&key, tcx) {
1311                Some(res)
1312            } else {
1313                debug_assert_eq!(infcx.evaluation_cache.get(&(param_env, trait_pred), tcx), None);
1314                None
1315            }
1316        } else {
1317            self.infcx.evaluation_cache.get(&(param_env, trait_pred), tcx)
1318        }
1319    }
1320
1321    fn insert_evaluation_cache(
1322        &mut self,
1323        param_env: ty::ParamEnv<'tcx>,
1324        trait_pred: ty::PolyTraitPredicate<'tcx>,
1325        dep_node: DepNodeIndex,
1326        result: EvaluationResult,
1327    ) {
1328        // Avoid caching results that depend on more than just the trait-ref
1329        // - the stack can create recursion.
1330        if result.is_stack_dependent() {
1331            return;
1332        }
1333
1334        let infcx = self.infcx;
1335        let tcx = infcx.tcx;
1336        if self.can_use_global_caches(param_env, trait_pred) {
1337            debug!(?trait_pred, ?result, "insert_evaluation_cache global");
1338            // This may overwrite the cache with the same value
1339            tcx.evaluation_cache.insert(
1340                (infcx.typing_env(param_env), trait_pred),
1341                dep_node,
1342                result,
1343            );
1344            return;
1345        } else {
1346            debug!(?trait_pred, ?result, "insert_evaluation_cache local");
1347            self.infcx.evaluation_cache.insert((param_env, trait_pred), dep_node, result);
1348        }
1349    }
1350
1351    fn check_recursion_depth<T>(
1352        &self,
1353        depth: usize,
1354        error_obligation: &Obligation<'tcx, T>,
1355    ) -> Result<(), OverflowError>
1356    where
1357        T: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1358    {
1359        if !self.infcx.tcx.recursion_limit().value_within_limit(depth) {
1360            match self.query_mode {
1361                TraitQueryMode::Standard => {
1362                    if let Some(e) = self.infcx.tainted_by_errors() {
1363                        return Err(OverflowError::Error(e));
1364                    }
1365                    self.infcx.err_ctxt().report_overflow_obligation(error_obligation, true);
1366                }
1367                TraitQueryMode::Canonical => {
1368                    return Err(OverflowError::Canonical);
1369                }
1370            }
1371        }
1372        Ok(())
1373    }
1374
1375    /// Checks that the recursion limit has not been exceeded.
1376    ///
1377    /// The weird return type of this function allows it to be used with the `try` (`?`)
1378    /// operator within certain functions.
1379    #[inline(always)]
1380    fn check_recursion_limit<T: Display + TypeFoldable<TyCtxt<'tcx>>, V>(
1381        &self,
1382        obligation: &Obligation<'tcx, T>,
1383        error_obligation: &Obligation<'tcx, V>,
1384    ) -> Result<(), OverflowError>
1385    where
1386        V: Upcast<TyCtxt<'tcx>, ty::Predicate<'tcx>> + Clone,
1387    {
1388        self.check_recursion_depth(obligation.recursion_depth, error_obligation)
1389    }
1390
1391    fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1392    where
1393        OP: FnOnce(&mut Self) -> R,
1394    {
1395        self.tcx().dep_graph.with_anon_task(self.tcx(), dep_kinds::TraitSelect, || op(self))
1396    }
1397
1398    /// filter_impls filters candidates that have a positive impl for a negative
1399    /// goal and a negative impl for a positive goal
1400    #[instrument(level = "debug", skip(self, candidates))]
1401    fn filter_impls(
1402        &mut self,
1403        candidates: Vec<SelectionCandidate<'tcx>>,
1404        obligation: &PolyTraitObligation<'tcx>,
1405    ) -> Vec<SelectionCandidate<'tcx>> {
1406        trace!("{candidates:#?}");
1407        let tcx = self.tcx();
1408        let mut result = Vec::with_capacity(candidates.len());
1409
1410        for candidate in candidates {
1411            if let ImplCandidate(def_id) = candidate {
1412                match (tcx.impl_polarity(def_id), obligation.polarity()) {
1413                    (ty::ImplPolarity::Reservation, _)
1414                    | (ty::ImplPolarity::Positive, ty::PredicatePolarity::Positive)
1415                    | (ty::ImplPolarity::Negative, ty::PredicatePolarity::Negative) => {
1416                        result.push(candidate);
1417                    }
1418                    _ => {}
1419                }
1420            } else {
1421                result.push(candidate);
1422            }
1423        }
1424
1425        trace!("{result:#?}");
1426        result
1427    }
1428
1429    /// filter_reservation_impls filter reservation impl for any goal as ambiguous
1430    #[instrument(level = "debug", skip(self))]
1431    fn filter_reservation_impls(
1432        &mut self,
1433        candidate: SelectionCandidate<'tcx>,
1434    ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1435        let tcx = self.tcx();
1436        // Treat reservation impls as ambiguity.
1437        if let ImplCandidate(def_id) = candidate
1438            && let ty::ImplPolarity::Reservation = tcx.impl_polarity(def_id)
1439        {
1440            if let Some(intercrate_ambiguity_clauses) = &mut self.intercrate_ambiguity_causes {
1441                let message =
1442                    tcx.get_attr(def_id, sym::rustc_reservation_impl).and_then(|a| a.value_str());
1443                if let Some(message) = message {
1444                    debug!(
1445                        "filter_reservation_impls: \
1446                                 reservation impl ambiguity on {:?}",
1447                        def_id
1448                    );
1449                    intercrate_ambiguity_clauses
1450                        .insert(IntercrateAmbiguityCause::ReservationImpl { message });
1451                }
1452            }
1453            return Ok(None);
1454        }
1455        Ok(Some(candidate))
1456    }
1457
1458    fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Result<(), Conflict> {
1459        let obligation = &stack.obligation;
1460        match self.infcx.typing_mode() {
1461            TypingMode::Coherence => {}
1462            TypingMode::Analysis { .. }
1463            | TypingMode::Borrowck { .. }
1464            | TypingMode::PostBorrowckAnalysis { .. }
1465            | TypingMode::PostAnalysis => return Ok(()),
1466        }
1467
1468        debug!("is_knowable()");
1469
1470        let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
1471
1472        // Okay to skip binder because of the nature of the
1473        // trait-ref-is-knowable check, which does not care about
1474        // bound regions.
1475        let trait_ref = predicate.skip_binder().trait_ref;
1476
1477        coherence::trait_ref_is_knowable(self.infcx, trait_ref, |ty| Ok::<_, !>(ty)).into_ok()
1478    }
1479
1480    /// Returns `true` if the global caches can be used.
1481    fn can_use_global_caches(
1482        &self,
1483        param_env: ty::ParamEnv<'tcx>,
1484        pred: ty::PolyTraitPredicate<'tcx>,
1485    ) -> bool {
1486        // If there are any inference variables in the `ParamEnv`, then we
1487        // always use a cache local to this particular scope. Otherwise, we
1488        // switch to a global cache.
1489        if param_env.has_infer() || pred.has_infer() {
1490            return false;
1491        }
1492
1493        match self.infcx.typing_mode() {
1494            // Avoid using the global cache during coherence and just rely
1495            // on the local cache. It is really just a simplification to
1496            // avoid us having to fear that coherence results "pollute"
1497            // the master cache. Since coherence executes pretty quickly,
1498            // it's not worth going to more trouble to increase the
1499            // hit-rate, I don't think.
1500            TypingMode::Coherence => false,
1501            // Avoid using the global cache when we're defining opaque types
1502            // as their hidden type may impact the result of candidate selection.
1503            //
1504            // HACK: This is still theoretically unsound. Goals can indirectly rely
1505            // on opaques in the defining scope, and it's easier to do so with TAIT.
1506            // However, if we disqualify *all* goals from being cached, perf suffers.
1507            // This is likely fixed by better caching in general in the new solver.
1508            // See: <https://github.com/rust-lang/rust/issues/132064>.
1509            TypingMode::Analysis {
1510                defining_opaque_types_and_generators: defining_opaque_types,
1511            }
1512            | TypingMode::Borrowck { defining_opaque_types } => {
1513                defining_opaque_types.is_empty()
1514                    || (!pred.has_opaque_types() && !pred.has_coroutines())
1515            }
1516            // The hidden types of `defined_opaque_types` is not local to the current
1517            // inference context, so we can freely move this to the global cache.
1518            TypingMode::PostBorrowckAnalysis { .. } => true,
1519            // The global cache is only used if there are no opaque types in
1520            // the defining scope or we're outside of analysis.
1521            //
1522            // FIXME(#132279): This is still incorrect as we treat opaque types
1523            // and default associated items differently between these two modes.
1524            TypingMode::PostAnalysis => true,
1525        }
1526    }
1527
1528    fn check_candidate_cache(
1529        &mut self,
1530        param_env: ty::ParamEnv<'tcx>,
1531        cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1532    ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1533        let infcx = self.infcx;
1534        let tcx = infcx.tcx;
1535        let pred = cache_fresh_trait_pred.skip_binder();
1536
1537        if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1538            if let Some(res) = tcx.selection_cache.get(&(infcx.typing_env(param_env), pred), tcx) {
1539                return Some(res);
1540            } else if cfg!(debug_assertions) {
1541                match infcx.selection_cache.get(&(param_env, pred), tcx) {
1542                    None | Some(Err(SelectionError::Overflow(OverflowError::Canonical))) => {}
1543                    res => bug!("unexpected local cache result: {res:?}"),
1544                }
1545            }
1546        }
1547
1548        // Subtle: we need to check the local cache even if we're able to use the
1549        // global cache as we don't cache overflow in the global cache but need to
1550        // cache it as otherwise rustdoc hangs when compiling diesel.
1551        infcx.selection_cache.get(&(param_env, pred), tcx)
1552    }
1553
1554    /// Determines whether can we safely cache the result
1555    /// of selecting an obligation. This is almost always `true`,
1556    /// except when dealing with certain `ParamCandidate`s.
1557    ///
1558    /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1559    /// since it was usually produced directly from a `DefId`. However,
1560    /// certain cases (currently only librustdoc's blanket impl finder),
1561    /// a `ParamEnv` may be explicitly constructed with inference types.
1562    /// When this is the case, we do *not* want to cache the resulting selection
1563    /// candidate. This is due to the fact that it might not always be possible
1564    /// to equate the obligation's trait ref and the candidate's trait ref,
1565    /// if more constraints end up getting added to an inference variable.
1566    ///
1567    /// Because of this, we always want to re-run the full selection
1568    /// process for our obligation the next time we see it, since
1569    /// we might end up picking a different `SelectionCandidate` (or none at all).
1570    fn can_cache_candidate(
1571        &self,
1572        result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1573    ) -> bool {
1574        match result {
1575            Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => !trait_ref.has_infer(),
1576            _ => true,
1577        }
1578    }
1579
1580    #[instrument(skip(self, param_env, cache_fresh_trait_pred, dep_node), level = "debug")]
1581    fn insert_candidate_cache(
1582        &mut self,
1583        param_env: ty::ParamEnv<'tcx>,
1584        cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1585        dep_node: DepNodeIndex,
1586        candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1587    ) {
1588        let infcx = self.infcx;
1589        let tcx = infcx.tcx;
1590        let pred = cache_fresh_trait_pred.skip_binder();
1591
1592        if !self.can_cache_candidate(&candidate) {
1593            debug!(?pred, ?candidate, "insert_candidate_cache - candidate is not cacheable");
1594            return;
1595        }
1596
1597        if self.can_use_global_caches(param_env, cache_fresh_trait_pred) {
1598            if let Err(SelectionError::Overflow(OverflowError::Canonical)) = candidate {
1599                // Don't cache overflow globally; we only produce this in certain modes.
1600            } else {
1601                debug!(?pred, ?candidate, "insert_candidate_cache global");
1602                debug_assert!(!candidate.has_infer());
1603
1604                // This may overwrite the cache with the same value.
1605                tcx.selection_cache.insert(
1606                    (infcx.typing_env(param_env), pred),
1607                    dep_node,
1608                    candidate,
1609                );
1610                return;
1611            }
1612        }
1613
1614        debug!(?pred, ?candidate, "insert_candidate_cache local");
1615        self.infcx.selection_cache.insert((param_env, pred), dep_node, candidate);
1616    }
1617
1618    /// Looks at the item bounds of the projection or opaque type.
1619    /// If this is a nested rigid projection, such as
1620    /// `<<T as Tr1>::Assoc as Tr2>::Assoc`, consider the item bounds
1621    /// on both `Tr1::Assoc` and `Tr2::Assoc`, since we may encounter
1622    /// relative bounds on both via the `associated_type_bounds` feature.
1623    pub(super) fn for_each_item_bound<T>(
1624        &mut self,
1625        mut self_ty: Ty<'tcx>,
1626        mut for_each: impl FnMut(&mut Self, ty::Clause<'tcx>, usize) -> ControlFlow<T, ()>,
1627        on_ambiguity: impl FnOnce(),
1628    ) -> ControlFlow<T, ()> {
1629        let mut idx = 0;
1630        let mut in_parent_alias_type = false;
1631
1632        loop {
1633            let (kind, alias_ty) = match *self_ty.kind() {
1634                ty::Alias(kind @ (ty::Projection | ty::Opaque), alias_ty) => (kind, alias_ty),
1635                ty::Infer(ty::TyVar(_)) => {
1636                    on_ambiguity();
1637                    return ControlFlow::Continue(());
1638                }
1639                _ => return ControlFlow::Continue(()),
1640            };
1641
1642            // HACK: On subsequent recursions, we only care about bounds that don't
1643            // share the same type as `self_ty`. This is because for truly rigid
1644            // projections, we will never be able to equate, e.g. `<T as Tr>::A`
1645            // with `<<T as Tr>::A as Tr>::A`.
1646            let relevant_bounds = if in_parent_alias_type {
1647                self.tcx().item_non_self_bounds(alias_ty.def_id)
1648            } else {
1649                self.tcx().item_self_bounds(alias_ty.def_id)
1650            };
1651
1652            for bound in relevant_bounds.instantiate(self.tcx(), alias_ty.args) {
1653                for_each(self, bound, idx)?;
1654                idx += 1;
1655            }
1656
1657            if kind == ty::Projection {
1658                self_ty = alias_ty.self_ty();
1659            } else {
1660                return ControlFlow::Continue(());
1661            }
1662
1663            in_parent_alias_type = true;
1664        }
1665    }
1666
1667    /// Equates the trait in `obligation` with trait bound. If the two traits
1668    /// can be equated and the normalized trait bound doesn't contain inference
1669    /// variables or placeholders, the normalized bound is returned.
1670    fn match_normalize_trait_ref(
1671        &mut self,
1672        obligation: &PolyTraitObligation<'tcx>,
1673        placeholder_trait_ref: ty::TraitRef<'tcx>,
1674        trait_bound: ty::PolyTraitRef<'tcx>,
1675    ) -> Result<Option<ty::TraitRef<'tcx>>, ()> {
1676        debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1677        if placeholder_trait_ref.def_id != trait_bound.def_id() {
1678            // Avoid unnecessary normalization
1679            return Err(());
1680        }
1681
1682        let drcx = DeepRejectCtxt::relate_rigid_rigid(self.infcx.tcx);
1683        let obligation_args = obligation.predicate.skip_binder().trait_ref.args;
1684        if !drcx.args_may_unify(obligation_args, trait_bound.skip_binder().args) {
1685            return Err(());
1686        }
1687
1688        let trait_bound = self.infcx.instantiate_binder_with_fresh_vars(
1689            obligation.cause.span,
1690            HigherRankedType,
1691            trait_bound,
1692        );
1693        let Normalized { value: trait_bound, obligations: _ } = ensure_sufficient_stack(|| {
1694            normalize_with_depth(
1695                self,
1696                obligation.param_env,
1697                obligation.cause.clone(),
1698                obligation.recursion_depth + 1,
1699                trait_bound,
1700            )
1701        });
1702        self.infcx
1703            .at(&obligation.cause, obligation.param_env)
1704            .eq(DefineOpaqueTypes::No, placeholder_trait_ref, trait_bound)
1705            .map(|InferOk { obligations: _, value: () }| {
1706                // This method is called within a probe, so we can't have
1707                // inference variables and placeholders escape.
1708                if !trait_bound.has_infer() && !trait_bound.has_placeholders() {
1709                    Some(trait_bound)
1710                } else {
1711                    None
1712                }
1713            })
1714            .map_err(|_| ())
1715    }
1716
1717    fn where_clause_may_apply<'o>(
1718        &mut self,
1719        stack: &TraitObligationStack<'o, 'tcx>,
1720        where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1721    ) -> Result<EvaluationResult, OverflowError> {
1722        self.evaluation_probe(|this| {
1723            match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1724                Ok(obligations) => this.evaluate_predicates_recursively(stack.list(), obligations),
1725                Err(()) => Ok(EvaluatedToErr),
1726            }
1727        })
1728    }
1729
1730    /// Return `Yes` if the obligation's predicate type applies to the env_predicate, and
1731    /// `No` if it does not. Return `Ambiguous` in the case that the projection type is a GAT,
1732    /// and applying this env_predicate constrains any of the obligation's GAT parameters.
1733    ///
1734    /// This behavior is a somewhat of a hack to prevent over-constraining inference variables
1735    /// in cases like #91762.
1736    pub(super) fn match_projection_projections(
1737        &mut self,
1738        obligation: &ProjectionTermObligation<'tcx>,
1739        env_predicate: PolyProjectionPredicate<'tcx>,
1740        potentially_unnormalized_candidates: bool,
1741    ) -> ProjectionMatchesProjection {
1742        debug_assert_eq!(obligation.predicate.def_id, env_predicate.item_def_id());
1743
1744        let mut nested_obligations = PredicateObligations::new();
1745        let infer_predicate = self.infcx.instantiate_binder_with_fresh_vars(
1746            obligation.cause.span,
1747            BoundRegionConversionTime::HigherRankedType,
1748            env_predicate,
1749        );
1750        let infer_projection = if potentially_unnormalized_candidates {
1751            ensure_sufficient_stack(|| {
1752                normalize_with_depth_to(
1753                    self,
1754                    obligation.param_env,
1755                    obligation.cause.clone(),
1756                    obligation.recursion_depth + 1,
1757                    infer_predicate.projection_term,
1758                    &mut nested_obligations,
1759                )
1760            })
1761        } else {
1762            infer_predicate.projection_term
1763        };
1764
1765        let is_match = self
1766            .infcx
1767            .at(&obligation.cause, obligation.param_env)
1768            .eq(DefineOpaqueTypes::No, obligation.predicate, infer_projection)
1769            .is_ok_and(|InferOk { obligations, value: () }| {
1770                self.evaluate_predicates_recursively(
1771                    TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
1772                    nested_obligations.into_iter().chain(obligations),
1773                )
1774                .is_ok_and(|res| res.may_apply())
1775            });
1776
1777        if is_match {
1778            let generics = self.tcx().generics_of(obligation.predicate.def_id);
1779            // FIXME(generic_associated_types): Addresses aggressive inference in #92917.
1780            // If this type is a GAT, and of the GAT args resolve to something new,
1781            // that means that we must have newly inferred something about the GAT.
1782            // We should give up in that case.
1783            //
1784            // This only detects one layer of inference, which is probably not what we actually
1785            // want, but fixing it causes some ambiguity:
1786            // <https://github.com/rust-lang/rust/issues/125196>.
1787            if !generics.is_own_empty()
1788                && obligation.predicate.args[generics.parent_count..].iter().any(|&p| {
1789                    p.has_non_region_infer()
1790                        && match p.kind() {
1791                            ty::GenericArgKind::Const(ct) => {
1792                                self.infcx.shallow_resolve_const(ct) != ct
1793                            }
1794                            ty::GenericArgKind::Type(ty) => self.infcx.shallow_resolve(ty) != ty,
1795                            ty::GenericArgKind::Lifetime(_) => false,
1796                        }
1797                })
1798            {
1799                ProjectionMatchesProjection::Ambiguous
1800            } else {
1801                ProjectionMatchesProjection::Yes
1802            }
1803        } else {
1804            ProjectionMatchesProjection::No
1805        }
1806    }
1807}
1808
1809/// ## Winnowing
1810///
1811/// Winnowing is the process of attempting to resolve ambiguity by
1812/// probing further. During the winnowing process, we unify all
1813/// type variables and then we also attempt to evaluate recursive
1814/// bounds to see if they are satisfied.
1815impl<'tcx> SelectionContext<'_, 'tcx> {
1816    /// If there are multiple ways to prove a trait goal, we make some
1817    /// *fairly arbitrary* choices about which candidate is actually used.
1818    ///
1819    /// For more details, look at the implementation of this method :)
1820    #[instrument(level = "debug", skip(self), ret)]
1821    fn winnow_candidates(
1822        &mut self,
1823        has_non_region_infer: bool,
1824        mut candidates: Vec<EvaluatedCandidate<'tcx>>,
1825    ) -> Option<SelectionCandidate<'tcx>> {
1826        if candidates.len() == 1 {
1827            return Some(candidates.pop().unwrap().candidate);
1828        }
1829
1830        // We prefer `Sized` candidates over everything.
1831        let mut sized_candidates =
1832            candidates.iter().filter(|c| matches!(c.candidate, SizedCandidate));
1833        if let Some(sized_candidate) = sized_candidates.next() {
1834            // There should only ever be a single sized candidate
1835            // as they would otherwise overlap.
1836            debug_assert_eq!(sized_candidates.next(), None);
1837            // Only prefer the built-in `Sized` candidate if its nested goals are certain.
1838            // Otherwise, we may encounter failure later on if inference causes this candidate
1839            // to not hold, but a where clause would've applied instead.
1840            if sized_candidate.evaluation.must_apply_modulo_regions() {
1841                return Some(sized_candidate.candidate.clone());
1842            } else {
1843                return None;
1844            }
1845        }
1846
1847        // Before we consider where-bounds, we have to deduplicate them here and also
1848        // drop where-bounds in case the same where-bound exists without bound vars.
1849        // This is necessary as elaborating super-trait bounds may result in duplicates.
1850        'search_victim: loop {
1851            for (i, this) in candidates.iter().enumerate() {
1852                let ParamCandidate(this) = this.candidate else { continue };
1853                for (j, other) in candidates.iter().enumerate() {
1854                    if i == j {
1855                        continue;
1856                    }
1857
1858                    let ParamCandidate(other) = other.candidate else { continue };
1859                    if this == other {
1860                        candidates.remove(j);
1861                        continue 'search_victim;
1862                    }
1863
1864                    if this.skip_binder().trait_ref == other.skip_binder().trait_ref
1865                        && this.skip_binder().polarity == other.skip_binder().polarity
1866                        && !this.skip_binder().trait_ref.has_escaping_bound_vars()
1867                    {
1868                        candidates.remove(j);
1869                        continue 'search_victim;
1870                    }
1871                }
1872            }
1873
1874            break;
1875        }
1876
1877        // The next highest priority is for non-global where-bounds. However, while we don't
1878        // prefer global where-clauses here, we do bail with ambiguity when encountering both
1879        // a global and a non-global where-clause.
1880        //
1881        // Our handling of where-bounds is generally fairly messy but necessary for backwards
1882        // compatibility, see #50825 for why we need to handle global where-bounds like this.
1883        let is_global = |c: ty::PolyTraitPredicate<'tcx>| c.is_global() && !c.has_bound_vars();
1884        let param_candidates = candidates
1885            .iter()
1886            .filter_map(|c| if let ParamCandidate(p) = c.candidate { Some(p) } else { None });
1887        let mut has_global_bounds = false;
1888        let mut param_candidate = None;
1889        for c in param_candidates {
1890            if is_global(c) {
1891                has_global_bounds = true;
1892            } else if param_candidate.replace(c).is_some() {
1893                // Ambiguity, two potentially different where-clauses
1894                return None;
1895            }
1896        }
1897        if let Some(predicate) = param_candidate {
1898            // Ambiguity, a global and a non-global where-bound.
1899            if has_global_bounds {
1900                return None;
1901            } else {
1902                return Some(ParamCandidate(predicate));
1903            }
1904        }
1905
1906        // Prefer alias-bounds over blanket impls for rigid associated types. This is
1907        // fairly arbitrary but once again necessary for backwards compatibility.
1908        // If there are multiple applicable candidates which don't affect type inference,
1909        // choose the one with the lowest index.
1910        let alias_bound = candidates
1911            .iter()
1912            .filter_map(|c| if let ProjectionCandidate(i) = c.candidate { Some(i) } else { None })
1913            .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1914        match alias_bound {
1915            Some(Some(index)) => return Some(ProjectionCandidate(index)),
1916            Some(None) => {}
1917            None => return None,
1918        }
1919
1920        // Need to prioritize builtin trait object impls as `<dyn Any as Any>::type_id`
1921        // should use the vtable method and not the method provided by the user-defined
1922        // impl `impl<T: ?Sized> Any for T { .. }`. This really shouldn't exist but is
1923        // necessary due to #57893. We again arbitrarily prefer the applicable candidate
1924        // with the lowest index.
1925        //
1926        // We do not want to use these impls to guide inference in case a user-written impl
1927        // may also apply.
1928        let object_bound = candidates
1929            .iter()
1930            .filter_map(|c| if let ObjectCandidate(i) = c.candidate { Some(i) } else { None })
1931            .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1932        match object_bound {
1933            Some(Some(index)) => {
1934                return if has_non_region_infer
1935                    && candidates.iter().any(|c| matches!(c.candidate, ImplCandidate(_)))
1936                {
1937                    None
1938                } else {
1939                    Some(ObjectCandidate(index))
1940                };
1941            }
1942            Some(None) => {}
1943            None => return None,
1944        }
1945        // Same for upcasting.
1946        let upcast_bound = candidates
1947            .iter()
1948            .filter_map(|c| {
1949                if let TraitUpcastingUnsizeCandidate(i) = c.candidate { Some(i) } else { None }
1950            })
1951            .try_reduce(|c1, c2| if has_non_region_infer { None } else { Some(c1.min(c2)) });
1952        match upcast_bound {
1953            Some(Some(index)) => return Some(TraitUpcastingUnsizeCandidate(index)),
1954            Some(None) => {}
1955            None => return None,
1956        }
1957
1958        // Finally, handle overlapping user-written impls.
1959        let impls = candidates.iter().filter_map(|c| {
1960            if let ImplCandidate(def_id) = c.candidate {
1961                Some((def_id, c.evaluation))
1962            } else {
1963                None
1964            }
1965        });
1966        let mut impl_candidate = None;
1967        for c in impls {
1968            if let Some(prev) = impl_candidate.replace(c) {
1969                if self.prefer_lhs_over_victim(has_non_region_infer, c, prev.0) {
1970                    // Ok, prefer `c` over the previous entry
1971                } else if self.prefer_lhs_over_victim(has_non_region_infer, prev, c.0) {
1972                    // Ok, keep `prev` instead of the new entry
1973                    impl_candidate = Some(prev);
1974                } else {
1975                    // Ambiguity, two potentially different where-clauses
1976                    return None;
1977                }
1978            }
1979        }
1980        if let Some((def_id, _evaluation)) = impl_candidate {
1981            // Don't use impl candidates which overlap with other candidates.
1982            // This should pretty much only ever happen with malformed impls.
1983            if candidates.iter().all(|c| match c.candidate {
1984                SizedCandidate
1985                | BuiltinCandidate
1986                | TransmutabilityCandidate
1987                | AutoImplCandidate
1988                | ClosureCandidate { .. }
1989                | AsyncClosureCandidate
1990                | AsyncFnKindHelperCandidate
1991                | CoroutineCandidate
1992                | FutureCandidate
1993                | IteratorCandidate
1994                | AsyncIteratorCandidate
1995                | FnPointerCandidate
1996                | TraitAliasCandidate
1997                | TraitUpcastingUnsizeCandidate(_)
1998                | BuiltinObjectCandidate
1999                | BuiltinUnsizeCandidate
2000                | BikeshedGuaranteedNoDropCandidate => false,
2001                // Non-global param candidates have already been handled, global
2002                // where-bounds get ignored.
2003                ParamCandidate(_) | ImplCandidate(_) => true,
2004                ProjectionCandidate(_) | ObjectCandidate(_) => unreachable!(),
2005            }) {
2006                return Some(ImplCandidate(def_id));
2007            } else {
2008                return None;
2009            }
2010        }
2011
2012        if candidates.len() == 1 {
2013            Some(candidates.pop().unwrap().candidate)
2014        } else {
2015            // Also try ignoring all global where-bounds and check whether we end
2016            // with a unique candidate in this case.
2017            let mut not_a_global_where_bound = candidates
2018                .into_iter()
2019                .filter(|c| !matches!(c.candidate, ParamCandidate(p) if is_global(p)));
2020            not_a_global_where_bound
2021                .next()
2022                .map(|c| c.candidate)
2023                .filter(|_| not_a_global_where_bound.next().is_none())
2024        }
2025    }
2026
2027    fn prefer_lhs_over_victim(
2028        &self,
2029        has_non_region_infer: bool,
2030        (lhs, lhs_evaluation): (DefId, EvaluationResult),
2031        victim: DefId,
2032    ) -> bool {
2033        let tcx = self.tcx();
2034        // See if we can toss out `victim` based on specialization.
2035        //
2036        // While this requires us to know *for sure* that the `lhs` impl applies
2037        // we still use modulo regions here. This is fine as specialization currently
2038        // assumes that specializing impls have to be always applicable, meaning that
2039        // the only allowed region constraints may be constraints also present on the default impl.
2040        if lhs_evaluation.must_apply_modulo_regions() {
2041            if tcx.specializes((lhs, victim)) {
2042                return true;
2043            }
2044        }
2045
2046        match tcx.impls_are_allowed_to_overlap(lhs, victim) {
2047            // For candidates which already reference errors it doesn't really
2048            // matter what we do 🤷
2049            Some(ty::ImplOverlapKind::Permitted { marker: false }) => {
2050                lhs_evaluation.must_apply_considering_regions()
2051            }
2052            Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
2053                // Subtle: If the predicate we are evaluating has inference
2054                // variables, do *not* allow discarding candidates due to
2055                // marker trait impls.
2056                //
2057                // Without this restriction, we could end up accidentally
2058                // constraining inference variables based on an arbitrarily
2059                // chosen trait impl.
2060                //
2061                // Imagine we have the following code:
2062                //
2063                // ```rust
2064                // #[marker] trait MyTrait {}
2065                // impl MyTrait for u8 {}
2066                // impl MyTrait for bool {}
2067                // ```
2068                //
2069                // And we are evaluating the predicate `<_#0t as MyTrait>`.
2070                //
2071                // During selection, we will end up with one candidate for each
2072                // impl of `MyTrait`. If we were to discard one impl in favor
2073                // of the other, we would be left with one candidate, causing
2074                // us to "successfully" select the predicate, unifying
2075                // _#0t with (for example) `u8`.
2076                //
2077                // However, we have no reason to believe that this unification
2078                // is correct - we've essentially just picked an arbitrary
2079                // *possibility* for _#0t, and required that this be the *only*
2080                // possibility.
2081                //
2082                // Eventually, we will either:
2083                // 1) Unify all inference variables in the predicate through
2084                // some other means (e.g. type-checking of a function). We will
2085                // then be in a position to drop marker trait candidates
2086                // without constraining inference variables (since there are
2087                // none left to constrain)
2088                // 2) Be left with some unconstrained inference variables. We
2089                // will then correctly report an inference error, since the
2090                // existence of multiple marker trait impls tells us nothing
2091                // about which one should actually apply.
2092                !has_non_region_infer && lhs_evaluation.must_apply_considering_regions()
2093            }
2094            None => false,
2095        }
2096    }
2097}
2098
2099impl<'tcx> SelectionContext<'_, 'tcx> {
2100    fn sizedness_conditions(
2101        &mut self,
2102        self_ty: Ty<'tcx>,
2103        sizedness: SizedTraitKind,
2104    ) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
2105        match self_ty.kind() {
2106            ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2107            | ty::Uint(_)
2108            | ty::Int(_)
2109            | ty::Bool
2110            | ty::Float(_)
2111            | ty::FnDef(..)
2112            | ty::FnPtr(..)
2113            | ty::RawPtr(..)
2114            | ty::Char
2115            | ty::Ref(..)
2116            | ty::Coroutine(..)
2117            | ty::CoroutineWitness(..)
2118            | ty::Array(..)
2119            | ty::Closure(..)
2120            | ty::CoroutineClosure(..)
2121            | ty::Never
2122            | ty::Error(_) => ty::Binder::dummy(vec![]),
2123
2124            ty::Str | ty::Slice(_) | ty::Dynamic(..) => match sizedness {
2125                SizedTraitKind::Sized => unreachable!("tried to assemble `Sized` for unsized type"),
2126                SizedTraitKind::MetaSized => ty::Binder::dummy(vec![]),
2127            },
2128
2129            ty::Foreign(..) => unreachable!("tried to assemble `Sized` for unsized type"),
2130
2131            ty::Tuple(tys) => {
2132                ty::Binder::dummy(tys.last().map_or_else(Vec::new, |&last| vec![last]))
2133            }
2134
2135            ty::Pat(ty, _) => ty::Binder::dummy(vec![*ty]),
2136
2137            ty::Adt(def, args) => {
2138                if let Some(crit) = def.sizedness_constraint(self.tcx(), sizedness) {
2139                    ty::Binder::dummy(vec![crit.instantiate(self.tcx(), args)])
2140                } else {
2141                    ty::Binder::dummy(vec![])
2142                }
2143            }
2144
2145            ty::UnsafeBinder(binder_ty) => binder_ty.map_bound(|ty| vec![ty]),
2146
2147            ty::Alias(..)
2148            | ty::Param(_)
2149            | ty::Placeholder(..)
2150            | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_))
2151            | ty::Bound(..) => {
2152                bug!("asked to assemble `Sized` of unexpected type: {:?}", self_ty);
2153            }
2154        }
2155    }
2156
2157    fn copy_clone_conditions(&mut self, self_ty: Ty<'tcx>) -> ty::Binder<'tcx, Vec<Ty<'tcx>>> {
2158        match *self_ty.kind() {
2159            ty::FnDef(..) | ty::FnPtr(..) | ty::Error(_) => ty::Binder::dummy(vec![]),
2160
2161            ty::Uint(_)
2162            | ty::Int(_)
2163            | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2164            | ty::Bool
2165            | ty::Float(_)
2166            | ty::Char
2167            | ty::RawPtr(..)
2168            | ty::Never
2169            | ty::Ref(_, _, hir::Mutability::Not)
2170            | ty::Array(..) => {
2171                unreachable!("tried to assemble `Sized` for type with libcore-provided impl")
2172            }
2173
2174            // FIXME(unsafe_binder): Should we conditionally
2175            // (i.e. universally) implement copy/clone?
2176            ty::UnsafeBinder(_) => unreachable!("tried to assemble `Sized` for unsafe binder"),
2177
2178            ty::Tuple(tys) => {
2179                // (*) binder moved here
2180                ty::Binder::dummy(tys.iter().collect())
2181            }
2182
2183            ty::Pat(ty, _) => {
2184                // (*) binder moved here
2185                ty::Binder::dummy(vec![ty])
2186            }
2187
2188            ty::Coroutine(def_id, args) => match self.tcx().coroutine_movability(def_id) {
2189                hir::Movability::Static => {
2190                    unreachable!("tried to assemble `Clone` for static coroutine")
2191                }
2192                hir::Movability::Movable => {
2193                    if self.tcx().features().coroutine_clone() {
2194                        ty::Binder::dummy(vec![
2195                            args.as_coroutine().tupled_upvars_ty(),
2196                            Ty::new_coroutine_witness_for_coroutine(self.tcx(), def_id, args),
2197                        ])
2198                    } else {
2199                        unreachable!(
2200                            "tried to assemble `Clone` for coroutine without enabled feature"
2201                        )
2202                    }
2203                }
2204            },
2205
2206            ty::CoroutineWitness(def_id, args) => self
2207                .infcx
2208                .tcx
2209                .coroutine_hidden_types(def_id)
2210                .instantiate(self.infcx.tcx, args)
2211                .map_bound(|witness| witness.types.to_vec()),
2212
2213            ty::Closure(_, args) => ty::Binder::dummy(args.as_closure().upvar_tys().to_vec()),
2214
2215            ty::CoroutineClosure(_, args) => {
2216                ty::Binder::dummy(args.as_coroutine_closure().upvar_tys().to_vec())
2217            }
2218
2219            ty::Foreign(..)
2220            | ty::Str
2221            | ty::Slice(_)
2222            | ty::Dynamic(..)
2223            | ty::Adt(..)
2224            | ty::Alias(..)
2225            | ty::Param(..)
2226            | ty::Placeholder(..)
2227            | ty::Bound(..)
2228            | ty::Ref(_, _, ty::Mutability::Mut)
2229            | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2230                bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2231            }
2232        }
2233    }
2234
2235    fn coroutine_is_gen(&mut self, self_ty: Ty<'tcx>) -> bool {
2236        matches!(*self_ty.kind(), ty::Coroutine(did, ..)
2237            if self.tcx().coroutine_is_gen(did))
2238    }
2239
2240    /// For default impls, we need to break apart a type into its
2241    /// "constituent types" -- meaning, the types that it contains.
2242    ///
2243    /// Here are some (simple) examples:
2244    ///
2245    /// ```ignore (illustrative)
2246    /// (i32, u32) -> [i32, u32]
2247    /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2248    /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2249    /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2250    /// ```
2251    #[instrument(level = "debug", skip(self), ret)]
2252    fn constituent_types_for_auto_trait(
2253        &self,
2254        t: Ty<'tcx>,
2255    ) -> Result<ty::Binder<'tcx, AutoImplConstituents<'tcx>>, SelectionError<'tcx>> {
2256        Ok(match *t.kind() {
2257            ty::Uint(_)
2258            | ty::Int(_)
2259            | ty::Bool
2260            | ty::Float(_)
2261            | ty::FnDef(..)
2262            | ty::FnPtr(..)
2263            | ty::Error(_)
2264            | ty::Infer(ty::IntVar(_) | ty::FloatVar(_))
2265            | ty::Never
2266            | ty::Char => {
2267                ty::Binder::dummy(AutoImplConstituents { types: vec![], assumptions: vec![] })
2268            }
2269
2270            // This branch is only for `experimental_default_bounds`.
2271            // Other foreign types were rejected earlier in
2272            // `assemble_candidates_from_auto_impls`.
2273            ty::Foreign(..) => {
2274                ty::Binder::dummy(AutoImplConstituents { types: vec![], assumptions: vec![] })
2275            }
2276
2277            ty::UnsafeBinder(ty) => {
2278                ty.map_bound(|ty| AutoImplConstituents { types: vec![ty], assumptions: vec![] })
2279            }
2280
2281            // Treat this like `struct str([u8]);`
2282            ty::Str => ty::Binder::dummy(AutoImplConstituents {
2283                types: vec![Ty::new_slice(self.tcx(), self.tcx().types.u8)],
2284                assumptions: vec![],
2285            }),
2286
2287            ty::Placeholder(..)
2288            | ty::Dynamic(..)
2289            | ty::Param(..)
2290            | ty::Alias(ty::Projection | ty::Inherent | ty::Free, ..)
2291            | ty::Bound(..)
2292            | ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) => {
2293                bug!("asked to assemble constituent types of unexpected type: {:?}", t);
2294            }
2295
2296            ty::RawPtr(element_ty, _) | ty::Ref(_, element_ty, _) => {
2297                ty::Binder::dummy(AutoImplConstituents {
2298                    types: vec![element_ty],
2299                    assumptions: vec![],
2300                })
2301            }
2302
2303            ty::Pat(ty, _) | ty::Array(ty, _) | ty::Slice(ty) => {
2304                ty::Binder::dummy(AutoImplConstituents { types: vec![ty], assumptions: vec![] })
2305            }
2306
2307            ty::Tuple(tys) => {
2308                // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2309                ty::Binder::dummy(AutoImplConstituents {
2310                    types: tys.iter().collect(),
2311                    assumptions: vec![],
2312                })
2313            }
2314
2315            ty::Closure(_, args) => {
2316                let ty = self.infcx.shallow_resolve(args.as_closure().tupled_upvars_ty());
2317                ty::Binder::dummy(AutoImplConstituents { types: vec![ty], assumptions: vec![] })
2318            }
2319
2320            ty::CoroutineClosure(_, args) => {
2321                let ty = self.infcx.shallow_resolve(args.as_coroutine_closure().tupled_upvars_ty());
2322                ty::Binder::dummy(AutoImplConstituents { types: vec![ty], assumptions: vec![] })
2323            }
2324
2325            ty::Coroutine(def_id, args) => {
2326                let ty = self.infcx.shallow_resolve(args.as_coroutine().tupled_upvars_ty());
2327                let tcx = self.tcx();
2328                let witness = Ty::new_coroutine_witness_for_coroutine(tcx, def_id, args);
2329                ty::Binder::dummy(AutoImplConstituents {
2330                    types: vec![ty, witness],
2331                    assumptions: vec![],
2332                })
2333            }
2334
2335            ty::CoroutineWitness(def_id, args) => self
2336                .infcx
2337                .tcx
2338                .coroutine_hidden_types(def_id)
2339                .instantiate(self.infcx.tcx, args)
2340                .map_bound(|witness| AutoImplConstituents {
2341                    types: witness.types.to_vec(),
2342                    assumptions: witness.assumptions.to_vec(),
2343                }),
2344
2345            // For `PhantomData<T>`, we pass `T`.
2346            ty::Adt(def, args) if def.is_phantom_data() => {
2347                ty::Binder::dummy(AutoImplConstituents {
2348                    types: args.types().collect(),
2349                    assumptions: vec![],
2350                })
2351            }
2352
2353            ty::Adt(def, args) => ty::Binder::dummy(AutoImplConstituents {
2354                types: def.all_fields().map(|f| f.ty(self.tcx(), args)).collect(),
2355                assumptions: vec![],
2356            }),
2357
2358            ty::Alias(ty::Opaque, ty::AliasTy { def_id, args, .. }) => {
2359                if self.infcx.can_define_opaque_ty(def_id) {
2360                    unreachable!()
2361                } else {
2362                    // We can resolve the `impl Trait` to its concrete type,
2363                    // which enforces a DAG between the functions requiring
2364                    // the auto trait bounds in question.
2365                    match self.tcx().type_of_opaque(def_id) {
2366                        Ok(ty) => ty::Binder::dummy(AutoImplConstituents {
2367                            types: vec![ty.instantiate(self.tcx(), args)],
2368                            assumptions: vec![],
2369                        }),
2370                        Err(_) => {
2371                            return Err(SelectionError::OpaqueTypeAutoTraitLeakageUnknown(def_id));
2372                        }
2373                    }
2374                }
2375            }
2376        })
2377    }
2378
2379    fn collect_predicates_for_types(
2380        &mut self,
2381        param_env: ty::ParamEnv<'tcx>,
2382        cause: ObligationCause<'tcx>,
2383        recursion_depth: usize,
2384        trait_def_id: DefId,
2385        types: Vec<Ty<'tcx>>,
2386    ) -> PredicateObligations<'tcx> {
2387        // Because the types were potentially derived from
2388        // higher-ranked obligations they may reference late-bound
2389        // regions. For example, `for<'a> Foo<&'a i32> : Copy` would
2390        // yield a type like `for<'a> &'a i32`. In general, we
2391        // maintain the invariant that we never manipulate bound
2392        // regions, so we have to process these bound regions somehow.
2393        //
2394        // The strategy is to:
2395        //
2396        // 1. Instantiate those regions to placeholder regions (e.g.,
2397        //    `for<'a> &'a i32` becomes `&0 i32`.
2398        // 2. Produce something like `&'0 i32 : Copy`
2399        // 3. Re-bind the regions back to `for<'a> &'a i32 : Copy`
2400
2401        types
2402            .into_iter()
2403            .flat_map(|placeholder_ty| {
2404                let Normalized { value: normalized_ty, mut obligations } =
2405                    ensure_sufficient_stack(|| {
2406                        normalize_with_depth(
2407                            self,
2408                            param_env,
2409                            cause.clone(),
2410                            recursion_depth,
2411                            placeholder_ty,
2412                        )
2413                    });
2414
2415                let tcx = self.tcx();
2416                let trait_ref = if tcx.generics_of(trait_def_id).own_params.len() == 1 {
2417                    ty::TraitRef::new(tcx, trait_def_id, [normalized_ty])
2418                } else {
2419                    // If this is an ill-formed auto/built-in trait, then synthesize
2420                    // new error args for the missing generics.
2421                    let err_args = ty::GenericArgs::extend_with_error(
2422                        tcx,
2423                        trait_def_id,
2424                        &[normalized_ty.into()],
2425                    );
2426                    ty::TraitRef::new_from_args(tcx, trait_def_id, err_args)
2427                };
2428
2429                let obligation = Obligation::new(self.tcx(), cause.clone(), param_env, trait_ref);
2430                obligations.push(obligation);
2431                obligations
2432            })
2433            .collect()
2434    }
2435
2436    ///////////////////////////////////////////////////////////////////////////
2437    // Matching
2438    //
2439    // Matching is a common path used for both evaluation and
2440    // confirmation. It basically unifies types that appear in impls
2441    // and traits. This does affect the surrounding environment;
2442    // therefore, when used during evaluation, match routines must be
2443    // run inside of a `probe()` so that their side-effects are
2444    // contained.
2445
2446    fn rematch_impl(
2447        &mut self,
2448        impl_def_id: DefId,
2449        obligation: &PolyTraitObligation<'tcx>,
2450    ) -> Normalized<'tcx, GenericArgsRef<'tcx>> {
2451        let impl_trait_header = self.tcx().impl_trait_header(impl_def_id).unwrap();
2452        match self.match_impl(impl_def_id, impl_trait_header, obligation) {
2453            Ok(args) => args,
2454            Err(()) => {
2455                let predicate = self.infcx.resolve_vars_if_possible(obligation.predicate);
2456                bug!("impl {impl_def_id:?} was matchable against {predicate:?} but now is not")
2457            }
2458        }
2459    }
2460
2461    #[instrument(level = "debug", skip(self), ret)]
2462    fn match_impl(
2463        &mut self,
2464        impl_def_id: DefId,
2465        impl_trait_header: ty::ImplTraitHeader<'tcx>,
2466        obligation: &PolyTraitObligation<'tcx>,
2467    ) -> Result<Normalized<'tcx, GenericArgsRef<'tcx>>, ()> {
2468        let placeholder_obligation =
2469            self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2470        let placeholder_obligation_trait_ref = placeholder_obligation.trait_ref;
2471
2472        let impl_args = self.infcx.fresh_args_for_item(obligation.cause.span, impl_def_id);
2473
2474        let trait_ref = impl_trait_header.trait_ref.instantiate(self.tcx(), impl_args);
2475        debug!(?impl_trait_header);
2476
2477        let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
2478            ensure_sufficient_stack(|| {
2479                normalize_with_depth(
2480                    self,
2481                    obligation.param_env,
2482                    obligation.cause.clone(),
2483                    obligation.recursion_depth + 1,
2484                    trait_ref,
2485                )
2486            });
2487
2488        debug!(?impl_trait_ref, ?placeholder_obligation_trait_ref);
2489
2490        let cause = ObligationCause::new(
2491            obligation.cause.span,
2492            obligation.cause.body_id,
2493            ObligationCauseCode::MatchImpl(obligation.cause.clone(), impl_def_id),
2494        );
2495
2496        let InferOk { obligations, .. } = self
2497            .infcx
2498            .at(&cause, obligation.param_env)
2499            .eq(DefineOpaqueTypes::No, placeholder_obligation_trait_ref, impl_trait_ref)
2500            .map_err(|e| {
2501                debug!("match_impl: failed eq_trait_refs due to `{}`", e.to_string(self.tcx()))
2502            })?;
2503        nested_obligations.extend(obligations);
2504
2505        if impl_trait_header.polarity == ty::ImplPolarity::Reservation
2506            && !matches!(self.infcx.typing_mode(), TypingMode::Coherence)
2507        {
2508            debug!("reservation impls only apply in intercrate mode");
2509            return Err(());
2510        }
2511
2512        Ok(Normalized { value: impl_args, obligations: nested_obligations })
2513    }
2514
2515    fn match_upcast_principal(
2516        &mut self,
2517        obligation: &PolyTraitObligation<'tcx>,
2518        unnormalized_upcast_principal: ty::PolyTraitRef<'tcx>,
2519        a_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2520        b_data: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
2521        a_region: ty::Region<'tcx>,
2522        b_region: ty::Region<'tcx>,
2523    ) -> SelectionResult<'tcx, PredicateObligations<'tcx>> {
2524        let tcx = self.tcx();
2525        let mut nested = PredicateObligations::new();
2526
2527        // We may upcast to auto traits that are either explicitly listed in
2528        // the object type's bounds, or implied by the principal trait ref's
2529        // supertraits.
2530        let a_auto_traits: FxIndexSet<DefId> = a_data
2531            .auto_traits()
2532            .chain(a_data.principal_def_id().into_iter().flat_map(|principal_def_id| {
2533                elaborate::supertrait_def_ids(tcx, principal_def_id)
2534                    .filter(|def_id| tcx.trait_is_auto(*def_id))
2535            }))
2536            .collect();
2537
2538        let upcast_principal = normalize_with_depth_to(
2539            self,
2540            obligation.param_env,
2541            obligation.cause.clone(),
2542            obligation.recursion_depth + 1,
2543            unnormalized_upcast_principal,
2544            &mut nested,
2545        );
2546
2547        for bound in b_data {
2548            match bound.skip_binder() {
2549                // Check that a_ty's supertrait (upcast_principal) is compatible
2550                // with the target (b_ty).
2551                ty::ExistentialPredicate::Trait(target_principal) => {
2552                    let hr_source_principal = upcast_principal.map_bound(|trait_ref| {
2553                        ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref)
2554                    });
2555                    let hr_target_principal = bound.rebind(target_principal);
2556
2557                    nested.extend(
2558                        self.infcx
2559                            .enter_forall(hr_target_principal, |target_principal| {
2560                                let source_principal =
2561                                    self.infcx.instantiate_binder_with_fresh_vars(
2562                                        obligation.cause.span,
2563                                        HigherRankedType,
2564                                        hr_source_principal,
2565                                    );
2566                                self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2567                                    DefineOpaqueTypes::Yes,
2568                                    ToTrace::to_trace(
2569                                        &obligation.cause,
2570                                        hr_target_principal,
2571                                        hr_source_principal,
2572                                    ),
2573                                    target_principal,
2574                                    source_principal,
2575                                )
2576                            })
2577                            .map_err(|_| SelectionError::Unimplemented)?
2578                            .into_obligations(),
2579                    );
2580                }
2581                // Check that b_ty's projection is satisfied by exactly one of
2582                // a_ty's projections. First, we look through the list to see if
2583                // any match. If not, error. Then, if *more* than one matches, we
2584                // return ambiguity. Otherwise, if exactly one matches, equate
2585                // it with b_ty's projection.
2586                ty::ExistentialPredicate::Projection(target_projection) => {
2587                    let hr_target_projection = bound.rebind(target_projection);
2588
2589                    let mut matching_projections =
2590                        a_data.projection_bounds().filter(|&hr_source_projection| {
2591                            // Eager normalization means that we can just use can_eq
2592                            // here instead of equating and processing obligations.
2593                            hr_source_projection.item_def_id() == hr_target_projection.item_def_id()
2594                                && self.infcx.probe(|_| {
2595                                    self.infcx
2596                                        .enter_forall(hr_target_projection, |target_projection| {
2597                                            let source_projection =
2598                                                self.infcx.instantiate_binder_with_fresh_vars(
2599                                                    obligation.cause.span,
2600                                                    HigherRankedType,
2601                                                    hr_source_projection,
2602                                                );
2603                                            self.infcx
2604                                                .at(&obligation.cause, obligation.param_env)
2605                                                .eq_trace(
2606                                                    DefineOpaqueTypes::Yes,
2607                                                    ToTrace::to_trace(
2608                                                        &obligation.cause,
2609                                                        hr_target_projection,
2610                                                        hr_source_projection,
2611                                                    ),
2612                                                    target_projection,
2613                                                    source_projection,
2614                                                )
2615                                        })
2616                                        .is_ok()
2617                                })
2618                        });
2619
2620                    let Some(hr_source_projection) = matching_projections.next() else {
2621                        return Err(SelectionError::Unimplemented);
2622                    };
2623                    if matching_projections.next().is_some() {
2624                        return Ok(None);
2625                    }
2626                    nested.extend(
2627                        self.infcx
2628                            .enter_forall(hr_target_projection, |target_projection| {
2629                                let source_projection =
2630                                    self.infcx.instantiate_binder_with_fresh_vars(
2631                                        obligation.cause.span,
2632                                        HigherRankedType,
2633                                        hr_source_projection,
2634                                    );
2635                                self.infcx.at(&obligation.cause, obligation.param_env).eq_trace(
2636                                    DefineOpaqueTypes::Yes,
2637                                    ToTrace::to_trace(
2638                                        &obligation.cause,
2639                                        hr_target_projection,
2640                                        hr_source_projection,
2641                                    ),
2642                                    target_projection,
2643                                    source_projection,
2644                                )
2645                            })
2646                            .map_err(|_| SelectionError::Unimplemented)?
2647                            .into_obligations(),
2648                    );
2649                }
2650                // Check that b_ty's auto traits are present in a_ty's bounds.
2651                ty::ExistentialPredicate::AutoTrait(def_id) => {
2652                    if !a_auto_traits.contains(&def_id) {
2653                        return Err(SelectionError::Unimplemented);
2654                    }
2655                }
2656            }
2657        }
2658
2659        nested.push(Obligation::with_depth(
2660            tcx,
2661            obligation.cause.clone(),
2662            obligation.recursion_depth + 1,
2663            obligation.param_env,
2664            ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region)),
2665        ));
2666
2667        Ok(Some(nested))
2668    }
2669
2670    /// Normalize `where_clause_trait_ref` and try to match it against
2671    /// `obligation`. If successful, return any predicates that
2672    /// result from the normalization.
2673    fn match_where_clause_trait_ref(
2674        &mut self,
2675        obligation: &PolyTraitObligation<'tcx>,
2676        where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
2677    ) -> Result<PredicateObligations<'tcx>, ()> {
2678        self.match_poly_trait_ref(obligation, where_clause_trait_ref)
2679    }
2680
2681    /// Returns `Ok` if `poly_trait_ref` being true implies that the
2682    /// obligation is satisfied.
2683    #[instrument(skip(self), level = "debug")]
2684    fn match_poly_trait_ref(
2685        &mut self,
2686        obligation: &PolyTraitObligation<'tcx>,
2687        poly_trait_ref: ty::PolyTraitRef<'tcx>,
2688    ) -> Result<PredicateObligations<'tcx>, ()> {
2689        let predicate = self.infcx.enter_forall_and_leak_universe(obligation.predicate);
2690        let trait_ref = self.infcx.instantiate_binder_with_fresh_vars(
2691            obligation.cause.span,
2692            HigherRankedType,
2693            poly_trait_ref,
2694        );
2695        self.infcx
2696            .at(&obligation.cause, obligation.param_env)
2697            .eq(DefineOpaqueTypes::No, predicate.trait_ref, trait_ref)
2698            .map(|InferOk { obligations, .. }| obligations)
2699            .map_err(|_| ())
2700    }
2701
2702    ///////////////////////////////////////////////////////////////////////////
2703    // Miscellany
2704
2705    fn match_fresh_trait_refs(
2706        &self,
2707        previous: ty::PolyTraitPredicate<'tcx>,
2708        current: ty::PolyTraitPredicate<'tcx>,
2709    ) -> bool {
2710        let mut matcher = _match::MatchAgainstFreshVars::new(self.tcx());
2711        matcher.relate(previous, current).is_ok()
2712    }
2713
2714    fn push_stack<'o>(
2715        &mut self,
2716        previous_stack: TraitObligationStackList<'o, 'tcx>,
2717        obligation: &'o PolyTraitObligation<'tcx>,
2718    ) -> TraitObligationStack<'o, 'tcx> {
2719        let fresh_trait_pred = obligation.predicate.fold_with(&mut self.freshener);
2720
2721        let dfn = previous_stack.cache.next_dfn();
2722        let depth = previous_stack.depth() + 1;
2723        TraitObligationStack {
2724            obligation,
2725            fresh_trait_pred,
2726            reached_depth: Cell::new(depth),
2727            previous: previous_stack,
2728            dfn,
2729            depth,
2730        }
2731    }
2732
2733    #[instrument(skip(self), level = "debug")]
2734    fn closure_trait_ref_unnormalized(
2735        &mut self,
2736        self_ty: Ty<'tcx>,
2737        fn_trait_def_id: DefId,
2738    ) -> ty::PolyTraitRef<'tcx> {
2739        let ty::Closure(_, args) = *self_ty.kind() else {
2740            bug!("expected closure, found {self_ty}");
2741        };
2742        let closure_sig = args.as_closure().sig();
2743
2744        closure_trait_ref_and_return_type(
2745            self.tcx(),
2746            fn_trait_def_id,
2747            self_ty,
2748            closure_sig,
2749            util::TupleArgumentsFlag::No,
2750        )
2751        .map_bound(|(trait_ref, _)| trait_ref)
2752    }
2753
2754    /// Returns the obligations that are implied by instantiating an
2755    /// impl or trait. The obligations are instantiated and fully
2756    /// normalized. This is used when confirming an impl or default
2757    /// impl.
2758    #[instrument(level = "debug", skip(self, cause, param_env))]
2759    fn impl_or_trait_obligations(
2760        &mut self,
2761        cause: &ObligationCause<'tcx>,
2762        recursion_depth: usize,
2763        param_env: ty::ParamEnv<'tcx>,
2764        def_id: DefId,              // of impl or trait
2765        args: GenericArgsRef<'tcx>, // for impl or trait
2766        parent_trait_pred: ty::Binder<'tcx, ty::TraitPredicate<'tcx>>,
2767    ) -> PredicateObligations<'tcx> {
2768        let tcx = self.tcx();
2769
2770        // To allow for one-pass evaluation of the nested obligation,
2771        // each predicate must be preceded by the obligations required
2772        // to normalize it.
2773        // for example, if we have:
2774        //    impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
2775        // the impl will have the following predicates:
2776        //    <V as Iterator>::Item = U,
2777        //    U: Iterator, U: Sized,
2778        //    V: Iterator, V: Sized,
2779        //    <U as Iterator>::Item: Copy
2780        // When we instantiate, say, `V => IntoIter<u32>, U => $0`, the last
2781        // obligation will normalize to `<$0 as Iterator>::Item = $1` and
2782        // `$1: Copy`, so we must ensure the obligations are emitted in
2783        // that order.
2784        let predicates = tcx.predicates_of(def_id);
2785        assert_eq!(predicates.parent, None);
2786        let predicates = predicates.instantiate_own(tcx, args);
2787        let mut obligations = PredicateObligations::with_capacity(predicates.len());
2788        for (index, (predicate, span)) in predicates.into_iter().enumerate() {
2789            let cause = if tcx.is_lang_item(parent_trait_pred.def_id(), LangItem::CoerceUnsized) {
2790                cause.clone()
2791            } else {
2792                cause.clone().derived_cause(parent_trait_pred, |derived| {
2793                    ObligationCauseCode::ImplDerived(Box::new(ImplDerivedCause {
2794                        derived,
2795                        impl_or_alias_def_id: def_id,
2796                        impl_def_predicate_index: Some(index),
2797                        span,
2798                    }))
2799                })
2800            };
2801            let clause = normalize_with_depth_to(
2802                self,
2803                param_env,
2804                cause.clone(),
2805                recursion_depth,
2806                predicate,
2807                &mut obligations,
2808            );
2809            obligations.push(Obligation {
2810                cause,
2811                recursion_depth,
2812                param_env,
2813                predicate: clause.as_predicate(),
2814            });
2815        }
2816
2817        // Register any outlives obligations from the trait here, cc #124336.
2818        if matches!(tcx.def_kind(def_id), DefKind::Impl { of_trait: true }) {
2819            for clause in tcx.impl_super_outlives(def_id).iter_instantiated(tcx, args) {
2820                let clause = normalize_with_depth_to(
2821                    self,
2822                    param_env,
2823                    cause.clone(),
2824                    recursion_depth,
2825                    clause,
2826                    &mut obligations,
2827                );
2828                obligations.push(Obligation {
2829                    cause: cause.clone(),
2830                    recursion_depth,
2831                    param_env,
2832                    predicate: clause.as_predicate(),
2833                });
2834            }
2835        }
2836
2837        obligations
2838    }
2839
2840    fn should_stall_coroutine(&self, def_id: DefId) -> bool {
2841        match self.infcx.typing_mode() {
2842            TypingMode::Analysis { defining_opaque_types_and_generators: stalled_generators } => {
2843                def_id.as_local().is_some_and(|def_id| stalled_generators.contains(&def_id))
2844            }
2845            TypingMode::Coherence
2846            | TypingMode::PostAnalysis
2847            | TypingMode::Borrowck { defining_opaque_types: _ }
2848            | TypingMode::PostBorrowckAnalysis { defined_opaque_types: _ } => false,
2849        }
2850    }
2851}
2852
2853impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
2854    fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2855        TraitObligationStackList::with(self)
2856    }
2857
2858    fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
2859        self.previous.cache
2860    }
2861
2862    fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
2863        self.list()
2864    }
2865
2866    /// Indicates that attempting to evaluate this stack entry
2867    /// required accessing something from the stack at depth `reached_depth`.
2868    fn update_reached_depth(&self, reached_depth: usize) {
2869        assert!(
2870            self.depth >= reached_depth,
2871            "invoked `update_reached_depth` with something under this stack: \
2872             self.depth={} reached_depth={}",
2873            self.depth,
2874            reached_depth,
2875        );
2876        debug!(reached_depth, "update_reached_depth");
2877        let mut p = self;
2878        while reached_depth < p.depth {
2879            debug!(?p.fresh_trait_pred, "update_reached_depth: marking as cycle participant");
2880            p.reached_depth.set(p.reached_depth.get().min(reached_depth));
2881            p = p.previous.head.unwrap();
2882        }
2883    }
2884}
2885
2886/// The "provisional evaluation cache" is used to store intermediate cache results
2887/// when solving auto traits. Auto traits are unusual in that they can support
2888/// cycles. So, for example, a "proof tree" like this would be ok:
2889///
2890/// - `Foo<T>: Send` :-
2891///   - `Bar<T>: Send` :-
2892///     - `Foo<T>: Send` -- cycle, but ok
2893///   - `Baz<T>: Send`
2894///
2895/// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
2896/// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
2897/// For non-auto traits, this cycle would be an error, but for auto traits (because
2898/// they are coinductive) it is considered ok.
2899///
2900/// However, there is a complication: at the point where we have
2901/// "proven" `Bar<T>: Send`, we have in fact only proven it
2902/// *provisionally*. In particular, we proved that `Bar<T>: Send`
2903/// *under the assumption* that `Foo<T>: Send`. But what if we later
2904/// find out this assumption is wrong?  Specifically, we could
2905/// encounter some kind of error proving `Baz<T>: Send`. In that case,
2906/// `Bar<T>: Send` didn't turn out to be true.
2907///
2908/// In Issue #60010, we found a bug in rustc where it would cache
2909/// these intermediate results. This was fixed in #60444 by disabling
2910/// *all* caching for things involved in a cycle -- in our example,
2911/// that would mean we don't cache that `Bar<T>: Send`. But this led
2912/// to large slowdowns.
2913///
2914/// Specifically, imagine this scenario, where proving `Baz<T>: Send`
2915/// first requires proving `Bar<T>: Send` (which is true:
2916///
2917/// - `Foo<T>: Send` :-
2918///   - `Bar<T>: Send` :-
2919///     - `Foo<T>: Send` -- cycle, but ok
2920///   - `Baz<T>: Send`
2921///     - `Bar<T>: Send` -- would be nice for this to be a cache hit!
2922///     - `*const T: Send` -- but what if we later encounter an error?
2923///
2924/// The *provisional evaluation cache* resolves this issue. It stores
2925/// cache results that we've proven but which were involved in a cycle
2926/// in some way. We track the minimal stack depth (i.e., the
2927/// farthest from the top of the stack) that we are dependent on.
2928/// The idea is that the cache results within are all valid -- so long as
2929/// none of the nodes in between the current node and the node at that minimum
2930/// depth result in an error (in which case the cached results are just thrown away).
2931///
2932/// During evaluation, we consult this provisional cache and rely on
2933/// it. Accessing a cached value is considered equivalent to accessing
2934/// a result at `reached_depth`, so it marks the *current* solution as
2935/// provisional as well. If an error is encountered, we toss out any
2936/// provisional results added from the subtree that encountered the
2937/// error. When we pop the node at `reached_depth` from the stack, we
2938/// can commit all the things that remain in the provisional cache.
2939struct ProvisionalEvaluationCache<'tcx> {
2940    /// next "depth first number" to issue -- just a counter
2941    dfn: Cell<usize>,
2942
2943    /// Map from cache key to the provisionally evaluated thing.
2944    /// The cache entries contain the result but also the DFN in which they
2945    /// were added. The DFN is used to clear out values on failure.
2946    ///
2947    /// Imagine we have a stack like:
2948    ///
2949    /// - `A B C` and we add a cache for the result of C (DFN 2)
2950    /// - Then we have a stack `A B D` where `D` has DFN 3
2951    /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
2952    /// - `E` generates various cache entries which have cyclic dependencies on `B`
2953    ///   - `A B D E F` and so forth
2954    ///   - the DFN of `F` for example would be 5
2955    /// - then we determine that `E` is in error -- we will then clear
2956    ///   all cache values whose DFN is >= 4 -- in this case, that
2957    ///   means the cached value for `F`.
2958    map: RefCell<FxIndexMap<ty::PolyTraitPredicate<'tcx>, ProvisionalEvaluation>>,
2959
2960    /// The stack of terms that we assume to be well-formed because a `WF(term)` predicate
2961    /// is on the stack above (and because of wellformedness is coinductive).
2962    /// In an "ideal" world, this would share a stack with trait predicates in
2963    /// `TraitObligationStack`. However, trait predicates are *much* hotter than
2964    /// `WellFormed` predicates, and it's very likely that the additional matches
2965    /// will have a perf effect. The value here is the well-formed `GenericArg`
2966    /// and the depth of the trait predicate *above* that well-formed predicate.
2967    wf_args: RefCell<Vec<(ty::Term<'tcx>, usize)>>,
2968}
2969
2970/// A cache value for the provisional cache: contains the depth-first
2971/// number (DFN) and result.
2972#[derive(Copy, Clone, Debug)]
2973struct ProvisionalEvaluation {
2974    from_dfn: usize,
2975    reached_depth: usize,
2976    result: EvaluationResult,
2977}
2978
2979impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
2980    fn default() -> Self {
2981        Self { dfn: Cell::new(0), map: Default::default(), wf_args: Default::default() }
2982    }
2983}
2984
2985impl<'tcx> ProvisionalEvaluationCache<'tcx> {
2986    /// Get the next DFN in sequence (basically a counter).
2987    fn next_dfn(&self) -> usize {
2988        let result = self.dfn.get();
2989        self.dfn.set(result + 1);
2990        result
2991    }
2992
2993    /// Check the provisional cache for any result for
2994    /// `fresh_trait_ref`. If there is a hit, then you must consider
2995    /// it an access to the stack slots at depth
2996    /// `reached_depth` (from the returned value).
2997    fn get_provisional(
2998        &self,
2999        fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
3000    ) -> Option<ProvisionalEvaluation> {
3001        debug!(
3002            ?fresh_trait_pred,
3003            "get_provisional = {:#?}",
3004            self.map.borrow().get(&fresh_trait_pred),
3005        );
3006        Some(*self.map.borrow().get(&fresh_trait_pred)?)
3007    }
3008
3009    /// Insert a provisional result into the cache. The result came
3010    /// from the node with the given DFN. It accessed a minimum depth
3011    /// of `reached_depth` to compute. It evaluated `fresh_trait_pred`
3012    /// and resulted in `result`.
3013    fn insert_provisional(
3014        &self,
3015        from_dfn: usize,
3016        reached_depth: usize,
3017        fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
3018        result: EvaluationResult,
3019    ) {
3020        debug!(?from_dfn, ?fresh_trait_pred, ?result, "insert_provisional");
3021
3022        let mut map = self.map.borrow_mut();
3023
3024        // Subtle: when we complete working on the DFN `from_dfn`, anything
3025        // that remains in the provisional cache must be dependent on some older
3026        // stack entry than `from_dfn`. We have to update their depth with our transitive
3027        // depth in that case or else it would be referring to some popped note.
3028        //
3029        // Example:
3030        // A (reached depth 0)
3031        //   ...
3032        //      B // depth 1 -- reached depth = 0
3033        //          C // depth 2 -- reached depth = 1 (should be 0)
3034        //              B
3035        //          A // depth 0
3036        //   D (reached depth 1)
3037        //      C (cache -- reached depth = 2)
3038        for (_k, v) in &mut *map {
3039            if v.from_dfn >= from_dfn {
3040                v.reached_depth = reached_depth.min(v.reached_depth);
3041            }
3042        }
3043
3044        map.insert(fresh_trait_pred, ProvisionalEvaluation { from_dfn, reached_depth, result });
3045    }
3046
3047    /// Invoked when the node with dfn `dfn` does not get a successful
3048    /// result. This will clear out any provisional cache entries
3049    /// that were added since `dfn` was created. This is because the
3050    /// provisional entries are things which must assume that the
3051    /// things on the stack at the time of their creation succeeded --
3052    /// since the failing node is presently at the top of the stack,
3053    /// these provisional entries must either depend on it or some
3054    /// ancestor of it.
3055    fn on_failure(&self, dfn: usize) {
3056        debug!(?dfn, "on_failure");
3057        self.map.borrow_mut().retain(|key, eval| {
3058            if !eval.from_dfn >= dfn {
3059                debug!("on_failure: removing {:?}", key);
3060                false
3061            } else {
3062                true
3063            }
3064        });
3065    }
3066
3067    /// Invoked when the node at depth `depth` completed without
3068    /// depending on anything higher in the stack (if that completion
3069    /// was a failure, then `on_failure` should have been invoked
3070    /// already).
3071    ///
3072    /// Note that we may still have provisional cache items remaining
3073    /// in the cache when this is done. For example, if there is a
3074    /// cycle:
3075    ///
3076    /// * A depends on...
3077    ///     * B depends on A
3078    ///     * C depends on...
3079    ///         * D depends on C
3080    ///     * ...
3081    ///
3082    /// Then as we complete the C node we will have a provisional cache
3083    /// with results for A, B, C, and D. This method would clear out
3084    /// the C and D results, but leave A and B provisional.
3085    ///
3086    /// This is determined based on the DFN: we remove any provisional
3087    /// results created since `dfn` started (e.g., in our example, dfn
3088    /// would be 2, representing the C node, and hence we would
3089    /// remove the result for D, which has DFN 3, but not the results for
3090    /// A and B, which have DFNs 0 and 1 respectively).
3091    ///
3092    /// Note that we *do not* attempt to cache these cycle participants
3093    /// in the evaluation cache. Doing so would require carefully computing
3094    /// the correct `DepNode` to store in the cache entry:
3095    /// cycle participants may implicitly depend on query results
3096    /// related to other participants in the cycle, due to our logic
3097    /// which examines the evaluation stack.
3098    ///
3099    /// We used to try to perform this caching,
3100    /// but it lead to multiple incremental compilation ICEs
3101    /// (see #92987 and #96319), and was very hard to understand.
3102    /// Fortunately, removing the caching didn't seem to
3103    /// have a performance impact in practice.
3104    fn on_completion(&self, dfn: usize) {
3105        debug!(?dfn, "on_completion");
3106        self.map.borrow_mut().retain(|fresh_trait_pred, eval| {
3107            if eval.from_dfn >= dfn {
3108                debug!(?fresh_trait_pred, ?eval, "on_completion");
3109                return false;
3110            }
3111            true
3112        });
3113    }
3114}
3115
3116#[derive(Copy, Clone)]
3117struct TraitObligationStackList<'o, 'tcx> {
3118    cache: &'o ProvisionalEvaluationCache<'tcx>,
3119    head: Option<&'o TraitObligationStack<'o, 'tcx>>,
3120}
3121
3122impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
3123    fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3124        TraitObligationStackList { cache, head: None }
3125    }
3126
3127    fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3128        TraitObligationStackList { cache: r.cache(), head: Some(r) }
3129    }
3130
3131    fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3132        self.head
3133    }
3134
3135    fn depth(&self) -> usize {
3136        if let Some(head) = self.head { head.depth } else { 0 }
3137    }
3138}
3139
3140impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
3141    type Item = &'o TraitObligationStack<'o, 'tcx>;
3142
3143    fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3144        let o = self.head?;
3145        *self = o.previous;
3146        Some(o)
3147    }
3148}
3149
3150impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
3151    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3152        write!(f, "TraitObligationStack({:?})", self.obligation)
3153    }
3154}
3155
3156pub(crate) enum ProjectionMatchesProjection {
3157    Yes,
3158    Ambiguous,
3159    No,
3160}
3161
3162#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
3163pub(crate) struct AutoImplConstituents<'tcx> {
3164    pub types: Vec<Ty<'tcx>>,
3165    pub assumptions: Vec<ty::ArgOutlivesPredicate<'tcx>>,
3166}