rustc_lint/
builtin.rs

1//! Lints in the Rust compiler.
2//!
3//! This contains lints which can feasibly be implemented as their own
4//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5//! definitions of lints that are emitted directly inside the main compiler.
6//!
7//! To add a new lint to rustc, declare it here using [`declare_lint!`].
8//! Then add code to emit the new lint in the appropriate circumstances.
9//!
10//! If you define a new [`EarlyLintPass`], you will also need to add it to the
11//! [`crate::early_lint_methods!`] invocation in `lib.rs`.
12//!
13//! If you define a new [`LateLintPass`], you will also need to add it to the
14//! [`crate::late_lint_methods!`] invocation in `lib.rs`.
15
16use std::fmt::Write;
17
18use ast::token::TokenKind;
19use rustc_abi::BackendRepr;
20use rustc_ast::tokenstream::{TokenStream, TokenTree};
21use rustc_ast::visit::{FnCtxt, FnKind};
22use rustc_ast::{self as ast, *};
23use rustc_ast_pretty::pprust::expr_to_string;
24use rustc_attr_parsing::AttributeParser;
25use rustc_errors::{Applicability, LintDiagnostic};
26use rustc_feature::GateIssue;
27use rustc_hir as hir;
28use rustc_hir::attrs::AttributeKind;
29use rustc_hir::def::{DefKind, Res};
30use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LocalDefId};
31use rustc_hir::intravisit::FnKind as HirFnKind;
32use rustc_hir::{Body, FnDecl, ImplItemImplKind, PatKind, PredicateOrigin, find_attr};
33use rustc_middle::bug;
34use rustc_middle::lint::LevelAndSource;
35use rustc_middle::ty::layout::LayoutOf;
36use rustc_middle::ty::print::with_no_trimmed_paths;
37use rustc_middle::ty::{self, AssocContainer, Ty, TyCtxt, TypeVisitableExt, Upcast, VariantDef};
38use rustc_session::lint::FutureIncompatibilityReason;
39// hardwired lints from rustc_lint_defs
40pub use rustc_session::lint::builtin::*;
41use rustc_session::{declare_lint, declare_lint_pass, impl_lint_pass};
42use rustc_span::edition::Edition;
43use rustc_span::source_map::Spanned;
44use rustc_span::{DUMMY_SP, Ident, InnerSpan, Span, Symbol, kw, sym};
45use rustc_target::asm::InlineAsmArch;
46use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
47use rustc_trait_selection::traits::misc::type_allowed_to_implement_copy;
48use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
49use rustc_trait_selection::traits::{self};
50
51use crate::errors::BuiltinEllipsisInclusiveRangePatterns;
52use crate::lints::{
53    BuiltinAnonymousParams, BuiltinConstNoMangle, BuiltinDerefNullptr, BuiltinDoubleNegations,
54    BuiltinDoubleNegationsAddParens, BuiltinEllipsisInclusiveRangePatternsLint,
55    BuiltinExplicitOutlives, BuiltinExplicitOutlivesSuggestion, BuiltinFeatureIssueNote,
56    BuiltinIncompleteFeatures, BuiltinIncompleteFeaturesHelp, BuiltinInternalFeatures,
57    BuiltinKeywordIdents, BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
58    BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
59    BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasBounds,
60    BuiltinUngatedAsyncFnTrackCaller, BuiltinUnpermittedTypeInit, BuiltinUnpermittedTypeInitSub,
61    BuiltinUnreachablePub, BuiltinUnsafe, BuiltinUnstableFeatures, BuiltinUnusedDocComment,
62    BuiltinUnusedDocCommentSub, BuiltinWhileTrue, InvalidAsmLabel,
63};
64use crate::{
65    EarlyContext, EarlyLintPass, LateContext, LateLintPass, Level, LintContext,
66    fluent_generated as fluent,
67};
68declare_lint! {
69    /// The `while_true` lint detects `while true { }`.
70    ///
71    /// ### Example
72    ///
73    /// ```rust,no_run
74    /// while true {
75    ///
76    /// }
77    /// ```
78    ///
79    /// {{produces}}
80    ///
81    /// ### Explanation
82    ///
83    /// `while true` should be replaced with `loop`. A `loop` expression is
84    /// the preferred way to write an infinite loop because it more directly
85    /// expresses the intent of the loop.
86    WHILE_TRUE,
87    Warn,
88    "suggest using `loop { }` instead of `while true { }`"
89}
90
91declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
92
93impl EarlyLintPass for WhileTrue {
94    #[inline]
95    fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
96        if let ast::ExprKind::While(cond, _, label) = &e.kind
97            && let ast::ExprKind::Lit(token_lit) = cond.peel_parens().kind
98            && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
99            && !cond.span.from_expansion()
100        {
101            let condition_span = e.span.with_hi(cond.span.hi());
102            let replace = format!(
103                "{}loop",
104                label.map_or_else(String::new, |label| format!("{}: ", label.ident,))
105            );
106            cx.emit_span_lint(
107                WHILE_TRUE,
108                condition_span,
109                BuiltinWhileTrue { suggestion: condition_span, replace },
110            );
111        }
112    }
113}
114
115declare_lint! {
116    /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
117    /// instead of `Struct { x }` in a pattern.
118    ///
119    /// ### Example
120    ///
121    /// ```rust
122    /// struct Point {
123    ///     x: i32,
124    ///     y: i32,
125    /// }
126    ///
127    ///
128    /// fn main() {
129    ///     let p = Point {
130    ///         x: 5,
131    ///         y: 5,
132    ///     };
133    ///
134    ///     match p {
135    ///         Point { x: x, y: y } => (),
136    ///     }
137    /// }
138    /// ```
139    ///
140    /// {{produces}}
141    ///
142    /// ### Explanation
143    ///
144    /// The preferred style is to avoid the repetition of specifying both the
145    /// field name and the binding name if both identifiers are the same.
146    NON_SHORTHAND_FIELD_PATTERNS,
147    Warn,
148    "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
149}
150
151declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
152
153impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
154    fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
155        // The result shouldn't be tainted, otherwise it will cause ICE.
156        if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind
157            && cx.typeck_results().tainted_by_errors.is_none()
158        {
159            let variant = cx
160                .typeck_results()
161                .pat_ty(pat)
162                .ty_adt_def()
163                .expect("struct pattern type is not an ADT")
164                .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
165            for fieldpat in field_pats {
166                if fieldpat.is_shorthand {
167                    continue;
168                }
169                if fieldpat.span.from_expansion() {
170                    // Don't lint if this is a macro expansion: macro authors
171                    // shouldn't have to worry about this kind of style issue
172                    // (Issue #49588)
173                    continue;
174                }
175                if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
176                    if cx.tcx.find_field_index(ident, variant)
177                        == Some(cx.typeck_results().field_index(fieldpat.hir_id))
178                    {
179                        cx.emit_span_lint(
180                            NON_SHORTHAND_FIELD_PATTERNS,
181                            fieldpat.span,
182                            BuiltinNonShorthandFieldPatterns {
183                                ident,
184                                suggestion: fieldpat.span,
185                                prefix: binding_annot.prefix_str(),
186                            },
187                        );
188                    }
189                }
190            }
191        }
192    }
193}
194
195declare_lint! {
196    /// The `unsafe_code` lint catches usage of `unsafe` code and other
197    /// potentially unsound constructs like `no_mangle`, `export_name`,
198    /// and `link_section`.
199    ///
200    /// ### Example
201    ///
202    /// ```rust,compile_fail
203    /// #![deny(unsafe_code)]
204    /// fn main() {
205    ///     unsafe {
206    ///
207    ///     }
208    /// }
209    ///
210    /// #[no_mangle]
211    /// fn func_0() { }
212    ///
213    /// #[export_name = "exported_symbol_name"]
214    /// pub fn name_in_rust() { }
215    ///
216    /// #[no_mangle]
217    /// #[link_section = ".example_section"]
218    /// pub static VAR1: u32 = 1;
219    /// ```
220    ///
221    /// {{produces}}
222    ///
223    /// ### Explanation
224    ///
225    /// This lint is intended to restrict the usage of `unsafe` blocks and other
226    /// constructs (including, but not limited to `no_mangle`, `link_section`
227    /// and `export_name` attributes) wrong usage of which causes undefined
228    /// behavior.
229    UNSAFE_CODE,
230    Allow,
231    "usage of `unsafe` code and other potentially unsound constructs",
232    @eval_always = true
233}
234
235declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
236
237impl UnsafeCode {
238    fn report_unsafe(
239        &self,
240        cx: &EarlyContext<'_>,
241        span: Span,
242        decorate: impl for<'a> LintDiagnostic<'a, ()>,
243    ) {
244        // This comes from a macro that has `#[allow_internal_unsafe]`.
245        if span.allows_unsafe() {
246            return;
247        }
248
249        cx.emit_span_lint(UNSAFE_CODE, span, decorate);
250    }
251}
252
253impl EarlyLintPass for UnsafeCode {
254    #[inline]
255    fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
256        if let ast::ExprKind::Block(ref blk, _) = e.kind {
257            // Don't warn about generated blocks; that'll just pollute the output.
258            if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
259                self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
260            }
261        }
262    }
263
264    fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
265        match it.kind {
266            ast::ItemKind::Trait(box ast::Trait { safety: ast::Safety::Unsafe(_), .. }) => {
267                self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
268            }
269
270            ast::ItemKind::Impl(ast::Impl {
271                of_trait: Some(box ast::TraitImplHeader { safety: ast::Safety::Unsafe(_), .. }),
272                ..
273            }) => {
274                self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
275            }
276
277            ast::ItemKind::Fn(..) => {
278                if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
279                    self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
280                }
281
282                if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
283                    self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
284                }
285
286                if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
287                    self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
288                }
289            }
290
291            ast::ItemKind::Static(..) => {
292                if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
293                    self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
294                }
295
296                if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
297                    self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
298                }
299
300                if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
301                    self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
302                }
303            }
304
305            ast::ItemKind::GlobalAsm(..) => {
306                self.report_unsafe(cx, it.span, BuiltinUnsafe::GlobalAsm);
307            }
308
309            ast::ItemKind::ForeignMod(ForeignMod { safety, .. }) => {
310                if let Safety::Unsafe(_) = safety {
311                    self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeExternBlock);
312                }
313            }
314
315            ast::ItemKind::MacroDef(..) => {
316                if let Some(hir::Attribute::Parsed(AttributeKind::AllowInternalUnsafe(span))) =
317                    AttributeParser::parse_limited(
318                        cx.builder.sess(),
319                        &it.attrs,
320                        sym::allow_internal_unsafe,
321                        it.span,
322                        DUMMY_NODE_ID,
323                        Some(cx.builder.features()),
324                    )
325                {
326                    self.report_unsafe(cx, span, BuiltinUnsafe::AllowInternalUnsafe);
327                }
328            }
329
330            _ => {}
331        }
332    }
333
334    fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
335        if let ast::AssocItemKind::Fn(..) = it.kind {
336            if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
337                self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
338            }
339            if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
340                self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
341            }
342        }
343    }
344
345    fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
346        if let FnKind::Fn(
347            ctxt,
348            _,
349            ast::Fn {
350                sig: ast::FnSig { header: ast::FnHeader { safety: ast::Safety::Unsafe(_), .. }, .. },
351                body,
352                ..
353            },
354        ) = fk
355        {
356            let decorator = match ctxt {
357                FnCtxt::Foreign => return,
358                FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
359                FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
360                FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
361            };
362            self.report_unsafe(cx, span, decorator);
363        }
364    }
365}
366
367declare_lint! {
368    /// The `missing_docs` lint detects missing documentation for public items.
369    ///
370    /// ### Example
371    ///
372    /// ```rust,compile_fail
373    /// #![deny(missing_docs)]
374    /// pub fn foo() {}
375    /// ```
376    ///
377    /// {{produces}}
378    ///
379    /// ### Explanation
380    ///
381    /// This lint is intended to ensure that a library is well-documented.
382    /// Items without documentation can be difficult for users to understand
383    /// how to use properly.
384    ///
385    /// This lint is "allow" by default because it can be noisy, and not all
386    /// projects may want to enforce everything to be documented.
387    pub MISSING_DOCS,
388    Allow,
389    "detects missing documentation for public members",
390    report_in_external_macro
391}
392
393#[derive(Default)]
394pub struct MissingDoc;
395
396impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
397
398fn has_doc(attr: &hir::Attribute) -> bool {
399    if attr.is_doc_comment().is_some() {
400        return true;
401    }
402
403    if !attr.has_name(sym::doc) {
404        return false;
405    }
406
407    if attr.value_str().is_some() {
408        return true;
409    }
410
411    if let Some(list) = attr.meta_item_list() {
412        for meta in list {
413            if meta.has_name(sym::hidden) {
414                return true;
415            }
416        }
417    }
418
419    false
420}
421
422impl MissingDoc {
423    fn check_missing_docs_attrs(
424        &self,
425        cx: &LateContext<'_>,
426        def_id: LocalDefId,
427        article: &'static str,
428        desc: &'static str,
429    ) {
430        // Only check publicly-visible items, using the result from the privacy pass.
431        // It's an option so the crate root can also use this function (it doesn't
432        // have a `NodeId`).
433        if def_id != CRATE_DEF_ID && !cx.effective_visibilities.is_exported(def_id) {
434            return;
435        }
436
437        let attrs = cx.tcx.hir_attrs(cx.tcx.local_def_id_to_hir_id(def_id));
438        let has_doc = attrs.iter().any(has_doc);
439        if !has_doc {
440            cx.emit_span_lint(
441                MISSING_DOCS,
442                cx.tcx.def_span(def_id),
443                BuiltinMissingDoc { article, desc },
444            );
445        }
446    }
447}
448
449impl<'tcx> LateLintPass<'tcx> for MissingDoc {
450    fn check_crate(&mut self, cx: &LateContext<'_>) {
451        self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
452    }
453
454    fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
455        // Previously the Impl and Use types have been excluded from missing docs,
456        // so we will continue to exclude them for compatibility.
457        //
458        // The documentation on `ExternCrate` is not used at the moment so no need to warn for it.
459        if let hir::ItemKind::Impl(..) | hir::ItemKind::Use(..) | hir::ItemKind::ExternCrate(..) =
460            it.kind
461        {
462            return;
463        }
464
465        let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
466        self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
467    }
468
469    fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
470        let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
471
472        self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
473    }
474
475    fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
476        let container = cx.tcx.associated_item(impl_item.owner_id.def_id).container;
477
478        match container {
479            // If the method is an impl for a trait, don't doc.
480            AssocContainer::TraitImpl(_) => return,
481            AssocContainer::Trait => {}
482            // If the method is an impl for an item with docs_hidden, don't doc.
483            AssocContainer::InherentImpl => {
484                let parent = cx.tcx.hir_get_parent_item(impl_item.hir_id());
485                let impl_ty = cx.tcx.type_of(parent).instantiate_identity();
486                let outerdef = match impl_ty.kind() {
487                    ty::Adt(def, _) => Some(def.did()),
488                    ty::Foreign(def_id) => Some(*def_id),
489                    _ => None,
490                };
491                let is_hidden = match outerdef {
492                    Some(id) => cx.tcx.is_doc_hidden(id),
493                    None => false,
494                };
495                if is_hidden {
496                    return;
497                }
498            }
499        }
500
501        let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
502        self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
503    }
504
505    fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
506        let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
507        self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
508    }
509
510    fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
511        if !sf.is_positional() {
512            self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
513        }
514    }
515
516    fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
517        self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
518    }
519}
520
521declare_lint! {
522    /// The `missing_copy_implementations` lint detects potentially-forgotten
523    /// implementations of [`Copy`] for public types.
524    ///
525    /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
526    ///
527    /// ### Example
528    ///
529    /// ```rust,compile_fail
530    /// #![deny(missing_copy_implementations)]
531    /// pub struct Foo {
532    ///     pub field: i32
533    /// }
534    /// # fn main() {}
535    /// ```
536    ///
537    /// {{produces}}
538    ///
539    /// ### Explanation
540    ///
541    /// Historically (before 1.0), types were automatically marked as `Copy`
542    /// if possible. This was changed so that it required an explicit opt-in
543    /// by implementing the `Copy` trait. As part of this change, a lint was
544    /// added to alert if a copyable type was not marked `Copy`.
545    ///
546    /// This lint is "allow" by default because this code isn't bad; it is
547    /// common to write newtypes like this specifically so that a `Copy` type
548    /// is no longer `Copy`. `Copy` types can result in unintended copies of
549    /// large data which can impact performance.
550    pub MISSING_COPY_IMPLEMENTATIONS,
551    Allow,
552    "detects potentially-forgotten implementations of `Copy`"
553}
554
555declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
556
557impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
558    fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
559        if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
560            return;
561        }
562        let (def, ty) = match item.kind {
563            hir::ItemKind::Struct(_, generics, _) => {
564                if !generics.params.is_empty() {
565                    return;
566                }
567                let def = cx.tcx.adt_def(item.owner_id);
568                (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
569            }
570            hir::ItemKind::Union(_, generics, _) => {
571                if !generics.params.is_empty() {
572                    return;
573                }
574                let def = cx.tcx.adt_def(item.owner_id);
575                (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
576            }
577            hir::ItemKind::Enum(_, generics, _) => {
578                if !generics.params.is_empty() {
579                    return;
580                }
581                let def = cx.tcx.adt_def(item.owner_id);
582                (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
583            }
584            _ => return,
585        };
586        if def.has_dtor(cx.tcx) {
587            return;
588        }
589
590        // If the type contains a raw pointer, it may represent something like a handle,
591        // and recommending Copy might be a bad idea.
592        for field in def.all_fields() {
593            let did = field.did;
594            if cx.tcx.type_of(did).instantiate_identity().is_raw_ptr() {
595                return;
596            }
597        }
598        if cx.type_is_copy_modulo_regions(ty) {
599            return;
600        }
601        if type_implements_negative_copy_modulo_regions(cx.tcx, ty, cx.typing_env()) {
602            return;
603        }
604        if def.is_variant_list_non_exhaustive()
605            || def.variants().iter().any(|variant| variant.is_field_list_non_exhaustive())
606        {
607            return;
608        }
609
610        // We shouldn't recommend implementing `Copy` on stateful things,
611        // such as iterators.
612        if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator)
613            && cx
614                .tcx
615                .infer_ctxt()
616                .build(cx.typing_mode())
617                .type_implements_trait(iter_trait, [ty], cx.param_env)
618                .must_apply_modulo_regions()
619        {
620            return;
621        }
622
623        // Default value of clippy::trivially_copy_pass_by_ref
624        const MAX_SIZE: u64 = 256;
625
626        if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
627            if size > MAX_SIZE {
628                return;
629            }
630        }
631
632        if type_allowed_to_implement_copy(
633            cx.tcx,
634            cx.param_env,
635            ty,
636            traits::ObligationCause::misc(item.span, item.owner_id.def_id),
637            hir::Safety::Safe,
638        )
639        .is_ok()
640        {
641            cx.emit_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
642        }
643    }
644}
645
646/// Check whether a `ty` has a negative `Copy` implementation, ignoring outlives constraints.
647fn type_implements_negative_copy_modulo_regions<'tcx>(
648    tcx: TyCtxt<'tcx>,
649    ty: Ty<'tcx>,
650    typing_env: ty::TypingEnv<'tcx>,
651) -> bool {
652    let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
653    let trait_ref =
654        ty::TraitRef::new(tcx, tcx.require_lang_item(hir::LangItem::Copy, DUMMY_SP), [ty]);
655    let pred = ty::TraitPredicate { trait_ref, polarity: ty::PredicatePolarity::Negative };
656    let obligation = traits::Obligation {
657        cause: traits::ObligationCause::dummy(),
658        param_env,
659        recursion_depth: 0,
660        predicate: pred.upcast(tcx),
661    };
662    infcx.predicate_must_hold_modulo_regions(&obligation)
663}
664
665declare_lint! {
666    /// The `missing_debug_implementations` lint detects missing
667    /// implementations of [`fmt::Debug`] for public types.
668    ///
669    /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
670    ///
671    /// ### Example
672    ///
673    /// ```rust,compile_fail
674    /// #![deny(missing_debug_implementations)]
675    /// pub struct Foo;
676    /// # fn main() {}
677    /// ```
678    ///
679    /// {{produces}}
680    ///
681    /// ### Explanation
682    ///
683    /// Having a `Debug` implementation on all types can assist with
684    /// debugging, as it provides a convenient way to format and display a
685    /// value. Using the `#[derive(Debug)]` attribute will automatically
686    /// generate a typical implementation, or a custom implementation can be
687    /// added by manually implementing the `Debug` trait.
688    ///
689    /// This lint is "allow" by default because adding `Debug` to all types can
690    /// have a negative impact on compile time and code size. It also requires
691    /// boilerplate to be added to every type, which can be an impediment.
692    MISSING_DEBUG_IMPLEMENTATIONS,
693    Allow,
694    "detects missing implementations of Debug"
695}
696
697#[derive(Default)]
698pub(crate) struct MissingDebugImplementations;
699
700impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
701
702impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
703    fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
704        if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
705            return;
706        }
707
708        match item.kind {
709            hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
710            _ => return,
711        }
712
713        // Avoid listing trait impls if the trait is allowed.
714        let LevelAndSource { level, .. } =
715            cx.tcx.lint_level_at_node(MISSING_DEBUG_IMPLEMENTATIONS, item.hir_id());
716        if level == Level::Allow {
717            return;
718        }
719
720        let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else { return };
721
722        let has_impl = cx
723            .tcx
724            .non_blanket_impls_for_ty(debug, cx.tcx.type_of(item.owner_id).instantiate_identity())
725            .next()
726            .is_some();
727        if !has_impl {
728            cx.emit_span_lint(
729                MISSING_DEBUG_IMPLEMENTATIONS,
730                item.span,
731                BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
732            );
733        }
734    }
735}
736
737declare_lint! {
738    /// The `anonymous_parameters` lint detects anonymous parameters in trait
739    /// definitions.
740    ///
741    /// ### Example
742    ///
743    /// ```rust,edition2015,compile_fail
744    /// #![deny(anonymous_parameters)]
745    /// // edition 2015
746    /// pub trait Foo {
747    ///     fn foo(usize);
748    /// }
749    /// fn main() {}
750    /// ```
751    ///
752    /// {{produces}}
753    ///
754    /// ### Explanation
755    ///
756    /// This syntax is mostly a historical accident, and can be worked around
757    /// quite easily by adding an `_` pattern or a descriptive identifier:
758    ///
759    /// ```rust
760    /// trait Foo {
761    ///     fn foo(_: usize);
762    /// }
763    /// ```
764    ///
765    /// This syntax is now a hard error in the 2018 edition. In the 2015
766    /// edition, this lint is "warn" by default. This lint
767    /// enables the [`cargo fix`] tool with the `--edition` flag to
768    /// automatically transition old code from the 2015 edition to 2018. The
769    /// tool will run this lint and automatically apply the
770    /// suggested fix from the compiler (which is to add `_` to each
771    /// parameter). This provides a completely automated way to update old
772    /// code for a new edition. See [issue #41686] for more details.
773    ///
774    /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
775    /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
776    pub ANONYMOUS_PARAMETERS,
777    Warn,
778    "detects anonymous parameters",
779    @future_incompatible = FutureIncompatibleInfo {
780        reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
781        reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
782    };
783}
784
785declare_lint_pass!(
786    /// Checks for use of anonymous parameters (RFC 1685).
787    AnonymousParameters => [ANONYMOUS_PARAMETERS]
788);
789
790impl EarlyLintPass for AnonymousParameters {
791    fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
792        if cx.sess().edition() != Edition::Edition2015 {
793            // This is a hard error in future editions; avoid linting and erroring
794            return;
795        }
796        if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
797            for arg in sig.decl.inputs.iter() {
798                if let ast::PatKind::Missing = arg.pat.kind {
799                    let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
800
801                    let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
802                        (snip.as_str(), Applicability::MachineApplicable)
803                    } else {
804                        ("<type>", Applicability::HasPlaceholders)
805                    };
806                    cx.emit_span_lint(
807                        ANONYMOUS_PARAMETERS,
808                        arg.pat.span,
809                        BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
810                    );
811                }
812            }
813        }
814    }
815}
816
817fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
818    use rustc_ast::token::CommentKind;
819
820    let mut attrs = attrs.iter().peekable();
821
822    // Accumulate a single span for sugared doc comments.
823    let mut sugared_span: Option<Span> = None;
824
825    while let Some(attr) = attrs.next() {
826        let is_doc_comment = attr.is_doc_comment();
827        if is_doc_comment {
828            sugared_span =
829                Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
830        }
831
832        if attrs.peek().is_some_and(|next_attr| next_attr.is_doc_comment()) {
833            continue;
834        }
835
836        let span = sugared_span.take().unwrap_or(attr.span);
837
838        if is_doc_comment || attr.has_name(sym::doc) {
839            let sub = match attr.kind {
840                AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
841                    BuiltinUnusedDocCommentSub::PlainHelp
842                }
843                AttrKind::DocComment(CommentKind::Block, _) => {
844                    BuiltinUnusedDocCommentSub::BlockHelp
845                }
846            };
847            cx.emit_span_lint(
848                UNUSED_DOC_COMMENTS,
849                span,
850                BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
851            );
852        }
853    }
854}
855
856impl EarlyLintPass for UnusedDocComment {
857    fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
858        let kind = match stmt.kind {
859            ast::StmtKind::Let(..) => "statements",
860            // Disabled pending discussion in #78306
861            ast::StmtKind::Item(..) => return,
862            // expressions will be reported by `check_expr`.
863            ast::StmtKind::Empty
864            | ast::StmtKind::Semi(_)
865            | ast::StmtKind::Expr(_)
866            | ast::StmtKind::MacCall(_) => return,
867        };
868
869        warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
870    }
871
872    fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
873        if let Some(body) = &arm.body {
874            let arm_span = arm.pat.span.with_hi(body.span.hi());
875            warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
876        }
877    }
878
879    fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
880        if let ast::PatKind::Struct(_, _, fields, _) = &pat.kind {
881            for field in fields {
882                warn_if_doc(cx, field.span, "pattern fields", &field.attrs);
883            }
884        }
885    }
886
887    fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
888        warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
889
890        if let ExprKind::Struct(s) = &expr.kind {
891            for field in &s.fields {
892                warn_if_doc(cx, field.span, "expression fields", &field.attrs);
893            }
894        }
895    }
896
897    fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
898        warn_if_doc(cx, param.ident.span, "generic parameters", &param.attrs);
899    }
900
901    fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
902        warn_if_doc(cx, block.span, "blocks", block.attrs());
903    }
904
905    fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
906        if let ast::ItemKind::ForeignMod(_) = item.kind {
907            warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
908        }
909    }
910}
911
912declare_lint! {
913    /// The `no_mangle_const_items` lint detects any `const` items with the
914    /// [`no_mangle` attribute].
915    ///
916    /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
917    ///
918    /// ### Example
919    ///
920    /// ```rust,compile_fail,edition2021
921    /// #[no_mangle]
922    /// const FOO: i32 = 5;
923    /// ```
924    ///
925    /// {{produces}}
926    ///
927    /// ### Explanation
928    ///
929    /// Constants do not have their symbols exported, and therefore, this
930    /// probably means you meant to use a [`static`], not a [`const`].
931    ///
932    /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
933    /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
934    NO_MANGLE_CONST_ITEMS,
935    Deny,
936    "const items will not have their symbols exported"
937}
938
939declare_lint! {
940    /// The `no_mangle_generic_items` lint detects generic items that must be
941    /// mangled.
942    ///
943    /// ### Example
944    ///
945    /// ```rust
946    /// #[unsafe(no_mangle)]
947    /// fn foo<T>(t: T) {}
948    ///
949    /// #[unsafe(export_name = "bar")]
950    /// fn bar<T>(t: T) {}
951    /// ```
952    ///
953    /// {{produces}}
954    ///
955    /// ### Explanation
956    ///
957    /// A function with generics must have its symbol mangled to accommodate
958    /// the generic parameter. The [`no_mangle`] and [`export_name`] attributes
959    /// have no effect in this situation, and should be removed.
960    ///
961    /// [`no_mangle`]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
962    /// [`export_name`]: https://doc.rust-lang.org/reference/abi.html#the-export_name-attribute
963    NO_MANGLE_GENERIC_ITEMS,
964    Warn,
965    "generic items must be mangled"
966}
967
968declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
969
970impl InvalidNoMangleItems {
971    fn check_no_mangle_on_generic_fn(
972        &self,
973        cx: &LateContext<'_>,
974        attr_span: Span,
975        def_id: LocalDefId,
976    ) {
977        let generics = cx.tcx.generics_of(def_id);
978        if generics.requires_monomorphization(cx.tcx) {
979            cx.emit_span_lint(
980                NO_MANGLE_GENERIC_ITEMS,
981                cx.tcx.def_span(def_id),
982                BuiltinNoMangleGeneric { suggestion: attr_span },
983            );
984        }
985    }
986}
987
988impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
989    fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
990        let attrs = cx.tcx.hir_attrs(it.hir_id());
991        match it.kind {
992            hir::ItemKind::Fn { .. } => {
993                if let Some(attr_span) =
994                    find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span)
995                        .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span))
996                {
997                    self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id);
998                }
999            }
1000            hir::ItemKind::Const(ident, generics, ..) => {
1001                if find_attr!(attrs, AttributeKind::NoMangle(..)) {
1002                    let suggestion =
1003                        if generics.params.is_empty() && generics.where_clause_span.is_empty() {
1004                            // account for "pub const" (#45562)
1005                            Some(it.span.until(ident.span))
1006                        } else {
1007                            None
1008                        };
1009
1010                    // Const items do not refer to a particular location in memory, and therefore
1011                    // don't have anything to attach a symbol to
1012                    cx.emit_span_lint(
1013                        NO_MANGLE_CONST_ITEMS,
1014                        it.span,
1015                        BuiltinConstNoMangle { suggestion },
1016                    );
1017                }
1018            }
1019            _ => {}
1020        }
1021    }
1022
1023    fn check_impl_item(&mut self, cx: &LateContext<'_>, it: &hir::ImplItem<'_>) {
1024        let attrs = cx.tcx.hir_attrs(it.hir_id());
1025        match it.kind {
1026            hir::ImplItemKind::Fn { .. } => {
1027                if let Some(attr_span) =
1028                    find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span)
1029                        .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span))
1030                {
1031                    self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id);
1032                }
1033            }
1034            _ => {}
1035        }
1036    }
1037}
1038
1039declare_lint! {
1040    /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1041    /// T` because it is [undefined behavior].
1042    ///
1043    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1044    ///
1045    /// ### Example
1046    ///
1047    /// ```rust,compile_fail
1048    /// unsafe {
1049    ///     let y = std::mem::transmute::<&i32, &mut i32>(&5);
1050    /// }
1051    /// ```
1052    ///
1053    /// {{produces}}
1054    ///
1055    /// ### Explanation
1056    ///
1057    /// Certain assumptions are made about aliasing of data, and this transmute
1058    /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1059    ///
1060    /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1061    MUTABLE_TRANSMUTES,
1062    Deny,
1063    "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1064}
1065
1066declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1067
1068impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1069    fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1070        if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1071            get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1072        {
1073            if from_mutbl < to_mutbl {
1074                cx.emit_span_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
1075            }
1076        }
1077
1078        fn get_transmute_from_to<'tcx>(
1079            cx: &LateContext<'tcx>,
1080            expr: &hir::Expr<'_>,
1081        ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1082            let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1083                cx.qpath_res(qpath, expr.hir_id)
1084            } else {
1085                return None;
1086            };
1087            if let Res::Def(DefKind::Fn, did) = def {
1088                if !def_id_is_transmute(cx, did) {
1089                    return None;
1090                }
1091                let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1092                let from = sig.inputs().skip_binder()[0];
1093                let to = sig.output().skip_binder();
1094                return Some((from, to));
1095            }
1096            None
1097        }
1098
1099        fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1100            cx.tcx.is_intrinsic(def_id, sym::transmute)
1101        }
1102    }
1103}
1104
1105declare_lint! {
1106    /// The `unstable_features` lint detects uses of `#![feature]`.
1107    ///
1108    /// ### Example
1109    ///
1110    /// ```rust,compile_fail
1111    /// #![deny(unstable_features)]
1112    /// #![feature(test)]
1113    /// ```
1114    ///
1115    /// {{produces}}
1116    ///
1117    /// ### Explanation
1118    ///
1119    /// In larger nightly-based projects which
1120    ///
1121    /// * consist of a multitude of crates where a subset of crates has to compile on
1122    ///   stable either unconditionally or depending on a `cfg` flag to for example
1123    ///   allow stable users to depend on them,
1124    /// * don't use nightly for experimental features but for, e.g., unstable options only,
1125    ///
1126    /// this lint may come in handy to enforce policies of these kinds.
1127    UNSTABLE_FEATURES,
1128    Allow,
1129    "enabling unstable features"
1130}
1131
1132declare_lint_pass!(
1133    /// Forbids using the `#[feature(...)]` attribute
1134    UnstableFeatures => [UNSTABLE_FEATURES]
1135);
1136
1137impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1138    fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &hir::Attribute) {
1139        if attr.has_name(sym::feature)
1140            && let Some(items) = attr.meta_item_list()
1141        {
1142            for item in items {
1143                cx.emit_span_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
1144            }
1145        }
1146    }
1147}
1148
1149declare_lint! {
1150    /// The `ungated_async_fn_track_caller` lint warns when the
1151    /// `#[track_caller]` attribute is used on an async function
1152    /// without enabling the corresponding unstable feature flag.
1153    ///
1154    /// ### Example
1155    ///
1156    /// ```rust
1157    /// #[track_caller]
1158    /// async fn foo() {}
1159    /// ```
1160    ///
1161    /// {{produces}}
1162    ///
1163    /// ### Explanation
1164    ///
1165    /// The attribute must be used in conjunction with the
1166    /// [`async_fn_track_caller` feature flag]. Otherwise, the `#[track_caller]`
1167    /// annotation will function as a no-op.
1168    ///
1169    /// [`async_fn_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/async-fn-track-caller.html
1170    UNGATED_ASYNC_FN_TRACK_CALLER,
1171    Warn,
1172    "enabling track_caller on an async fn is a no-op unless the async_fn_track_caller feature is enabled"
1173}
1174
1175declare_lint_pass!(
1176    /// Explains corresponding feature flag must be enabled for the `#[track_caller]` attribute to
1177    /// do anything
1178    UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1179);
1180
1181impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1182    fn check_fn(
1183        &mut self,
1184        cx: &LateContext<'_>,
1185        fn_kind: HirFnKind<'_>,
1186        _: &'tcx FnDecl<'_>,
1187        _: &'tcx Body<'_>,
1188        span: Span,
1189        def_id: LocalDefId,
1190    ) {
1191        if fn_kind.asyncness().is_async()
1192            && !cx.tcx.features().async_fn_track_caller()
1193            // Now, check if the function has the `#[track_caller]` attribute
1194            && let Some(attr_span) = find_attr!(cx.tcx.get_all_attrs(def_id), AttributeKind::TrackCaller(span) => *span)
1195        {
1196            cx.emit_span_lint(
1197                UNGATED_ASYNC_FN_TRACK_CALLER,
1198                attr_span,
1199                BuiltinUngatedAsyncFnTrackCaller { label: span, session: &cx.tcx.sess },
1200            );
1201        }
1202    }
1203}
1204
1205declare_lint! {
1206    /// The `unreachable_pub` lint triggers for `pub` items not reachable from other crates - that
1207    /// means neither directly accessible, nor reexported (with `pub use`), nor leaked through
1208    /// things like return types (which the [`unnameable_types`] lint can detect if desired).
1209    ///
1210    /// ### Example
1211    ///
1212    /// ```rust,compile_fail
1213    /// #![deny(unreachable_pub)]
1214    /// mod foo {
1215    ///     pub mod bar {
1216    ///
1217    ///     }
1218    /// }
1219    /// ```
1220    ///
1221    /// {{produces}}
1222    ///
1223    /// ### Explanation
1224    ///
1225    /// The `pub` keyword both expresses an intent for an item to be publicly available, and also
1226    /// signals to the compiler to make the item publicly accessible. The intent can only be
1227    /// satisfied, however, if all items which contain this item are *also* publicly accessible.
1228    /// Thus, this lint serves to identify situations where the intent does not match the reality.
1229    ///
1230    /// If you wish the item to be accessible elsewhere within the crate, but not outside it, the
1231    /// `pub(crate)` visibility is recommended to be used instead. This more clearly expresses the
1232    /// intent that the item is only visible within its own crate.
1233    ///
1234    /// This lint is "allow" by default because it will trigger for a large amount of existing Rust code.
1235    /// Eventually it is desired for this to become warn-by-default.
1236    ///
1237    /// [`unnameable_types`]: #unnameable-types
1238    pub UNREACHABLE_PUB,
1239    Allow,
1240    "`pub` items not reachable from crate root"
1241}
1242
1243declare_lint_pass!(
1244    /// Lint for items marked `pub` that aren't reachable from other crates.
1245    UnreachablePub => [UNREACHABLE_PUB]
1246);
1247
1248impl UnreachablePub {
1249    fn perform_lint(
1250        &self,
1251        cx: &LateContext<'_>,
1252        what: &str,
1253        def_id: LocalDefId,
1254        vis_span: Span,
1255        exportable: bool,
1256    ) {
1257        let mut applicability = Applicability::MachineApplicable;
1258        if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1259        {
1260            // prefer suggesting `pub(super)` instead of `pub(crate)` when possible,
1261            // except when `pub(super) == pub(crate)`
1262            let new_vis = if let Some(ty::Visibility::Restricted(restricted_did)) =
1263                cx.effective_visibilities.effective_vis(def_id).map(|effective_vis| {
1264                    effective_vis.at_level(rustc_middle::middle::privacy::Level::Reachable)
1265                })
1266                && let parent_parent = cx
1267                    .tcx
1268                    .parent_module_from_def_id(cx.tcx.parent_module_from_def_id(def_id).into())
1269                && *restricted_did == parent_parent.to_local_def_id()
1270                && !restricted_did.to_def_id().is_crate_root()
1271            {
1272                "pub(super)"
1273            } else {
1274                "pub(crate)"
1275            };
1276
1277            if vis_span.from_expansion() {
1278                applicability = Applicability::MaybeIncorrect;
1279            }
1280            let def_span = cx.tcx.def_span(def_id);
1281            cx.emit_span_lint(
1282                UNREACHABLE_PUB,
1283                def_span,
1284                BuiltinUnreachablePub {
1285                    what,
1286                    new_vis,
1287                    suggestion: (vis_span, applicability),
1288                    help: exportable,
1289                },
1290            );
1291        }
1292    }
1293}
1294
1295impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1296    fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1297        // Do not warn for fake `use` statements.
1298        if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1299            return;
1300        }
1301        self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
1302    }
1303
1304    fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1305        self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
1306    }
1307
1308    fn check_field_def(&mut self, _cx: &LateContext<'_>, _field: &hir::FieldDef<'_>) {
1309        // - If an ADT definition is reported then we don't need to check fields
1310        //   (as it would add unnecessary complexity to the source code, the struct
1311        //   definition is in the immediate proximity to give the "real" visibility).
1312        // - If an ADT is not reported because it's not `pub` - we don't need to
1313        //   check fields.
1314        // - If an ADT is not reported because it's reachable - we also don't need
1315        //   to check fields because then they are reachable by construction if they
1316        //   are pub.
1317        //
1318        // Therefore in no case we check the fields.
1319        //
1320        // cf. https://github.com/rust-lang/rust/pull/126013#issuecomment-2152839205
1321        // cf. https://github.com/rust-lang/rust/pull/126040#issuecomment-2152944506
1322    }
1323
1324    fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1325        if let ImplItemImplKind::Inherent { vis_span } = impl_item.impl_kind {
1326            self.perform_lint(cx, "item", impl_item.owner_id.def_id, vis_span, false);
1327        }
1328    }
1329}
1330
1331declare_lint! {
1332    /// The `type_alias_bounds` lint detects bounds in type aliases.
1333    ///
1334    /// ### Example
1335    ///
1336    /// ```rust
1337    /// type SendVec<T: Send> = Vec<T>;
1338    /// ```
1339    ///
1340    /// {{produces}}
1341    ///
1342    /// ### Explanation
1343    ///
1344    /// Trait and lifetime bounds on generic parameters and in where clauses of
1345    /// type aliases are not checked at usage sites of the type alias. Moreover,
1346    /// they are not thoroughly checked for correctness at their definition site
1347    /// either similar to the aliased type.
1348    ///
1349    /// This is a known limitation of the type checker that may be lifted in a
1350    /// future edition. Permitting such bounds in light of this was unintentional.
1351    ///
1352    /// While these bounds may have secondary effects such as enabling the use of
1353    /// "shorthand" associated type paths[^1] and affecting the default trait
1354    /// object lifetime[^2] of trait object types passed to the type alias, this
1355    /// should not have been allowed until the aforementioned restrictions of the
1356    /// type checker have been lifted.
1357    ///
1358    /// Using such bounds is highly discouraged as they are actively misleading.
1359    ///
1360    /// [^1]: I.e., paths of the form `T::Assoc` where `T` is a type parameter
1361    /// bounded by trait `Trait` which defines an associated type called `Assoc`
1362    /// as opposed to a fully qualified path of the form `<T as Trait>::Assoc`.
1363    /// [^2]: <https://doc.rust-lang.org/reference/lifetime-elision.html#default-trait-object-lifetimes>
1364    TYPE_ALIAS_BOUNDS,
1365    Warn,
1366    "bounds in type aliases are not enforced"
1367}
1368
1369declare_lint_pass!(TypeAliasBounds => [TYPE_ALIAS_BOUNDS]);
1370
1371impl TypeAliasBounds {
1372    pub(crate) fn affects_object_lifetime_defaults(pred: &hir::WherePredicate<'_>) -> bool {
1373        // Bounds of the form `T: 'a` with `T` type param affect object lifetime defaults.
1374        if let hir::WherePredicateKind::BoundPredicate(pred) = pred.kind
1375            && pred.bounds.iter().any(|bound| matches!(bound, hir::GenericBound::Outlives(_)))
1376            && pred.bound_generic_params.is_empty() // indeed, even if absent from the RHS
1377            && pred.bounded_ty.as_generic_param().is_some()
1378        {
1379            return true;
1380        }
1381        false
1382    }
1383}
1384
1385impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1386    fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1387        let hir::ItemKind::TyAlias(_, generics, hir_ty) = item.kind else { return };
1388
1389        // There must not be a where clause.
1390        if generics.predicates.is_empty() {
1391            return;
1392        }
1393
1394        // Bounds of lazy type aliases and TAITs are respected.
1395        if cx.tcx.type_alias_is_lazy(item.owner_id) {
1396            return;
1397        }
1398
1399        // FIXME(generic_const_exprs): Revisit this before stabilization.
1400        // See also `tests/ui/const-generics/generic_const_exprs/type-alias-bounds.rs`.
1401        let ty = cx.tcx.type_of(item.owner_id).instantiate_identity();
1402        if ty.has_type_flags(ty::TypeFlags::HAS_CT_PROJECTION)
1403            && cx.tcx.features().generic_const_exprs()
1404        {
1405            return;
1406        }
1407
1408        // NOTE(inherent_associated_types): While we currently do take some bounds in type
1409        // aliases into consideration during IAT *selection*, we don't perform full use+def
1410        // site wfchecking for such type aliases. Therefore TAB should still trigger.
1411        // See also `tests/ui/associated-inherent-types/type-alias-bounds.rs`.
1412
1413        let mut where_spans = Vec::new();
1414        let mut inline_spans = Vec::new();
1415        let mut inline_sugg = Vec::new();
1416
1417        for p in generics.predicates {
1418            let span = p.span;
1419            if p.kind.in_where_clause() {
1420                where_spans.push(span);
1421            } else {
1422                for b in p.kind.bounds() {
1423                    inline_spans.push(b.span());
1424                }
1425                inline_sugg.push((span, String::new()));
1426            }
1427        }
1428
1429        let mut ty = Some(hir_ty);
1430        let enable_feat_help = cx.tcx.sess.is_nightly_build();
1431
1432        if let [.., label_sp] = *where_spans {
1433            cx.emit_span_lint(
1434                TYPE_ALIAS_BOUNDS,
1435                where_spans,
1436                BuiltinTypeAliasBounds {
1437                    in_where_clause: true,
1438                    label: label_sp,
1439                    enable_feat_help,
1440                    suggestions: vec![(generics.where_clause_span, String::new())],
1441                    preds: generics.predicates,
1442                    ty: ty.take(),
1443                },
1444            );
1445        }
1446        if let [.., label_sp] = *inline_spans {
1447            cx.emit_span_lint(
1448                TYPE_ALIAS_BOUNDS,
1449                inline_spans,
1450                BuiltinTypeAliasBounds {
1451                    in_where_clause: false,
1452                    label: label_sp,
1453                    enable_feat_help,
1454                    suggestions: inline_sugg,
1455                    preds: generics.predicates,
1456                    ty,
1457                },
1458            );
1459        }
1460    }
1461}
1462
1463pub(crate) struct ShorthandAssocTyCollector {
1464    pub(crate) qselves: Vec<Span>,
1465}
1466
1467impl hir::intravisit::Visitor<'_> for ShorthandAssocTyCollector {
1468    fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, _: Span) {
1469        // Look for "type-parameter shorthand-associated-types". I.e., paths of the
1470        // form `T::Assoc` with `T` type param. These are reliant on trait bounds.
1471        if let hir::QPath::TypeRelative(qself, _) = qpath
1472            && qself.as_generic_param().is_some()
1473        {
1474            self.qselves.push(qself.span);
1475        }
1476        hir::intravisit::walk_qpath(self, qpath, id)
1477    }
1478}
1479
1480declare_lint! {
1481    /// The `trivial_bounds` lint detects trait bounds that don't depend on
1482    /// any type parameters.
1483    ///
1484    /// ### Example
1485    ///
1486    /// ```rust
1487    /// #![feature(trivial_bounds)]
1488    /// pub struct A where i32: Copy;
1489    /// ```
1490    ///
1491    /// {{produces}}
1492    ///
1493    /// ### Explanation
1494    ///
1495    /// Usually you would not write a trait bound that you know is always
1496    /// true, or never true. However, when using macros, the macro may not
1497    /// know whether or not the constraint would hold or not at the time when
1498    /// generating the code. Currently, the compiler does not alert you if the
1499    /// constraint is always true, and generates an error if it is never true.
1500    /// The `trivial_bounds` feature changes this to be a warning in both
1501    /// cases, giving macros more freedom and flexibility to generate code,
1502    /// while still providing a signal when writing non-macro code that
1503    /// something is amiss.
1504    ///
1505    /// See [RFC 2056] for more details. This feature is currently only
1506    /// available on the nightly channel, see [tracking issue #48214].
1507    ///
1508    /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1509    /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1510    TRIVIAL_BOUNDS,
1511    Warn,
1512    "these bounds don't depend on an type parameters"
1513}
1514
1515declare_lint_pass!(
1516    /// Lint for trait and lifetime bounds that don't depend on type parameters
1517    /// which either do nothing, or stop the item from being used.
1518    TrivialConstraints => [TRIVIAL_BOUNDS]
1519);
1520
1521impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1522    fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1523        use rustc_middle::ty::ClauseKind;
1524
1525        if cx.tcx.features().trivial_bounds() {
1526            let predicates = cx.tcx.predicates_of(item.owner_id);
1527            for &(predicate, span) in predicates.predicates {
1528                let predicate_kind_name = match predicate.kind().skip_binder() {
1529                    ClauseKind::Trait(..) => "trait",
1530                    ClauseKind::TypeOutlives(..) |
1531                    ClauseKind::RegionOutlives(..) => "lifetime",
1532
1533                    ClauseKind::UnstableFeature(_)
1534                    // `ConstArgHasType` is never global as `ct` is always a param
1535                    | ClauseKind::ConstArgHasType(..)
1536                    // Ignore projections, as they can only be global
1537                    // if the trait bound is global
1538                    | ClauseKind::Projection(..)
1539                    // Ignore bounds that a user can't type
1540                    | ClauseKind::WellFormed(..)
1541                    // FIXME(generic_const_exprs): `ConstEvaluatable` can be written
1542                    | ClauseKind::ConstEvaluatable(..)
1543                    // Users don't write this directly, only via another trait ref.
1544                    | ty::ClauseKind::HostEffect(..) => continue,
1545                };
1546                if predicate.is_global() {
1547                    cx.emit_span_lint(
1548                        TRIVIAL_BOUNDS,
1549                        span,
1550                        BuiltinTrivialBounds { predicate_kind_name, predicate },
1551                    );
1552                }
1553            }
1554        }
1555    }
1556}
1557
1558declare_lint! {
1559    /// The `double_negations` lint detects expressions of the form `--x`.
1560    ///
1561    /// ### Example
1562    ///
1563    /// ```rust
1564    /// fn main() {
1565    ///     let x = 1;
1566    ///     let _b = --x;
1567    /// }
1568    /// ```
1569    ///
1570    /// {{produces}}
1571    ///
1572    /// ### Explanation
1573    ///
1574    /// Negating something twice is usually the same as not negating it at all.
1575    /// However, a double negation in Rust can easily be confused with the
1576    /// prefix decrement operator that exists in many languages derived from C.
1577    /// Use `-(-x)` if you really wanted to negate the value twice.
1578    ///
1579    /// To decrement a value, use `x -= 1` instead.
1580    pub DOUBLE_NEGATIONS,
1581    Warn,
1582    "detects expressions of the form `--x`"
1583}
1584
1585declare_lint_pass!(
1586    /// Lint for expressions of the form `--x` that can be confused with C's
1587    /// prefix decrement operator.
1588    DoubleNegations => [DOUBLE_NEGATIONS]
1589);
1590
1591impl EarlyLintPass for DoubleNegations {
1592    #[inline]
1593    fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1594        // only lint on the innermost `--` in a chain of `-` operators,
1595        // even if there are 3 or more negations
1596        if let ExprKind::Unary(UnOp::Neg, ref inner) = expr.kind
1597            && let ExprKind::Unary(UnOp::Neg, ref inner2) = inner.kind
1598            && !matches!(inner2.kind, ExprKind::Unary(UnOp::Neg, _))
1599            // Don't lint if this jumps macro expansion boundary (Issue #143980)
1600            && expr.span.eq_ctxt(inner.span)
1601        {
1602            cx.emit_span_lint(
1603                DOUBLE_NEGATIONS,
1604                expr.span,
1605                BuiltinDoubleNegations {
1606                    add_parens: BuiltinDoubleNegationsAddParens {
1607                        start_span: inner.span.shrink_to_lo(),
1608                        end_span: inner.span.shrink_to_hi(),
1609                    },
1610                },
1611            );
1612        }
1613    }
1614}
1615
1616declare_lint_pass!(
1617    /// Does nothing as a lint pass, but registers some `Lint`s
1618    /// which are used by other parts of the compiler.
1619    SoftLints => [
1620        WHILE_TRUE,
1621        NON_SHORTHAND_FIELD_PATTERNS,
1622        UNSAFE_CODE,
1623        MISSING_DOCS,
1624        MISSING_COPY_IMPLEMENTATIONS,
1625        MISSING_DEBUG_IMPLEMENTATIONS,
1626        ANONYMOUS_PARAMETERS,
1627        UNUSED_DOC_COMMENTS,
1628        NO_MANGLE_CONST_ITEMS,
1629        NO_MANGLE_GENERIC_ITEMS,
1630        MUTABLE_TRANSMUTES,
1631        UNSTABLE_FEATURES,
1632        UNREACHABLE_PUB,
1633        TYPE_ALIAS_BOUNDS,
1634        TRIVIAL_BOUNDS,
1635        DOUBLE_NEGATIONS
1636    ]
1637);
1638
1639declare_lint! {
1640    /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1641    /// pattern], which is deprecated.
1642    ///
1643    /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1644    ///
1645    /// ### Example
1646    ///
1647    /// ```rust,edition2018
1648    /// let x = 123;
1649    /// match x {
1650    ///     0...100 => {}
1651    ///     _ => {}
1652    /// }
1653    /// ```
1654    ///
1655    /// {{produces}}
1656    ///
1657    /// ### Explanation
1658    ///
1659    /// The `...` range pattern syntax was changed to `..=` to avoid potential
1660    /// confusion with the [`..` range expression]. Use the new form instead.
1661    ///
1662    /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1663    pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1664    Warn,
1665    "`...` range patterns are deprecated",
1666    @future_incompatible = FutureIncompatibleInfo {
1667        reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1668        reference: "<https://doc.rust-lang.org/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1669    };
1670}
1671
1672#[derive(Default)]
1673pub struct EllipsisInclusiveRangePatterns {
1674    /// If `Some(_)`, suppress all subsequent pattern
1675    /// warnings for better diagnostics.
1676    node_id: Option<ast::NodeId>,
1677}
1678
1679impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1680
1681impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1682    fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1683        if self.node_id.is_some() {
1684            // Don't recursively warn about patterns inside range endpoints.
1685            return;
1686        }
1687
1688        use self::ast::PatKind;
1689        use self::ast::RangeSyntax::DotDotDot;
1690
1691        /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1692        /// corresponding to the ellipsis.
1693        fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1694            match &pat.kind {
1695                PatKind::Range(
1696                    a,
1697                    Some(b),
1698                    Spanned { span, node: RangeEnd::Included(DotDotDot) },
1699                ) => Some((a.as_deref(), b, *span)),
1700                _ => None,
1701            }
1702        }
1703
1704        let (parentheses, endpoints) = match &pat.kind {
1705            PatKind::Ref(subpat, _, _) => (true, matches_ellipsis_pat(subpat)),
1706            _ => (false, matches_ellipsis_pat(pat)),
1707        };
1708
1709        if let Some((start, end, join)) = endpoints {
1710            if parentheses {
1711                self.node_id = Some(pat.id);
1712                let end = expr_to_string(end);
1713                let replace = match start {
1714                    Some(start) => format!("&({}..={})", expr_to_string(start), end),
1715                    None => format!("&(..={end})"),
1716                };
1717                if join.edition() >= Edition::Edition2021 {
1718                    cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1719                        span: pat.span,
1720                        suggestion: pat.span,
1721                        replace,
1722                    });
1723                } else {
1724                    cx.emit_span_lint(
1725                        ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1726                        pat.span,
1727                        BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1728                            suggestion: pat.span,
1729                            replace,
1730                        },
1731                    );
1732                }
1733            } else {
1734                let replace = "..=";
1735                if join.edition() >= Edition::Edition2021 {
1736                    cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1737                        span: pat.span,
1738                        suggestion: join,
1739                        replace: replace.to_string(),
1740                    });
1741                } else {
1742                    cx.emit_span_lint(
1743                        ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1744                        join,
1745                        BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1746                            suggestion: join,
1747                        },
1748                    );
1749                }
1750            };
1751        }
1752    }
1753
1754    fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1755        if let Some(node_id) = self.node_id {
1756            if pat.id == node_id {
1757                self.node_id = None
1758            }
1759        }
1760    }
1761}
1762
1763declare_lint! {
1764    /// The `keyword_idents_2018` lint detects edition keywords being used as an
1765    /// identifier.
1766    ///
1767    /// ### Example
1768    ///
1769    /// ```rust,edition2015,compile_fail
1770    /// #![deny(keyword_idents_2018)]
1771    /// // edition 2015
1772    /// fn dyn() {}
1773    /// ```
1774    ///
1775    /// {{produces}}
1776    ///
1777    /// ### Explanation
1778    ///
1779    /// Rust [editions] allow the language to evolve without breaking
1780    /// backwards compatibility. This lint catches code that uses new keywords
1781    /// that are added to the language that are used as identifiers (such as a
1782    /// variable name, function name, etc.). If you switch the compiler to a
1783    /// new edition without updating the code, then it will fail to compile if
1784    /// you are using a new keyword as an identifier.
1785    ///
1786    /// You can manually change the identifiers to a non-keyword, or use a
1787    /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1788    ///
1789    /// This lint solves the problem automatically. It is "allow" by default
1790    /// because the code is perfectly valid in older editions. The [`cargo
1791    /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1792    /// and automatically apply the suggested fix from the compiler (which is
1793    /// to use a raw identifier). This provides a completely automated way to
1794    /// update old code for a new edition.
1795    ///
1796    /// [editions]: https://doc.rust-lang.org/edition-guide/
1797    /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1798    /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1799    pub KEYWORD_IDENTS_2018,
1800    Allow,
1801    "detects edition keywords being used as an identifier",
1802    @future_incompatible = FutureIncompatibleInfo {
1803        reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1804        reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1805    };
1806}
1807
1808declare_lint! {
1809    /// The `keyword_idents_2024` lint detects edition keywords being used as an
1810    /// identifier.
1811    ///
1812    /// ### Example
1813    ///
1814    /// ```rust,edition2015,compile_fail
1815    /// #![deny(keyword_idents_2024)]
1816    /// // edition 2015
1817    /// fn gen() {}
1818    /// ```
1819    ///
1820    /// {{produces}}
1821    ///
1822    /// ### Explanation
1823    ///
1824    /// Rust [editions] allow the language to evolve without breaking
1825    /// backwards compatibility. This lint catches code that uses new keywords
1826    /// that are added to the language that are used as identifiers (such as a
1827    /// variable name, function name, etc.). If you switch the compiler to a
1828    /// new edition without updating the code, then it will fail to compile if
1829    /// you are using a new keyword as an identifier.
1830    ///
1831    /// You can manually change the identifiers to a non-keyword, or use a
1832    /// [raw identifier], for example `r#gen`, to transition to a new edition.
1833    ///
1834    /// This lint solves the problem automatically. It is "allow" by default
1835    /// because the code is perfectly valid in older editions. The [`cargo
1836    /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1837    /// and automatically apply the suggested fix from the compiler (which is
1838    /// to use a raw identifier). This provides a completely automated way to
1839    /// update old code for a new edition.
1840    ///
1841    /// [editions]: https://doc.rust-lang.org/edition-guide/
1842    /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1843    /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1844    pub KEYWORD_IDENTS_2024,
1845    Allow,
1846    "detects edition keywords being used as an identifier",
1847    @future_incompatible = FutureIncompatibleInfo {
1848        reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
1849        reference: "<https://doc.rust-lang.org/edition-guide/rust-2024/gen-keyword.html>",
1850    };
1851}
1852
1853declare_lint_pass!(
1854    /// Check for uses of edition keywords used as an identifier.
1855    KeywordIdents => [KEYWORD_IDENTS_2018, KEYWORD_IDENTS_2024]
1856);
1857
1858struct UnderMacro(bool);
1859
1860impl KeywordIdents {
1861    fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: &TokenStream) {
1862        // Check if the preceding token is `$`, because we want to allow `$async`, etc.
1863        let mut prev_dollar = false;
1864        for tt in tokens.iter() {
1865            match tt {
1866                // Only report non-raw idents.
1867                TokenTree::Token(token, _) => {
1868                    if let Some((ident, token::IdentIsRaw::No)) = token.ident() {
1869                        if !prev_dollar {
1870                            self.check_ident_token(cx, UnderMacro(true), ident, "");
1871                        }
1872                    } else if let Some((ident, token::IdentIsRaw::No)) = token.lifetime() {
1873                        self.check_ident_token(
1874                            cx,
1875                            UnderMacro(true),
1876                            ident.without_first_quote(),
1877                            "'",
1878                        );
1879                    } else if token.kind == TokenKind::Dollar {
1880                        prev_dollar = true;
1881                        continue;
1882                    }
1883                }
1884                TokenTree::Delimited(.., tts) => self.check_tokens(cx, tts),
1885            }
1886            prev_dollar = false;
1887        }
1888    }
1889
1890    fn check_ident_token(
1891        &mut self,
1892        cx: &EarlyContext<'_>,
1893        UnderMacro(under_macro): UnderMacro,
1894        ident: Ident,
1895        prefix: &'static str,
1896    ) {
1897        let (lint, edition) = match ident.name {
1898            kw::Async | kw::Await | kw::Try => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1899
1900            // rust-lang/rust#56327: Conservatively do not
1901            // attempt to report occurrences of `dyn` within
1902            // macro definitions or invocations, because `dyn`
1903            // can legitimately occur as a contextual keyword
1904            // in 2015 code denoting its 2018 meaning, and we
1905            // do not want rustfix to inject bugs into working
1906            // code by rewriting such occurrences.
1907            //
1908            // But if we see `dyn` outside of a macro, we know
1909            // its precise role in the parsed AST and thus are
1910            // assured this is truly an attempt to use it as
1911            // an identifier.
1912            kw::Dyn if !under_macro => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1913
1914            kw::Gen => (KEYWORD_IDENTS_2024, Edition::Edition2024),
1915
1916            _ => return,
1917        };
1918
1919        // Don't lint `r#foo`.
1920        if ident.span.edition() >= edition
1921            || cx.sess().psess.raw_identifier_spans.contains(ident.span)
1922        {
1923            return;
1924        }
1925
1926        cx.emit_span_lint(
1927            lint,
1928            ident.span,
1929            BuiltinKeywordIdents { kw: ident, next: edition, suggestion: ident.span, prefix },
1930        );
1931    }
1932}
1933
1934impl EarlyLintPass for KeywordIdents {
1935    fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
1936        self.check_tokens(cx, &mac_def.body.tokens);
1937    }
1938    fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1939        self.check_tokens(cx, &mac.args.tokens);
1940    }
1941    fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: &Ident) {
1942        if ident.name.as_str().starts_with('\'') {
1943            self.check_ident_token(cx, UnderMacro(false), ident.without_first_quote(), "'");
1944        } else {
1945            self.check_ident_token(cx, UnderMacro(false), *ident, "");
1946        }
1947    }
1948}
1949
1950declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1951
1952impl ExplicitOutlivesRequirements {
1953    fn lifetimes_outliving_lifetime<'tcx>(
1954        tcx: TyCtxt<'tcx>,
1955        inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1956        item: LocalDefId,
1957        lifetime: LocalDefId,
1958    ) -> Vec<ty::Region<'tcx>> {
1959        let item_generics = tcx.generics_of(item);
1960
1961        inferred_outlives
1962            .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1963                ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a.kind() {
1964                    ty::ReEarlyParam(ebr)
1965                        if item_generics.region_param(ebr, tcx).def_id == lifetime.to_def_id() =>
1966                    {
1967                        Some(b)
1968                    }
1969                    _ => None,
1970                },
1971                _ => None,
1972            })
1973            .collect()
1974    }
1975
1976    fn lifetimes_outliving_type<'tcx>(
1977        inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1978        index: u32,
1979    ) -> Vec<ty::Region<'tcx>> {
1980        inferred_outlives
1981            .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1982                ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
1983                    a.is_param(index).then_some(b)
1984                }
1985                _ => None,
1986            })
1987            .collect()
1988    }
1989
1990    fn collect_outlives_bound_spans<'tcx>(
1991        &self,
1992        tcx: TyCtxt<'tcx>,
1993        bounds: &hir::GenericBounds<'_>,
1994        inferred_outlives: &[ty::Region<'tcx>],
1995        predicate_span: Span,
1996        item: DefId,
1997    ) -> Vec<(usize, Span)> {
1998        use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
1999
2000        let item_generics = tcx.generics_of(item);
2001
2002        bounds
2003            .iter()
2004            .enumerate()
2005            .filter_map(|(i, bound)| {
2006                let hir::GenericBound::Outlives(lifetime) = bound else {
2007                    return None;
2008                };
2009
2010                let is_inferred = match tcx.named_bound_var(lifetime.hir_id) {
2011                    Some(ResolvedArg::EarlyBound(def_id)) => inferred_outlives
2012                        .iter()
2013                        .any(|r| matches!(r.kind(), ty::ReEarlyParam(ebr) if { item_generics.region_param(ebr, tcx).def_id == def_id.to_def_id() })),
2014                    _ => false,
2015                };
2016
2017                if !is_inferred {
2018                    return None;
2019                }
2020
2021                let span = bound.span().find_ancestor_inside(predicate_span)?;
2022                if span.in_external_macro(tcx.sess.source_map()) {
2023                    return None;
2024                }
2025
2026                Some((i, span))
2027            })
2028            .collect()
2029    }
2030
2031    fn consolidate_outlives_bound_spans(
2032        &self,
2033        lo: Span,
2034        bounds: &hir::GenericBounds<'_>,
2035        bound_spans: Vec<(usize, Span)>,
2036    ) -> Vec<Span> {
2037        if bounds.is_empty() {
2038            return Vec::new();
2039        }
2040        if bound_spans.len() == bounds.len() {
2041            let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2042            // If all bounds are inferable, we want to delete the colon, so
2043            // start from just after the parameter (span passed as argument)
2044            vec![lo.to(last_bound_span)]
2045        } else {
2046            let mut merged = Vec::new();
2047            let mut last_merged_i = None;
2048
2049            let mut from_start = true;
2050            for (i, bound_span) in bound_spans {
2051                match last_merged_i {
2052                    // If the first bound is inferable, our span should also eat the leading `+`.
2053                    None if i == 0 => {
2054                        merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2055                        last_merged_i = Some(0);
2056                    }
2057                    // If consecutive bounds are inferable, merge their spans
2058                    Some(h) if i == h + 1 => {
2059                        if let Some(tail) = merged.last_mut() {
2060                            // Also eat the trailing `+` if the first
2061                            // more-than-one bound is inferable
2062                            let to_span = if from_start && i < bounds.len() {
2063                                bounds[i + 1].span().shrink_to_lo()
2064                            } else {
2065                                bound_span
2066                            };
2067                            *tail = tail.to(to_span);
2068                            last_merged_i = Some(i);
2069                        } else {
2070                            bug!("another bound-span visited earlier");
2071                        }
2072                    }
2073                    _ => {
2074                        // When we find a non-inferable bound, subsequent inferable bounds
2075                        // won't be consecutive from the start (and we'll eat the leading
2076                        // `+` rather than the trailing one)
2077                        from_start = false;
2078                        merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2079                        last_merged_i = Some(i);
2080                    }
2081                }
2082            }
2083            merged
2084        }
2085    }
2086}
2087
2088impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2089    fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2090        use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
2091
2092        let def_id = item.owner_id.def_id;
2093        if let hir::ItemKind::Struct(_, generics, _)
2094        | hir::ItemKind::Enum(_, generics, _)
2095        | hir::ItemKind::Union(_, generics, _) = item.kind
2096        {
2097            let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2098            if inferred_outlives.is_empty() {
2099                return;
2100            }
2101
2102            let ty_generics = cx.tcx.generics_of(def_id);
2103            let num_where_predicates = generics
2104                .predicates
2105                .iter()
2106                .filter(|predicate| predicate.kind.in_where_clause())
2107                .count();
2108
2109            let mut bound_count = 0;
2110            let mut lint_spans = Vec::new();
2111            let mut where_lint_spans = Vec::new();
2112            let mut dropped_where_predicate_count = 0;
2113            for (i, where_predicate) in generics.predicates.iter().enumerate() {
2114                let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2115                    match where_predicate.kind {
2116                        hir::WherePredicateKind::RegionPredicate(predicate) => {
2117                            if let Some(ResolvedArg::EarlyBound(region_def_id)) =
2118                                cx.tcx.named_bound_var(predicate.lifetime.hir_id)
2119                            {
2120                                (
2121                                    Self::lifetimes_outliving_lifetime(
2122                                        cx.tcx,
2123                                        // don't warn if the inferred span actually came from the predicate we're looking at
2124                                        // this happens if the type is recursively defined
2125                                        inferred_outlives.iter().filter(|(_, span)| {
2126                                            !where_predicate.span.contains(*span)
2127                                        }),
2128                                        item.owner_id.def_id,
2129                                        region_def_id,
2130                                    ),
2131                                    &predicate.bounds,
2132                                    where_predicate.span,
2133                                    predicate.in_where_clause,
2134                                )
2135                            } else {
2136                                continue;
2137                            }
2138                        }
2139                        hir::WherePredicateKind::BoundPredicate(predicate) => {
2140                            // FIXME we can also infer bounds on associated types,
2141                            // and should check for them here.
2142                            match predicate.bounded_ty.kind {
2143                                hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2144                                    let Res::Def(DefKind::TyParam, def_id) = path.res else {
2145                                        continue;
2146                                    };
2147                                    let index = ty_generics.param_def_id_to_index[&def_id];
2148                                    (
2149                                        Self::lifetimes_outliving_type(
2150                                            // don't warn if the inferred span actually came from the predicate we're looking at
2151                                            // this happens if the type is recursively defined
2152                                            inferred_outlives.iter().filter(|(_, span)| {
2153                                                !where_predicate.span.contains(*span)
2154                                            }),
2155                                            index,
2156                                        ),
2157                                        &predicate.bounds,
2158                                        where_predicate.span,
2159                                        predicate.origin == PredicateOrigin::WhereClause,
2160                                    )
2161                                }
2162                                _ => {
2163                                    continue;
2164                                }
2165                            }
2166                        }
2167                        _ => continue,
2168                    };
2169                if relevant_lifetimes.is_empty() {
2170                    continue;
2171                }
2172
2173                let bound_spans = self.collect_outlives_bound_spans(
2174                    cx.tcx,
2175                    bounds,
2176                    &relevant_lifetimes,
2177                    predicate_span,
2178                    item.owner_id.to_def_id(),
2179                );
2180                bound_count += bound_spans.len();
2181
2182                let drop_predicate = bound_spans.len() == bounds.len();
2183                if drop_predicate && in_where_clause {
2184                    dropped_where_predicate_count += 1;
2185                }
2186
2187                if drop_predicate {
2188                    if !in_where_clause {
2189                        lint_spans.push(predicate_span);
2190                    } else if predicate_span.from_expansion() {
2191                        // Don't try to extend the span if it comes from a macro expansion.
2192                        where_lint_spans.push(predicate_span);
2193                    } else if i + 1 < num_where_predicates {
2194                        // If all the bounds on a predicate were inferable and there are
2195                        // further predicates, we want to eat the trailing comma.
2196                        let next_predicate_span = generics.predicates[i + 1].span;
2197                        if next_predicate_span.from_expansion() {
2198                            where_lint_spans.push(predicate_span);
2199                        } else {
2200                            where_lint_spans
2201                                .push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2202                        }
2203                    } else {
2204                        // Eat the optional trailing comma after the last predicate.
2205                        let where_span = generics.where_clause_span;
2206                        if where_span.from_expansion() {
2207                            where_lint_spans.push(predicate_span);
2208                        } else {
2209                            where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi()));
2210                        }
2211                    }
2212                } else {
2213                    where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2214                        predicate_span.shrink_to_lo(),
2215                        bounds,
2216                        bound_spans,
2217                    ));
2218                }
2219            }
2220
2221            // If all predicates in where clause are inferable, drop the entire clause
2222            // (including the `where`)
2223            if generics.has_where_clause_predicates
2224                && dropped_where_predicate_count == num_where_predicates
2225            {
2226                let where_span = generics.where_clause_span;
2227                // Extend the where clause back to the closing `>` of the
2228                // generics, except for tuple struct, which have the `where`
2229                // after the fields of the struct.
2230                let full_where_span =
2231                    if let hir::ItemKind::Struct(_, _, hir::VariantData::Tuple(..)) = item.kind {
2232                        where_span
2233                    } else {
2234                        generics.span.shrink_to_hi().to(where_span)
2235                    };
2236
2237                // Due to macro expansions, the `full_where_span` might not actually contain all
2238                // predicates.
2239                if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2240                    lint_spans.push(full_where_span);
2241                } else {
2242                    lint_spans.extend(where_lint_spans);
2243                }
2244            } else {
2245                lint_spans.extend(where_lint_spans);
2246            }
2247
2248            if !lint_spans.is_empty() {
2249                // Do not automatically delete outlives requirements from macros.
2250                let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2251                {
2252                    Applicability::MachineApplicable
2253                } else {
2254                    Applicability::MaybeIncorrect
2255                };
2256
2257                // Due to macros, there might be several predicates with the same span
2258                // and we only want to suggest removing them once.
2259                lint_spans.sort_unstable();
2260                lint_spans.dedup();
2261
2262                cx.emit_span_lint(
2263                    EXPLICIT_OUTLIVES_REQUIREMENTS,
2264                    lint_spans.clone(),
2265                    BuiltinExplicitOutlives {
2266                        count: bound_count,
2267                        suggestion: BuiltinExplicitOutlivesSuggestion {
2268                            spans: lint_spans,
2269                            applicability,
2270                        },
2271                    },
2272                );
2273            }
2274        }
2275    }
2276}
2277
2278declare_lint! {
2279    /// The `incomplete_features` lint detects unstable features enabled with
2280    /// the [`feature` attribute] that may function improperly in some or all
2281    /// cases.
2282    ///
2283    /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2284    ///
2285    /// ### Example
2286    ///
2287    /// ```rust
2288    /// #![feature(generic_const_exprs)]
2289    /// ```
2290    ///
2291    /// {{produces}}
2292    ///
2293    /// ### Explanation
2294    ///
2295    /// Although it is encouraged for people to experiment with unstable
2296    /// features, some of them are known to be incomplete or faulty. This lint
2297    /// is a signal that the feature has not yet been finished, and you may
2298    /// experience problems with it.
2299    pub INCOMPLETE_FEATURES,
2300    Warn,
2301    "incomplete features that may function improperly in some or all cases"
2302}
2303
2304declare_lint! {
2305    /// The `internal_features` lint detects unstable features enabled with
2306    /// the [`feature` attribute] that are internal to the compiler or standard
2307    /// library.
2308    ///
2309    /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2310    ///
2311    /// ### Example
2312    ///
2313    /// ```rust
2314    /// #![feature(rustc_attrs)]
2315    /// ```
2316    ///
2317    /// {{produces}}
2318    ///
2319    /// ### Explanation
2320    ///
2321    /// These features are an implementation detail of the compiler and standard
2322    /// library and are not supposed to be used in user code.
2323    pub INTERNAL_FEATURES,
2324    Warn,
2325    "internal features are not supposed to be used"
2326}
2327
2328declare_lint_pass!(
2329    /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/unstable.rs`.
2330    IncompleteInternalFeatures => [INCOMPLETE_FEATURES, INTERNAL_FEATURES]
2331);
2332
2333impl EarlyLintPass for IncompleteInternalFeatures {
2334    fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2335        let features = cx.builder.features();
2336
2337        features
2338            .enabled_features_iter_stable_order()
2339            .filter(|(name, _)| features.incomplete(*name) || features.internal(*name))
2340            .for_each(|(name, span)| {
2341                if features.incomplete(name) {
2342                    let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2343                        .map(|n| BuiltinFeatureIssueNote { n });
2344                    let help =
2345                        HAS_MIN_FEATURES.contains(&name).then_some(BuiltinIncompleteFeaturesHelp);
2346
2347                    cx.emit_span_lint(
2348                        INCOMPLETE_FEATURES,
2349                        span,
2350                        BuiltinIncompleteFeatures { name, note, help },
2351                    );
2352                } else {
2353                    cx.emit_span_lint(INTERNAL_FEATURES, span, BuiltinInternalFeatures { name });
2354                }
2355            });
2356    }
2357}
2358
2359const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2360
2361declare_lint! {
2362    /// The `invalid_value` lint detects creating a value that is not valid,
2363    /// such as a null reference.
2364    ///
2365    /// ### Example
2366    ///
2367    /// ```rust,no_run
2368    /// # #![allow(unused)]
2369    /// unsafe {
2370    ///     let x: &'static i32 = std::mem::zeroed();
2371    /// }
2372    /// ```
2373    ///
2374    /// {{produces}}
2375    ///
2376    /// ### Explanation
2377    ///
2378    /// In some situations the compiler can detect that the code is creating
2379    /// an invalid value, which should be avoided.
2380    ///
2381    /// In particular, this lint will check for improper use of
2382    /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2383    /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2384    /// lint should provide extra information to indicate what the problem is
2385    /// and a possible solution.
2386    ///
2387    /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2388    /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2389    /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2390    /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2391    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2392    pub INVALID_VALUE,
2393    Warn,
2394    "an invalid value is being created (such as a null reference)"
2395}
2396
2397declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2398
2399/// Information about why a type cannot be initialized this way.
2400pub struct InitError {
2401    pub(crate) message: String,
2402    /// Spans from struct fields and similar that can be obtained from just the type.
2403    pub(crate) span: Option<Span>,
2404    /// Used to report a trace through adts.
2405    pub(crate) nested: Option<Box<InitError>>,
2406}
2407impl InitError {
2408    fn spanned(self, span: Span) -> InitError {
2409        Self { span: Some(span), ..self }
2410    }
2411
2412    fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2413        assert!(self.nested.is_none());
2414        Self { nested: nested.into().map(Box::new), ..self }
2415    }
2416}
2417
2418impl<'a> From<&'a str> for InitError {
2419    fn from(s: &'a str) -> Self {
2420        s.to_owned().into()
2421    }
2422}
2423impl From<String> for InitError {
2424    fn from(message: String) -> Self {
2425        Self { message, span: None, nested: None }
2426    }
2427}
2428
2429impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2430    fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2431        #[derive(Debug, Copy, Clone, PartialEq)]
2432        enum InitKind {
2433            Zeroed,
2434            Uninit,
2435        }
2436
2437        /// Test if this constant is all-0.
2438        fn is_zero(expr: &hir::Expr<'_>) -> bool {
2439            use hir::ExprKind::*;
2440            use rustc_ast::LitKind::*;
2441            match &expr.kind {
2442                Lit(lit) => {
2443                    if let Int(i, _) = lit.node {
2444                        i == 0
2445                    } else {
2446                        false
2447                    }
2448                }
2449                Tup(tup) => tup.iter().all(is_zero),
2450                _ => false,
2451            }
2452        }
2453
2454        /// Determine if this expression is a "dangerous initialization".
2455        fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2456            if let hir::ExprKind::Call(path_expr, args) = expr.kind
2457                // Find calls to `mem::{uninitialized,zeroed}` methods.
2458                && let hir::ExprKind::Path(ref qpath) = path_expr.kind
2459            {
2460                let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2461                match cx.tcx.get_diagnostic_name(def_id) {
2462                    Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2463                    Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2464                    Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2465                    _ => {}
2466                }
2467            } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2468                // Find problematic calls to `MaybeUninit::assume_init`.
2469                let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2470                if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2471                    // This is a call to *some* method named `assume_init`.
2472                    // See if the `self` parameter is one of the dangerous constructors.
2473                    if let hir::ExprKind::Call(path_expr, _) = receiver.kind
2474                        && let hir::ExprKind::Path(ref qpath) = path_expr.kind
2475                    {
2476                        let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2477                        match cx.tcx.get_diagnostic_name(def_id) {
2478                            Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2479                            Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2480                            _ => {}
2481                        }
2482                    }
2483                }
2484            }
2485
2486            None
2487        }
2488
2489        fn variant_find_init_error<'tcx>(
2490            cx: &LateContext<'tcx>,
2491            ty: Ty<'tcx>,
2492            variant: &VariantDef,
2493            args: ty::GenericArgsRef<'tcx>,
2494            descr: &str,
2495            init: InitKind,
2496        ) -> Option<InitError> {
2497            let mut field_err = variant.fields.iter().find_map(|field| {
2498                ty_find_init_error(cx, field.ty(cx.tcx, args), init).map(|mut err| {
2499                    if !field.did.is_local() {
2500                        err
2501                    } else if err.span.is_none() {
2502                        err.span = Some(cx.tcx.def_span(field.did));
2503                        write!(&mut err.message, " (in this {descr})").unwrap();
2504                        err
2505                    } else {
2506                        InitError::from(format!("in this {descr}"))
2507                            .spanned(cx.tcx.def_span(field.did))
2508                            .nested(err)
2509                    }
2510                })
2511            });
2512
2513            // Check if this ADT has a constrained layout (like `NonNull` and friends).
2514            if let Ok(layout) = cx.tcx.layout_of(cx.typing_env().as_query_input(ty)) {
2515                if let BackendRepr::Scalar(scalar) | BackendRepr::ScalarPair(scalar, _) =
2516                    &layout.backend_repr
2517                {
2518                    let range = scalar.valid_range(cx);
2519                    let msg = if !range.contains(0) {
2520                        "must be non-null"
2521                    } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2522                        // Prefer reporting on the fields over the entire struct for uninit,
2523                        // as the information bubbles out and it may be unclear why the type can't
2524                        // be null from just its outside signature.
2525
2526                        "must be initialized inside its custom valid range"
2527                    } else {
2528                        return field_err;
2529                    };
2530                    if let Some(field_err) = &mut field_err {
2531                        // Most of the time, if the field error is the same as the struct error,
2532                        // the struct error only happens because of the field error.
2533                        if field_err.message.contains(msg) {
2534                            field_err.message = format!("because {}", field_err.message);
2535                        }
2536                    }
2537                    return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2538                }
2539            }
2540            field_err
2541        }
2542
2543        /// Return `Some` only if we are sure this type does *not*
2544        /// allow zero initialization.
2545        fn ty_find_init_error<'tcx>(
2546            cx: &LateContext<'tcx>,
2547            ty: Ty<'tcx>,
2548            init: InitKind,
2549        ) -> Option<InitError> {
2550            let ty = cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty).unwrap_or(ty);
2551
2552            match ty.kind() {
2553                // Primitive types that don't like 0 as a value.
2554                ty::Ref(..) => Some("references must be non-null".into()),
2555                ty::Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2556                ty::FnPtr(..) => Some("function pointers must be non-null".into()),
2557                ty::Never => Some("the `!` type has no valid value".into()),
2558                ty::RawPtr(ty, _) if matches!(ty.kind(), ty::Dynamic(..)) =>
2559                // raw ptr to dyn Trait
2560                {
2561                    Some("the vtable of a wide raw pointer must be non-null".into())
2562                }
2563                // Primitive types with other constraints.
2564                ty::Bool if init == InitKind::Uninit => {
2565                    Some("booleans must be either `true` or `false`".into())
2566                }
2567                ty::Char if init == InitKind::Uninit => {
2568                    Some("characters must be a valid Unicode codepoint".into())
2569                }
2570                ty::Int(_) | ty::Uint(_) if init == InitKind::Uninit => {
2571                    Some("integers must be initialized".into())
2572                }
2573                ty::Float(_) if init == InitKind::Uninit => {
2574                    Some("floats must be initialized".into())
2575                }
2576                ty::RawPtr(_, _) if init == InitKind::Uninit => {
2577                    Some("raw pointers must be initialized".into())
2578                }
2579                // Recurse and checks for some compound types. (but not unions)
2580                ty::Adt(adt_def, args) if !adt_def.is_union() => {
2581                    // Handle structs.
2582                    if adt_def.is_struct() {
2583                        return variant_find_init_error(
2584                            cx,
2585                            ty,
2586                            adt_def.non_enum_variant(),
2587                            args,
2588                            "struct field",
2589                            init,
2590                        );
2591                    }
2592                    // And now, enums.
2593                    let span = cx.tcx.def_span(adt_def.did());
2594                    let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2595                        let definitely_inhabited = match variant
2596                            .inhabited_predicate(cx.tcx, *adt_def)
2597                            .instantiate(cx.tcx, args)
2598                            .apply_any_module(cx.tcx, cx.typing_env())
2599                        {
2600                            // Entirely skip uninhabited variants.
2601                            Some(false) => return None,
2602                            // Forward the others, but remember which ones are definitely inhabited.
2603                            Some(true) => true,
2604                            None => false,
2605                        };
2606                        Some((variant, definitely_inhabited))
2607                    });
2608                    let Some(first_variant) = potential_variants.next() else {
2609                        return Some(
2610                            InitError::from("enums with no inhabited variants have no valid value")
2611                                .spanned(span),
2612                        );
2613                    };
2614                    // So we have at least one potentially inhabited variant. Might we have two?
2615                    let Some(second_variant) = potential_variants.next() else {
2616                        // There is only one potentially inhabited variant. So we can recursively
2617                        // check that variant!
2618                        return variant_find_init_error(
2619                            cx,
2620                            ty,
2621                            first_variant.0,
2622                            args,
2623                            "field of the only potentially inhabited enum variant",
2624                            init,
2625                        );
2626                    };
2627                    // So we have at least two potentially inhabited variants. If we can prove that
2628                    // we have at least two *definitely* inhabited variants, then we have a tag and
2629                    // hence leaving this uninit is definitely disallowed. (Leaving it zeroed could
2630                    // be okay, depending on which variant is encoded as zero tag.)
2631                    if init == InitKind::Uninit {
2632                        let definitely_inhabited = (first_variant.1 as usize)
2633                            + (second_variant.1 as usize)
2634                            + potential_variants
2635                                .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2636                                .count();
2637                        if definitely_inhabited > 1 {
2638                            return Some(InitError::from(
2639                                "enums with multiple inhabited variants have to be initialized to a variant",
2640                            ).spanned(span));
2641                        }
2642                    }
2643                    // We couldn't find anything wrong here.
2644                    None
2645                }
2646                ty::Tuple(..) => {
2647                    // Proceed recursively, check all fields.
2648                    ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2649                }
2650                ty::Array(ty, len) => {
2651                    if matches!(len.try_to_target_usize(cx.tcx), Some(v) if v > 0) {
2652                        // Array length known at array non-empty -- recurse.
2653                        ty_find_init_error(cx, *ty, init)
2654                    } else {
2655                        // Empty array or size unknown.
2656                        None
2657                    }
2658                }
2659                // Conservative fallback.
2660                _ => None,
2661            }
2662        }
2663
2664        if let Some(init) = is_dangerous_init(cx, expr) {
2665            // This conjures an instance of a type out of nothing,
2666            // using zeroed or uninitialized memory.
2667            // We are extremely conservative with what we warn about.
2668            let conjured_ty = cx.typeck_results().expr_ty(expr);
2669            if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) {
2670                let msg = match init {
2671                    InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed,
2672                    InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_uninit,
2673                };
2674                let sub = BuiltinUnpermittedTypeInitSub { err };
2675                cx.emit_span_lint(
2676                    INVALID_VALUE,
2677                    expr.span,
2678                    BuiltinUnpermittedTypeInit {
2679                        msg,
2680                        ty: conjured_ty,
2681                        label: expr.span,
2682                        sub,
2683                        tcx: cx.tcx,
2684                    },
2685                );
2686            }
2687        }
2688    }
2689}
2690
2691declare_lint! {
2692    /// The `deref_nullptr` lint detects when a null pointer is dereferenced,
2693    /// which causes [undefined behavior].
2694    ///
2695    /// ### Example
2696    ///
2697    /// ```rust,compile_fail
2698    /// # #![allow(unused)]
2699    /// # #![cfg_attr(bootstrap, deny(deref_nullptr))]
2700    /// use std::ptr;
2701    /// unsafe {
2702    ///     let x = &*ptr::null::<i32>();
2703    ///     let x = ptr::addr_of!(*ptr::null::<i32>());
2704    ///     let x = *(0 as *const i32);
2705    /// }
2706    /// ```
2707    ///
2708    /// {{produces}}
2709    ///
2710    /// ### Explanation
2711    ///
2712    /// Dereferencing a null pointer causes [undefined behavior] if it is accessed
2713    /// (loaded from or stored to).
2714    ///
2715    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2716    pub DEREF_NULLPTR,
2717    Deny,
2718    "detects when an null pointer is dereferenced"
2719}
2720
2721declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
2722
2723impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
2724    fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2725        /// test if expression is a null ptr
2726        fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
2727            let pointer_ty = cx.typeck_results().expr_ty(expr);
2728            let ty::RawPtr(pointee, _) = pointer_ty.kind() else {
2729                return false;
2730            };
2731            if let Ok(layout) = cx.tcx.layout_of(cx.typing_env().as_query_input(*pointee)) {
2732                if layout.layout.size() == rustc_abi::Size::ZERO {
2733                    return false;
2734                }
2735            }
2736
2737            match &expr.kind {
2738                hir::ExprKind::Cast(expr, ty) => {
2739                    if let hir::TyKind::Ptr(_) = ty.kind {
2740                        return is_zero(expr) || is_null_ptr(cx, expr);
2741                    }
2742                }
2743                // check for call to `core::ptr::null` or `core::ptr::null_mut`
2744                hir::ExprKind::Call(path, _) => {
2745                    if let hir::ExprKind::Path(ref qpath) = path.kind
2746                        && let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id()
2747                    {
2748                        return matches!(
2749                            cx.tcx.get_diagnostic_name(def_id),
2750                            Some(sym::ptr_null | sym::ptr_null_mut)
2751                        );
2752                    }
2753                }
2754                _ => {}
2755            }
2756            false
2757        }
2758
2759        /// test if expression is the literal `0`
2760        fn is_zero(expr: &hir::Expr<'_>) -> bool {
2761            match &expr.kind {
2762                hir::ExprKind::Lit(lit) => {
2763                    if let LitKind::Int(a, _) = lit.node {
2764                        return a == 0;
2765                    }
2766                }
2767                _ => {}
2768            }
2769            false
2770        }
2771
2772        if let hir::ExprKind::Unary(hir::UnOp::Deref, expr_deref) = expr.kind
2773            && is_null_ptr(cx, expr_deref)
2774        {
2775            if let hir::Node::Expr(hir::Expr {
2776                kind: hir::ExprKind::AddrOf(hir::BorrowKind::Raw, ..),
2777                ..
2778            }) = cx.tcx.parent_hir_node(expr.hir_id)
2779            {
2780                // `&raw *NULL` is ok.
2781            } else {
2782                cx.emit_span_lint(
2783                    DEREF_NULLPTR,
2784                    expr.span,
2785                    BuiltinDerefNullptr { label: expr.span },
2786                );
2787            }
2788        }
2789    }
2790}
2791
2792declare_lint! {
2793    /// The `named_asm_labels` lint detects the use of named labels in the
2794    /// inline `asm!` macro.
2795    ///
2796    /// ### Example
2797    ///
2798    /// ```rust,compile_fail
2799    /// # #![feature(asm_experimental_arch)]
2800    /// use std::arch::asm;
2801    ///
2802    /// fn main() {
2803    ///     unsafe {
2804    ///         asm!("foo: bar");
2805    ///     }
2806    /// }
2807    /// ```
2808    ///
2809    /// {{produces}}
2810    ///
2811    /// ### Explanation
2812    ///
2813    /// LLVM is allowed to duplicate inline assembly blocks for any
2814    /// reason, for example when it is in a function that gets inlined. Because
2815    /// of this, GNU assembler [local labels] *must* be used instead of labels
2816    /// with a name. Using named labels might cause assembler or linker errors.
2817    ///
2818    /// See the explanation in [Rust By Example] for more details.
2819    ///
2820    /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
2821    /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2822    pub NAMED_ASM_LABELS,
2823    Deny,
2824    "named labels in inline assembly",
2825}
2826
2827declare_lint! {
2828    /// The `binary_asm_labels` lint detects the use of numeric labels containing only binary
2829    /// digits in the inline `asm!` macro.
2830    ///
2831    /// ### Example
2832    ///
2833    /// ```rust,ignore (fails on non-x86_64)
2834    /// #![cfg(target_arch = "x86_64")]
2835    ///
2836    /// use std::arch::asm;
2837    ///
2838    /// fn main() {
2839    ///     unsafe {
2840    ///         asm!("0: jmp 0b");
2841    ///     }
2842    /// }
2843    /// ```
2844    ///
2845    /// This will produce:
2846    ///
2847    /// ```text
2848    /// error: avoid using labels containing only the digits `0` and `1` in inline assembly
2849    ///  --> <source>:7:15
2850    ///   |
2851    /// 7 |         asm!("0: jmp 0b");
2852    ///   |               ^ use a different label that doesn't start with `0` or `1`
2853    ///   |
2854    ///   = help: start numbering with `2` instead
2855    ///   = note: an LLVM bug makes these labels ambiguous with a binary literal number on x86
2856    ///   = note: see <https://github.com/llvm/llvm-project/issues/99547> for more information
2857    ///   = note: `#[deny(binary_asm_labels)]` on by default
2858    /// ```
2859    ///
2860    /// ### Explanation
2861    ///
2862    /// An [LLVM bug] causes this code to fail to compile because it interprets the `0b` as a binary
2863    /// literal instead of a reference to the previous local label `0`. To work around this bug,
2864    /// don't use labels that could be confused with a binary literal.
2865    ///
2866    /// This behavior is platform-specific to x86 and x86-64.
2867    ///
2868    /// See the explanation in [Rust By Example] for more details.
2869    ///
2870    /// [LLVM bug]: https://github.com/llvm/llvm-project/issues/99547
2871    /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2872    pub BINARY_ASM_LABELS,
2873    Deny,
2874    "labels in inline assembly containing only 0 or 1 digits",
2875}
2876
2877declare_lint_pass!(AsmLabels => [NAMED_ASM_LABELS, BINARY_ASM_LABELS]);
2878
2879#[derive(Debug, Clone, Copy, PartialEq, Eq)]
2880enum AsmLabelKind {
2881    Named,
2882    FormatArg,
2883    Binary,
2884}
2885
2886/// Checks if a potential label is actually a Hexagon register span notation.
2887///
2888/// Hexagon assembly uses register span notation like `r1:0`, `V5:4.w`, `p1:0` etc.
2889/// These follow the pattern: `[letter][digit(s)]:[digit(s)][optional_suffix]`
2890///
2891/// Returns `true` if the string matches a valid Hexagon register span pattern.
2892pub fn is_hexagon_register_span(possible_label: &str) -> bool {
2893    // Extract the full register span from the context
2894    if let Some(colon_idx) = possible_label.find(':') {
2895        let after_colon = &possible_label[colon_idx + 1..];
2896        is_hexagon_register_span_impl(&possible_label[..colon_idx], after_colon)
2897    } else {
2898        false
2899    }
2900}
2901
2902/// Helper function for use within the lint when we have statement context.
2903fn is_hexagon_register_span_context(
2904    possible_label: &str,
2905    statement: &str,
2906    colon_idx: usize,
2907) -> bool {
2908    // Extract what comes after the colon in the statement
2909    let after_colon_start = colon_idx + 1;
2910    if after_colon_start >= statement.len() {
2911        return false;
2912    }
2913
2914    // Get the part after the colon, up to the next whitespace or special character
2915    let after_colon_full = &statement[after_colon_start..];
2916    let after_colon = after_colon_full
2917        .chars()
2918        .take_while(|&c| c.is_ascii_alphanumeric() || c == '.')
2919        .collect::<String>();
2920
2921    is_hexagon_register_span_impl(possible_label, &after_colon)
2922}
2923
2924/// Core implementation for checking hexagon register spans.
2925fn is_hexagon_register_span_impl(before_colon: &str, after_colon: &str) -> bool {
2926    if before_colon.len() < 1 || after_colon.is_empty() {
2927        return false;
2928    }
2929
2930    let mut chars = before_colon.chars();
2931    let start = chars.next().unwrap();
2932
2933    // Must start with a letter (r, V, p, etc.)
2934    if !start.is_ascii_alphabetic() {
2935        return false;
2936    }
2937
2938    let rest = &before_colon[1..];
2939
2940    // Check if the part after the first letter is all digits and non-empty
2941    if rest.is_empty() || !rest.chars().all(|c| c.is_ascii_digit()) {
2942        return false;
2943    }
2944
2945    // Check if after colon starts with digits (may have suffix like .w, .h)
2946    let digits_after = after_colon.chars().take_while(|c| c.is_ascii_digit()).collect::<String>();
2947
2948    !digits_after.is_empty()
2949}
2950
2951impl<'tcx> LateLintPass<'tcx> for AsmLabels {
2952    fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
2953        if let hir::Expr {
2954            kind:
2955                hir::ExprKind::InlineAsm(hir::InlineAsm {
2956                    asm_macro: asm_macro @ (AsmMacro::Asm | AsmMacro::NakedAsm),
2957                    template_strs,
2958                    options,
2959                    ..
2960                }),
2961            ..
2962        } = expr
2963        {
2964            // Non-generic naked functions are allowed to define arbitrary
2965            // labels.
2966            if *asm_macro == AsmMacro::NakedAsm {
2967                let def_id = expr.hir_id.owner.def_id;
2968                if !cx.tcx.generics_of(def_id).requires_monomorphization(cx.tcx) {
2969                    return;
2970                }
2971            }
2972
2973            // asm with `options(raw)` does not do replacement with `{` and `}`.
2974            let raw = options.contains(InlineAsmOptions::RAW);
2975
2976            for (template_sym, template_snippet, template_span) in template_strs.iter() {
2977                let template_str = template_sym.as_str();
2978                let find_label_span = |needle: &str| -> Option<Span> {
2979                    if let Some(template_snippet) = template_snippet {
2980                        let snippet = template_snippet.as_str();
2981                        if let Some(pos) = snippet.find(needle) {
2982                            let end = pos
2983                                + snippet[pos..]
2984                                    .find(|c| c == ':')
2985                                    .unwrap_or(snippet[pos..].len() - 1);
2986                            let inner = InnerSpan::new(pos, end);
2987                            return Some(template_span.from_inner(inner));
2988                        }
2989                    }
2990
2991                    None
2992                };
2993
2994                // diagnostics are emitted per-template, so this is created here as opposed to the outer loop
2995                let mut spans = Vec::new();
2996
2997                // A semicolon might not actually be specified as a separator for all targets, but
2998                // it seems like LLVM accepts it always.
2999                let statements = template_str.split(|c| matches!(c, '\n' | ';'));
3000                for statement in statements {
3001                    // If there's a comment, trim it from the statement
3002                    let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
3003
3004                    // In this loop, if there is ever a non-label, no labels can come after it.
3005                    let mut start_idx = 0;
3006                    'label_loop: for (idx, _) in statement.match_indices(':') {
3007                        let possible_label = statement[start_idx..idx].trim();
3008                        let mut chars = possible_label.chars();
3009
3010                        let Some(start) = chars.next() else {
3011                            // Empty string means a leading ':' in this section, which is not a
3012                            // label.
3013                            break 'label_loop;
3014                        };
3015
3016                        // Whether a { bracket has been seen and its } hasn't been found yet.
3017                        let mut in_bracket = false;
3018                        let mut label_kind = AsmLabelKind::Named;
3019
3020                        // A label can also start with a format arg, if it's not a raw asm block.
3021                        if !raw && start == '{' {
3022                            in_bracket = true;
3023                            label_kind = AsmLabelKind::FormatArg;
3024                        } else if matches!(start, '0' | '1') {
3025                            // Binary labels have only the characters `0` or `1`.
3026                            label_kind = AsmLabelKind::Binary;
3027                        } else if !(start.is_ascii_alphabetic() || matches!(start, '.' | '_')) {
3028                            // Named labels start with ASCII letters, `.` or `_`.
3029                            // anything else is not a label
3030                            break 'label_loop;
3031                        }
3032
3033                        // Check for Hexagon register span notation (e.g., "r1:0", "V5:4", "V3:2.w")
3034                        // This is valid Hexagon assembly syntax, not a label
3035                        if matches!(cx.tcx.sess.asm_arch, Some(InlineAsmArch::Hexagon))
3036                            && is_hexagon_register_span_context(possible_label, statement, idx)
3037                        {
3038                            break 'label_loop;
3039                        }
3040
3041                        for c in chars {
3042                            // Inside a template format arg, any character is permitted for the
3043                            // purposes of label detection because we assume that it can be
3044                            // replaced with some other valid label string later. `options(raw)`
3045                            // asm blocks cannot have format args, so they are excluded from this
3046                            // special case.
3047                            if !raw && in_bracket {
3048                                if c == '{' {
3049                                    // Nested brackets are not allowed in format args, this cannot
3050                                    // be a label.
3051                                    break 'label_loop;
3052                                }
3053
3054                                if c == '}' {
3055                                    // The end of the format arg.
3056                                    in_bracket = false;
3057                                }
3058                            } else if !raw && c == '{' {
3059                                // Start of a format arg.
3060                                in_bracket = true;
3061                                label_kind = AsmLabelKind::FormatArg;
3062                            } else {
3063                                let can_continue = match label_kind {
3064                                    // Format arg labels are considered to be named labels for the purposes
3065                                    // of continuing outside of their {} pair.
3066                                    AsmLabelKind::Named | AsmLabelKind::FormatArg => {
3067                                        c.is_ascii_alphanumeric() || matches!(c, '_' | '$')
3068                                    }
3069                                    AsmLabelKind::Binary => matches!(c, '0' | '1'),
3070                                };
3071
3072                                if !can_continue {
3073                                    // The potential label had an invalid character inside it, it
3074                                    // cannot be a label.
3075                                    break 'label_loop;
3076                                }
3077                            }
3078                        }
3079
3080                        // If all characters passed the label checks, this is a label.
3081                        spans.push((find_label_span(possible_label), label_kind));
3082                        start_idx = idx + 1;
3083                    }
3084                }
3085
3086                for (span, label_kind) in spans {
3087                    let missing_precise_span = span.is_none();
3088                    let span = span.unwrap_or(*template_span);
3089                    match label_kind {
3090                        AsmLabelKind::Named => {
3091                            cx.emit_span_lint(
3092                                NAMED_ASM_LABELS,
3093                                span,
3094                                InvalidAsmLabel::Named { missing_precise_span },
3095                            );
3096                        }
3097                        AsmLabelKind::FormatArg => {
3098                            cx.emit_span_lint(
3099                                NAMED_ASM_LABELS,
3100                                span,
3101                                InvalidAsmLabel::FormatArg { missing_precise_span },
3102                            );
3103                        }
3104                        // the binary asm issue only occurs when using intel syntax on x86 targets
3105                        AsmLabelKind::Binary
3106                            if !options.contains(InlineAsmOptions::ATT_SYNTAX)
3107                                && matches!(
3108                                    cx.tcx.sess.asm_arch,
3109                                    Some(InlineAsmArch::X86 | InlineAsmArch::X86_64) | None
3110                                ) =>
3111                        {
3112                            cx.emit_span_lint(
3113                                BINARY_ASM_LABELS,
3114                                span,
3115                                InvalidAsmLabel::Binary { missing_precise_span, span },
3116                            )
3117                        }
3118                        // No lint on anything other than x86
3119                        AsmLabelKind::Binary => (),
3120                    };
3121                }
3122            }
3123        }
3124    }
3125}
3126
3127declare_lint! {
3128    /// The `special_module_name` lint detects module
3129    /// declarations for files that have a special meaning.
3130    ///
3131    /// ### Example
3132    ///
3133    /// ```rust,compile_fail
3134    /// mod lib;
3135    ///
3136    /// fn main() {
3137    ///     lib::run();
3138    /// }
3139    /// ```
3140    ///
3141    /// {{produces}}
3142    ///
3143    /// ### Explanation
3144    ///
3145    /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3146    /// library or binary crate, so declaring them as modules
3147    /// will lead to miscompilation of the crate unless configured
3148    /// explicitly.
3149    ///
3150    /// To access a library from a binary target within the same crate,
3151    /// use `your_crate_name::` as the path instead of `lib::`:
3152    ///
3153    /// ```rust,compile_fail
3154    /// // bar/src/lib.rs
3155    /// fn run() {
3156    ///     // ...
3157    /// }
3158    ///
3159    /// // bar/src/main.rs
3160    /// fn main() {
3161    ///     bar::run();
3162    /// }
3163    /// ```
3164    ///
3165    /// Binary targets cannot be used as libraries and so declaring
3166    /// one as a module is not allowed.
3167    pub SPECIAL_MODULE_NAME,
3168    Warn,
3169    "module declarations for files with a special meaning",
3170}
3171
3172declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3173
3174impl EarlyLintPass for SpecialModuleName {
3175    fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3176        for item in &krate.items {
3177            if let ast::ItemKind::Mod(
3178                _,
3179                ident,
3180                ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No { .. }, _),
3181            ) = item.kind
3182            {
3183                if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3184                    continue;
3185                }
3186
3187                match ident.name.as_str() {
3188                    "lib" => cx.emit_span_lint(
3189                        SPECIAL_MODULE_NAME,
3190                        item.span,
3191                        BuiltinSpecialModuleNameUsed::Lib,
3192                    ),
3193                    "main" => cx.emit_span_lint(
3194                        SPECIAL_MODULE_NAME,
3195                        item.span,
3196                        BuiltinSpecialModuleNameUsed::Main,
3197                    ),
3198                    _ => continue,
3199                }
3200            }
3201        }
3202    }
3203}