rustc_lint/builtin.rs
1//! Lints in the Rust compiler.
2//!
3//! This contains lints which can feasibly be implemented as their own
4//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5//! definitions of lints that are emitted directly inside the main compiler.
6//!
7//! To add a new lint to rustc, declare it here using [`declare_lint!`].
8//! Then add code to emit the new lint in the appropriate circumstances.
9//!
10//! If you define a new [`EarlyLintPass`], you will also need to add it to the
11//! [`crate::early_lint_methods!`] invocation in `lib.rs`.
12//!
13//! If you define a new [`LateLintPass`], you will also need to add it to the
14//! [`crate::late_lint_methods!`] invocation in `lib.rs`.
15
16use std::fmt::Write;
17
18use ast::token::TokenKind;
19use rustc_abi::BackendRepr;
20use rustc_ast::tokenstream::{TokenStream, TokenTree};
21use rustc_ast::visit::{FnCtxt, FnKind};
22use rustc_ast::{self as ast, *};
23use rustc_ast_pretty::pprust::expr_to_string;
24use rustc_errors::{Applicability, LintDiagnostic};
25use rustc_feature::{AttributeGate, BuiltinAttribute, GateIssue, Stability, deprecated_attributes};
26use rustc_hir as hir;
27use rustc_hir::def::{DefKind, Res};
28use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LocalDefId};
29use rustc_hir::intravisit::FnKind as HirFnKind;
30use rustc_hir::{Body, FnDecl, GenericParamKind, PatKind, PredicateOrigin};
31use rustc_middle::bug;
32use rustc_middle::ty::layout::LayoutOf;
33use rustc_middle::ty::print::with_no_trimmed_paths;
34use rustc_middle::ty::{self, Ty, TyCtxt, TypeVisitableExt, Upcast, VariantDef};
35use rustc_session::lint::FutureIncompatibilityReason;
36// hardwired lints from rustc_lint_defs
37pub use rustc_session::lint::builtin::*;
38use rustc_session::{declare_lint, declare_lint_pass, impl_lint_pass};
39use rustc_span::edition::Edition;
40use rustc_span::source_map::Spanned;
41use rustc_span::{BytePos, Ident, InnerSpan, Span, Symbol, kw, sym};
42use rustc_target::asm::InlineAsmArch;
43use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
44use rustc_trait_selection::traits::misc::type_allowed_to_implement_copy;
45use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
46use rustc_trait_selection::traits::{self};
47
48use crate::errors::BuiltinEllipsisInclusiveRangePatterns;
49use crate::lints::{
50 BuiltinAnonymousParams, BuiltinConstNoMangle, BuiltinDeprecatedAttrLink,
51 BuiltinDeprecatedAttrLinkSuggestion, BuiltinDerefNullptr, BuiltinDoubleNegations,
52 BuiltinDoubleNegationsAddParens, BuiltinEllipsisInclusiveRangePatternsLint,
53 BuiltinExplicitOutlives, BuiltinExplicitOutlivesSuggestion, BuiltinFeatureIssueNote,
54 BuiltinIncompleteFeatures, BuiltinIncompleteFeaturesHelp, BuiltinInternalFeatures,
55 BuiltinKeywordIdents, BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
56 BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
57 BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasBounds,
58 BuiltinUngatedAsyncFnTrackCaller, BuiltinUnpermittedTypeInit, BuiltinUnpermittedTypeInitSub,
59 BuiltinUnreachablePub, BuiltinUnsafe, BuiltinUnstableFeatures, BuiltinUnusedDocComment,
60 BuiltinUnusedDocCommentSub, BuiltinWhileTrue, InvalidAsmLabel,
61};
62use crate::nonstandard_style::{MethodLateContext, method_context};
63use crate::{
64 EarlyContext, EarlyLintPass, LateContext, LateLintPass, Level, LintContext,
65 fluent_generated as fluent,
66};
67declare_lint! {
68 /// The `while_true` lint detects `while true { }`.
69 ///
70 /// ### Example
71 ///
72 /// ```rust,no_run
73 /// while true {
74 ///
75 /// }
76 /// ```
77 ///
78 /// {{produces}}
79 ///
80 /// ### Explanation
81 ///
82 /// `while true` should be replaced with `loop`. A `loop` expression is
83 /// the preferred way to write an infinite loop because it more directly
84 /// expresses the intent of the loop.
85 WHILE_TRUE,
86 Warn,
87 "suggest using `loop { }` instead of `while true { }`"
88}
89
90declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
91
92impl EarlyLintPass for WhileTrue {
93 #[inline]
94 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
95 if let ast::ExprKind::While(cond, _, label) = &e.kind
96 && let ast::ExprKind::Lit(token_lit) = cond.peel_parens().kind
97 && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
98 && !cond.span.from_expansion()
99 {
100 let condition_span = e.span.with_hi(cond.span.hi());
101 let replace = format!(
102 "{}loop",
103 label.map_or_else(String::new, |label| format!("{}: ", label.ident,))
104 );
105 cx.emit_span_lint(
106 WHILE_TRUE,
107 condition_span,
108 BuiltinWhileTrue { suggestion: condition_span, replace },
109 );
110 }
111 }
112}
113
114declare_lint! {
115 /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
116 /// instead of `Struct { x }` in a pattern.
117 ///
118 /// ### Example
119 ///
120 /// ```rust
121 /// struct Point {
122 /// x: i32,
123 /// y: i32,
124 /// }
125 ///
126 ///
127 /// fn main() {
128 /// let p = Point {
129 /// x: 5,
130 /// y: 5,
131 /// };
132 ///
133 /// match p {
134 /// Point { x: x, y: y } => (),
135 /// }
136 /// }
137 /// ```
138 ///
139 /// {{produces}}
140 ///
141 /// ### Explanation
142 ///
143 /// The preferred style is to avoid the repetition of specifying both the
144 /// field name and the binding name if both identifiers are the same.
145 NON_SHORTHAND_FIELD_PATTERNS,
146 Warn,
147 "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
148}
149
150declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
151
152impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
153 fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
154 if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
155 let variant = cx
156 .typeck_results()
157 .pat_ty(pat)
158 .ty_adt_def()
159 .expect("struct pattern type is not an ADT")
160 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
161 for fieldpat in field_pats {
162 if fieldpat.is_shorthand {
163 continue;
164 }
165 if fieldpat.span.from_expansion() {
166 // Don't lint if this is a macro expansion: macro authors
167 // shouldn't have to worry about this kind of style issue
168 // (Issue #49588)
169 continue;
170 }
171 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
172 if cx.tcx.find_field_index(ident, variant)
173 == Some(cx.typeck_results().field_index(fieldpat.hir_id))
174 {
175 cx.emit_span_lint(
176 NON_SHORTHAND_FIELD_PATTERNS,
177 fieldpat.span,
178 BuiltinNonShorthandFieldPatterns {
179 ident,
180 suggestion: fieldpat.span,
181 prefix: binding_annot.prefix_str(),
182 },
183 );
184 }
185 }
186 }
187 }
188 }
189}
190
191declare_lint! {
192 /// The `unsafe_code` lint catches usage of `unsafe` code and other
193 /// potentially unsound constructs like `no_mangle`, `export_name`,
194 /// and `link_section`.
195 ///
196 /// ### Example
197 ///
198 /// ```rust,compile_fail
199 /// #![deny(unsafe_code)]
200 /// fn main() {
201 /// unsafe {
202 ///
203 /// }
204 /// }
205 ///
206 /// #[no_mangle]
207 /// fn func_0() { }
208 ///
209 /// #[export_name = "exported_symbol_name"]
210 /// pub fn name_in_rust() { }
211 ///
212 /// #[no_mangle]
213 /// #[link_section = ".example_section"]
214 /// pub static VAR1: u32 = 1;
215 /// ```
216 ///
217 /// {{produces}}
218 ///
219 /// ### Explanation
220 ///
221 /// This lint is intended to restrict the usage of `unsafe` blocks and other
222 /// constructs (including, but not limited to `no_mangle`, `link_section`
223 /// and `export_name` attributes) wrong usage of which causes undefined
224 /// behavior.
225 UNSAFE_CODE,
226 Allow,
227 "usage of `unsafe` code and other potentially unsound constructs",
228 @eval_always = true
229}
230
231declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
232
233impl UnsafeCode {
234 fn report_unsafe(
235 &self,
236 cx: &EarlyContext<'_>,
237 span: Span,
238 decorate: impl for<'a> LintDiagnostic<'a, ()>,
239 ) {
240 // This comes from a macro that has `#[allow_internal_unsafe]`.
241 if span.allows_unsafe() {
242 return;
243 }
244
245 cx.emit_span_lint(UNSAFE_CODE, span, decorate);
246 }
247}
248
249impl EarlyLintPass for UnsafeCode {
250 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
251 if attr.has_name(sym::allow_internal_unsafe) {
252 self.report_unsafe(cx, attr.span, BuiltinUnsafe::AllowInternalUnsafe);
253 }
254 }
255
256 #[inline]
257 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
258 if let ast::ExprKind::Block(ref blk, _) = e.kind {
259 // Don't warn about generated blocks; that'll just pollute the output.
260 if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
261 self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
262 }
263 }
264 }
265
266 fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
267 match it.kind {
268 ast::ItemKind::Trait(box ast::Trait { safety: ast::Safety::Unsafe(_), .. }) => {
269 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
270 }
271
272 ast::ItemKind::Impl(box ast::Impl { safety: ast::Safety::Unsafe(_), .. }) => {
273 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
274 }
275
276 ast::ItemKind::Fn(..) => {
277 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
278 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
279 }
280
281 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
282 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
283 }
284
285 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
286 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
287 }
288 }
289
290 ast::ItemKind::Static(..) => {
291 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
292 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
293 }
294
295 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
296 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
297 }
298
299 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
300 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
301 }
302 }
303
304 ast::ItemKind::GlobalAsm(..) => {
305 self.report_unsafe(cx, it.span, BuiltinUnsafe::GlobalAsm);
306 }
307
308 ast::ItemKind::ForeignMod(ForeignMod { safety, .. }) => {
309 if let Safety::Unsafe(_) = safety {
310 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeExternBlock);
311 }
312 }
313
314 _ => {}
315 }
316 }
317
318 fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
319 if let ast::AssocItemKind::Fn(..) = it.kind {
320 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
321 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
322 }
323 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
324 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
325 }
326 }
327 }
328
329 fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
330 if let FnKind::Fn(
331 ctxt,
332 _,
333 _,
334 ast::Fn {
335 sig: ast::FnSig { header: ast::FnHeader { safety: ast::Safety::Unsafe(_), .. }, .. },
336 body,
337 ..
338 },
339 ) = fk
340 {
341 let decorator = match ctxt {
342 FnCtxt::Foreign => return,
343 FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
344 FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
345 FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
346 };
347 self.report_unsafe(cx, span, decorator);
348 }
349 }
350}
351
352declare_lint! {
353 /// The `missing_docs` lint detects missing documentation for public items.
354 ///
355 /// ### Example
356 ///
357 /// ```rust,compile_fail
358 /// #![deny(missing_docs)]
359 /// pub fn foo() {}
360 /// ```
361 ///
362 /// {{produces}}
363 ///
364 /// ### Explanation
365 ///
366 /// This lint is intended to ensure that a library is well-documented.
367 /// Items without documentation can be difficult for users to understand
368 /// how to use properly.
369 ///
370 /// This lint is "allow" by default because it can be noisy, and not all
371 /// projects may want to enforce everything to be documented.
372 pub MISSING_DOCS,
373 Allow,
374 "detects missing documentation for public members",
375 report_in_external_macro
376}
377
378#[derive(Default)]
379pub struct MissingDoc;
380
381impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
382
383fn has_doc(attr: &hir::Attribute) -> bool {
384 if attr.is_doc_comment() {
385 return true;
386 }
387
388 if !attr.has_name(sym::doc) {
389 return false;
390 }
391
392 if attr.value_str().is_some() {
393 return true;
394 }
395
396 if let Some(list) = attr.meta_item_list() {
397 for meta in list {
398 if meta.has_name(sym::hidden) {
399 return true;
400 }
401 }
402 }
403
404 false
405}
406
407impl MissingDoc {
408 fn check_missing_docs_attrs(
409 &self,
410 cx: &LateContext<'_>,
411 def_id: LocalDefId,
412 article: &'static str,
413 desc: &'static str,
414 ) {
415 // Only check publicly-visible items, using the result from the privacy pass.
416 // It's an option so the crate root can also use this function (it doesn't
417 // have a `NodeId`).
418 if def_id != CRATE_DEF_ID && !cx.effective_visibilities.is_exported(def_id) {
419 return;
420 }
421
422 let attrs = cx.tcx.hir().attrs(cx.tcx.local_def_id_to_hir_id(def_id));
423 let has_doc = attrs.iter().any(has_doc);
424 if !has_doc {
425 cx.emit_span_lint(
426 MISSING_DOCS,
427 cx.tcx.def_span(def_id),
428 BuiltinMissingDoc { article, desc },
429 );
430 }
431 }
432}
433
434impl<'tcx> LateLintPass<'tcx> for MissingDoc {
435 fn check_crate(&mut self, cx: &LateContext<'_>) {
436 self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
437 }
438
439 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
440 // Previously the Impl and Use types have been excluded from missing docs,
441 // so we will continue to exclude them for compatibility.
442 //
443 // The documentation on `ExternCrate` is not used at the moment so no need to warn for it.
444 if let hir::ItemKind::Impl(..) | hir::ItemKind::Use(..) | hir::ItemKind::ExternCrate(_) =
445 it.kind
446 {
447 return;
448 }
449
450 let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
451 self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
452 }
453
454 fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
455 let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
456
457 self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
458 }
459
460 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
461 let context = method_context(cx, impl_item.owner_id.def_id);
462
463 match context {
464 // If the method is an impl for a trait, don't doc.
465 MethodLateContext::TraitImpl => return,
466 MethodLateContext::TraitAutoImpl => {}
467 // If the method is an impl for an item with docs_hidden, don't doc.
468 MethodLateContext::PlainImpl => {
469 let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id());
470 let impl_ty = cx.tcx.type_of(parent).instantiate_identity();
471 let outerdef = match impl_ty.kind() {
472 ty::Adt(def, _) => Some(def.did()),
473 ty::Foreign(def_id) => Some(*def_id),
474 _ => None,
475 };
476 let is_hidden = match outerdef {
477 Some(id) => cx.tcx.is_doc_hidden(id),
478 None => false,
479 };
480 if is_hidden {
481 return;
482 }
483 }
484 }
485
486 let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
487 self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
488 }
489
490 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
491 let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
492 self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
493 }
494
495 fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
496 if !sf.is_positional() {
497 self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
498 }
499 }
500
501 fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
502 self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
503 }
504}
505
506declare_lint! {
507 /// The `missing_copy_implementations` lint detects potentially-forgotten
508 /// implementations of [`Copy`] for public types.
509 ///
510 /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
511 ///
512 /// ### Example
513 ///
514 /// ```rust,compile_fail
515 /// #![deny(missing_copy_implementations)]
516 /// pub struct Foo {
517 /// pub field: i32
518 /// }
519 /// # fn main() {}
520 /// ```
521 ///
522 /// {{produces}}
523 ///
524 /// ### Explanation
525 ///
526 /// Historically (before 1.0), types were automatically marked as `Copy`
527 /// if possible. This was changed so that it required an explicit opt-in
528 /// by implementing the `Copy` trait. As part of this change, a lint was
529 /// added to alert if a copyable type was not marked `Copy`.
530 ///
531 /// This lint is "allow" by default because this code isn't bad; it is
532 /// common to write newtypes like this specifically so that a `Copy` type
533 /// is no longer `Copy`. `Copy` types can result in unintended copies of
534 /// large data which can impact performance.
535 pub MISSING_COPY_IMPLEMENTATIONS,
536 Allow,
537 "detects potentially-forgotten implementations of `Copy`"
538}
539
540declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
541
542impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
543 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
544 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
545 return;
546 }
547 let (def, ty) = match item.kind {
548 hir::ItemKind::Struct(_, ast_generics) => {
549 if !ast_generics.params.is_empty() {
550 return;
551 }
552 let def = cx.tcx.adt_def(item.owner_id);
553 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
554 }
555 hir::ItemKind::Union(_, ast_generics) => {
556 if !ast_generics.params.is_empty() {
557 return;
558 }
559 let def = cx.tcx.adt_def(item.owner_id);
560 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
561 }
562 hir::ItemKind::Enum(_, ast_generics) => {
563 if !ast_generics.params.is_empty() {
564 return;
565 }
566 let def = cx.tcx.adt_def(item.owner_id);
567 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
568 }
569 _ => return,
570 };
571 if def.has_dtor(cx.tcx) {
572 return;
573 }
574
575 // If the type contains a raw pointer, it may represent something like a handle,
576 // and recommending Copy might be a bad idea.
577 for field in def.all_fields() {
578 let did = field.did;
579 if cx.tcx.type_of(did).instantiate_identity().is_raw_ptr() {
580 return;
581 }
582 }
583 if cx.type_is_copy_modulo_regions(ty) {
584 return;
585 }
586 if type_implements_negative_copy_modulo_regions(cx.tcx, ty, cx.typing_env()) {
587 return;
588 }
589 if def.is_variant_list_non_exhaustive()
590 || def.variants().iter().any(|variant| variant.is_field_list_non_exhaustive())
591 {
592 return;
593 }
594
595 // We shouldn't recommend implementing `Copy` on stateful things,
596 // such as iterators.
597 if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator)
598 && cx
599 .tcx
600 .infer_ctxt()
601 .build(cx.typing_mode())
602 .type_implements_trait(iter_trait, [ty], cx.param_env)
603 .must_apply_modulo_regions()
604 {
605 return;
606 }
607
608 // Default value of clippy::trivially_copy_pass_by_ref
609 const MAX_SIZE: u64 = 256;
610
611 if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
612 if size > MAX_SIZE {
613 return;
614 }
615 }
616
617 if type_allowed_to_implement_copy(
618 cx.tcx,
619 cx.param_env,
620 ty,
621 traits::ObligationCause::misc(item.span, item.owner_id.def_id),
622 hir::Safety::Safe,
623 )
624 .is_ok()
625 {
626 cx.emit_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
627 }
628 }
629}
630
631/// Check whether a `ty` has a negative `Copy` implementation, ignoring outlives constraints.
632fn type_implements_negative_copy_modulo_regions<'tcx>(
633 tcx: TyCtxt<'tcx>,
634 ty: Ty<'tcx>,
635 typing_env: ty::TypingEnv<'tcx>,
636) -> bool {
637 let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
638 let trait_ref = ty::TraitRef::new(tcx, tcx.require_lang_item(hir::LangItem::Copy, None), [ty]);
639 let pred = ty::TraitPredicate { trait_ref, polarity: ty::PredicatePolarity::Negative };
640 let obligation = traits::Obligation {
641 cause: traits::ObligationCause::dummy(),
642 param_env,
643 recursion_depth: 0,
644 predicate: pred.upcast(tcx),
645 };
646 infcx.predicate_must_hold_modulo_regions(&obligation)
647}
648
649declare_lint! {
650 /// The `missing_debug_implementations` lint detects missing
651 /// implementations of [`fmt::Debug`] for public types.
652 ///
653 /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
654 ///
655 /// ### Example
656 ///
657 /// ```rust,compile_fail
658 /// #![deny(missing_debug_implementations)]
659 /// pub struct Foo;
660 /// # fn main() {}
661 /// ```
662 ///
663 /// {{produces}}
664 ///
665 /// ### Explanation
666 ///
667 /// Having a `Debug` implementation on all types can assist with
668 /// debugging, as it provides a convenient way to format and display a
669 /// value. Using the `#[derive(Debug)]` attribute will automatically
670 /// generate a typical implementation, or a custom implementation can be
671 /// added by manually implementing the `Debug` trait.
672 ///
673 /// This lint is "allow" by default because adding `Debug` to all types can
674 /// have a negative impact on compile time and code size. It also requires
675 /// boilerplate to be added to every type, which can be an impediment.
676 MISSING_DEBUG_IMPLEMENTATIONS,
677 Allow,
678 "detects missing implementations of Debug"
679}
680
681#[derive(Default)]
682pub(crate) struct MissingDebugImplementations;
683
684impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
685
686impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
687 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
688 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
689 return;
690 }
691
692 match item.kind {
693 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
694 _ => return,
695 }
696
697 // Avoid listing trait impls if the trait is allowed.
698 let (level, _) = cx.tcx.lint_level_at_node(MISSING_DEBUG_IMPLEMENTATIONS, item.hir_id());
699 if level == Level::Allow {
700 return;
701 }
702
703 let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else { return };
704
705 let has_impl = cx
706 .tcx
707 .non_blanket_impls_for_ty(debug, cx.tcx.type_of(item.owner_id).instantiate_identity())
708 .next()
709 .is_some();
710 if !has_impl {
711 cx.emit_span_lint(
712 MISSING_DEBUG_IMPLEMENTATIONS,
713 item.span,
714 BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
715 );
716 }
717 }
718}
719
720declare_lint! {
721 /// The `anonymous_parameters` lint detects anonymous parameters in trait
722 /// definitions.
723 ///
724 /// ### Example
725 ///
726 /// ```rust,edition2015,compile_fail
727 /// #![deny(anonymous_parameters)]
728 /// // edition 2015
729 /// pub trait Foo {
730 /// fn foo(usize);
731 /// }
732 /// fn main() {}
733 /// ```
734 ///
735 /// {{produces}}
736 ///
737 /// ### Explanation
738 ///
739 /// This syntax is mostly a historical accident, and can be worked around
740 /// quite easily by adding an `_` pattern or a descriptive identifier:
741 ///
742 /// ```rust
743 /// trait Foo {
744 /// fn foo(_: usize);
745 /// }
746 /// ```
747 ///
748 /// This syntax is now a hard error in the 2018 edition. In the 2015
749 /// edition, this lint is "warn" by default. This lint
750 /// enables the [`cargo fix`] tool with the `--edition` flag to
751 /// automatically transition old code from the 2015 edition to 2018. The
752 /// tool will run this lint and automatically apply the
753 /// suggested fix from the compiler (which is to add `_` to each
754 /// parameter). This provides a completely automated way to update old
755 /// code for a new edition. See [issue #41686] for more details.
756 ///
757 /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
758 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
759 pub ANONYMOUS_PARAMETERS,
760 Warn,
761 "detects anonymous parameters",
762 @future_incompatible = FutureIncompatibleInfo {
763 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
764 reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
765 };
766}
767
768declare_lint_pass!(
769 /// Checks for use of anonymous parameters (RFC 1685).
770 AnonymousParameters => [ANONYMOUS_PARAMETERS]
771);
772
773impl EarlyLintPass for AnonymousParameters {
774 fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
775 if cx.sess().edition() != Edition::Edition2015 {
776 // This is a hard error in future editions; avoid linting and erroring
777 return;
778 }
779 if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
780 for arg in sig.decl.inputs.iter() {
781 if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind {
782 if ident.name == kw::Empty {
783 let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
784
785 let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
786 (snip.as_str(), Applicability::MachineApplicable)
787 } else {
788 ("<type>", Applicability::HasPlaceholders)
789 };
790 cx.emit_span_lint(
791 ANONYMOUS_PARAMETERS,
792 arg.pat.span,
793 BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
794 );
795 }
796 }
797 }
798 }
799 }
800}
801
802/// Check for use of attributes which have been deprecated.
803#[derive(Clone)]
804pub struct DeprecatedAttr {
805 // This is not free to compute, so we want to keep it around, rather than
806 // compute it for every attribute.
807 depr_attrs: Vec<&'static BuiltinAttribute>,
808}
809
810impl_lint_pass!(DeprecatedAttr => []);
811
812impl Default for DeprecatedAttr {
813 fn default() -> Self {
814 DeprecatedAttr { depr_attrs: deprecated_attributes() }
815 }
816}
817
818impl EarlyLintPass for DeprecatedAttr {
819 fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
820 for BuiltinAttribute { name, gate, .. } in &self.depr_attrs {
821 if attr.ident().map(|ident| ident.name) == Some(*name) {
822 if let &AttributeGate::Gated(
823 Stability::Deprecated(link, suggestion),
824 name,
825 reason,
826 _,
827 ) = gate
828 {
829 let suggestion = match suggestion {
830 Some(msg) => {
831 BuiltinDeprecatedAttrLinkSuggestion::Msg { suggestion: attr.span, msg }
832 }
833 None => {
834 BuiltinDeprecatedAttrLinkSuggestion::Default { suggestion: attr.span }
835 }
836 };
837 cx.emit_span_lint(
838 DEPRECATED,
839 attr.span,
840 BuiltinDeprecatedAttrLink { name, reason, link, suggestion },
841 );
842 }
843 return;
844 }
845 }
846 }
847}
848
849fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
850 use rustc_ast::token::CommentKind;
851
852 let mut attrs = attrs.iter().peekable();
853
854 // Accumulate a single span for sugared doc comments.
855 let mut sugared_span: Option<Span> = None;
856
857 while let Some(attr) = attrs.next() {
858 let is_doc_comment = attr.is_doc_comment();
859 if is_doc_comment {
860 sugared_span =
861 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
862 }
863
864 if attrs.peek().is_some_and(|next_attr| next_attr.is_doc_comment()) {
865 continue;
866 }
867
868 let span = sugared_span.take().unwrap_or(attr.span);
869
870 if is_doc_comment || attr.has_name(sym::doc) {
871 let sub = match attr.kind {
872 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
873 BuiltinUnusedDocCommentSub::PlainHelp
874 }
875 AttrKind::DocComment(CommentKind::Block, _) => {
876 BuiltinUnusedDocCommentSub::BlockHelp
877 }
878 };
879 cx.emit_span_lint(
880 UNUSED_DOC_COMMENTS,
881 span,
882 BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
883 );
884 }
885 }
886}
887
888impl EarlyLintPass for UnusedDocComment {
889 fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
890 let kind = match stmt.kind {
891 ast::StmtKind::Let(..) => "statements",
892 // Disabled pending discussion in #78306
893 ast::StmtKind::Item(..) => return,
894 // expressions will be reported by `check_expr`.
895 ast::StmtKind::Empty
896 | ast::StmtKind::Semi(_)
897 | ast::StmtKind::Expr(_)
898 | ast::StmtKind::MacCall(_) => return,
899 };
900
901 warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
902 }
903
904 fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
905 if let Some(body) = &arm.body {
906 let arm_span = arm.pat.span.with_hi(body.span.hi());
907 warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
908 }
909 }
910
911 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
912 if let ast::PatKind::Struct(_, _, fields, _) = &pat.kind {
913 for field in fields {
914 warn_if_doc(cx, field.span, "pattern fields", &field.attrs);
915 }
916 }
917 }
918
919 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
920 warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
921
922 if let ExprKind::Struct(s) = &expr.kind {
923 for field in &s.fields {
924 warn_if_doc(cx, field.span, "expression fields", &field.attrs);
925 }
926 }
927 }
928
929 fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
930 warn_if_doc(cx, param.ident.span, "generic parameters", ¶m.attrs);
931 }
932
933 fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
934 warn_if_doc(cx, block.span, "blocks", block.attrs());
935 }
936
937 fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
938 if let ast::ItemKind::ForeignMod(_) = item.kind {
939 warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
940 }
941 }
942}
943
944declare_lint! {
945 /// The `no_mangle_const_items` lint detects any `const` items with the
946 /// [`no_mangle` attribute].
947 ///
948 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
949 ///
950 /// ### Example
951 ///
952 /// ```rust,compile_fail
953 /// #[no_mangle]
954 /// const FOO: i32 = 5;
955 /// ```
956 ///
957 /// {{produces}}
958 ///
959 /// ### Explanation
960 ///
961 /// Constants do not have their symbols exported, and therefore, this
962 /// probably means you meant to use a [`static`], not a [`const`].
963 ///
964 /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
965 /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
966 NO_MANGLE_CONST_ITEMS,
967 Deny,
968 "const items will not have their symbols exported"
969}
970
971declare_lint! {
972 /// The `no_mangle_generic_items` lint detects generic items that must be
973 /// mangled.
974 ///
975 /// ### Example
976 ///
977 /// ```rust
978 /// #[no_mangle]
979 /// fn foo<T>(t: T) {
980 ///
981 /// }
982 /// ```
983 ///
984 /// {{produces}}
985 ///
986 /// ### Explanation
987 ///
988 /// A function with generics must have its symbol mangled to accommodate
989 /// the generic parameter. The [`no_mangle` attribute] has no effect in
990 /// this situation, and should be removed.
991 ///
992 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
993 NO_MANGLE_GENERIC_ITEMS,
994 Warn,
995 "generic items must be mangled"
996}
997
998declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
999
1000impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
1001 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1002 let attrs = cx.tcx.hir().attrs(it.hir_id());
1003 let check_no_mangle_on_generic_fn = |no_mangle_attr: &hir::Attribute,
1004 impl_generics: Option<&hir::Generics<'_>>,
1005 generics: &hir::Generics<'_>,
1006 span| {
1007 for param in
1008 generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten())
1009 {
1010 match param.kind {
1011 GenericParamKind::Lifetime { .. } => {}
1012 GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
1013 cx.emit_span_lint(
1014 NO_MANGLE_GENERIC_ITEMS,
1015 span,
1016 BuiltinNoMangleGeneric { suggestion: no_mangle_attr.span },
1017 );
1018 break;
1019 }
1020 }
1021 }
1022 };
1023 match it.kind {
1024 hir::ItemKind::Fn { generics, .. } => {
1025 if let Some(no_mangle_attr) = attr::find_by_name(attrs, sym::no_mangle) {
1026 check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span);
1027 }
1028 }
1029 hir::ItemKind::Const(..) => {
1030 if attr::contains_name(attrs, sym::no_mangle) {
1031 // account for "pub const" (#45562)
1032 let start = cx
1033 .tcx
1034 .sess
1035 .source_map()
1036 .span_to_snippet(it.span)
1037 .map(|snippet| snippet.find("const").unwrap_or(0))
1038 .unwrap_or(0) as u32;
1039 // `const` is 5 chars
1040 let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1041
1042 // Const items do not refer to a particular location in memory, and therefore
1043 // don't have anything to attach a symbol to
1044 cx.emit_span_lint(
1045 NO_MANGLE_CONST_ITEMS,
1046 it.span,
1047 BuiltinConstNoMangle { suggestion },
1048 );
1049 }
1050 }
1051 hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => {
1052 for it in *items {
1053 if let hir::AssocItemKind::Fn { .. } = it.kind {
1054 if let Some(no_mangle_attr) =
1055 attr::find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle)
1056 {
1057 check_no_mangle_on_generic_fn(
1058 no_mangle_attr,
1059 Some(generics),
1060 cx.tcx.hir().get_generics(it.id.owner_id.def_id).unwrap(),
1061 it.span,
1062 );
1063 }
1064 }
1065 }
1066 }
1067 _ => {}
1068 }
1069 }
1070}
1071
1072declare_lint! {
1073 /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1074 /// T` because it is [undefined behavior].
1075 ///
1076 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1077 ///
1078 /// ### Example
1079 ///
1080 /// ```rust,compile_fail
1081 /// unsafe {
1082 /// let y = std::mem::transmute::<&i32, &mut i32>(&5);
1083 /// }
1084 /// ```
1085 ///
1086 /// {{produces}}
1087 ///
1088 /// ### Explanation
1089 ///
1090 /// Certain assumptions are made about aliasing of data, and this transmute
1091 /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1092 ///
1093 /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1094 MUTABLE_TRANSMUTES,
1095 Deny,
1096 "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1097}
1098
1099declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1100
1101impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1102 fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1103 if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1104 get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1105 {
1106 if from_mutbl < to_mutbl {
1107 cx.emit_span_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
1108 }
1109 }
1110
1111 fn get_transmute_from_to<'tcx>(
1112 cx: &LateContext<'tcx>,
1113 expr: &hir::Expr<'_>,
1114 ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1115 let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1116 cx.qpath_res(qpath, expr.hir_id)
1117 } else {
1118 return None;
1119 };
1120 if let Res::Def(DefKind::Fn, did) = def {
1121 if !def_id_is_transmute(cx, did) {
1122 return None;
1123 }
1124 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1125 let from = sig.inputs().skip_binder()[0];
1126 let to = sig.output().skip_binder();
1127 return Some((from, to));
1128 }
1129 None
1130 }
1131
1132 fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1133 cx.tcx.is_intrinsic(def_id, sym::transmute)
1134 }
1135 }
1136}
1137
1138declare_lint! {
1139 /// The `unstable_features` lint detects uses of `#![feature]`.
1140 ///
1141 /// ### Example
1142 ///
1143 /// ```rust,compile_fail
1144 /// #![deny(unstable_features)]
1145 /// #![feature(test)]
1146 /// ```
1147 ///
1148 /// {{produces}}
1149 ///
1150 /// ### Explanation
1151 ///
1152 /// In larger nightly-based projects which
1153 ///
1154 /// * consist of a multitude of crates where a subset of crates has to compile on
1155 /// stable either unconditionally or depending on a `cfg` flag to for example
1156 /// allow stable users to depend on them,
1157 /// * don't use nightly for experimental features but for, e.g., unstable options only,
1158 ///
1159 /// this lint may come in handy to enforce policies of these kinds.
1160 UNSTABLE_FEATURES,
1161 Allow,
1162 "enabling unstable features"
1163}
1164
1165declare_lint_pass!(
1166 /// Forbids using the `#[feature(...)]` attribute
1167 UnstableFeatures => [UNSTABLE_FEATURES]
1168);
1169
1170impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1171 fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &hir::Attribute) {
1172 if attr.has_name(sym::feature)
1173 && let Some(items) = attr.meta_item_list()
1174 {
1175 for item in items {
1176 cx.emit_span_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
1177 }
1178 }
1179 }
1180}
1181
1182declare_lint! {
1183 /// The `ungated_async_fn_track_caller` lint warns when the
1184 /// `#[track_caller]` attribute is used on an async function
1185 /// without enabling the corresponding unstable feature flag.
1186 ///
1187 /// ### Example
1188 ///
1189 /// ```rust
1190 /// #[track_caller]
1191 /// async fn foo() {}
1192 /// ```
1193 ///
1194 /// {{produces}}
1195 ///
1196 /// ### Explanation
1197 ///
1198 /// The attribute must be used in conjunction with the
1199 /// [`async_fn_track_caller` feature flag]. Otherwise, the `#[track_caller]`
1200 /// annotation will function as a no-op.
1201 ///
1202 /// [`async_fn_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/async-fn-track-caller.html
1203 UNGATED_ASYNC_FN_TRACK_CALLER,
1204 Warn,
1205 "enabling track_caller on an async fn is a no-op unless the async_fn_track_caller feature is enabled"
1206}
1207
1208declare_lint_pass!(
1209 /// Explains corresponding feature flag must be enabled for the `#[track_caller]` attribute to
1210 /// do anything
1211 UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1212);
1213
1214impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1215 fn check_fn(
1216 &mut self,
1217 cx: &LateContext<'_>,
1218 fn_kind: HirFnKind<'_>,
1219 _: &'tcx FnDecl<'_>,
1220 _: &'tcx Body<'_>,
1221 span: Span,
1222 def_id: LocalDefId,
1223 ) {
1224 if fn_kind.asyncness().is_async()
1225 && !cx.tcx.features().async_fn_track_caller()
1226 // Now, check if the function has the `#[track_caller]` attribute
1227 && let Some(attr) = cx.tcx.get_attr(def_id, sym::track_caller)
1228 {
1229 cx.emit_span_lint(
1230 UNGATED_ASYNC_FN_TRACK_CALLER,
1231 attr.span,
1232 BuiltinUngatedAsyncFnTrackCaller { label: span, session: &cx.tcx.sess },
1233 );
1234 }
1235 }
1236}
1237
1238declare_lint! {
1239 /// The `unreachable_pub` lint triggers for `pub` items not reachable from other crates - that
1240 /// means neither directly accessible, nor reexported (with `pub use`), nor leaked through
1241 /// things like return types (which the [`unnameable_types`] lint can detect if desired).
1242 ///
1243 /// ### Example
1244 ///
1245 /// ```rust,compile_fail
1246 /// #![deny(unreachable_pub)]
1247 /// mod foo {
1248 /// pub mod bar {
1249 ///
1250 /// }
1251 /// }
1252 /// ```
1253 ///
1254 /// {{produces}}
1255 ///
1256 /// ### Explanation
1257 ///
1258 /// The `pub` keyword both expresses an intent for an item to be publicly available, and also
1259 /// signals to the compiler to make the item publicly accessible. The intent can only be
1260 /// satisfied, however, if all items which contain this item are *also* publicly accessible.
1261 /// Thus, this lint serves to identify situations where the intent does not match the reality.
1262 ///
1263 /// If you wish the item to be accessible elsewhere within the crate, but not outside it, the
1264 /// `pub(crate)` visibility is recommended to be used instead. This more clearly expresses the
1265 /// intent that the item is only visible within its own crate.
1266 ///
1267 /// This lint is "allow" by default because it will trigger for a large amount of existing Rust code.
1268 /// Eventually it is desired for this to become warn-by-default.
1269 ///
1270 /// [`unnameable_types`]: #unnameable-types
1271 pub UNREACHABLE_PUB,
1272 Allow,
1273 "`pub` items not reachable from crate root"
1274}
1275
1276declare_lint_pass!(
1277 /// Lint for items marked `pub` that aren't reachable from other crates.
1278 UnreachablePub => [UNREACHABLE_PUB]
1279);
1280
1281impl UnreachablePub {
1282 fn perform_lint(
1283 &self,
1284 cx: &LateContext<'_>,
1285 what: &str,
1286 def_id: LocalDefId,
1287 vis_span: Span,
1288 exportable: bool,
1289 ) {
1290 let mut applicability = Applicability::MachineApplicable;
1291 if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1292 {
1293 // prefer suggesting `pub(super)` instead of `pub(crate)` when possible,
1294 // except when `pub(super) == pub(crate)`
1295 let new_vis = if let Some(ty::Visibility::Restricted(restricted_did)) =
1296 cx.effective_visibilities.effective_vis(def_id).map(|effective_vis| {
1297 effective_vis.at_level(rustc_middle::middle::privacy::Level::Reachable)
1298 })
1299 && let parent_parent = cx
1300 .tcx
1301 .parent_module_from_def_id(cx.tcx.parent_module_from_def_id(def_id).into())
1302 && *restricted_did == parent_parent.to_local_def_id()
1303 && !restricted_did.to_def_id().is_crate_root()
1304 {
1305 "pub(super)"
1306 } else {
1307 "pub(crate)"
1308 };
1309
1310 if vis_span.from_expansion() {
1311 applicability = Applicability::MaybeIncorrect;
1312 }
1313 let def_span = cx.tcx.def_span(def_id);
1314 cx.emit_span_lint(
1315 UNREACHABLE_PUB,
1316 def_span,
1317 BuiltinUnreachablePub {
1318 what,
1319 new_vis,
1320 suggestion: (vis_span, applicability),
1321 help: exportable,
1322 },
1323 );
1324 }
1325 }
1326}
1327
1328impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1329 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1330 // Do not warn for fake `use` statements.
1331 if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1332 return;
1333 }
1334 self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
1335 }
1336
1337 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1338 self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
1339 }
1340
1341 fn check_field_def(&mut self, _cx: &LateContext<'_>, _field: &hir::FieldDef<'_>) {
1342 // - If an ADT definition is reported then we don't need to check fields
1343 // (as it would add unnecessary complexity to the source code, the struct
1344 // definition is in the immediate proximity to give the "real" visibility).
1345 // - If an ADT is not reported because it's not `pub` - we don't need to
1346 // check fields.
1347 // - If an ADT is not reported because it's reachable - we also don't need
1348 // to check fields because then they are reachable by construction if they
1349 // are pub.
1350 //
1351 // Therefore in no case we check the fields.
1352 //
1353 // cf. https://github.com/rust-lang/rust/pull/126013#issuecomment-2152839205
1354 // cf. https://github.com/rust-lang/rust/pull/126040#issuecomment-2152944506
1355 }
1356
1357 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1358 // Only lint inherent impl items.
1359 if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() {
1360 self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false);
1361 }
1362 }
1363}
1364
1365declare_lint! {
1366 /// The `type_alias_bounds` lint detects bounds in type aliases.
1367 ///
1368 /// ### Example
1369 ///
1370 /// ```rust
1371 /// type SendVec<T: Send> = Vec<T>;
1372 /// ```
1373 ///
1374 /// {{produces}}
1375 ///
1376 /// ### Explanation
1377 ///
1378 /// Trait and lifetime bounds on generic parameters and in where clauses of
1379 /// type aliases are not checked at usage sites of the type alias. Moreover,
1380 /// they are not thoroughly checked for correctness at their definition site
1381 /// either similar to the aliased type.
1382 ///
1383 /// This is a known limitation of the type checker that may be lifted in a
1384 /// future edition. Permitting such bounds in light of this was unintentional.
1385 ///
1386 /// While these bounds may have secondary effects such as enabling the use of
1387 /// "shorthand" associated type paths[^1] and affecting the default trait
1388 /// object lifetime[^2] of trait object types passed to the type alias, this
1389 /// should not have been allowed until the aforementioned restrictions of the
1390 /// type checker have been lifted.
1391 ///
1392 /// Using such bounds is highly discouraged as they are actively misleading.
1393 ///
1394 /// [^1]: I.e., paths of the form `T::Assoc` where `T` is a type parameter
1395 /// bounded by trait `Trait` which defines an associated type called `Assoc`
1396 /// as opposed to a fully qualified path of the form `<T as Trait>::Assoc`.
1397 /// [^2]: <https://doc.rust-lang.org/reference/lifetime-elision.html#default-trait-object-lifetimes>
1398 TYPE_ALIAS_BOUNDS,
1399 Warn,
1400 "bounds in type aliases are not enforced"
1401}
1402
1403declare_lint_pass!(TypeAliasBounds => [TYPE_ALIAS_BOUNDS]);
1404
1405impl TypeAliasBounds {
1406 pub(crate) fn affects_object_lifetime_defaults(pred: &hir::WherePredicate<'_>) -> bool {
1407 // Bounds of the form `T: 'a` with `T` type param affect object lifetime defaults.
1408 if let hir::WherePredicateKind::BoundPredicate(pred) = pred.kind
1409 && pred.bounds.iter().any(|bound| matches!(bound, hir::GenericBound::Outlives(_)))
1410 && pred.bound_generic_params.is_empty() // indeed, even if absent from the RHS
1411 && pred.bounded_ty.as_generic_param().is_some()
1412 {
1413 return true;
1414 }
1415 false
1416 }
1417}
1418
1419impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1420 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1421 let hir::ItemKind::TyAlias(hir_ty, generics) = item.kind else { return };
1422
1423 // There must not be a where clause.
1424 if generics.predicates.is_empty() {
1425 return;
1426 }
1427
1428 // Bounds of lazy type aliases and TAITs are respected.
1429 if cx.tcx.type_alias_is_lazy(item.owner_id) {
1430 return;
1431 }
1432
1433 // FIXME(generic_const_exprs): Revisit this before stabilization.
1434 // See also `tests/ui/const-generics/generic_const_exprs/type-alias-bounds.rs`.
1435 let ty = cx.tcx.type_of(item.owner_id).instantiate_identity();
1436 if ty.has_type_flags(ty::TypeFlags::HAS_CT_PROJECTION)
1437 && cx.tcx.features().generic_const_exprs()
1438 {
1439 return;
1440 }
1441
1442 // NOTE(inherent_associated_types): While we currently do take some bounds in type
1443 // aliases into consideration during IAT *selection*, we don't perform full use+def
1444 // site wfchecking for such type aliases. Therefore TAB should still trigger.
1445 // See also `tests/ui/associated-inherent-types/type-alias-bounds.rs`.
1446
1447 let mut where_spans = Vec::new();
1448 let mut inline_spans = Vec::new();
1449 let mut inline_sugg = Vec::new();
1450
1451 for p in generics.predicates {
1452 let span = p.span;
1453 if p.kind.in_where_clause() {
1454 where_spans.push(span);
1455 } else {
1456 for b in p.kind.bounds() {
1457 inline_spans.push(b.span());
1458 }
1459 inline_sugg.push((span, String::new()));
1460 }
1461 }
1462
1463 let mut ty = Some(hir_ty);
1464 let enable_feat_help = cx.tcx.sess.is_nightly_build();
1465
1466 if let [.., label_sp] = *where_spans {
1467 cx.emit_span_lint(
1468 TYPE_ALIAS_BOUNDS,
1469 where_spans,
1470 BuiltinTypeAliasBounds {
1471 in_where_clause: true,
1472 label: label_sp,
1473 enable_feat_help,
1474 suggestions: vec![(generics.where_clause_span, String::new())],
1475 preds: generics.predicates,
1476 ty: ty.take(),
1477 },
1478 );
1479 }
1480 if let [.., label_sp] = *inline_spans {
1481 cx.emit_span_lint(
1482 TYPE_ALIAS_BOUNDS,
1483 inline_spans,
1484 BuiltinTypeAliasBounds {
1485 in_where_clause: false,
1486 label: label_sp,
1487 enable_feat_help,
1488 suggestions: inline_sugg,
1489 preds: generics.predicates,
1490 ty,
1491 },
1492 );
1493 }
1494 }
1495}
1496
1497pub(crate) struct ShorthandAssocTyCollector {
1498 pub(crate) qselves: Vec<Span>,
1499}
1500
1501impl hir::intravisit::Visitor<'_> for ShorthandAssocTyCollector {
1502 fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, _: Span) {
1503 // Look for "type-parameter shorthand-associated-types". I.e., paths of the
1504 // form `T::Assoc` with `T` type param. These are reliant on trait bounds.
1505 if let hir::QPath::TypeRelative(qself, _) = qpath
1506 && qself.as_generic_param().is_some()
1507 {
1508 self.qselves.push(qself.span);
1509 }
1510 hir::intravisit::walk_qpath(self, qpath, id)
1511 }
1512}
1513
1514declare_lint! {
1515 /// The `trivial_bounds` lint detects trait bounds that don't depend on
1516 /// any type parameters.
1517 ///
1518 /// ### Example
1519 ///
1520 /// ```rust
1521 /// #![feature(trivial_bounds)]
1522 /// pub struct A where i32: Copy;
1523 /// ```
1524 ///
1525 /// {{produces}}
1526 ///
1527 /// ### Explanation
1528 ///
1529 /// Usually you would not write a trait bound that you know is always
1530 /// true, or never true. However, when using macros, the macro may not
1531 /// know whether or not the constraint would hold or not at the time when
1532 /// generating the code. Currently, the compiler does not alert you if the
1533 /// constraint is always true, and generates an error if it is never true.
1534 /// The `trivial_bounds` feature changes this to be a warning in both
1535 /// cases, giving macros more freedom and flexibility to generate code,
1536 /// while still providing a signal when writing non-macro code that
1537 /// something is amiss.
1538 ///
1539 /// See [RFC 2056] for more details. This feature is currently only
1540 /// available on the nightly channel, see [tracking issue #48214].
1541 ///
1542 /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1543 /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1544 TRIVIAL_BOUNDS,
1545 Warn,
1546 "these bounds don't depend on an type parameters"
1547}
1548
1549declare_lint_pass!(
1550 /// Lint for trait and lifetime bounds that don't depend on type parameters
1551 /// which either do nothing, or stop the item from being used.
1552 TrivialConstraints => [TRIVIAL_BOUNDS]
1553);
1554
1555impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1556 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1557 use rustc_middle::ty::ClauseKind;
1558
1559 if cx.tcx.features().trivial_bounds() {
1560 let predicates = cx.tcx.predicates_of(item.owner_id);
1561 for &(predicate, span) in predicates.predicates {
1562 let predicate_kind_name = match predicate.kind().skip_binder() {
1563 ClauseKind::Trait(..) => "trait",
1564 ClauseKind::TypeOutlives(..) |
1565 ClauseKind::RegionOutlives(..) => "lifetime",
1566
1567 // `ConstArgHasType` is never global as `ct` is always a param
1568 ClauseKind::ConstArgHasType(..)
1569 // Ignore projections, as they can only be global
1570 // if the trait bound is global
1571 | ClauseKind::Projection(..)
1572 // Ignore bounds that a user can't type
1573 | ClauseKind::WellFormed(..)
1574 // FIXME(generic_const_exprs): `ConstEvaluatable` can be written
1575 | ClauseKind::ConstEvaluatable(..)
1576 // Users don't write this directly, only via another trait ref.
1577 | ty::ClauseKind::HostEffect(..) => continue,
1578 };
1579 if predicate.is_global() {
1580 cx.emit_span_lint(
1581 TRIVIAL_BOUNDS,
1582 span,
1583 BuiltinTrivialBounds { predicate_kind_name, predicate },
1584 );
1585 }
1586 }
1587 }
1588 }
1589}
1590
1591declare_lint! {
1592 /// The `double_negations` lint detects expressions of the form `--x`.
1593 ///
1594 /// ### Example
1595 ///
1596 /// ```rust
1597 /// fn main() {
1598 /// let x = 1;
1599 /// let _b = --x;
1600 /// }
1601 /// ```
1602 ///
1603 /// {{produces}}
1604 ///
1605 /// ### Explanation
1606 ///
1607 /// Negating something twice is usually the same as not negating it at all.
1608 /// However, a double negation in Rust can easily be confused with the
1609 /// prefix decrement operator that exists in many languages derived from C.
1610 /// Use `-(-x)` if you really wanted to negate the value twice.
1611 ///
1612 /// To decrement a value, use `x -= 1` instead.
1613 pub DOUBLE_NEGATIONS,
1614 Warn,
1615 "detects expressions of the form `--x`"
1616}
1617
1618declare_lint_pass!(
1619 /// Lint for expressions of the form `--x` that can be confused with C's
1620 /// prefix decrement operator.
1621 DoubleNegations => [DOUBLE_NEGATIONS]
1622);
1623
1624impl EarlyLintPass for DoubleNegations {
1625 #[inline]
1626 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1627 // only lint on the innermost `--` in a chain of `-` operators,
1628 // even if there are 3 or more negations
1629 if let ExprKind::Unary(UnOp::Neg, ref inner) = expr.kind
1630 && let ExprKind::Unary(UnOp::Neg, ref inner2) = inner.kind
1631 && !matches!(inner2.kind, ExprKind::Unary(UnOp::Neg, _))
1632 {
1633 cx.emit_span_lint(
1634 DOUBLE_NEGATIONS,
1635 expr.span,
1636 BuiltinDoubleNegations {
1637 add_parens: BuiltinDoubleNegationsAddParens {
1638 start_span: inner.span.shrink_to_lo(),
1639 end_span: inner.span.shrink_to_hi(),
1640 },
1641 },
1642 );
1643 }
1644 }
1645}
1646
1647declare_lint_pass!(
1648 /// Does nothing as a lint pass, but registers some `Lint`s
1649 /// which are used by other parts of the compiler.
1650 SoftLints => [
1651 WHILE_TRUE,
1652 NON_SHORTHAND_FIELD_PATTERNS,
1653 UNSAFE_CODE,
1654 MISSING_DOCS,
1655 MISSING_COPY_IMPLEMENTATIONS,
1656 MISSING_DEBUG_IMPLEMENTATIONS,
1657 ANONYMOUS_PARAMETERS,
1658 UNUSED_DOC_COMMENTS,
1659 NO_MANGLE_CONST_ITEMS,
1660 NO_MANGLE_GENERIC_ITEMS,
1661 MUTABLE_TRANSMUTES,
1662 UNSTABLE_FEATURES,
1663 UNREACHABLE_PUB,
1664 TYPE_ALIAS_BOUNDS,
1665 TRIVIAL_BOUNDS,
1666 DOUBLE_NEGATIONS
1667 ]
1668);
1669
1670declare_lint! {
1671 /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1672 /// pattern], which is deprecated.
1673 ///
1674 /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1675 ///
1676 /// ### Example
1677 ///
1678 /// ```rust,edition2018
1679 /// let x = 123;
1680 /// match x {
1681 /// 0...100 => {}
1682 /// _ => {}
1683 /// }
1684 /// ```
1685 ///
1686 /// {{produces}}
1687 ///
1688 /// ### Explanation
1689 ///
1690 /// The `...` range pattern syntax was changed to `..=` to avoid potential
1691 /// confusion with the [`..` range expression]. Use the new form instead.
1692 ///
1693 /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1694 pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1695 Warn,
1696 "`...` range patterns are deprecated",
1697 @future_incompatible = FutureIncompatibleInfo {
1698 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1699 reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1700 };
1701}
1702
1703#[derive(Default)]
1704pub struct EllipsisInclusiveRangePatterns {
1705 /// If `Some(_)`, suppress all subsequent pattern
1706 /// warnings for better diagnostics.
1707 node_id: Option<ast::NodeId>,
1708}
1709
1710impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1711
1712impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1713 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1714 if self.node_id.is_some() {
1715 // Don't recursively warn about patterns inside range endpoints.
1716 return;
1717 }
1718
1719 use self::ast::PatKind;
1720 use self::ast::RangeSyntax::DotDotDot;
1721
1722 /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1723 /// corresponding to the ellipsis.
1724 fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1725 match &pat.kind {
1726 PatKind::Range(
1727 a,
1728 Some(b),
1729 Spanned { span, node: RangeEnd::Included(DotDotDot) },
1730 ) => Some((a.as_deref(), b, *span)),
1731 _ => None,
1732 }
1733 }
1734
1735 let (parentheses, endpoints) = match &pat.kind {
1736 PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(subpat)),
1737 _ => (false, matches_ellipsis_pat(pat)),
1738 };
1739
1740 if let Some((start, end, join)) = endpoints {
1741 if parentheses {
1742 self.node_id = Some(pat.id);
1743 let end = expr_to_string(end);
1744 let replace = match start {
1745 Some(start) => format!("&({}..={})", expr_to_string(start), end),
1746 None => format!("&(..={end})"),
1747 };
1748 if join.edition() >= Edition::Edition2021 {
1749 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1750 span: pat.span,
1751 suggestion: pat.span,
1752 replace,
1753 });
1754 } else {
1755 cx.emit_span_lint(
1756 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1757 pat.span,
1758 BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1759 suggestion: pat.span,
1760 replace,
1761 },
1762 );
1763 }
1764 } else {
1765 let replace = "..=";
1766 if join.edition() >= Edition::Edition2021 {
1767 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1768 span: pat.span,
1769 suggestion: join,
1770 replace: replace.to_string(),
1771 });
1772 } else {
1773 cx.emit_span_lint(
1774 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1775 join,
1776 BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1777 suggestion: join,
1778 },
1779 );
1780 }
1781 };
1782 }
1783 }
1784
1785 fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1786 if let Some(node_id) = self.node_id {
1787 if pat.id == node_id {
1788 self.node_id = None
1789 }
1790 }
1791 }
1792}
1793
1794declare_lint! {
1795 /// The `keyword_idents_2018` lint detects edition keywords being used as an
1796 /// identifier.
1797 ///
1798 /// ### Example
1799 ///
1800 /// ```rust,edition2015,compile_fail
1801 /// #![deny(keyword_idents_2018)]
1802 /// // edition 2015
1803 /// fn dyn() {}
1804 /// ```
1805 ///
1806 /// {{produces}}
1807 ///
1808 /// ### Explanation
1809 ///
1810 /// Rust [editions] allow the language to evolve without breaking
1811 /// backwards compatibility. This lint catches code that uses new keywords
1812 /// that are added to the language that are used as identifiers (such as a
1813 /// variable name, function name, etc.). If you switch the compiler to a
1814 /// new edition without updating the code, then it will fail to compile if
1815 /// you are using a new keyword as an identifier.
1816 ///
1817 /// You can manually change the identifiers to a non-keyword, or use a
1818 /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1819 ///
1820 /// This lint solves the problem automatically. It is "allow" by default
1821 /// because the code is perfectly valid in older editions. The [`cargo
1822 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1823 /// and automatically apply the suggested fix from the compiler (which is
1824 /// to use a raw identifier). This provides a completely automated way to
1825 /// update old code for a new edition.
1826 ///
1827 /// [editions]: https://doc.rust-lang.org/edition-guide/
1828 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1829 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1830 pub KEYWORD_IDENTS_2018,
1831 Allow,
1832 "detects edition keywords being used as an identifier",
1833 @future_incompatible = FutureIncompatibleInfo {
1834 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1835 reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1836 };
1837}
1838
1839declare_lint! {
1840 /// The `keyword_idents_2024` lint detects edition keywords being used as an
1841 /// identifier.
1842 ///
1843 /// ### Example
1844 ///
1845 /// ```rust,edition2015,compile_fail
1846 /// #![deny(keyword_idents_2024)]
1847 /// // edition 2015
1848 /// fn gen() {}
1849 /// ```
1850 ///
1851 /// {{produces}}
1852 ///
1853 /// ### Explanation
1854 ///
1855 /// Rust [editions] allow the language to evolve without breaking
1856 /// backwards compatibility. This lint catches code that uses new keywords
1857 /// that are added to the language that are used as identifiers (such as a
1858 /// variable name, function name, etc.). If you switch the compiler to a
1859 /// new edition without updating the code, then it will fail to compile if
1860 /// you are using a new keyword as an identifier.
1861 ///
1862 /// You can manually change the identifiers to a non-keyword, or use a
1863 /// [raw identifier], for example `r#gen`, to transition to a new edition.
1864 ///
1865 /// This lint solves the problem automatically. It is "allow" by default
1866 /// because the code is perfectly valid in older editions. The [`cargo
1867 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1868 /// and automatically apply the suggested fix from the compiler (which is
1869 /// to use a raw identifier). This provides a completely automated way to
1870 /// update old code for a new edition.
1871 ///
1872 /// [editions]: https://doc.rust-lang.org/edition-guide/
1873 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1874 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1875 pub KEYWORD_IDENTS_2024,
1876 Allow,
1877 "detects edition keywords being used as an identifier",
1878 @future_incompatible = FutureIncompatibleInfo {
1879 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
1880 reference: "<https://doc.rust-lang.org/nightly/edition-guide/rust-2024/gen-keyword.html>",
1881 };
1882}
1883
1884declare_lint_pass!(
1885 /// Check for uses of edition keywords used as an identifier.
1886 KeywordIdents => [KEYWORD_IDENTS_2018, KEYWORD_IDENTS_2024]
1887);
1888
1889struct UnderMacro(bool);
1890
1891impl KeywordIdents {
1892 fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: &TokenStream) {
1893 // Check if the preceding token is `$`, because we want to allow `$async`, etc.
1894 let mut prev_dollar = false;
1895 for tt in tokens.iter() {
1896 match tt {
1897 // Only report non-raw idents.
1898 TokenTree::Token(token, _) => {
1899 if let Some((ident, token::IdentIsRaw::No)) = token.ident() {
1900 if !prev_dollar {
1901 self.check_ident_token(cx, UnderMacro(true), ident, "");
1902 }
1903 } else if let Some((ident, token::IdentIsRaw::No)) = token.lifetime() {
1904 self.check_ident_token(
1905 cx,
1906 UnderMacro(true),
1907 ident.without_first_quote(),
1908 "'",
1909 );
1910 } else if token.kind == TokenKind::Dollar {
1911 prev_dollar = true;
1912 continue;
1913 }
1914 }
1915 TokenTree::Delimited(.., tts) => self.check_tokens(cx, tts),
1916 }
1917 prev_dollar = false;
1918 }
1919 }
1920
1921 fn check_ident_token(
1922 &mut self,
1923 cx: &EarlyContext<'_>,
1924 UnderMacro(under_macro): UnderMacro,
1925 ident: Ident,
1926 prefix: &'static str,
1927 ) {
1928 let (lint, edition) = match ident.name {
1929 kw::Async | kw::Await | kw::Try => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1930
1931 // rust-lang/rust#56327: Conservatively do not
1932 // attempt to report occurrences of `dyn` within
1933 // macro definitions or invocations, because `dyn`
1934 // can legitimately occur as a contextual keyword
1935 // in 2015 code denoting its 2018 meaning, and we
1936 // do not want rustfix to inject bugs into working
1937 // code by rewriting such occurrences.
1938 //
1939 // But if we see `dyn` outside of a macro, we know
1940 // its precise role in the parsed AST and thus are
1941 // assured this is truly an attempt to use it as
1942 // an identifier.
1943 kw::Dyn if !under_macro => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1944
1945 kw::Gen => (KEYWORD_IDENTS_2024, Edition::Edition2024),
1946
1947 _ => return,
1948 };
1949
1950 // Don't lint `r#foo`.
1951 if ident.span.edition() >= edition
1952 || cx.sess().psess.raw_identifier_spans.contains(ident.span)
1953 {
1954 return;
1955 }
1956
1957 cx.emit_span_lint(
1958 lint,
1959 ident.span,
1960 BuiltinKeywordIdents { kw: ident, next: edition, suggestion: ident.span, prefix },
1961 );
1962 }
1963}
1964
1965impl EarlyLintPass for KeywordIdents {
1966 fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
1967 self.check_tokens(cx, &mac_def.body.tokens);
1968 }
1969 fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1970 self.check_tokens(cx, &mac.args.tokens);
1971 }
1972 fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: &Ident) {
1973 if ident.name.as_str().starts_with('\'') {
1974 self.check_ident_token(cx, UnderMacro(false), ident.without_first_quote(), "'");
1975 } else {
1976 self.check_ident_token(cx, UnderMacro(false), *ident, "");
1977 }
1978 }
1979}
1980
1981declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1982
1983impl ExplicitOutlivesRequirements {
1984 fn lifetimes_outliving_lifetime<'tcx>(
1985 tcx: TyCtxt<'tcx>,
1986 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1987 item: LocalDefId,
1988 lifetime: LocalDefId,
1989 ) -> Vec<ty::Region<'tcx>> {
1990 let item_generics = tcx.generics_of(item);
1991
1992 inferred_outlives
1993 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1994 ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a {
1995 ty::ReEarlyParam(ebr)
1996 if item_generics.region_param(ebr, tcx).def_id == lifetime.to_def_id() =>
1997 {
1998 Some(b)
1999 }
2000 _ => None,
2001 },
2002 _ => None,
2003 })
2004 .collect()
2005 }
2006
2007 fn lifetimes_outliving_type<'tcx>(
2008 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
2009 index: u32,
2010 ) -> Vec<ty::Region<'tcx>> {
2011 inferred_outlives
2012 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
2013 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
2014 a.is_param(index).then_some(b)
2015 }
2016 _ => None,
2017 })
2018 .collect()
2019 }
2020
2021 fn collect_outlives_bound_spans<'tcx>(
2022 &self,
2023 tcx: TyCtxt<'tcx>,
2024 bounds: &hir::GenericBounds<'_>,
2025 inferred_outlives: &[ty::Region<'tcx>],
2026 predicate_span: Span,
2027 item: DefId,
2028 ) -> Vec<(usize, Span)> {
2029 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
2030
2031 let item_generics = tcx.generics_of(item);
2032
2033 bounds
2034 .iter()
2035 .enumerate()
2036 .filter_map(|(i, bound)| {
2037 let hir::GenericBound::Outlives(lifetime) = bound else {
2038 return None;
2039 };
2040
2041 let is_inferred = match tcx.named_bound_var(lifetime.hir_id) {
2042 Some(ResolvedArg::EarlyBound(def_id)) => inferred_outlives
2043 .iter()
2044 .any(|r| matches!(**r, ty::ReEarlyParam(ebr) if { item_generics.region_param(ebr, tcx).def_id == def_id.to_def_id() })),
2045 _ => false,
2046 };
2047
2048 if !is_inferred {
2049 return None;
2050 }
2051
2052 let span = bound.span().find_ancestor_inside(predicate_span)?;
2053 if span.in_external_macro(tcx.sess.source_map()) {
2054 return None;
2055 }
2056
2057 Some((i, span))
2058 })
2059 .collect()
2060 }
2061
2062 fn consolidate_outlives_bound_spans(
2063 &self,
2064 lo: Span,
2065 bounds: &hir::GenericBounds<'_>,
2066 bound_spans: Vec<(usize, Span)>,
2067 ) -> Vec<Span> {
2068 if bounds.is_empty() {
2069 return Vec::new();
2070 }
2071 if bound_spans.len() == bounds.len() {
2072 let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2073 // If all bounds are inferable, we want to delete the colon, so
2074 // start from just after the parameter (span passed as argument)
2075 vec![lo.to(last_bound_span)]
2076 } else {
2077 let mut merged = Vec::new();
2078 let mut last_merged_i = None;
2079
2080 let mut from_start = true;
2081 for (i, bound_span) in bound_spans {
2082 match last_merged_i {
2083 // If the first bound is inferable, our span should also eat the leading `+`.
2084 None if i == 0 => {
2085 merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2086 last_merged_i = Some(0);
2087 }
2088 // If consecutive bounds are inferable, merge their spans
2089 Some(h) if i == h + 1 => {
2090 if let Some(tail) = merged.last_mut() {
2091 // Also eat the trailing `+` if the first
2092 // more-than-one bound is inferable
2093 let to_span = if from_start && i < bounds.len() {
2094 bounds[i + 1].span().shrink_to_lo()
2095 } else {
2096 bound_span
2097 };
2098 *tail = tail.to(to_span);
2099 last_merged_i = Some(i);
2100 } else {
2101 bug!("another bound-span visited earlier");
2102 }
2103 }
2104 _ => {
2105 // When we find a non-inferable bound, subsequent inferable bounds
2106 // won't be consecutive from the start (and we'll eat the leading
2107 // `+` rather than the trailing one)
2108 from_start = false;
2109 merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2110 last_merged_i = Some(i);
2111 }
2112 }
2113 }
2114 merged
2115 }
2116 }
2117}
2118
2119impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2120 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2121 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
2122
2123 let def_id = item.owner_id.def_id;
2124 if let hir::ItemKind::Struct(_, hir_generics)
2125 | hir::ItemKind::Enum(_, hir_generics)
2126 | hir::ItemKind::Union(_, hir_generics) = item.kind
2127 {
2128 let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2129 if inferred_outlives.is_empty() {
2130 return;
2131 }
2132
2133 let ty_generics = cx.tcx.generics_of(def_id);
2134 let num_where_predicates = hir_generics
2135 .predicates
2136 .iter()
2137 .filter(|predicate| predicate.kind.in_where_clause())
2138 .count();
2139
2140 let mut bound_count = 0;
2141 let mut lint_spans = Vec::new();
2142 let mut where_lint_spans = Vec::new();
2143 let mut dropped_where_predicate_count = 0;
2144 for (i, where_predicate) in hir_generics.predicates.iter().enumerate() {
2145 let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2146 match where_predicate.kind {
2147 hir::WherePredicateKind::RegionPredicate(predicate) => {
2148 if let Some(ResolvedArg::EarlyBound(region_def_id)) =
2149 cx.tcx.named_bound_var(predicate.lifetime.hir_id)
2150 {
2151 (
2152 Self::lifetimes_outliving_lifetime(
2153 cx.tcx,
2154 // don't warn if the inferred span actually came from the predicate we're looking at
2155 // this happens if the type is recursively defined
2156 inferred_outlives.iter().filter(|(_, span)| {
2157 !where_predicate.span.contains(*span)
2158 }),
2159 item.owner_id.def_id,
2160 region_def_id,
2161 ),
2162 &predicate.bounds,
2163 where_predicate.span,
2164 predicate.in_where_clause,
2165 )
2166 } else {
2167 continue;
2168 }
2169 }
2170 hir::WherePredicateKind::BoundPredicate(predicate) => {
2171 // FIXME we can also infer bounds on associated types,
2172 // and should check for them here.
2173 match predicate.bounded_ty.kind {
2174 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2175 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2176 continue;
2177 };
2178 let index = ty_generics.param_def_id_to_index[&def_id];
2179 (
2180 Self::lifetimes_outliving_type(
2181 // don't warn if the inferred span actually came from the predicate we're looking at
2182 // this happens if the type is recursively defined
2183 inferred_outlives.iter().filter(|(_, span)| {
2184 !where_predicate.span.contains(*span)
2185 }),
2186 index,
2187 ),
2188 &predicate.bounds,
2189 where_predicate.span,
2190 predicate.origin == PredicateOrigin::WhereClause,
2191 )
2192 }
2193 _ => {
2194 continue;
2195 }
2196 }
2197 }
2198 _ => continue,
2199 };
2200 if relevant_lifetimes.is_empty() {
2201 continue;
2202 }
2203
2204 let bound_spans = self.collect_outlives_bound_spans(
2205 cx.tcx,
2206 bounds,
2207 &relevant_lifetimes,
2208 predicate_span,
2209 item.owner_id.to_def_id(),
2210 );
2211 bound_count += bound_spans.len();
2212
2213 let drop_predicate = bound_spans.len() == bounds.len();
2214 if drop_predicate && in_where_clause {
2215 dropped_where_predicate_count += 1;
2216 }
2217
2218 if drop_predicate {
2219 if !in_where_clause {
2220 lint_spans.push(predicate_span);
2221 } else if predicate_span.from_expansion() {
2222 // Don't try to extend the span if it comes from a macro expansion.
2223 where_lint_spans.push(predicate_span);
2224 } else if i + 1 < num_where_predicates {
2225 // If all the bounds on a predicate were inferable and there are
2226 // further predicates, we want to eat the trailing comma.
2227 let next_predicate_span = hir_generics.predicates[i + 1].span;
2228 if next_predicate_span.from_expansion() {
2229 where_lint_spans.push(predicate_span);
2230 } else {
2231 where_lint_spans
2232 .push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2233 }
2234 } else {
2235 // Eat the optional trailing comma after the last predicate.
2236 let where_span = hir_generics.where_clause_span;
2237 if where_span.from_expansion() {
2238 where_lint_spans.push(predicate_span);
2239 } else {
2240 where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi()));
2241 }
2242 }
2243 } else {
2244 where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2245 predicate_span.shrink_to_lo(),
2246 bounds,
2247 bound_spans,
2248 ));
2249 }
2250 }
2251
2252 // If all predicates in where clause are inferable, drop the entire clause
2253 // (including the `where`)
2254 if hir_generics.has_where_clause_predicates
2255 && dropped_where_predicate_count == num_where_predicates
2256 {
2257 let where_span = hir_generics.where_clause_span;
2258 // Extend the where clause back to the closing `>` of the
2259 // generics, except for tuple struct, which have the `where`
2260 // after the fields of the struct.
2261 let full_where_span =
2262 if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
2263 where_span
2264 } else {
2265 hir_generics.span.shrink_to_hi().to(where_span)
2266 };
2267
2268 // Due to macro expansions, the `full_where_span` might not actually contain all
2269 // predicates.
2270 if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2271 lint_spans.push(full_where_span);
2272 } else {
2273 lint_spans.extend(where_lint_spans);
2274 }
2275 } else {
2276 lint_spans.extend(where_lint_spans);
2277 }
2278
2279 if !lint_spans.is_empty() {
2280 // Do not automatically delete outlives requirements from macros.
2281 let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2282 {
2283 Applicability::MachineApplicable
2284 } else {
2285 Applicability::MaybeIncorrect
2286 };
2287
2288 // Due to macros, there might be several predicates with the same span
2289 // and we only want to suggest removing them once.
2290 lint_spans.sort_unstable();
2291 lint_spans.dedup();
2292
2293 cx.emit_span_lint(
2294 EXPLICIT_OUTLIVES_REQUIREMENTS,
2295 lint_spans.clone(),
2296 BuiltinExplicitOutlives {
2297 count: bound_count,
2298 suggestion: BuiltinExplicitOutlivesSuggestion {
2299 spans: lint_spans,
2300 applicability,
2301 },
2302 },
2303 );
2304 }
2305 }
2306 }
2307}
2308
2309declare_lint! {
2310 /// The `incomplete_features` lint detects unstable features enabled with
2311 /// the [`feature` attribute] that may function improperly in some or all
2312 /// cases.
2313 ///
2314 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2315 ///
2316 /// ### Example
2317 ///
2318 /// ```rust
2319 /// #![feature(generic_const_exprs)]
2320 /// ```
2321 ///
2322 /// {{produces}}
2323 ///
2324 /// ### Explanation
2325 ///
2326 /// Although it is encouraged for people to experiment with unstable
2327 /// features, some of them are known to be incomplete or faulty. This lint
2328 /// is a signal that the feature has not yet been finished, and you may
2329 /// experience problems with it.
2330 pub INCOMPLETE_FEATURES,
2331 Warn,
2332 "incomplete features that may function improperly in some or all cases"
2333}
2334
2335declare_lint! {
2336 /// The `internal_features` lint detects unstable features enabled with
2337 /// the [`feature` attribute] that are internal to the compiler or standard
2338 /// library.
2339 ///
2340 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2341 ///
2342 /// ### Example
2343 ///
2344 /// ```rust
2345 /// #![feature(rustc_attrs)]
2346 /// ```
2347 ///
2348 /// {{produces}}
2349 ///
2350 /// ### Explanation
2351 ///
2352 /// These features are an implementation detail of the compiler and standard
2353 /// library and are not supposed to be used in user code.
2354 pub INTERNAL_FEATURES,
2355 Warn,
2356 "internal features are not supposed to be used"
2357}
2358
2359declare_lint_pass!(
2360 /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/unstable.rs`.
2361 IncompleteInternalFeatures => [INCOMPLETE_FEATURES, INTERNAL_FEATURES]
2362);
2363
2364impl EarlyLintPass for IncompleteInternalFeatures {
2365 fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2366 let features = cx.builder.features();
2367 let lang_features =
2368 features.enabled_lang_features().iter().map(|feat| (feat.gate_name, feat.attr_sp));
2369 let lib_features =
2370 features.enabled_lib_features().iter().map(|feat| (feat.gate_name, feat.attr_sp));
2371
2372 lang_features
2373 .chain(lib_features)
2374 .filter(|(name, _)| features.incomplete(*name) || features.internal(*name))
2375 .for_each(|(name, span)| {
2376 if features.incomplete(name) {
2377 let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2378 .map(|n| BuiltinFeatureIssueNote { n });
2379 let help =
2380 HAS_MIN_FEATURES.contains(&name).then_some(BuiltinIncompleteFeaturesHelp);
2381
2382 cx.emit_span_lint(
2383 INCOMPLETE_FEATURES,
2384 span,
2385 BuiltinIncompleteFeatures { name, note, help },
2386 );
2387 } else {
2388 cx.emit_span_lint(INTERNAL_FEATURES, span, BuiltinInternalFeatures { name });
2389 }
2390 });
2391 }
2392}
2393
2394const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2395
2396declare_lint! {
2397 /// The `invalid_value` lint detects creating a value that is not valid,
2398 /// such as a null reference.
2399 ///
2400 /// ### Example
2401 ///
2402 /// ```rust,no_run
2403 /// # #![allow(unused)]
2404 /// unsafe {
2405 /// let x: &'static i32 = std::mem::zeroed();
2406 /// }
2407 /// ```
2408 ///
2409 /// {{produces}}
2410 ///
2411 /// ### Explanation
2412 ///
2413 /// In some situations the compiler can detect that the code is creating
2414 /// an invalid value, which should be avoided.
2415 ///
2416 /// In particular, this lint will check for improper use of
2417 /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2418 /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2419 /// lint should provide extra information to indicate what the problem is
2420 /// and a possible solution.
2421 ///
2422 /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2423 /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2424 /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2425 /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2426 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2427 pub INVALID_VALUE,
2428 Warn,
2429 "an invalid value is being created (such as a null reference)"
2430}
2431
2432declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2433
2434/// Information about why a type cannot be initialized this way.
2435pub struct InitError {
2436 pub(crate) message: String,
2437 /// Spans from struct fields and similar that can be obtained from just the type.
2438 pub(crate) span: Option<Span>,
2439 /// Used to report a trace through adts.
2440 pub(crate) nested: Option<Box<InitError>>,
2441}
2442impl InitError {
2443 fn spanned(self, span: Span) -> InitError {
2444 Self { span: Some(span), ..self }
2445 }
2446
2447 fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2448 assert!(self.nested.is_none());
2449 Self { nested: nested.into().map(Box::new), ..self }
2450 }
2451}
2452
2453impl<'a> From<&'a str> for InitError {
2454 fn from(s: &'a str) -> Self {
2455 s.to_owned().into()
2456 }
2457}
2458impl From<String> for InitError {
2459 fn from(message: String) -> Self {
2460 Self { message, span: None, nested: None }
2461 }
2462}
2463
2464impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2465 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2466 #[derive(Debug, Copy, Clone, PartialEq)]
2467 enum InitKind {
2468 Zeroed,
2469 Uninit,
2470 }
2471
2472 /// Test if this constant is all-0.
2473 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2474 use hir::ExprKind::*;
2475 use rustc_ast::LitKind::*;
2476 match &expr.kind {
2477 Lit(lit) => {
2478 if let Int(i, _) = lit.node {
2479 i == 0
2480 } else {
2481 false
2482 }
2483 }
2484 Tup(tup) => tup.iter().all(is_zero),
2485 _ => false,
2486 }
2487 }
2488
2489 /// Determine if this expression is a "dangerous initialization".
2490 fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2491 if let hir::ExprKind::Call(path_expr, args) = expr.kind {
2492 // Find calls to `mem::{uninitialized,zeroed}` methods.
2493 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2494 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2495 match cx.tcx.get_diagnostic_name(def_id) {
2496 Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2497 Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2498 Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2499 _ => {}
2500 }
2501 }
2502 } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2503 // Find problematic calls to `MaybeUninit::assume_init`.
2504 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2505 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2506 // This is a call to *some* method named `assume_init`.
2507 // See if the `self` parameter is one of the dangerous constructors.
2508 if let hir::ExprKind::Call(path_expr, _) = receiver.kind {
2509 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
2510 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2511 match cx.tcx.get_diagnostic_name(def_id) {
2512 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2513 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2514 _ => {}
2515 }
2516 }
2517 }
2518 }
2519 }
2520
2521 None
2522 }
2523
2524 fn variant_find_init_error<'tcx>(
2525 cx: &LateContext<'tcx>,
2526 ty: Ty<'tcx>,
2527 variant: &VariantDef,
2528 args: ty::GenericArgsRef<'tcx>,
2529 descr: &str,
2530 init: InitKind,
2531 ) -> Option<InitError> {
2532 let mut field_err = variant.fields.iter().find_map(|field| {
2533 ty_find_init_error(cx, field.ty(cx.tcx, args), init).map(|mut err| {
2534 if !field.did.is_local() {
2535 err
2536 } else if err.span.is_none() {
2537 err.span = Some(cx.tcx.def_span(field.did));
2538 write!(&mut err.message, " (in this {descr})").unwrap();
2539 err
2540 } else {
2541 InitError::from(format!("in this {descr}"))
2542 .spanned(cx.tcx.def_span(field.did))
2543 .nested(err)
2544 }
2545 })
2546 });
2547
2548 // Check if this ADT has a constrained layout (like `NonNull` and friends).
2549 if let Ok(layout) = cx.tcx.layout_of(cx.typing_env().as_query_input(ty)) {
2550 if let BackendRepr::Scalar(scalar) | BackendRepr::ScalarPair(scalar, _) =
2551 &layout.backend_repr
2552 {
2553 let range = scalar.valid_range(cx);
2554 let msg = if !range.contains(0) {
2555 "must be non-null"
2556 } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2557 // Prefer reporting on the fields over the entire struct for uninit,
2558 // as the information bubbles out and it may be unclear why the type can't
2559 // be null from just its outside signature.
2560
2561 "must be initialized inside its custom valid range"
2562 } else {
2563 return field_err;
2564 };
2565 if let Some(field_err) = &mut field_err {
2566 // Most of the time, if the field error is the same as the struct error,
2567 // the struct error only happens because of the field error.
2568 if field_err.message.contains(msg) {
2569 field_err.message = format!("because {}", field_err.message);
2570 }
2571 }
2572 return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2573 }
2574 }
2575 field_err
2576 }
2577
2578 /// Return `Some` only if we are sure this type does *not*
2579 /// allow zero initialization.
2580 fn ty_find_init_error<'tcx>(
2581 cx: &LateContext<'tcx>,
2582 ty: Ty<'tcx>,
2583 init: InitKind,
2584 ) -> Option<InitError> {
2585 let ty = cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty).unwrap_or(ty);
2586
2587 use rustc_type_ir::TyKind::*;
2588 match ty.kind() {
2589 // Primitive types that don't like 0 as a value.
2590 Ref(..) => Some("references must be non-null".into()),
2591 Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2592 FnPtr(..) => Some("function pointers must be non-null".into()),
2593 Never => Some("the `!` type has no valid value".into()),
2594 RawPtr(ty, _) if matches!(ty.kind(), Dynamic(..)) =>
2595 // raw ptr to dyn Trait
2596 {
2597 Some("the vtable of a wide raw pointer must be non-null".into())
2598 }
2599 // Primitive types with other constraints.
2600 Bool if init == InitKind::Uninit => {
2601 Some("booleans must be either `true` or `false`".into())
2602 }
2603 Char if init == InitKind::Uninit => {
2604 Some("characters must be a valid Unicode codepoint".into())
2605 }
2606 Int(_) | Uint(_) if init == InitKind::Uninit => {
2607 Some("integers must be initialized".into())
2608 }
2609 Float(_) if init == InitKind::Uninit => Some("floats must be initialized".into()),
2610 RawPtr(_, _) if init == InitKind::Uninit => {
2611 Some("raw pointers must be initialized".into())
2612 }
2613 // Recurse and checks for some compound types. (but not unions)
2614 Adt(adt_def, args) if !adt_def.is_union() => {
2615 // Handle structs.
2616 if adt_def.is_struct() {
2617 return variant_find_init_error(
2618 cx,
2619 ty,
2620 adt_def.non_enum_variant(),
2621 args,
2622 "struct field",
2623 init,
2624 );
2625 }
2626 // And now, enums.
2627 let span = cx.tcx.def_span(adt_def.did());
2628 let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2629 let definitely_inhabited = match variant
2630 .inhabited_predicate(cx.tcx, *adt_def)
2631 .instantiate(cx.tcx, args)
2632 .apply_any_module(cx.tcx, cx.typing_env())
2633 {
2634 // Entirely skip uninhabited variants.
2635 Some(false) => return None,
2636 // Forward the others, but remember which ones are definitely inhabited.
2637 Some(true) => true,
2638 None => false,
2639 };
2640 Some((variant, definitely_inhabited))
2641 });
2642 let Some(first_variant) = potential_variants.next() else {
2643 return Some(
2644 InitError::from("enums with no inhabited variants have no valid value")
2645 .spanned(span),
2646 );
2647 };
2648 // So we have at least one potentially inhabited variant. Might we have two?
2649 let Some(second_variant) = potential_variants.next() else {
2650 // There is only one potentially inhabited variant. So we can recursively
2651 // check that variant!
2652 return variant_find_init_error(
2653 cx,
2654 ty,
2655 first_variant.0,
2656 args,
2657 "field of the only potentially inhabited enum variant",
2658 init,
2659 );
2660 };
2661 // So we have at least two potentially inhabited variants. If we can prove that
2662 // we have at least two *definitely* inhabited variants, then we have a tag and
2663 // hence leaving this uninit is definitely disallowed. (Leaving it zeroed could
2664 // be okay, depending on which variant is encoded as zero tag.)
2665 if init == InitKind::Uninit {
2666 let definitely_inhabited = (first_variant.1 as usize)
2667 + (second_variant.1 as usize)
2668 + potential_variants
2669 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2670 .count();
2671 if definitely_inhabited > 1 {
2672 return Some(InitError::from(
2673 "enums with multiple inhabited variants have to be initialized to a variant",
2674 ).spanned(span));
2675 }
2676 }
2677 // We couldn't find anything wrong here.
2678 None
2679 }
2680 Tuple(..) => {
2681 // Proceed recursively, check all fields.
2682 ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2683 }
2684 Array(ty, len) => {
2685 if matches!(len.try_to_target_usize(cx.tcx), Some(v) if v > 0) {
2686 // Array length known at array non-empty -- recurse.
2687 ty_find_init_error(cx, *ty, init)
2688 } else {
2689 // Empty array or size unknown.
2690 None
2691 }
2692 }
2693 // Conservative fallback.
2694 _ => None,
2695 }
2696 }
2697
2698 if let Some(init) = is_dangerous_init(cx, expr) {
2699 // This conjures an instance of a type out of nothing,
2700 // using zeroed or uninitialized memory.
2701 // We are extremely conservative with what we warn about.
2702 let conjured_ty = cx.typeck_results().expr_ty(expr);
2703 if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) {
2704 let msg = match init {
2705 InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed,
2706 InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_uninit,
2707 };
2708 let sub = BuiltinUnpermittedTypeInitSub { err };
2709 cx.emit_span_lint(
2710 INVALID_VALUE,
2711 expr.span,
2712 BuiltinUnpermittedTypeInit {
2713 msg,
2714 ty: conjured_ty,
2715 label: expr.span,
2716 sub,
2717 tcx: cx.tcx,
2718 },
2719 );
2720 }
2721 }
2722 }
2723}
2724
2725declare_lint! {
2726 /// The `deref_nullptr` lint detects when a null pointer is dereferenced,
2727 /// which causes [undefined behavior].
2728 ///
2729 /// ### Example
2730 ///
2731 /// ```rust,no_run
2732 /// # #![allow(unused)]
2733 /// use std::ptr;
2734 /// unsafe {
2735 /// let x = &*ptr::null::<i32>();
2736 /// let x = ptr::addr_of!(*ptr::null::<i32>());
2737 /// let x = *(0 as *const i32);
2738 /// }
2739 /// ```
2740 ///
2741 /// {{produces}}
2742 ///
2743 /// ### Explanation
2744 ///
2745 /// Dereferencing a null pointer causes [undefined behavior] if it is accessed
2746 /// (loaded from or stored to).
2747 ///
2748 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2749 pub DEREF_NULLPTR,
2750 Warn,
2751 "detects when an null pointer is dereferenced"
2752}
2753
2754declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
2755
2756impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
2757 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2758 /// test if expression is a null ptr
2759 fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
2760 match &expr.kind {
2761 hir::ExprKind::Cast(expr, ty) => {
2762 if let hir::TyKind::Ptr(_) = ty.kind {
2763 return is_zero(expr) || is_null_ptr(cx, expr);
2764 }
2765 }
2766 // check for call to `core::ptr::null` or `core::ptr::null_mut`
2767 hir::ExprKind::Call(path, _) => {
2768 if let hir::ExprKind::Path(ref qpath) = path.kind {
2769 if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() {
2770 return matches!(
2771 cx.tcx.get_diagnostic_name(def_id),
2772 Some(sym::ptr_null | sym::ptr_null_mut)
2773 );
2774 }
2775 }
2776 }
2777 _ => {}
2778 }
2779 false
2780 }
2781
2782 /// test if expression is the literal `0`
2783 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2784 match &expr.kind {
2785 hir::ExprKind::Lit(lit) => {
2786 if let LitKind::Int(a, _) = lit.node {
2787 return a == 0;
2788 }
2789 }
2790 _ => {}
2791 }
2792 false
2793 }
2794
2795 if let hir::ExprKind::Unary(hir::UnOp::Deref, expr_deref) = expr.kind
2796 && is_null_ptr(cx, expr_deref)
2797 {
2798 if let hir::Node::Expr(hir::Expr {
2799 kind: hir::ExprKind::AddrOf(hir::BorrowKind::Raw, ..),
2800 ..
2801 }) = cx.tcx.parent_hir_node(expr.hir_id)
2802 {
2803 // `&raw *NULL` is ok.
2804 } else {
2805 cx.emit_span_lint(
2806 DEREF_NULLPTR,
2807 expr.span,
2808 BuiltinDerefNullptr { label: expr.span },
2809 );
2810 }
2811 }
2812 }
2813}
2814
2815declare_lint! {
2816 /// The `named_asm_labels` lint detects the use of named labels in the
2817 /// inline `asm!` macro.
2818 ///
2819 /// ### Example
2820 ///
2821 /// ```rust,compile_fail
2822 /// # #![feature(asm_experimental_arch)]
2823 /// use std::arch::asm;
2824 ///
2825 /// fn main() {
2826 /// unsafe {
2827 /// asm!("foo: bar");
2828 /// }
2829 /// }
2830 /// ```
2831 ///
2832 /// {{produces}}
2833 ///
2834 /// ### Explanation
2835 ///
2836 /// LLVM is allowed to duplicate inline assembly blocks for any
2837 /// reason, for example when it is in a function that gets inlined. Because
2838 /// of this, GNU assembler [local labels] *must* be used instead of labels
2839 /// with a name. Using named labels might cause assembler or linker errors.
2840 ///
2841 /// See the explanation in [Rust By Example] for more details.
2842 ///
2843 /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
2844 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2845 pub NAMED_ASM_LABELS,
2846 Deny,
2847 "named labels in inline assembly",
2848}
2849
2850declare_lint! {
2851 /// The `binary_asm_labels` lint detects the use of numeric labels containing only binary
2852 /// digits in the inline `asm!` macro.
2853 ///
2854 /// ### Example
2855 ///
2856 /// ```rust,ignore (fails on non-x86_64)
2857 /// #![cfg(target_arch = "x86_64")]
2858 ///
2859 /// use std::arch::asm;
2860 ///
2861 /// fn main() {
2862 /// unsafe {
2863 /// asm!("0: jmp 0b");
2864 /// }
2865 /// }
2866 /// ```
2867 ///
2868 /// This will produce:
2869 ///
2870 /// ```text
2871 /// error: avoid using labels containing only the digits `0` and `1` in inline assembly
2872 /// --> <source>:7:15
2873 /// |
2874 /// 7 | asm!("0: jmp 0b");
2875 /// | ^ use a different label that doesn't start with `0` or `1`
2876 /// |
2877 /// = help: start numbering with `2` instead
2878 /// = note: an LLVM bug makes these labels ambiguous with a binary literal number on x86
2879 /// = note: see <https://github.com/llvm/llvm-project/issues/99547> for more information
2880 /// = note: `#[deny(binary_asm_labels)]` on by default
2881 /// ```
2882 ///
2883 /// ### Explanation
2884 ///
2885 /// An [LLVM bug] causes this code to fail to compile because it interprets the `0b` as a binary
2886 /// literal instead of a reference to the previous local label `0`. To work around this bug,
2887 /// don't use labels that could be confused with a binary literal.
2888 ///
2889 /// This behavior is platform-specific to x86 and x86-64.
2890 ///
2891 /// See the explanation in [Rust By Example] for more details.
2892 ///
2893 /// [LLVM bug]: https://github.com/llvm/llvm-project/issues/99547
2894 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2895 pub BINARY_ASM_LABELS,
2896 Deny,
2897 "labels in inline assembly containing only 0 or 1 digits",
2898}
2899
2900declare_lint_pass!(AsmLabels => [NAMED_ASM_LABELS, BINARY_ASM_LABELS]);
2901
2902#[derive(Debug, Clone, Copy, PartialEq, Eq)]
2903enum AsmLabelKind {
2904 Named,
2905 FormatArg,
2906 Binary,
2907}
2908
2909impl<'tcx> LateLintPass<'tcx> for AsmLabels {
2910 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
2911 if let hir::Expr {
2912 kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, options, .. }),
2913 ..
2914 } = expr
2915 {
2916 // asm with `options(raw)` does not do replacement with `{` and `}`.
2917 let raw = options.contains(InlineAsmOptions::RAW);
2918
2919 for (template_sym, template_snippet, template_span) in template_strs.iter() {
2920 let template_str = template_sym.as_str();
2921 let find_label_span = |needle: &str| -> Option<Span> {
2922 if let Some(template_snippet) = template_snippet {
2923 let snippet = template_snippet.as_str();
2924 if let Some(pos) = snippet.find(needle) {
2925 let end = pos
2926 + snippet[pos..]
2927 .find(|c| c == ':')
2928 .unwrap_or(snippet[pos..].len() - 1);
2929 let inner = InnerSpan::new(pos, end);
2930 return Some(template_span.from_inner(inner));
2931 }
2932 }
2933
2934 None
2935 };
2936
2937 // diagnostics are emitted per-template, so this is created here as opposed to the outer loop
2938 let mut spans = Vec::new();
2939
2940 // A semicolon might not actually be specified as a separator for all targets, but
2941 // it seems like LLVM accepts it always.
2942 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
2943 for statement in statements {
2944 // If there's a comment, trim it from the statement
2945 let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
2946
2947 // In this loop, if there is ever a non-label, no labels can come after it.
2948 let mut start_idx = 0;
2949 'label_loop: for (idx, _) in statement.match_indices(':') {
2950 let possible_label = statement[start_idx..idx].trim();
2951 let mut chars = possible_label.chars();
2952
2953 let Some(start) = chars.next() else {
2954 // Empty string means a leading ':' in this section, which is not a
2955 // label.
2956 break 'label_loop;
2957 };
2958
2959 // Whether a { bracket has been seen and its } hasn't been found yet.
2960 let mut in_bracket = false;
2961 let mut label_kind = AsmLabelKind::Named;
2962
2963 // A label can also start with a format arg, if it's not a raw asm block.
2964 if !raw && start == '{' {
2965 in_bracket = true;
2966 label_kind = AsmLabelKind::FormatArg;
2967 } else if matches!(start, '0' | '1') {
2968 // Binary labels have only the characters `0` or `1`.
2969 label_kind = AsmLabelKind::Binary;
2970 } else if !(start.is_ascii_alphabetic() || matches!(start, '.' | '_')) {
2971 // Named labels start with ASCII letters, `.` or `_`.
2972 // anything else is not a label
2973 break 'label_loop;
2974 }
2975
2976 for c in chars {
2977 // Inside a template format arg, any character is permitted for the
2978 // puproses of label detection because we assume that it can be
2979 // replaced with some other valid label string later. `options(raw)`
2980 // asm blocks cannot have format args, so they are excluded from this
2981 // special case.
2982 if !raw && in_bracket {
2983 if c == '{' {
2984 // Nested brackets are not allowed in format args, this cannot
2985 // be a label.
2986 break 'label_loop;
2987 }
2988
2989 if c == '}' {
2990 // The end of the format arg.
2991 in_bracket = false;
2992 }
2993 } else if !raw && c == '{' {
2994 // Start of a format arg.
2995 in_bracket = true;
2996 label_kind = AsmLabelKind::FormatArg;
2997 } else {
2998 let can_continue = match label_kind {
2999 // Format arg labels are considered to be named labels for the purposes
3000 // of continuing outside of their {} pair.
3001 AsmLabelKind::Named | AsmLabelKind::FormatArg => {
3002 c.is_ascii_alphanumeric() || matches!(c, '_' | '$')
3003 }
3004 AsmLabelKind::Binary => matches!(c, '0' | '1'),
3005 };
3006
3007 if !can_continue {
3008 // The potential label had an invalid character inside it, it
3009 // cannot be a label.
3010 break 'label_loop;
3011 }
3012 }
3013 }
3014
3015 // If all characters passed the label checks, this is a label.
3016 spans.push((find_label_span(possible_label), label_kind));
3017 start_idx = idx + 1;
3018 }
3019 }
3020
3021 for (span, label_kind) in spans {
3022 let missing_precise_span = span.is_none();
3023 let span = span.unwrap_or(*template_span);
3024 match label_kind {
3025 AsmLabelKind::Named => {
3026 cx.emit_span_lint(
3027 NAMED_ASM_LABELS,
3028 span,
3029 InvalidAsmLabel::Named { missing_precise_span },
3030 );
3031 }
3032 AsmLabelKind::FormatArg => {
3033 cx.emit_span_lint(
3034 NAMED_ASM_LABELS,
3035 span,
3036 InvalidAsmLabel::FormatArg { missing_precise_span },
3037 );
3038 }
3039 // the binary asm issue only occurs when using intel syntax on x86 targets
3040 AsmLabelKind::Binary
3041 if !options.contains(InlineAsmOptions::ATT_SYNTAX)
3042 && matches!(
3043 cx.tcx.sess.asm_arch,
3044 Some(InlineAsmArch::X86 | InlineAsmArch::X86_64) | None
3045 ) =>
3046 {
3047 cx.emit_span_lint(
3048 BINARY_ASM_LABELS,
3049 span,
3050 InvalidAsmLabel::Binary { missing_precise_span, span },
3051 )
3052 }
3053 // No lint on anything other than x86
3054 AsmLabelKind::Binary => (),
3055 };
3056 }
3057 }
3058 }
3059 }
3060}
3061
3062declare_lint! {
3063 /// The `special_module_name` lint detects module
3064 /// declarations for files that have a special meaning.
3065 ///
3066 /// ### Example
3067 ///
3068 /// ```rust,compile_fail
3069 /// mod lib;
3070 ///
3071 /// fn main() {
3072 /// lib::run();
3073 /// }
3074 /// ```
3075 ///
3076 /// {{produces}}
3077 ///
3078 /// ### Explanation
3079 ///
3080 /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3081 /// library or binary crate, so declaring them as modules
3082 /// will lead to miscompilation of the crate unless configured
3083 /// explicitly.
3084 ///
3085 /// To access a library from a binary target within the same crate,
3086 /// use `your_crate_name::` as the path instead of `lib::`:
3087 ///
3088 /// ```rust,compile_fail
3089 /// // bar/src/lib.rs
3090 /// fn run() {
3091 /// // ...
3092 /// }
3093 ///
3094 /// // bar/src/main.rs
3095 /// fn main() {
3096 /// bar::run();
3097 /// }
3098 /// ```
3099 ///
3100 /// Binary targets cannot be used as libraries and so declaring
3101 /// one as a module is not allowed.
3102 pub SPECIAL_MODULE_NAME,
3103 Warn,
3104 "module declarations for files with a special meaning",
3105}
3106
3107declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3108
3109impl EarlyLintPass for SpecialModuleName {
3110 fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3111 for item in &krate.items {
3112 if let ast::ItemKind::Mod(
3113 _,
3114 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _, _),
3115 ) = item.kind
3116 {
3117 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3118 continue;
3119 }
3120
3121 match item.ident.name.as_str() {
3122 "lib" => cx.emit_span_lint(
3123 SPECIAL_MODULE_NAME,
3124 item.span,
3125 BuiltinSpecialModuleNameUsed::Lib,
3126 ),
3127 "main" => cx.emit_span_lint(
3128 SPECIAL_MODULE_NAME,
3129 item.span,
3130 BuiltinSpecialModuleNameUsed::Main,
3131 ),
3132 _ => continue,
3133 }
3134 }
3135 }
3136 }
3137}