rustc_lint/builtin.rs
1//! Lints in the Rust compiler.
2//!
3//! This contains lints which can feasibly be implemented as their own
4//! AST visitor. Also see `rustc_session::lint::builtin`, which contains the
5//! definitions of lints that are emitted directly inside the main compiler.
6//!
7//! To add a new lint to rustc, declare it here using [`declare_lint!`].
8//! Then add code to emit the new lint in the appropriate circumstances.
9//!
10//! If you define a new [`EarlyLintPass`], you will also need to add it to the
11//! [`crate::early_lint_methods!`] invocation in `lib.rs`.
12//!
13//! If you define a new [`LateLintPass`], you will also need to add it to the
14//! [`crate::late_lint_methods!`] invocation in `lib.rs`.
15
16use std::fmt::Write;
17
18use ast::token::TokenKind;
19use rustc_abi::BackendRepr;
20use rustc_ast::tokenstream::{TokenStream, TokenTree};
21use rustc_ast::visit::{FnCtxt, FnKind};
22use rustc_ast::{self as ast, *};
23use rustc_ast_pretty::pprust::expr_to_string;
24use rustc_attr_parsing::AttributeParser;
25use rustc_errors::{Applicability, LintDiagnostic};
26use rustc_feature::GateIssue;
27use rustc_hir as hir;
28use rustc_hir::attrs::AttributeKind;
29use rustc_hir::def::{DefKind, Res};
30use rustc_hir::def_id::{CRATE_DEF_ID, DefId, LocalDefId};
31use rustc_hir::intravisit::FnKind as HirFnKind;
32use rustc_hir::{Body, FnDecl, ImplItemImplKind, PatKind, PredicateOrigin, find_attr};
33use rustc_middle::bug;
34use rustc_middle::lint::LevelAndSource;
35use rustc_middle::ty::layout::LayoutOf;
36use rustc_middle::ty::print::with_no_trimmed_paths;
37use rustc_middle::ty::{self, AssocContainer, Ty, TyCtxt, TypeVisitableExt, Upcast, VariantDef};
38use rustc_session::lint::FutureIncompatibilityReason;
39// hardwired lints from rustc_lint_defs
40pub use rustc_session::lint::builtin::*;
41use rustc_session::{declare_lint, declare_lint_pass, impl_lint_pass};
42use rustc_span::edition::Edition;
43use rustc_span::source_map::Spanned;
44use rustc_span::{BytePos, DUMMY_SP, Ident, InnerSpan, Span, Symbol, kw, sym};
45use rustc_target::asm::InlineAsmArch;
46use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt};
47use rustc_trait_selection::traits::misc::type_allowed_to_implement_copy;
48use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt as _;
49use rustc_trait_selection::traits::{self};
50
51use crate::errors::BuiltinEllipsisInclusiveRangePatterns;
52use crate::lints::{
53 BuiltinAnonymousParams, BuiltinConstNoMangle, BuiltinDerefNullptr, BuiltinDoubleNegations,
54 BuiltinDoubleNegationsAddParens, BuiltinEllipsisInclusiveRangePatternsLint,
55 BuiltinExplicitOutlives, BuiltinExplicitOutlivesSuggestion, BuiltinFeatureIssueNote,
56 BuiltinIncompleteFeatures, BuiltinIncompleteFeaturesHelp, BuiltinInternalFeatures,
57 BuiltinKeywordIdents, BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc,
58 BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns,
59 BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasBounds,
60 BuiltinUngatedAsyncFnTrackCaller, BuiltinUnpermittedTypeInit, BuiltinUnpermittedTypeInitSub,
61 BuiltinUnreachablePub, BuiltinUnsafe, BuiltinUnstableFeatures, BuiltinUnusedDocComment,
62 BuiltinUnusedDocCommentSub, BuiltinWhileTrue, InvalidAsmLabel,
63};
64use crate::{
65 EarlyContext, EarlyLintPass, LateContext, LateLintPass, Level, LintContext,
66 fluent_generated as fluent,
67};
68declare_lint! {
69 /// The `while_true` lint detects `while true { }`.
70 ///
71 /// ### Example
72 ///
73 /// ```rust,no_run
74 /// while true {
75 ///
76 /// }
77 /// ```
78 ///
79 /// {{produces}}
80 ///
81 /// ### Explanation
82 ///
83 /// `while true` should be replaced with `loop`. A `loop` expression is
84 /// the preferred way to write an infinite loop because it more directly
85 /// expresses the intent of the loop.
86 WHILE_TRUE,
87 Warn,
88 "suggest using `loop { }` instead of `while true { }`"
89}
90
91declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
92
93impl EarlyLintPass for WhileTrue {
94 #[inline]
95 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
96 if let ast::ExprKind::While(cond, _, label) = &e.kind
97 && let ast::ExprKind::Lit(token_lit) = cond.peel_parens().kind
98 && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit
99 && !cond.span.from_expansion()
100 {
101 let condition_span = e.span.with_hi(cond.span.hi());
102 let replace = format!(
103 "{}loop",
104 label.map_or_else(String::new, |label| format!("{}: ", label.ident,))
105 );
106 cx.emit_span_lint(
107 WHILE_TRUE,
108 condition_span,
109 BuiltinWhileTrue { suggestion: condition_span, replace },
110 );
111 }
112 }
113}
114
115declare_lint! {
116 /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }`
117 /// instead of `Struct { x }` in a pattern.
118 ///
119 /// ### Example
120 ///
121 /// ```rust
122 /// struct Point {
123 /// x: i32,
124 /// y: i32,
125 /// }
126 ///
127 ///
128 /// fn main() {
129 /// let p = Point {
130 /// x: 5,
131 /// y: 5,
132 /// };
133 ///
134 /// match p {
135 /// Point { x: x, y: y } => (),
136 /// }
137 /// }
138 /// ```
139 ///
140 /// {{produces}}
141 ///
142 /// ### Explanation
143 ///
144 /// The preferred style is to avoid the repetition of specifying both the
145 /// field name and the binding name if both identifiers are the same.
146 NON_SHORTHAND_FIELD_PATTERNS,
147 Warn,
148 "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
149}
150
151declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
152
153impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns {
154 fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) {
155 if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
156 let variant = cx
157 .typeck_results()
158 .pat_ty(pat)
159 .ty_adt_def()
160 .expect("struct pattern type is not an ADT")
161 .variant_of_res(cx.qpath_res(qpath, pat.hir_id));
162 for fieldpat in field_pats {
163 if fieldpat.is_shorthand {
164 continue;
165 }
166 if fieldpat.span.from_expansion() {
167 // Don't lint if this is a macro expansion: macro authors
168 // shouldn't have to worry about this kind of style issue
169 // (Issue #49588)
170 continue;
171 }
172 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
173 if cx.tcx.find_field_index(ident, variant)
174 == Some(cx.typeck_results().field_index(fieldpat.hir_id))
175 {
176 cx.emit_span_lint(
177 NON_SHORTHAND_FIELD_PATTERNS,
178 fieldpat.span,
179 BuiltinNonShorthandFieldPatterns {
180 ident,
181 suggestion: fieldpat.span,
182 prefix: binding_annot.prefix_str(),
183 },
184 );
185 }
186 }
187 }
188 }
189 }
190}
191
192declare_lint! {
193 /// The `unsafe_code` lint catches usage of `unsafe` code and other
194 /// potentially unsound constructs like `no_mangle`, `export_name`,
195 /// and `link_section`.
196 ///
197 /// ### Example
198 ///
199 /// ```rust,compile_fail
200 /// #![deny(unsafe_code)]
201 /// fn main() {
202 /// unsafe {
203 ///
204 /// }
205 /// }
206 ///
207 /// #[no_mangle]
208 /// fn func_0() { }
209 ///
210 /// #[export_name = "exported_symbol_name"]
211 /// pub fn name_in_rust() { }
212 ///
213 /// #[no_mangle]
214 /// #[link_section = ".example_section"]
215 /// pub static VAR1: u32 = 1;
216 /// ```
217 ///
218 /// {{produces}}
219 ///
220 /// ### Explanation
221 ///
222 /// This lint is intended to restrict the usage of `unsafe` blocks and other
223 /// constructs (including, but not limited to `no_mangle`, `link_section`
224 /// and `export_name` attributes) wrong usage of which causes undefined
225 /// behavior.
226 UNSAFE_CODE,
227 Allow,
228 "usage of `unsafe` code and other potentially unsound constructs",
229 @eval_always = true
230}
231
232declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
233
234impl UnsafeCode {
235 fn report_unsafe(
236 &self,
237 cx: &EarlyContext<'_>,
238 span: Span,
239 decorate: impl for<'a> LintDiagnostic<'a, ()>,
240 ) {
241 // This comes from a macro that has `#[allow_internal_unsafe]`.
242 if span.allows_unsafe() {
243 return;
244 }
245
246 cx.emit_span_lint(UNSAFE_CODE, span, decorate);
247 }
248}
249
250impl EarlyLintPass for UnsafeCode {
251 #[inline]
252 fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
253 if let ast::ExprKind::Block(ref blk, _) = e.kind {
254 // Don't warn about generated blocks; that'll just pollute the output.
255 if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
256 self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock);
257 }
258 }
259 }
260
261 fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
262 match it.kind {
263 ast::ItemKind::Trait(box ast::Trait { safety: ast::Safety::Unsafe(_), .. }) => {
264 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait);
265 }
266
267 ast::ItemKind::Impl(ast::Impl {
268 of_trait: Some(box ast::TraitImplHeader { safety: ast::Safety::Unsafe(_), .. }),
269 ..
270 }) => {
271 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl);
272 }
273
274 ast::ItemKind::Fn(..) => {
275 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
276 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn);
277 }
278
279 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
280 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn);
281 }
282
283 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
284 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn);
285 }
286 }
287
288 ast::ItemKind::Static(..) => {
289 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
290 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic);
291 }
292
293 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
294 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic);
295 }
296
297 if let Some(attr) = attr::find_by_name(&it.attrs, sym::link_section) {
298 self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic);
299 }
300 }
301
302 ast::ItemKind::GlobalAsm(..) => {
303 self.report_unsafe(cx, it.span, BuiltinUnsafe::GlobalAsm);
304 }
305
306 ast::ItemKind::ForeignMod(ForeignMod { safety, .. }) => {
307 if let Safety::Unsafe(_) = safety {
308 self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeExternBlock);
309 }
310 }
311
312 ast::ItemKind::MacroDef(..) => {
313 if let Some(attr) = AttributeParser::parse_limited(
314 cx.builder.sess(),
315 &it.attrs,
316 sym::allow_internal_unsafe,
317 it.span,
318 DUMMY_NODE_ID,
319 Some(cx.builder.features()),
320 ) {
321 self.report_unsafe(cx, attr.span(), BuiltinUnsafe::AllowInternalUnsafe);
322 }
323 }
324
325 _ => {}
326 }
327 }
328
329 fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
330 if let ast::AssocItemKind::Fn(..) = it.kind {
331 if let Some(attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
332 self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod);
333 }
334 if let Some(attr) = attr::find_by_name(&it.attrs, sym::export_name) {
335 self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod);
336 }
337 }
338 }
339
340 fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) {
341 if let FnKind::Fn(
342 ctxt,
343 _,
344 ast::Fn {
345 sig: ast::FnSig { header: ast::FnHeader { safety: ast::Safety::Unsafe(_), .. }, .. },
346 body,
347 ..
348 },
349 ) = fk
350 {
351 let decorator = match ctxt {
352 FnCtxt::Foreign => return,
353 FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn,
354 FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod,
355 FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod,
356 };
357 self.report_unsafe(cx, span, decorator);
358 }
359 }
360}
361
362declare_lint! {
363 /// The `missing_docs` lint detects missing documentation for public items.
364 ///
365 /// ### Example
366 ///
367 /// ```rust,compile_fail
368 /// #![deny(missing_docs)]
369 /// pub fn foo() {}
370 /// ```
371 ///
372 /// {{produces}}
373 ///
374 /// ### Explanation
375 ///
376 /// This lint is intended to ensure that a library is well-documented.
377 /// Items without documentation can be difficult for users to understand
378 /// how to use properly.
379 ///
380 /// This lint is "allow" by default because it can be noisy, and not all
381 /// projects may want to enforce everything to be documented.
382 pub MISSING_DOCS,
383 Allow,
384 "detects missing documentation for public members",
385 report_in_external_macro
386}
387
388#[derive(Default)]
389pub struct MissingDoc;
390
391impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
392
393fn has_doc(attr: &hir::Attribute) -> bool {
394 if attr.is_doc_comment() {
395 return true;
396 }
397
398 if !attr.has_name(sym::doc) {
399 return false;
400 }
401
402 if attr.value_str().is_some() {
403 return true;
404 }
405
406 if let Some(list) = attr.meta_item_list() {
407 for meta in list {
408 if meta.has_name(sym::hidden) {
409 return true;
410 }
411 }
412 }
413
414 false
415}
416
417impl MissingDoc {
418 fn check_missing_docs_attrs(
419 &self,
420 cx: &LateContext<'_>,
421 def_id: LocalDefId,
422 article: &'static str,
423 desc: &'static str,
424 ) {
425 // Only check publicly-visible items, using the result from the privacy pass.
426 // It's an option so the crate root can also use this function (it doesn't
427 // have a `NodeId`).
428 if def_id != CRATE_DEF_ID && !cx.effective_visibilities.is_exported(def_id) {
429 return;
430 }
431
432 let attrs = cx.tcx.hir_attrs(cx.tcx.local_def_id_to_hir_id(def_id));
433 let has_doc = attrs.iter().any(has_doc);
434 if !has_doc {
435 cx.emit_span_lint(
436 MISSING_DOCS,
437 cx.tcx.def_span(def_id),
438 BuiltinMissingDoc { article, desc },
439 );
440 }
441 }
442}
443
444impl<'tcx> LateLintPass<'tcx> for MissingDoc {
445 fn check_crate(&mut self, cx: &LateContext<'_>) {
446 self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate");
447 }
448
449 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
450 // Previously the Impl and Use types have been excluded from missing docs,
451 // so we will continue to exclude them for compatibility.
452 //
453 // The documentation on `ExternCrate` is not used at the moment so no need to warn for it.
454 if let hir::ItemKind::Impl(..) | hir::ItemKind::Use(..) | hir::ItemKind::ExternCrate(..) =
455 it.kind
456 {
457 return;
458 }
459
460 let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id());
461 self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc);
462 }
463
464 fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) {
465 let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id());
466
467 self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc);
468 }
469
470 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
471 let container = cx.tcx.associated_item(impl_item.owner_id.def_id).container;
472
473 match container {
474 // If the method is an impl for a trait, don't doc.
475 AssocContainer::TraitImpl(_) => return,
476 AssocContainer::Trait => {}
477 // If the method is an impl for an item with docs_hidden, don't doc.
478 AssocContainer::InherentImpl => {
479 let parent = cx.tcx.hir_get_parent_item(impl_item.hir_id());
480 let impl_ty = cx.tcx.type_of(parent).instantiate_identity();
481 let outerdef = match impl_ty.kind() {
482 ty::Adt(def, _) => Some(def.did()),
483 ty::Foreign(def_id) => Some(*def_id),
484 _ => None,
485 };
486 let is_hidden = match outerdef {
487 Some(id) => cx.tcx.is_doc_hidden(id),
488 None => false,
489 };
490 if is_hidden {
491 return;
492 }
493 }
494 }
495
496 let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id());
497 self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc);
498 }
499
500 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) {
501 let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id());
502 self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc);
503 }
504
505 fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) {
506 if !sf.is_positional() {
507 self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field")
508 }
509 }
510
511 fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) {
512 self.check_missing_docs_attrs(cx, v.def_id, "a", "variant");
513 }
514}
515
516declare_lint! {
517 /// The `missing_copy_implementations` lint detects potentially-forgotten
518 /// implementations of [`Copy`] for public types.
519 ///
520 /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html
521 ///
522 /// ### Example
523 ///
524 /// ```rust,compile_fail
525 /// #![deny(missing_copy_implementations)]
526 /// pub struct Foo {
527 /// pub field: i32
528 /// }
529 /// # fn main() {}
530 /// ```
531 ///
532 /// {{produces}}
533 ///
534 /// ### Explanation
535 ///
536 /// Historically (before 1.0), types were automatically marked as `Copy`
537 /// if possible. This was changed so that it required an explicit opt-in
538 /// by implementing the `Copy` trait. As part of this change, a lint was
539 /// added to alert if a copyable type was not marked `Copy`.
540 ///
541 /// This lint is "allow" by default because this code isn't bad; it is
542 /// common to write newtypes like this specifically so that a `Copy` type
543 /// is no longer `Copy`. `Copy` types can result in unintended copies of
544 /// large data which can impact performance.
545 pub MISSING_COPY_IMPLEMENTATIONS,
546 Allow,
547 "detects potentially-forgotten implementations of `Copy`"
548}
549
550declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
551
552impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations {
553 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
554 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
555 return;
556 }
557 let (def, ty) = match item.kind {
558 hir::ItemKind::Struct(_, generics, _) => {
559 if !generics.params.is_empty() {
560 return;
561 }
562 let def = cx.tcx.adt_def(item.owner_id);
563 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
564 }
565 hir::ItemKind::Union(_, generics, _) => {
566 if !generics.params.is_empty() {
567 return;
568 }
569 let def = cx.tcx.adt_def(item.owner_id);
570 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
571 }
572 hir::ItemKind::Enum(_, generics, _) => {
573 if !generics.params.is_empty() {
574 return;
575 }
576 let def = cx.tcx.adt_def(item.owner_id);
577 (def, Ty::new_adt(cx.tcx, def, ty::List::empty()))
578 }
579 _ => return,
580 };
581 if def.has_dtor(cx.tcx) {
582 return;
583 }
584
585 // If the type contains a raw pointer, it may represent something like a handle,
586 // and recommending Copy might be a bad idea.
587 for field in def.all_fields() {
588 let did = field.did;
589 if cx.tcx.type_of(did).instantiate_identity().is_raw_ptr() {
590 return;
591 }
592 }
593 if cx.type_is_copy_modulo_regions(ty) {
594 return;
595 }
596 if type_implements_negative_copy_modulo_regions(cx.tcx, ty, cx.typing_env()) {
597 return;
598 }
599 if def.is_variant_list_non_exhaustive()
600 || def.variants().iter().any(|variant| variant.is_field_list_non_exhaustive())
601 {
602 return;
603 }
604
605 // We shouldn't recommend implementing `Copy` on stateful things,
606 // such as iterators.
607 if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator)
608 && cx
609 .tcx
610 .infer_ctxt()
611 .build(cx.typing_mode())
612 .type_implements_trait(iter_trait, [ty], cx.param_env)
613 .must_apply_modulo_regions()
614 {
615 return;
616 }
617
618 // Default value of clippy::trivially_copy_pass_by_ref
619 const MAX_SIZE: u64 = 256;
620
621 if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) {
622 if size > MAX_SIZE {
623 return;
624 }
625 }
626
627 if type_allowed_to_implement_copy(
628 cx.tcx,
629 cx.param_env,
630 ty,
631 traits::ObligationCause::misc(item.span, item.owner_id.def_id),
632 hir::Safety::Safe,
633 )
634 .is_ok()
635 {
636 cx.emit_span_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl);
637 }
638 }
639}
640
641/// Check whether a `ty` has a negative `Copy` implementation, ignoring outlives constraints.
642fn type_implements_negative_copy_modulo_regions<'tcx>(
643 tcx: TyCtxt<'tcx>,
644 ty: Ty<'tcx>,
645 typing_env: ty::TypingEnv<'tcx>,
646) -> bool {
647 let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
648 let trait_ref =
649 ty::TraitRef::new(tcx, tcx.require_lang_item(hir::LangItem::Copy, DUMMY_SP), [ty]);
650 let pred = ty::TraitPredicate { trait_ref, polarity: ty::PredicatePolarity::Negative };
651 let obligation = traits::Obligation {
652 cause: traits::ObligationCause::dummy(),
653 param_env,
654 recursion_depth: 0,
655 predicate: pred.upcast(tcx),
656 };
657 infcx.predicate_must_hold_modulo_regions(&obligation)
658}
659
660declare_lint! {
661 /// The `missing_debug_implementations` lint detects missing
662 /// implementations of [`fmt::Debug`] for public types.
663 ///
664 /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html
665 ///
666 /// ### Example
667 ///
668 /// ```rust,compile_fail
669 /// #![deny(missing_debug_implementations)]
670 /// pub struct Foo;
671 /// # fn main() {}
672 /// ```
673 ///
674 /// {{produces}}
675 ///
676 /// ### Explanation
677 ///
678 /// Having a `Debug` implementation on all types can assist with
679 /// debugging, as it provides a convenient way to format and display a
680 /// value. Using the `#[derive(Debug)]` attribute will automatically
681 /// generate a typical implementation, or a custom implementation can be
682 /// added by manually implementing the `Debug` trait.
683 ///
684 /// This lint is "allow" by default because adding `Debug` to all types can
685 /// have a negative impact on compile time and code size. It also requires
686 /// boilerplate to be added to every type, which can be an impediment.
687 MISSING_DEBUG_IMPLEMENTATIONS,
688 Allow,
689 "detects missing implementations of Debug"
690}
691
692#[derive(Default)]
693pub(crate) struct MissingDebugImplementations;
694
695impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
696
697impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations {
698 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
699 if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) {
700 return;
701 }
702
703 match item.kind {
704 hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
705 _ => return,
706 }
707
708 // Avoid listing trait impls if the trait is allowed.
709 let LevelAndSource { level, .. } =
710 cx.tcx.lint_level_at_node(MISSING_DEBUG_IMPLEMENTATIONS, item.hir_id());
711 if level == Level::Allow {
712 return;
713 }
714
715 let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else { return };
716
717 let has_impl = cx
718 .tcx
719 .non_blanket_impls_for_ty(debug, cx.tcx.type_of(item.owner_id).instantiate_identity())
720 .next()
721 .is_some();
722 if !has_impl {
723 cx.emit_span_lint(
724 MISSING_DEBUG_IMPLEMENTATIONS,
725 item.span,
726 BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug },
727 );
728 }
729 }
730}
731
732declare_lint! {
733 /// The `anonymous_parameters` lint detects anonymous parameters in trait
734 /// definitions.
735 ///
736 /// ### Example
737 ///
738 /// ```rust,edition2015,compile_fail
739 /// #![deny(anonymous_parameters)]
740 /// // edition 2015
741 /// pub trait Foo {
742 /// fn foo(usize);
743 /// }
744 /// fn main() {}
745 /// ```
746 ///
747 /// {{produces}}
748 ///
749 /// ### Explanation
750 ///
751 /// This syntax is mostly a historical accident, and can be worked around
752 /// quite easily by adding an `_` pattern or a descriptive identifier:
753 ///
754 /// ```rust
755 /// trait Foo {
756 /// fn foo(_: usize);
757 /// }
758 /// ```
759 ///
760 /// This syntax is now a hard error in the 2018 edition. In the 2015
761 /// edition, this lint is "warn" by default. This lint
762 /// enables the [`cargo fix`] tool with the `--edition` flag to
763 /// automatically transition old code from the 2015 edition to 2018. The
764 /// tool will run this lint and automatically apply the
765 /// suggested fix from the compiler (which is to add `_` to each
766 /// parameter). This provides a completely automated way to update old
767 /// code for a new edition. See [issue #41686] for more details.
768 ///
769 /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686
770 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
771 pub ANONYMOUS_PARAMETERS,
772 Warn,
773 "detects anonymous parameters",
774 @future_incompatible = FutureIncompatibleInfo {
775 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
776 reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
777 };
778}
779
780declare_lint_pass!(
781 /// Checks for use of anonymous parameters (RFC 1685).
782 AnonymousParameters => [ANONYMOUS_PARAMETERS]
783);
784
785impl EarlyLintPass for AnonymousParameters {
786 fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
787 if cx.sess().edition() != Edition::Edition2015 {
788 // This is a hard error in future editions; avoid linting and erroring
789 return;
790 }
791 if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind {
792 for arg in sig.decl.inputs.iter() {
793 if let ast::PatKind::Missing = arg.pat.kind {
794 let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span);
795
796 let (ty_snip, appl) = if let Ok(ref snip) = ty_snip {
797 (snip.as_str(), Applicability::MachineApplicable)
798 } else {
799 ("<type>", Applicability::HasPlaceholders)
800 };
801 cx.emit_span_lint(
802 ANONYMOUS_PARAMETERS,
803 arg.pat.span,
804 BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip },
805 );
806 }
807 }
808 }
809 }
810}
811
812fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) {
813 use rustc_ast::token::CommentKind;
814
815 let mut attrs = attrs.iter().peekable();
816
817 // Accumulate a single span for sugared doc comments.
818 let mut sugared_span: Option<Span> = None;
819
820 while let Some(attr) = attrs.next() {
821 let is_doc_comment = attr.is_doc_comment();
822 if is_doc_comment {
823 sugared_span =
824 Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi())));
825 }
826
827 if attrs.peek().is_some_and(|next_attr| next_attr.is_doc_comment()) {
828 continue;
829 }
830
831 let span = sugared_span.take().unwrap_or(attr.span);
832
833 if is_doc_comment || attr.has_name(sym::doc) {
834 let sub = match attr.kind {
835 AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => {
836 BuiltinUnusedDocCommentSub::PlainHelp
837 }
838 AttrKind::DocComment(CommentKind::Block, _) => {
839 BuiltinUnusedDocCommentSub::BlockHelp
840 }
841 };
842 cx.emit_span_lint(
843 UNUSED_DOC_COMMENTS,
844 span,
845 BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub },
846 );
847 }
848 }
849}
850
851impl EarlyLintPass for UnusedDocComment {
852 fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
853 let kind = match stmt.kind {
854 ast::StmtKind::Let(..) => "statements",
855 // Disabled pending discussion in #78306
856 ast::StmtKind::Item(..) => return,
857 // expressions will be reported by `check_expr`.
858 ast::StmtKind::Empty
859 | ast::StmtKind::Semi(_)
860 | ast::StmtKind::Expr(_)
861 | ast::StmtKind::MacCall(_) => return,
862 };
863
864 warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs());
865 }
866
867 fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
868 if let Some(body) = &arm.body {
869 let arm_span = arm.pat.span.with_hi(body.span.hi());
870 warn_if_doc(cx, arm_span, "match arms", &arm.attrs);
871 }
872 }
873
874 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
875 if let ast::PatKind::Struct(_, _, fields, _) = &pat.kind {
876 for field in fields {
877 warn_if_doc(cx, field.span, "pattern fields", &field.attrs);
878 }
879 }
880 }
881
882 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
883 warn_if_doc(cx, expr.span, "expressions", &expr.attrs);
884
885 if let ExprKind::Struct(s) = &expr.kind {
886 for field in &s.fields {
887 warn_if_doc(cx, field.span, "expression fields", &field.attrs);
888 }
889 }
890 }
891
892 fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) {
893 warn_if_doc(cx, param.ident.span, "generic parameters", ¶m.attrs);
894 }
895
896 fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) {
897 warn_if_doc(cx, block.span, "blocks", block.attrs());
898 }
899
900 fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
901 if let ast::ItemKind::ForeignMod(_) = item.kind {
902 warn_if_doc(cx, item.span, "extern blocks", &item.attrs);
903 }
904 }
905}
906
907declare_lint! {
908 /// The `no_mangle_const_items` lint detects any `const` items with the
909 /// [`no_mangle` attribute].
910 ///
911 /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
912 ///
913 /// ### Example
914 ///
915 /// ```rust,compile_fail,edition2021
916 /// #[no_mangle]
917 /// const FOO: i32 = 5;
918 /// ```
919 ///
920 /// {{produces}}
921 ///
922 /// ### Explanation
923 ///
924 /// Constants do not have their symbols exported, and therefore, this
925 /// probably means you meant to use a [`static`], not a [`const`].
926 ///
927 /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html
928 /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html
929 NO_MANGLE_CONST_ITEMS,
930 Deny,
931 "const items will not have their symbols exported"
932}
933
934declare_lint! {
935 /// The `no_mangle_generic_items` lint detects generic items that must be
936 /// mangled.
937 ///
938 /// ### Example
939 ///
940 /// ```rust
941 /// #[unsafe(no_mangle)]
942 /// fn foo<T>(t: T) {}
943 ///
944 /// #[unsafe(export_name = "bar")]
945 /// fn bar<T>(t: T) {}
946 /// ```
947 ///
948 /// {{produces}}
949 ///
950 /// ### Explanation
951 ///
952 /// A function with generics must have its symbol mangled to accommodate
953 /// the generic parameter. The [`no_mangle`] and [`export_name`] attributes
954 /// have no effect in this situation, and should be removed.
955 ///
956 /// [`no_mangle`]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute
957 /// [`export_name`]: https://doc.rust-lang.org/reference/abi.html#the-export_name-attribute
958 NO_MANGLE_GENERIC_ITEMS,
959 Warn,
960 "generic items must be mangled"
961}
962
963declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
964
965impl InvalidNoMangleItems {
966 fn check_no_mangle_on_generic_fn(
967 &self,
968 cx: &LateContext<'_>,
969 attr_span: Span,
970 def_id: LocalDefId,
971 ) {
972 let generics = cx.tcx.generics_of(def_id);
973 if generics.requires_monomorphization(cx.tcx) {
974 cx.emit_span_lint(
975 NO_MANGLE_GENERIC_ITEMS,
976 cx.tcx.def_span(def_id),
977 BuiltinNoMangleGeneric { suggestion: attr_span },
978 );
979 }
980 }
981}
982
983impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems {
984 fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
985 let attrs = cx.tcx.hir_attrs(it.hir_id());
986 match it.kind {
987 hir::ItemKind::Fn { .. } => {
988 if let Some(attr_span) =
989 find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span)
990 .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span))
991 {
992 self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id);
993 }
994 }
995 hir::ItemKind::Const(..) => {
996 if find_attr!(attrs, AttributeKind::NoMangle(..)) {
997 // account for "pub const" (#45562)
998 let start = cx
999 .tcx
1000 .sess
1001 .source_map()
1002 .span_to_snippet(it.span)
1003 .map(|snippet| snippet.find("const").unwrap_or(0))
1004 .unwrap_or(0) as u32;
1005 // `const` is 5 chars
1006 let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
1007
1008 // Const items do not refer to a particular location in memory, and therefore
1009 // don't have anything to attach a symbol to
1010 cx.emit_span_lint(
1011 NO_MANGLE_CONST_ITEMS,
1012 it.span,
1013 BuiltinConstNoMangle { suggestion },
1014 );
1015 }
1016 }
1017 _ => {}
1018 }
1019 }
1020
1021 fn check_impl_item(&mut self, cx: &LateContext<'_>, it: &hir::ImplItem<'_>) {
1022 let attrs = cx.tcx.hir_attrs(it.hir_id());
1023 match it.kind {
1024 hir::ImplItemKind::Fn { .. } => {
1025 if let Some(attr_span) =
1026 find_attr!(attrs, AttributeKind::ExportName {span, ..} => *span)
1027 .or_else(|| find_attr!(attrs, AttributeKind::NoMangle(span) => *span))
1028 {
1029 self.check_no_mangle_on_generic_fn(cx, attr_span, it.owner_id.def_id);
1030 }
1031 }
1032 _ => {}
1033 }
1034 }
1035}
1036
1037declare_lint! {
1038 /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut
1039 /// T` because it is [undefined behavior].
1040 ///
1041 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1042 ///
1043 /// ### Example
1044 ///
1045 /// ```rust,compile_fail
1046 /// unsafe {
1047 /// let y = std::mem::transmute::<&i32, &mut i32>(&5);
1048 /// }
1049 /// ```
1050 ///
1051 /// {{produces}}
1052 ///
1053 /// ### Explanation
1054 ///
1055 /// Certain assumptions are made about aliasing of data, and this transmute
1056 /// violates those assumptions. Consider using [`UnsafeCell`] instead.
1057 ///
1058 /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html
1059 MUTABLE_TRANSMUTES,
1060 Deny,
1061 "transmuting &T to &mut T is undefined behavior, even if the reference is unused"
1062}
1063
1064declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
1065
1066impl<'tcx> LateLintPass<'tcx> for MutableTransmutes {
1067 fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) {
1068 if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) =
1069 get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind()))
1070 {
1071 if from_mutbl < to_mutbl {
1072 cx.emit_span_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes);
1073 }
1074 }
1075
1076 fn get_transmute_from_to<'tcx>(
1077 cx: &LateContext<'tcx>,
1078 expr: &hir::Expr<'_>,
1079 ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
1080 let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
1081 cx.qpath_res(qpath, expr.hir_id)
1082 } else {
1083 return None;
1084 };
1085 if let Res::Def(DefKind::Fn, did) = def {
1086 if !def_id_is_transmute(cx, did) {
1087 return None;
1088 }
1089 let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx);
1090 let from = sig.inputs().skip_binder()[0];
1091 let to = sig.output().skip_binder();
1092 return Some((from, to));
1093 }
1094 None
1095 }
1096
1097 fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool {
1098 cx.tcx.is_intrinsic(def_id, sym::transmute)
1099 }
1100 }
1101}
1102
1103declare_lint! {
1104 /// The `unstable_features` lint detects uses of `#![feature]`.
1105 ///
1106 /// ### Example
1107 ///
1108 /// ```rust,compile_fail
1109 /// #![deny(unstable_features)]
1110 /// #![feature(test)]
1111 /// ```
1112 ///
1113 /// {{produces}}
1114 ///
1115 /// ### Explanation
1116 ///
1117 /// In larger nightly-based projects which
1118 ///
1119 /// * consist of a multitude of crates where a subset of crates has to compile on
1120 /// stable either unconditionally or depending on a `cfg` flag to for example
1121 /// allow stable users to depend on them,
1122 /// * don't use nightly for experimental features but for, e.g., unstable options only,
1123 ///
1124 /// this lint may come in handy to enforce policies of these kinds.
1125 UNSTABLE_FEATURES,
1126 Allow,
1127 "enabling unstable features"
1128}
1129
1130declare_lint_pass!(
1131 /// Forbids using the `#[feature(...)]` attribute
1132 UnstableFeatures => [UNSTABLE_FEATURES]
1133);
1134
1135impl<'tcx> LateLintPass<'tcx> for UnstableFeatures {
1136 fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &hir::Attribute) {
1137 if attr.has_name(sym::feature)
1138 && let Some(items) = attr.meta_item_list()
1139 {
1140 for item in items {
1141 cx.emit_span_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures);
1142 }
1143 }
1144 }
1145}
1146
1147declare_lint! {
1148 /// The `ungated_async_fn_track_caller` lint warns when the
1149 /// `#[track_caller]` attribute is used on an async function
1150 /// without enabling the corresponding unstable feature flag.
1151 ///
1152 /// ### Example
1153 ///
1154 /// ```rust
1155 /// #[track_caller]
1156 /// async fn foo() {}
1157 /// ```
1158 ///
1159 /// {{produces}}
1160 ///
1161 /// ### Explanation
1162 ///
1163 /// The attribute must be used in conjunction with the
1164 /// [`async_fn_track_caller` feature flag]. Otherwise, the `#[track_caller]`
1165 /// annotation will function as a no-op.
1166 ///
1167 /// [`async_fn_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/async-fn-track-caller.html
1168 UNGATED_ASYNC_FN_TRACK_CALLER,
1169 Warn,
1170 "enabling track_caller on an async fn is a no-op unless the async_fn_track_caller feature is enabled"
1171}
1172
1173declare_lint_pass!(
1174 /// Explains corresponding feature flag must be enabled for the `#[track_caller]` attribute to
1175 /// do anything
1176 UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER]
1177);
1178
1179impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller {
1180 fn check_fn(
1181 &mut self,
1182 cx: &LateContext<'_>,
1183 fn_kind: HirFnKind<'_>,
1184 _: &'tcx FnDecl<'_>,
1185 _: &'tcx Body<'_>,
1186 span: Span,
1187 def_id: LocalDefId,
1188 ) {
1189 if fn_kind.asyncness().is_async()
1190 && !cx.tcx.features().async_fn_track_caller()
1191 // Now, check if the function has the `#[track_caller]` attribute
1192 && let Some(attr_span) = find_attr!(cx.tcx.get_all_attrs(def_id), AttributeKind::TrackCaller(span) => *span)
1193 {
1194 cx.emit_span_lint(
1195 UNGATED_ASYNC_FN_TRACK_CALLER,
1196 attr_span,
1197 BuiltinUngatedAsyncFnTrackCaller { label: span, session: &cx.tcx.sess },
1198 );
1199 }
1200 }
1201}
1202
1203declare_lint! {
1204 /// The `unreachable_pub` lint triggers for `pub` items not reachable from other crates - that
1205 /// means neither directly accessible, nor reexported (with `pub use`), nor leaked through
1206 /// things like return types (which the [`unnameable_types`] lint can detect if desired).
1207 ///
1208 /// ### Example
1209 ///
1210 /// ```rust,compile_fail
1211 /// #![deny(unreachable_pub)]
1212 /// mod foo {
1213 /// pub mod bar {
1214 ///
1215 /// }
1216 /// }
1217 /// ```
1218 ///
1219 /// {{produces}}
1220 ///
1221 /// ### Explanation
1222 ///
1223 /// The `pub` keyword both expresses an intent for an item to be publicly available, and also
1224 /// signals to the compiler to make the item publicly accessible. The intent can only be
1225 /// satisfied, however, if all items which contain this item are *also* publicly accessible.
1226 /// Thus, this lint serves to identify situations where the intent does not match the reality.
1227 ///
1228 /// If you wish the item to be accessible elsewhere within the crate, but not outside it, the
1229 /// `pub(crate)` visibility is recommended to be used instead. This more clearly expresses the
1230 /// intent that the item is only visible within its own crate.
1231 ///
1232 /// This lint is "allow" by default because it will trigger for a large amount of existing Rust code.
1233 /// Eventually it is desired for this to become warn-by-default.
1234 ///
1235 /// [`unnameable_types`]: #unnameable-types
1236 pub UNREACHABLE_PUB,
1237 Allow,
1238 "`pub` items not reachable from crate root"
1239}
1240
1241declare_lint_pass!(
1242 /// Lint for items marked `pub` that aren't reachable from other crates.
1243 UnreachablePub => [UNREACHABLE_PUB]
1244);
1245
1246impl UnreachablePub {
1247 fn perform_lint(
1248 &self,
1249 cx: &LateContext<'_>,
1250 what: &str,
1251 def_id: LocalDefId,
1252 vis_span: Span,
1253 exportable: bool,
1254 ) {
1255 let mut applicability = Applicability::MachineApplicable;
1256 if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id)
1257 {
1258 // prefer suggesting `pub(super)` instead of `pub(crate)` when possible,
1259 // except when `pub(super) == pub(crate)`
1260 let new_vis = if let Some(ty::Visibility::Restricted(restricted_did)) =
1261 cx.effective_visibilities.effective_vis(def_id).map(|effective_vis| {
1262 effective_vis.at_level(rustc_middle::middle::privacy::Level::Reachable)
1263 })
1264 && let parent_parent = cx
1265 .tcx
1266 .parent_module_from_def_id(cx.tcx.parent_module_from_def_id(def_id).into())
1267 && *restricted_did == parent_parent.to_local_def_id()
1268 && !restricted_did.to_def_id().is_crate_root()
1269 {
1270 "pub(super)"
1271 } else {
1272 "pub(crate)"
1273 };
1274
1275 if vis_span.from_expansion() {
1276 applicability = Applicability::MaybeIncorrect;
1277 }
1278 let def_span = cx.tcx.def_span(def_id);
1279 cx.emit_span_lint(
1280 UNREACHABLE_PUB,
1281 def_span,
1282 BuiltinUnreachablePub {
1283 what,
1284 new_vis,
1285 suggestion: (vis_span, applicability),
1286 help: exportable,
1287 },
1288 );
1289 }
1290 }
1291}
1292
1293impl<'tcx> LateLintPass<'tcx> for UnreachablePub {
1294 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1295 // Do not warn for fake `use` statements.
1296 if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind {
1297 return;
1298 }
1299 self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true);
1300 }
1301
1302 fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) {
1303 self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true);
1304 }
1305
1306 fn check_field_def(&mut self, _cx: &LateContext<'_>, _field: &hir::FieldDef<'_>) {
1307 // - If an ADT definition is reported then we don't need to check fields
1308 // (as it would add unnecessary complexity to the source code, the struct
1309 // definition is in the immediate proximity to give the "real" visibility).
1310 // - If an ADT is not reported because it's not `pub` - we don't need to
1311 // check fields.
1312 // - If an ADT is not reported because it's reachable - we also don't need
1313 // to check fields because then they are reachable by construction if they
1314 // are pub.
1315 //
1316 // Therefore in no case we check the fields.
1317 //
1318 // cf. https://github.com/rust-lang/rust/pull/126013#issuecomment-2152839205
1319 // cf. https://github.com/rust-lang/rust/pull/126040#issuecomment-2152944506
1320 }
1321
1322 fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
1323 if let ImplItemImplKind::Inherent { vis_span } = impl_item.impl_kind {
1324 self.perform_lint(cx, "item", impl_item.owner_id.def_id, vis_span, false);
1325 }
1326 }
1327}
1328
1329declare_lint! {
1330 /// The `type_alias_bounds` lint detects bounds in type aliases.
1331 ///
1332 /// ### Example
1333 ///
1334 /// ```rust
1335 /// type SendVec<T: Send> = Vec<T>;
1336 /// ```
1337 ///
1338 /// {{produces}}
1339 ///
1340 /// ### Explanation
1341 ///
1342 /// Trait and lifetime bounds on generic parameters and in where clauses of
1343 /// type aliases are not checked at usage sites of the type alias. Moreover,
1344 /// they are not thoroughly checked for correctness at their definition site
1345 /// either similar to the aliased type.
1346 ///
1347 /// This is a known limitation of the type checker that may be lifted in a
1348 /// future edition. Permitting such bounds in light of this was unintentional.
1349 ///
1350 /// While these bounds may have secondary effects such as enabling the use of
1351 /// "shorthand" associated type paths[^1] and affecting the default trait
1352 /// object lifetime[^2] of trait object types passed to the type alias, this
1353 /// should not have been allowed until the aforementioned restrictions of the
1354 /// type checker have been lifted.
1355 ///
1356 /// Using such bounds is highly discouraged as they are actively misleading.
1357 ///
1358 /// [^1]: I.e., paths of the form `T::Assoc` where `T` is a type parameter
1359 /// bounded by trait `Trait` which defines an associated type called `Assoc`
1360 /// as opposed to a fully qualified path of the form `<T as Trait>::Assoc`.
1361 /// [^2]: <https://doc.rust-lang.org/reference/lifetime-elision.html#default-trait-object-lifetimes>
1362 TYPE_ALIAS_BOUNDS,
1363 Warn,
1364 "bounds in type aliases are not enforced"
1365}
1366
1367declare_lint_pass!(TypeAliasBounds => [TYPE_ALIAS_BOUNDS]);
1368
1369impl TypeAliasBounds {
1370 pub(crate) fn affects_object_lifetime_defaults(pred: &hir::WherePredicate<'_>) -> bool {
1371 // Bounds of the form `T: 'a` with `T` type param affect object lifetime defaults.
1372 if let hir::WherePredicateKind::BoundPredicate(pred) = pred.kind
1373 && pred.bounds.iter().any(|bound| matches!(bound, hir::GenericBound::Outlives(_)))
1374 && pred.bound_generic_params.is_empty() // indeed, even if absent from the RHS
1375 && pred.bounded_ty.as_generic_param().is_some()
1376 {
1377 return true;
1378 }
1379 false
1380 }
1381}
1382
1383impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds {
1384 fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) {
1385 let hir::ItemKind::TyAlias(_, generics, hir_ty) = item.kind else { return };
1386
1387 // There must not be a where clause.
1388 if generics.predicates.is_empty() {
1389 return;
1390 }
1391
1392 // Bounds of lazy type aliases and TAITs are respected.
1393 if cx.tcx.type_alias_is_lazy(item.owner_id) {
1394 return;
1395 }
1396
1397 // FIXME(generic_const_exprs): Revisit this before stabilization.
1398 // See also `tests/ui/const-generics/generic_const_exprs/type-alias-bounds.rs`.
1399 let ty = cx.tcx.type_of(item.owner_id).instantiate_identity();
1400 if ty.has_type_flags(ty::TypeFlags::HAS_CT_PROJECTION)
1401 && cx.tcx.features().generic_const_exprs()
1402 {
1403 return;
1404 }
1405
1406 // NOTE(inherent_associated_types): While we currently do take some bounds in type
1407 // aliases into consideration during IAT *selection*, we don't perform full use+def
1408 // site wfchecking for such type aliases. Therefore TAB should still trigger.
1409 // See also `tests/ui/associated-inherent-types/type-alias-bounds.rs`.
1410
1411 let mut where_spans = Vec::new();
1412 let mut inline_spans = Vec::new();
1413 let mut inline_sugg = Vec::new();
1414
1415 for p in generics.predicates {
1416 let span = p.span;
1417 if p.kind.in_where_clause() {
1418 where_spans.push(span);
1419 } else {
1420 for b in p.kind.bounds() {
1421 inline_spans.push(b.span());
1422 }
1423 inline_sugg.push((span, String::new()));
1424 }
1425 }
1426
1427 let mut ty = Some(hir_ty);
1428 let enable_feat_help = cx.tcx.sess.is_nightly_build();
1429
1430 if let [.., label_sp] = *where_spans {
1431 cx.emit_span_lint(
1432 TYPE_ALIAS_BOUNDS,
1433 where_spans,
1434 BuiltinTypeAliasBounds {
1435 in_where_clause: true,
1436 label: label_sp,
1437 enable_feat_help,
1438 suggestions: vec![(generics.where_clause_span, String::new())],
1439 preds: generics.predicates,
1440 ty: ty.take(),
1441 },
1442 );
1443 }
1444 if let [.., label_sp] = *inline_spans {
1445 cx.emit_span_lint(
1446 TYPE_ALIAS_BOUNDS,
1447 inline_spans,
1448 BuiltinTypeAliasBounds {
1449 in_where_clause: false,
1450 label: label_sp,
1451 enable_feat_help,
1452 suggestions: inline_sugg,
1453 preds: generics.predicates,
1454 ty,
1455 },
1456 );
1457 }
1458 }
1459}
1460
1461pub(crate) struct ShorthandAssocTyCollector {
1462 pub(crate) qselves: Vec<Span>,
1463}
1464
1465impl hir::intravisit::Visitor<'_> for ShorthandAssocTyCollector {
1466 fn visit_qpath(&mut self, qpath: &hir::QPath<'_>, id: hir::HirId, _: Span) {
1467 // Look for "type-parameter shorthand-associated-types". I.e., paths of the
1468 // form `T::Assoc` with `T` type param. These are reliant on trait bounds.
1469 if let hir::QPath::TypeRelative(qself, _) = qpath
1470 && qself.as_generic_param().is_some()
1471 {
1472 self.qselves.push(qself.span);
1473 }
1474 hir::intravisit::walk_qpath(self, qpath, id)
1475 }
1476}
1477
1478declare_lint! {
1479 /// The `trivial_bounds` lint detects trait bounds that don't depend on
1480 /// any type parameters.
1481 ///
1482 /// ### Example
1483 ///
1484 /// ```rust
1485 /// #![feature(trivial_bounds)]
1486 /// pub struct A where i32: Copy;
1487 /// ```
1488 ///
1489 /// {{produces}}
1490 ///
1491 /// ### Explanation
1492 ///
1493 /// Usually you would not write a trait bound that you know is always
1494 /// true, or never true. However, when using macros, the macro may not
1495 /// know whether or not the constraint would hold or not at the time when
1496 /// generating the code. Currently, the compiler does not alert you if the
1497 /// constraint is always true, and generates an error if it is never true.
1498 /// The `trivial_bounds` feature changes this to be a warning in both
1499 /// cases, giving macros more freedom and flexibility to generate code,
1500 /// while still providing a signal when writing non-macro code that
1501 /// something is amiss.
1502 ///
1503 /// See [RFC 2056] for more details. This feature is currently only
1504 /// available on the nightly channel, see [tracking issue #48214].
1505 ///
1506 /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md
1507 /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214
1508 TRIVIAL_BOUNDS,
1509 Warn,
1510 "these bounds don't depend on an type parameters"
1511}
1512
1513declare_lint_pass!(
1514 /// Lint for trait and lifetime bounds that don't depend on type parameters
1515 /// which either do nothing, or stop the item from being used.
1516 TrivialConstraints => [TRIVIAL_BOUNDS]
1517);
1518
1519impl<'tcx> LateLintPass<'tcx> for TrivialConstraints {
1520 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) {
1521 use rustc_middle::ty::ClauseKind;
1522
1523 if cx.tcx.features().trivial_bounds() {
1524 let predicates = cx.tcx.predicates_of(item.owner_id);
1525 for &(predicate, span) in predicates.predicates {
1526 let predicate_kind_name = match predicate.kind().skip_binder() {
1527 ClauseKind::Trait(..) => "trait",
1528 ClauseKind::TypeOutlives(..) |
1529 ClauseKind::RegionOutlives(..) => "lifetime",
1530
1531 ClauseKind::UnstableFeature(_)
1532 // `ConstArgHasType` is never global as `ct` is always a param
1533 | ClauseKind::ConstArgHasType(..)
1534 // Ignore projections, as they can only be global
1535 // if the trait bound is global
1536 | ClauseKind::Projection(..)
1537 // Ignore bounds that a user can't type
1538 | ClauseKind::WellFormed(..)
1539 // FIXME(generic_const_exprs): `ConstEvaluatable` can be written
1540 | ClauseKind::ConstEvaluatable(..)
1541 // Users don't write this directly, only via another trait ref.
1542 | ty::ClauseKind::HostEffect(..) => continue,
1543 };
1544 if predicate.is_global() {
1545 cx.emit_span_lint(
1546 TRIVIAL_BOUNDS,
1547 span,
1548 BuiltinTrivialBounds { predicate_kind_name, predicate },
1549 );
1550 }
1551 }
1552 }
1553 }
1554}
1555
1556declare_lint! {
1557 /// The `double_negations` lint detects expressions of the form `--x`.
1558 ///
1559 /// ### Example
1560 ///
1561 /// ```rust
1562 /// fn main() {
1563 /// let x = 1;
1564 /// let _b = --x;
1565 /// }
1566 /// ```
1567 ///
1568 /// {{produces}}
1569 ///
1570 /// ### Explanation
1571 ///
1572 /// Negating something twice is usually the same as not negating it at all.
1573 /// However, a double negation in Rust can easily be confused with the
1574 /// prefix decrement operator that exists in many languages derived from C.
1575 /// Use `-(-x)` if you really wanted to negate the value twice.
1576 ///
1577 /// To decrement a value, use `x -= 1` instead.
1578 pub DOUBLE_NEGATIONS,
1579 Warn,
1580 "detects expressions of the form `--x`"
1581}
1582
1583declare_lint_pass!(
1584 /// Lint for expressions of the form `--x` that can be confused with C's
1585 /// prefix decrement operator.
1586 DoubleNegations => [DOUBLE_NEGATIONS]
1587);
1588
1589impl EarlyLintPass for DoubleNegations {
1590 #[inline]
1591 fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
1592 // only lint on the innermost `--` in a chain of `-` operators,
1593 // even if there are 3 or more negations
1594 if let ExprKind::Unary(UnOp::Neg, ref inner) = expr.kind
1595 && let ExprKind::Unary(UnOp::Neg, ref inner2) = inner.kind
1596 && !matches!(inner2.kind, ExprKind::Unary(UnOp::Neg, _))
1597 // Don't lint if this jumps macro expansion boundary (Issue #143980)
1598 && expr.span.eq_ctxt(inner.span)
1599 {
1600 cx.emit_span_lint(
1601 DOUBLE_NEGATIONS,
1602 expr.span,
1603 BuiltinDoubleNegations {
1604 add_parens: BuiltinDoubleNegationsAddParens {
1605 start_span: inner.span.shrink_to_lo(),
1606 end_span: inner.span.shrink_to_hi(),
1607 },
1608 },
1609 );
1610 }
1611 }
1612}
1613
1614declare_lint_pass!(
1615 /// Does nothing as a lint pass, but registers some `Lint`s
1616 /// which are used by other parts of the compiler.
1617 SoftLints => [
1618 WHILE_TRUE,
1619 NON_SHORTHAND_FIELD_PATTERNS,
1620 UNSAFE_CODE,
1621 MISSING_DOCS,
1622 MISSING_COPY_IMPLEMENTATIONS,
1623 MISSING_DEBUG_IMPLEMENTATIONS,
1624 ANONYMOUS_PARAMETERS,
1625 UNUSED_DOC_COMMENTS,
1626 NO_MANGLE_CONST_ITEMS,
1627 NO_MANGLE_GENERIC_ITEMS,
1628 MUTABLE_TRANSMUTES,
1629 UNSTABLE_FEATURES,
1630 UNREACHABLE_PUB,
1631 TYPE_ALIAS_BOUNDS,
1632 TRIVIAL_BOUNDS,
1633 DOUBLE_NEGATIONS
1634 ]
1635);
1636
1637declare_lint! {
1638 /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range
1639 /// pattern], which is deprecated.
1640 ///
1641 /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns
1642 ///
1643 /// ### Example
1644 ///
1645 /// ```rust,edition2018
1646 /// let x = 123;
1647 /// match x {
1648 /// 0...100 => {}
1649 /// _ => {}
1650 /// }
1651 /// ```
1652 ///
1653 /// {{produces}}
1654 ///
1655 /// ### Explanation
1656 ///
1657 /// The `...` range pattern syntax was changed to `..=` to avoid potential
1658 /// confusion with the [`..` range expression]. Use the new form instead.
1659 ///
1660 /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html
1661 pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1662 Warn,
1663 "`...` range patterns are deprecated",
1664 @future_incompatible = FutureIncompatibleInfo {
1665 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021),
1666 reference: "<https://doc.rust-lang.org/edition-guide/rust-2021/warnings-promoted-to-error.html>",
1667 };
1668}
1669
1670#[derive(Default)]
1671pub struct EllipsisInclusiveRangePatterns {
1672 /// If `Some(_)`, suppress all subsequent pattern
1673 /// warnings for better diagnostics.
1674 node_id: Option<ast::NodeId>,
1675}
1676
1677impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1678
1679impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1680 fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1681 if self.node_id.is_some() {
1682 // Don't recursively warn about patterns inside range endpoints.
1683 return;
1684 }
1685
1686 use self::ast::PatKind;
1687 use self::ast::RangeSyntax::DotDotDot;
1688
1689 /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1690 /// corresponding to the ellipsis.
1691 fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1692 match &pat.kind {
1693 PatKind::Range(
1694 a,
1695 Some(b),
1696 Spanned { span, node: RangeEnd::Included(DotDotDot) },
1697 ) => Some((a.as_deref(), b, *span)),
1698 _ => None,
1699 }
1700 }
1701
1702 let (parentheses, endpoints) = match &pat.kind {
1703 PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(subpat)),
1704 _ => (false, matches_ellipsis_pat(pat)),
1705 };
1706
1707 if let Some((start, end, join)) = endpoints {
1708 if parentheses {
1709 self.node_id = Some(pat.id);
1710 let end = expr_to_string(end);
1711 let replace = match start {
1712 Some(start) => format!("&({}..={})", expr_to_string(start), end),
1713 None => format!("&(..={end})"),
1714 };
1715 if join.edition() >= Edition::Edition2021 {
1716 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1717 span: pat.span,
1718 suggestion: pat.span,
1719 replace,
1720 });
1721 } else {
1722 cx.emit_span_lint(
1723 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1724 pat.span,
1725 BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise {
1726 suggestion: pat.span,
1727 replace,
1728 },
1729 );
1730 }
1731 } else {
1732 let replace = "..=";
1733 if join.edition() >= Edition::Edition2021 {
1734 cx.sess().dcx().emit_err(BuiltinEllipsisInclusiveRangePatterns {
1735 span: pat.span,
1736 suggestion: join,
1737 replace: replace.to_string(),
1738 });
1739 } else {
1740 cx.emit_span_lint(
1741 ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1742 join,
1743 BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise {
1744 suggestion: join,
1745 },
1746 );
1747 }
1748 };
1749 }
1750 }
1751
1752 fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1753 if let Some(node_id) = self.node_id {
1754 if pat.id == node_id {
1755 self.node_id = None
1756 }
1757 }
1758 }
1759}
1760
1761declare_lint! {
1762 /// The `keyword_idents_2018` lint detects edition keywords being used as an
1763 /// identifier.
1764 ///
1765 /// ### Example
1766 ///
1767 /// ```rust,edition2015,compile_fail
1768 /// #![deny(keyword_idents_2018)]
1769 /// // edition 2015
1770 /// fn dyn() {}
1771 /// ```
1772 ///
1773 /// {{produces}}
1774 ///
1775 /// ### Explanation
1776 ///
1777 /// Rust [editions] allow the language to evolve without breaking
1778 /// backwards compatibility. This lint catches code that uses new keywords
1779 /// that are added to the language that are used as identifiers (such as a
1780 /// variable name, function name, etc.). If you switch the compiler to a
1781 /// new edition without updating the code, then it will fail to compile if
1782 /// you are using a new keyword as an identifier.
1783 ///
1784 /// You can manually change the identifiers to a non-keyword, or use a
1785 /// [raw identifier], for example `r#dyn`, to transition to a new edition.
1786 ///
1787 /// This lint solves the problem automatically. It is "allow" by default
1788 /// because the code is perfectly valid in older editions. The [`cargo
1789 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1790 /// and automatically apply the suggested fix from the compiler (which is
1791 /// to use a raw identifier). This provides a completely automated way to
1792 /// update old code for a new edition.
1793 ///
1794 /// [editions]: https://doc.rust-lang.org/edition-guide/
1795 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1796 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1797 pub KEYWORD_IDENTS_2018,
1798 Allow,
1799 "detects edition keywords being used as an identifier",
1800 @future_incompatible = FutureIncompatibleInfo {
1801 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018),
1802 reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1803 };
1804}
1805
1806declare_lint! {
1807 /// The `keyword_idents_2024` lint detects edition keywords being used as an
1808 /// identifier.
1809 ///
1810 /// ### Example
1811 ///
1812 /// ```rust,edition2015,compile_fail
1813 /// #![deny(keyword_idents_2024)]
1814 /// // edition 2015
1815 /// fn gen() {}
1816 /// ```
1817 ///
1818 /// {{produces}}
1819 ///
1820 /// ### Explanation
1821 ///
1822 /// Rust [editions] allow the language to evolve without breaking
1823 /// backwards compatibility. This lint catches code that uses new keywords
1824 /// that are added to the language that are used as identifiers (such as a
1825 /// variable name, function name, etc.). If you switch the compiler to a
1826 /// new edition without updating the code, then it will fail to compile if
1827 /// you are using a new keyword as an identifier.
1828 ///
1829 /// You can manually change the identifiers to a non-keyword, or use a
1830 /// [raw identifier], for example `r#gen`, to transition to a new edition.
1831 ///
1832 /// This lint solves the problem automatically. It is "allow" by default
1833 /// because the code is perfectly valid in older editions. The [`cargo
1834 /// fix`] tool with the `--edition` flag will switch this lint to "warn"
1835 /// and automatically apply the suggested fix from the compiler (which is
1836 /// to use a raw identifier). This provides a completely automated way to
1837 /// update old code for a new edition.
1838 ///
1839 /// [editions]: https://doc.rust-lang.org/edition-guide/
1840 /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html
1841 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html
1842 pub KEYWORD_IDENTS_2024,
1843 Allow,
1844 "detects edition keywords being used as an identifier",
1845 @future_incompatible = FutureIncompatibleInfo {
1846 reason: FutureIncompatibilityReason::EditionError(Edition::Edition2024),
1847 reference: "<https://doc.rust-lang.org/edition-guide/rust-2024/gen-keyword.html>",
1848 };
1849}
1850
1851declare_lint_pass!(
1852 /// Check for uses of edition keywords used as an identifier.
1853 KeywordIdents => [KEYWORD_IDENTS_2018, KEYWORD_IDENTS_2024]
1854);
1855
1856struct UnderMacro(bool);
1857
1858impl KeywordIdents {
1859 fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: &TokenStream) {
1860 // Check if the preceding token is `$`, because we want to allow `$async`, etc.
1861 let mut prev_dollar = false;
1862 for tt in tokens.iter() {
1863 match tt {
1864 // Only report non-raw idents.
1865 TokenTree::Token(token, _) => {
1866 if let Some((ident, token::IdentIsRaw::No)) = token.ident() {
1867 if !prev_dollar {
1868 self.check_ident_token(cx, UnderMacro(true), ident, "");
1869 }
1870 } else if let Some((ident, token::IdentIsRaw::No)) = token.lifetime() {
1871 self.check_ident_token(
1872 cx,
1873 UnderMacro(true),
1874 ident.without_first_quote(),
1875 "'",
1876 );
1877 } else if token.kind == TokenKind::Dollar {
1878 prev_dollar = true;
1879 continue;
1880 }
1881 }
1882 TokenTree::Delimited(.., tts) => self.check_tokens(cx, tts),
1883 }
1884 prev_dollar = false;
1885 }
1886 }
1887
1888 fn check_ident_token(
1889 &mut self,
1890 cx: &EarlyContext<'_>,
1891 UnderMacro(under_macro): UnderMacro,
1892 ident: Ident,
1893 prefix: &'static str,
1894 ) {
1895 let (lint, edition) = match ident.name {
1896 kw::Async | kw::Await | kw::Try => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1897
1898 // rust-lang/rust#56327: Conservatively do not
1899 // attempt to report occurrences of `dyn` within
1900 // macro definitions or invocations, because `dyn`
1901 // can legitimately occur as a contextual keyword
1902 // in 2015 code denoting its 2018 meaning, and we
1903 // do not want rustfix to inject bugs into working
1904 // code by rewriting such occurrences.
1905 //
1906 // But if we see `dyn` outside of a macro, we know
1907 // its precise role in the parsed AST and thus are
1908 // assured this is truly an attempt to use it as
1909 // an identifier.
1910 kw::Dyn if !under_macro => (KEYWORD_IDENTS_2018, Edition::Edition2018),
1911
1912 kw::Gen => (KEYWORD_IDENTS_2024, Edition::Edition2024),
1913
1914 _ => return,
1915 };
1916
1917 // Don't lint `r#foo`.
1918 if ident.span.edition() >= edition
1919 || cx.sess().psess.raw_identifier_spans.contains(ident.span)
1920 {
1921 return;
1922 }
1923
1924 cx.emit_span_lint(
1925 lint,
1926 ident.span,
1927 BuiltinKeywordIdents { kw: ident, next: edition, suggestion: ident.span, prefix },
1928 );
1929 }
1930}
1931
1932impl EarlyLintPass for KeywordIdents {
1933 fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) {
1934 self.check_tokens(cx, &mac_def.body.tokens);
1935 }
1936 fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) {
1937 self.check_tokens(cx, &mac.args.tokens);
1938 }
1939 fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: &Ident) {
1940 if ident.name.as_str().starts_with('\'') {
1941 self.check_ident_token(cx, UnderMacro(false), ident.without_first_quote(), "'");
1942 } else {
1943 self.check_ident_token(cx, UnderMacro(false), *ident, "");
1944 }
1945 }
1946}
1947
1948declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1949
1950impl ExplicitOutlivesRequirements {
1951 fn lifetimes_outliving_lifetime<'tcx>(
1952 tcx: TyCtxt<'tcx>,
1953 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1954 item: LocalDefId,
1955 lifetime: LocalDefId,
1956 ) -> Vec<ty::Region<'tcx>> {
1957 let item_generics = tcx.generics_of(item);
1958
1959 inferred_outlives
1960 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1961 ty::ClauseKind::RegionOutlives(ty::OutlivesPredicate(a, b)) => match a.kind() {
1962 ty::ReEarlyParam(ebr)
1963 if item_generics.region_param(ebr, tcx).def_id == lifetime.to_def_id() =>
1964 {
1965 Some(b)
1966 }
1967 _ => None,
1968 },
1969 _ => None,
1970 })
1971 .collect()
1972 }
1973
1974 fn lifetimes_outliving_type<'tcx>(
1975 inferred_outlives: impl Iterator<Item = &'tcx (ty::Clause<'tcx>, Span)>,
1976 index: u32,
1977 ) -> Vec<ty::Region<'tcx>> {
1978 inferred_outlives
1979 .filter_map(|(clause, _)| match clause.kind().skip_binder() {
1980 ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(a, b)) => {
1981 a.is_param(index).then_some(b)
1982 }
1983 _ => None,
1984 })
1985 .collect()
1986 }
1987
1988 fn collect_outlives_bound_spans<'tcx>(
1989 &self,
1990 tcx: TyCtxt<'tcx>,
1991 bounds: &hir::GenericBounds<'_>,
1992 inferred_outlives: &[ty::Region<'tcx>],
1993 predicate_span: Span,
1994 item: DefId,
1995 ) -> Vec<(usize, Span)> {
1996 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
1997
1998 let item_generics = tcx.generics_of(item);
1999
2000 bounds
2001 .iter()
2002 .enumerate()
2003 .filter_map(|(i, bound)| {
2004 let hir::GenericBound::Outlives(lifetime) = bound else {
2005 return None;
2006 };
2007
2008 let is_inferred = match tcx.named_bound_var(lifetime.hir_id) {
2009 Some(ResolvedArg::EarlyBound(def_id)) => inferred_outlives
2010 .iter()
2011 .any(|r| matches!(r.kind(), ty::ReEarlyParam(ebr) if { item_generics.region_param(ebr, tcx).def_id == def_id.to_def_id() })),
2012 _ => false,
2013 };
2014
2015 if !is_inferred {
2016 return None;
2017 }
2018
2019 let span = bound.span().find_ancestor_inside(predicate_span)?;
2020 if span.in_external_macro(tcx.sess.source_map()) {
2021 return None;
2022 }
2023
2024 Some((i, span))
2025 })
2026 .collect()
2027 }
2028
2029 fn consolidate_outlives_bound_spans(
2030 &self,
2031 lo: Span,
2032 bounds: &hir::GenericBounds<'_>,
2033 bound_spans: Vec<(usize, Span)>,
2034 ) -> Vec<Span> {
2035 if bounds.is_empty() {
2036 return Vec::new();
2037 }
2038 if bound_spans.len() == bounds.len() {
2039 let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
2040 // If all bounds are inferable, we want to delete the colon, so
2041 // start from just after the parameter (span passed as argument)
2042 vec![lo.to(last_bound_span)]
2043 } else {
2044 let mut merged = Vec::new();
2045 let mut last_merged_i = None;
2046
2047 let mut from_start = true;
2048 for (i, bound_span) in bound_spans {
2049 match last_merged_i {
2050 // If the first bound is inferable, our span should also eat the leading `+`.
2051 None if i == 0 => {
2052 merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
2053 last_merged_i = Some(0);
2054 }
2055 // If consecutive bounds are inferable, merge their spans
2056 Some(h) if i == h + 1 => {
2057 if let Some(tail) = merged.last_mut() {
2058 // Also eat the trailing `+` if the first
2059 // more-than-one bound is inferable
2060 let to_span = if from_start && i < bounds.len() {
2061 bounds[i + 1].span().shrink_to_lo()
2062 } else {
2063 bound_span
2064 };
2065 *tail = tail.to(to_span);
2066 last_merged_i = Some(i);
2067 } else {
2068 bug!("another bound-span visited earlier");
2069 }
2070 }
2071 _ => {
2072 // When we find a non-inferable bound, subsequent inferable bounds
2073 // won't be consecutive from the start (and we'll eat the leading
2074 // `+` rather than the trailing one)
2075 from_start = false;
2076 merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
2077 last_merged_i = Some(i);
2078 }
2079 }
2080 }
2081 merged
2082 }
2083 }
2084}
2085
2086impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements {
2087 fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) {
2088 use rustc_middle::middle::resolve_bound_vars::ResolvedArg;
2089
2090 let def_id = item.owner_id.def_id;
2091 if let hir::ItemKind::Struct(_, generics, _)
2092 | hir::ItemKind::Enum(_, generics, _)
2093 | hir::ItemKind::Union(_, generics, _) = item.kind
2094 {
2095 let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
2096 if inferred_outlives.is_empty() {
2097 return;
2098 }
2099
2100 let ty_generics = cx.tcx.generics_of(def_id);
2101 let num_where_predicates = generics
2102 .predicates
2103 .iter()
2104 .filter(|predicate| predicate.kind.in_where_clause())
2105 .count();
2106
2107 let mut bound_count = 0;
2108 let mut lint_spans = Vec::new();
2109 let mut where_lint_spans = Vec::new();
2110 let mut dropped_where_predicate_count = 0;
2111 for (i, where_predicate) in generics.predicates.iter().enumerate() {
2112 let (relevant_lifetimes, bounds, predicate_span, in_where_clause) =
2113 match where_predicate.kind {
2114 hir::WherePredicateKind::RegionPredicate(predicate) => {
2115 if let Some(ResolvedArg::EarlyBound(region_def_id)) =
2116 cx.tcx.named_bound_var(predicate.lifetime.hir_id)
2117 {
2118 (
2119 Self::lifetimes_outliving_lifetime(
2120 cx.tcx,
2121 // don't warn if the inferred span actually came from the predicate we're looking at
2122 // this happens if the type is recursively defined
2123 inferred_outlives.iter().filter(|(_, span)| {
2124 !where_predicate.span.contains(*span)
2125 }),
2126 item.owner_id.def_id,
2127 region_def_id,
2128 ),
2129 &predicate.bounds,
2130 where_predicate.span,
2131 predicate.in_where_clause,
2132 )
2133 } else {
2134 continue;
2135 }
2136 }
2137 hir::WherePredicateKind::BoundPredicate(predicate) => {
2138 // FIXME we can also infer bounds on associated types,
2139 // and should check for them here.
2140 match predicate.bounded_ty.kind {
2141 hir::TyKind::Path(hir::QPath::Resolved(None, path)) => {
2142 let Res::Def(DefKind::TyParam, def_id) = path.res else {
2143 continue;
2144 };
2145 let index = ty_generics.param_def_id_to_index[&def_id];
2146 (
2147 Self::lifetimes_outliving_type(
2148 // don't warn if the inferred span actually came from the predicate we're looking at
2149 // this happens if the type is recursively defined
2150 inferred_outlives.iter().filter(|(_, span)| {
2151 !where_predicate.span.contains(*span)
2152 }),
2153 index,
2154 ),
2155 &predicate.bounds,
2156 where_predicate.span,
2157 predicate.origin == PredicateOrigin::WhereClause,
2158 )
2159 }
2160 _ => {
2161 continue;
2162 }
2163 }
2164 }
2165 _ => continue,
2166 };
2167 if relevant_lifetimes.is_empty() {
2168 continue;
2169 }
2170
2171 let bound_spans = self.collect_outlives_bound_spans(
2172 cx.tcx,
2173 bounds,
2174 &relevant_lifetimes,
2175 predicate_span,
2176 item.owner_id.to_def_id(),
2177 );
2178 bound_count += bound_spans.len();
2179
2180 let drop_predicate = bound_spans.len() == bounds.len();
2181 if drop_predicate && in_where_clause {
2182 dropped_where_predicate_count += 1;
2183 }
2184
2185 if drop_predicate {
2186 if !in_where_clause {
2187 lint_spans.push(predicate_span);
2188 } else if predicate_span.from_expansion() {
2189 // Don't try to extend the span if it comes from a macro expansion.
2190 where_lint_spans.push(predicate_span);
2191 } else if i + 1 < num_where_predicates {
2192 // If all the bounds on a predicate were inferable and there are
2193 // further predicates, we want to eat the trailing comma.
2194 let next_predicate_span = generics.predicates[i + 1].span;
2195 if next_predicate_span.from_expansion() {
2196 where_lint_spans.push(predicate_span);
2197 } else {
2198 where_lint_spans
2199 .push(predicate_span.to(next_predicate_span.shrink_to_lo()));
2200 }
2201 } else {
2202 // Eat the optional trailing comma after the last predicate.
2203 let where_span = generics.where_clause_span;
2204 if where_span.from_expansion() {
2205 where_lint_spans.push(predicate_span);
2206 } else {
2207 where_lint_spans.push(predicate_span.to(where_span.shrink_to_hi()));
2208 }
2209 }
2210 } else {
2211 where_lint_spans.extend(self.consolidate_outlives_bound_spans(
2212 predicate_span.shrink_to_lo(),
2213 bounds,
2214 bound_spans,
2215 ));
2216 }
2217 }
2218
2219 // If all predicates in where clause are inferable, drop the entire clause
2220 // (including the `where`)
2221 if generics.has_where_clause_predicates
2222 && dropped_where_predicate_count == num_where_predicates
2223 {
2224 let where_span = generics.where_clause_span;
2225 // Extend the where clause back to the closing `>` of the
2226 // generics, except for tuple struct, which have the `where`
2227 // after the fields of the struct.
2228 let full_where_span =
2229 if let hir::ItemKind::Struct(_, _, hir::VariantData::Tuple(..)) = item.kind {
2230 where_span
2231 } else {
2232 generics.span.shrink_to_hi().to(where_span)
2233 };
2234
2235 // Due to macro expansions, the `full_where_span` might not actually contain all
2236 // predicates.
2237 if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) {
2238 lint_spans.push(full_where_span);
2239 } else {
2240 lint_spans.extend(where_lint_spans);
2241 }
2242 } else {
2243 lint_spans.extend(where_lint_spans);
2244 }
2245
2246 if !lint_spans.is_empty() {
2247 // Do not automatically delete outlives requirements from macros.
2248 let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions())
2249 {
2250 Applicability::MachineApplicable
2251 } else {
2252 Applicability::MaybeIncorrect
2253 };
2254
2255 // Due to macros, there might be several predicates with the same span
2256 // and we only want to suggest removing them once.
2257 lint_spans.sort_unstable();
2258 lint_spans.dedup();
2259
2260 cx.emit_span_lint(
2261 EXPLICIT_OUTLIVES_REQUIREMENTS,
2262 lint_spans.clone(),
2263 BuiltinExplicitOutlives {
2264 count: bound_count,
2265 suggestion: BuiltinExplicitOutlivesSuggestion {
2266 spans: lint_spans,
2267 applicability,
2268 },
2269 },
2270 );
2271 }
2272 }
2273 }
2274}
2275
2276declare_lint! {
2277 /// The `incomplete_features` lint detects unstable features enabled with
2278 /// the [`feature` attribute] that may function improperly in some or all
2279 /// cases.
2280 ///
2281 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2282 ///
2283 /// ### Example
2284 ///
2285 /// ```rust
2286 /// #![feature(generic_const_exprs)]
2287 /// ```
2288 ///
2289 /// {{produces}}
2290 ///
2291 /// ### Explanation
2292 ///
2293 /// Although it is encouraged for people to experiment with unstable
2294 /// features, some of them are known to be incomplete or faulty. This lint
2295 /// is a signal that the feature has not yet been finished, and you may
2296 /// experience problems with it.
2297 pub INCOMPLETE_FEATURES,
2298 Warn,
2299 "incomplete features that may function improperly in some or all cases"
2300}
2301
2302declare_lint! {
2303 /// The `internal_features` lint detects unstable features enabled with
2304 /// the [`feature` attribute] that are internal to the compiler or standard
2305 /// library.
2306 ///
2307 /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/
2308 ///
2309 /// ### Example
2310 ///
2311 /// ```rust
2312 /// #![feature(rustc_attrs)]
2313 /// ```
2314 ///
2315 /// {{produces}}
2316 ///
2317 /// ### Explanation
2318 ///
2319 /// These features are an implementation detail of the compiler and standard
2320 /// library and are not supposed to be used in user code.
2321 pub INTERNAL_FEATURES,
2322 Warn,
2323 "internal features are not supposed to be used"
2324}
2325
2326declare_lint_pass!(
2327 /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/unstable.rs`.
2328 IncompleteInternalFeatures => [INCOMPLETE_FEATURES, INTERNAL_FEATURES]
2329);
2330
2331impl EarlyLintPass for IncompleteInternalFeatures {
2332 fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
2333 let features = cx.builder.features();
2334 let lang_features =
2335 features.enabled_lang_features().iter().map(|feat| (feat.gate_name, feat.attr_sp));
2336 let lib_features =
2337 features.enabled_lib_features().iter().map(|feat| (feat.gate_name, feat.attr_sp));
2338
2339 lang_features
2340 .chain(lib_features)
2341 .filter(|(name, _)| features.incomplete(*name) || features.internal(*name))
2342 .for_each(|(name, span)| {
2343 if features.incomplete(name) {
2344 let note = rustc_feature::find_feature_issue(name, GateIssue::Language)
2345 .map(|n| BuiltinFeatureIssueNote { n });
2346 let help =
2347 HAS_MIN_FEATURES.contains(&name).then_some(BuiltinIncompleteFeaturesHelp);
2348
2349 cx.emit_span_lint(
2350 INCOMPLETE_FEATURES,
2351 span,
2352 BuiltinIncompleteFeatures { name, note, help },
2353 );
2354 } else {
2355 cx.emit_span_lint(INTERNAL_FEATURES, span, BuiltinInternalFeatures { name });
2356 }
2357 });
2358 }
2359}
2360
2361const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization];
2362
2363declare_lint! {
2364 /// The `invalid_value` lint detects creating a value that is not valid,
2365 /// such as a null reference.
2366 ///
2367 /// ### Example
2368 ///
2369 /// ```rust,no_run
2370 /// # #![allow(unused)]
2371 /// unsafe {
2372 /// let x: &'static i32 = std::mem::zeroed();
2373 /// }
2374 /// ```
2375 ///
2376 /// {{produces}}
2377 ///
2378 /// ### Explanation
2379 ///
2380 /// In some situations the compiler can detect that the code is creating
2381 /// an invalid value, which should be avoided.
2382 ///
2383 /// In particular, this lint will check for improper use of
2384 /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and
2385 /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The
2386 /// lint should provide extra information to indicate what the problem is
2387 /// and a possible solution.
2388 ///
2389 /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html
2390 /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html
2391 /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html
2392 /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init
2393 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2394 pub INVALID_VALUE,
2395 Warn,
2396 "an invalid value is being created (such as a null reference)"
2397}
2398
2399declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
2400
2401/// Information about why a type cannot be initialized this way.
2402pub struct InitError {
2403 pub(crate) message: String,
2404 /// Spans from struct fields and similar that can be obtained from just the type.
2405 pub(crate) span: Option<Span>,
2406 /// Used to report a trace through adts.
2407 pub(crate) nested: Option<Box<InitError>>,
2408}
2409impl InitError {
2410 fn spanned(self, span: Span) -> InitError {
2411 Self { span: Some(span), ..self }
2412 }
2413
2414 fn nested(self, nested: impl Into<Option<InitError>>) -> InitError {
2415 assert!(self.nested.is_none());
2416 Self { nested: nested.into().map(Box::new), ..self }
2417 }
2418}
2419
2420impl<'a> From<&'a str> for InitError {
2421 fn from(s: &'a str) -> Self {
2422 s.to_owned().into()
2423 }
2424}
2425impl From<String> for InitError {
2426 fn from(message: String) -> Self {
2427 Self { message, span: None, nested: None }
2428 }
2429}
2430
2431impl<'tcx> LateLintPass<'tcx> for InvalidValue {
2432 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2433 #[derive(Debug, Copy, Clone, PartialEq)]
2434 enum InitKind {
2435 Zeroed,
2436 Uninit,
2437 }
2438
2439 /// Test if this constant is all-0.
2440 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2441 use hir::ExprKind::*;
2442 use rustc_ast::LitKind::*;
2443 match &expr.kind {
2444 Lit(lit) => {
2445 if let Int(i, _) = lit.node {
2446 i == 0
2447 } else {
2448 false
2449 }
2450 }
2451 Tup(tup) => tup.iter().all(is_zero),
2452 _ => false,
2453 }
2454 }
2455
2456 /// Determine if this expression is a "dangerous initialization".
2457 fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
2458 if let hir::ExprKind::Call(path_expr, args) = expr.kind
2459 // Find calls to `mem::{uninitialized,zeroed}` methods.
2460 && let hir::ExprKind::Path(ref qpath) = path_expr.kind
2461 {
2462 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2463 match cx.tcx.get_diagnostic_name(def_id) {
2464 Some(sym::mem_zeroed) => return Some(InitKind::Zeroed),
2465 Some(sym::mem_uninitialized) => return Some(InitKind::Uninit),
2466 Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed),
2467 _ => {}
2468 }
2469 } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind {
2470 // Find problematic calls to `MaybeUninit::assume_init`.
2471 let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?;
2472 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
2473 // This is a call to *some* method named `assume_init`.
2474 // See if the `self` parameter is one of the dangerous constructors.
2475 if let hir::ExprKind::Call(path_expr, _) = receiver.kind
2476 && let hir::ExprKind::Path(ref qpath) = path_expr.kind
2477 {
2478 let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
2479 match cx.tcx.get_diagnostic_name(def_id) {
2480 Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed),
2481 Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit),
2482 _ => {}
2483 }
2484 }
2485 }
2486 }
2487
2488 None
2489 }
2490
2491 fn variant_find_init_error<'tcx>(
2492 cx: &LateContext<'tcx>,
2493 ty: Ty<'tcx>,
2494 variant: &VariantDef,
2495 args: ty::GenericArgsRef<'tcx>,
2496 descr: &str,
2497 init: InitKind,
2498 ) -> Option<InitError> {
2499 let mut field_err = variant.fields.iter().find_map(|field| {
2500 ty_find_init_error(cx, field.ty(cx.tcx, args), init).map(|mut err| {
2501 if !field.did.is_local() {
2502 err
2503 } else if err.span.is_none() {
2504 err.span = Some(cx.tcx.def_span(field.did));
2505 write!(&mut err.message, " (in this {descr})").unwrap();
2506 err
2507 } else {
2508 InitError::from(format!("in this {descr}"))
2509 .spanned(cx.tcx.def_span(field.did))
2510 .nested(err)
2511 }
2512 })
2513 });
2514
2515 // Check if this ADT has a constrained layout (like `NonNull` and friends).
2516 if let Ok(layout) = cx.tcx.layout_of(cx.typing_env().as_query_input(ty)) {
2517 if let BackendRepr::Scalar(scalar) | BackendRepr::ScalarPair(scalar, _) =
2518 &layout.backend_repr
2519 {
2520 let range = scalar.valid_range(cx);
2521 let msg = if !range.contains(0) {
2522 "must be non-null"
2523 } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) {
2524 // Prefer reporting on the fields over the entire struct for uninit,
2525 // as the information bubbles out and it may be unclear why the type can't
2526 // be null from just its outside signature.
2527
2528 "must be initialized inside its custom valid range"
2529 } else {
2530 return field_err;
2531 };
2532 if let Some(field_err) = &mut field_err {
2533 // Most of the time, if the field error is the same as the struct error,
2534 // the struct error only happens because of the field error.
2535 if field_err.message.contains(msg) {
2536 field_err.message = format!("because {}", field_err.message);
2537 }
2538 }
2539 return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err));
2540 }
2541 }
2542 field_err
2543 }
2544
2545 /// Return `Some` only if we are sure this type does *not*
2546 /// allow zero initialization.
2547 fn ty_find_init_error<'tcx>(
2548 cx: &LateContext<'tcx>,
2549 ty: Ty<'tcx>,
2550 init: InitKind,
2551 ) -> Option<InitError> {
2552 let ty = cx.tcx.try_normalize_erasing_regions(cx.typing_env(), ty).unwrap_or(ty);
2553
2554 match ty.kind() {
2555 // Primitive types that don't like 0 as a value.
2556 ty::Ref(..) => Some("references must be non-null".into()),
2557 ty::Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()),
2558 ty::FnPtr(..) => Some("function pointers must be non-null".into()),
2559 ty::Never => Some("the `!` type has no valid value".into()),
2560 ty::RawPtr(ty, _) if matches!(ty.kind(), ty::Dynamic(..)) =>
2561 // raw ptr to dyn Trait
2562 {
2563 Some("the vtable of a wide raw pointer must be non-null".into())
2564 }
2565 // Primitive types with other constraints.
2566 ty::Bool if init == InitKind::Uninit => {
2567 Some("booleans must be either `true` or `false`".into())
2568 }
2569 ty::Char if init == InitKind::Uninit => {
2570 Some("characters must be a valid Unicode codepoint".into())
2571 }
2572 ty::Int(_) | ty::Uint(_) if init == InitKind::Uninit => {
2573 Some("integers must be initialized".into())
2574 }
2575 ty::Float(_) if init == InitKind::Uninit => {
2576 Some("floats must be initialized".into())
2577 }
2578 ty::RawPtr(_, _) if init == InitKind::Uninit => {
2579 Some("raw pointers must be initialized".into())
2580 }
2581 // Recurse and checks for some compound types. (but not unions)
2582 ty::Adt(adt_def, args) if !adt_def.is_union() => {
2583 // Handle structs.
2584 if adt_def.is_struct() {
2585 return variant_find_init_error(
2586 cx,
2587 ty,
2588 adt_def.non_enum_variant(),
2589 args,
2590 "struct field",
2591 init,
2592 );
2593 }
2594 // And now, enums.
2595 let span = cx.tcx.def_span(adt_def.did());
2596 let mut potential_variants = adt_def.variants().iter().filter_map(|variant| {
2597 let definitely_inhabited = match variant
2598 .inhabited_predicate(cx.tcx, *adt_def)
2599 .instantiate(cx.tcx, args)
2600 .apply_any_module(cx.tcx, cx.typing_env())
2601 {
2602 // Entirely skip uninhabited variants.
2603 Some(false) => return None,
2604 // Forward the others, but remember which ones are definitely inhabited.
2605 Some(true) => true,
2606 None => false,
2607 };
2608 Some((variant, definitely_inhabited))
2609 });
2610 let Some(first_variant) = potential_variants.next() else {
2611 return Some(
2612 InitError::from("enums with no inhabited variants have no valid value")
2613 .spanned(span),
2614 );
2615 };
2616 // So we have at least one potentially inhabited variant. Might we have two?
2617 let Some(second_variant) = potential_variants.next() else {
2618 // There is only one potentially inhabited variant. So we can recursively
2619 // check that variant!
2620 return variant_find_init_error(
2621 cx,
2622 ty,
2623 first_variant.0,
2624 args,
2625 "field of the only potentially inhabited enum variant",
2626 init,
2627 );
2628 };
2629 // So we have at least two potentially inhabited variants. If we can prove that
2630 // we have at least two *definitely* inhabited variants, then we have a tag and
2631 // hence leaving this uninit is definitely disallowed. (Leaving it zeroed could
2632 // be okay, depending on which variant is encoded as zero tag.)
2633 if init == InitKind::Uninit {
2634 let definitely_inhabited = (first_variant.1 as usize)
2635 + (second_variant.1 as usize)
2636 + potential_variants
2637 .filter(|(_variant, definitely_inhabited)| *definitely_inhabited)
2638 .count();
2639 if definitely_inhabited > 1 {
2640 return Some(InitError::from(
2641 "enums with multiple inhabited variants have to be initialized to a variant",
2642 ).spanned(span));
2643 }
2644 }
2645 // We couldn't find anything wrong here.
2646 None
2647 }
2648 ty::Tuple(..) => {
2649 // Proceed recursively, check all fields.
2650 ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init))
2651 }
2652 ty::Array(ty, len) => {
2653 if matches!(len.try_to_target_usize(cx.tcx), Some(v) if v > 0) {
2654 // Array length known at array non-empty -- recurse.
2655 ty_find_init_error(cx, *ty, init)
2656 } else {
2657 // Empty array or size unknown.
2658 None
2659 }
2660 }
2661 // Conservative fallback.
2662 _ => None,
2663 }
2664 }
2665
2666 if let Some(init) = is_dangerous_init(cx, expr) {
2667 // This conjures an instance of a type out of nothing,
2668 // using zeroed or uninitialized memory.
2669 // We are extremely conservative with what we warn about.
2670 let conjured_ty = cx.typeck_results().expr_ty(expr);
2671 if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) {
2672 let msg = match init {
2673 InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed,
2674 InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_uninit,
2675 };
2676 let sub = BuiltinUnpermittedTypeInitSub { err };
2677 cx.emit_span_lint(
2678 INVALID_VALUE,
2679 expr.span,
2680 BuiltinUnpermittedTypeInit {
2681 msg,
2682 ty: conjured_ty,
2683 label: expr.span,
2684 sub,
2685 tcx: cx.tcx,
2686 },
2687 );
2688 }
2689 }
2690 }
2691}
2692
2693declare_lint! {
2694 /// The `deref_nullptr` lint detects when a null pointer is dereferenced,
2695 /// which causes [undefined behavior].
2696 ///
2697 /// ### Example
2698 ///
2699 /// ```rust,no_run
2700 /// # #![allow(unused)]
2701 /// use std::ptr;
2702 /// unsafe {
2703 /// let x = &*ptr::null::<i32>();
2704 /// let x = ptr::addr_of!(*ptr::null::<i32>());
2705 /// let x = *(0 as *const i32);
2706 /// }
2707 /// ```
2708 ///
2709 /// {{produces}}
2710 ///
2711 /// ### Explanation
2712 ///
2713 /// Dereferencing a null pointer causes [undefined behavior] if it is accessed
2714 /// (loaded from or stored to).
2715 ///
2716 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
2717 pub DEREF_NULLPTR,
2718 Warn,
2719 "detects when an null pointer is dereferenced"
2720}
2721
2722declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]);
2723
2724impl<'tcx> LateLintPass<'tcx> for DerefNullPtr {
2725 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) {
2726 /// test if expression is a null ptr
2727 fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool {
2728 match &expr.kind {
2729 hir::ExprKind::Cast(expr, ty) => {
2730 if let hir::TyKind::Ptr(_) = ty.kind {
2731 return is_zero(expr) || is_null_ptr(cx, expr);
2732 }
2733 }
2734 // check for call to `core::ptr::null` or `core::ptr::null_mut`
2735 hir::ExprKind::Call(path, _) => {
2736 if let hir::ExprKind::Path(ref qpath) = path.kind
2737 && let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id()
2738 {
2739 return matches!(
2740 cx.tcx.get_diagnostic_name(def_id),
2741 Some(sym::ptr_null | sym::ptr_null_mut)
2742 );
2743 }
2744 }
2745 _ => {}
2746 }
2747 false
2748 }
2749
2750 /// test if expression is the literal `0`
2751 fn is_zero(expr: &hir::Expr<'_>) -> bool {
2752 match &expr.kind {
2753 hir::ExprKind::Lit(lit) => {
2754 if let LitKind::Int(a, _) = lit.node {
2755 return a == 0;
2756 }
2757 }
2758 _ => {}
2759 }
2760 false
2761 }
2762
2763 if let hir::ExprKind::Unary(hir::UnOp::Deref, expr_deref) = expr.kind
2764 && is_null_ptr(cx, expr_deref)
2765 {
2766 if let hir::Node::Expr(hir::Expr {
2767 kind: hir::ExprKind::AddrOf(hir::BorrowKind::Raw, ..),
2768 ..
2769 }) = cx.tcx.parent_hir_node(expr.hir_id)
2770 {
2771 // `&raw *NULL` is ok.
2772 } else {
2773 cx.emit_span_lint(
2774 DEREF_NULLPTR,
2775 expr.span,
2776 BuiltinDerefNullptr { label: expr.span },
2777 );
2778 }
2779 }
2780 }
2781}
2782
2783declare_lint! {
2784 /// The `named_asm_labels` lint detects the use of named labels in the
2785 /// inline `asm!` macro.
2786 ///
2787 /// ### Example
2788 ///
2789 /// ```rust,compile_fail
2790 /// # #![feature(asm_experimental_arch)]
2791 /// use std::arch::asm;
2792 ///
2793 /// fn main() {
2794 /// unsafe {
2795 /// asm!("foo: bar");
2796 /// }
2797 /// }
2798 /// ```
2799 ///
2800 /// {{produces}}
2801 ///
2802 /// ### Explanation
2803 ///
2804 /// LLVM is allowed to duplicate inline assembly blocks for any
2805 /// reason, for example when it is in a function that gets inlined. Because
2806 /// of this, GNU assembler [local labels] *must* be used instead of labels
2807 /// with a name. Using named labels might cause assembler or linker errors.
2808 ///
2809 /// See the explanation in [Rust By Example] for more details.
2810 ///
2811 /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels
2812 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2813 pub NAMED_ASM_LABELS,
2814 Deny,
2815 "named labels in inline assembly",
2816}
2817
2818declare_lint! {
2819 /// The `binary_asm_labels` lint detects the use of numeric labels containing only binary
2820 /// digits in the inline `asm!` macro.
2821 ///
2822 /// ### Example
2823 ///
2824 /// ```rust,ignore (fails on non-x86_64)
2825 /// #![cfg(target_arch = "x86_64")]
2826 ///
2827 /// use std::arch::asm;
2828 ///
2829 /// fn main() {
2830 /// unsafe {
2831 /// asm!("0: jmp 0b");
2832 /// }
2833 /// }
2834 /// ```
2835 ///
2836 /// This will produce:
2837 ///
2838 /// ```text
2839 /// error: avoid using labels containing only the digits `0` and `1` in inline assembly
2840 /// --> <source>:7:15
2841 /// |
2842 /// 7 | asm!("0: jmp 0b");
2843 /// | ^ use a different label that doesn't start with `0` or `1`
2844 /// |
2845 /// = help: start numbering with `2` instead
2846 /// = note: an LLVM bug makes these labels ambiguous with a binary literal number on x86
2847 /// = note: see <https://github.com/llvm/llvm-project/issues/99547> for more information
2848 /// = note: `#[deny(binary_asm_labels)]` on by default
2849 /// ```
2850 ///
2851 /// ### Explanation
2852 ///
2853 /// An [LLVM bug] causes this code to fail to compile because it interprets the `0b` as a binary
2854 /// literal instead of a reference to the previous local label `0`. To work around this bug,
2855 /// don't use labels that could be confused with a binary literal.
2856 ///
2857 /// This behavior is platform-specific to x86 and x86-64.
2858 ///
2859 /// See the explanation in [Rust By Example] for more details.
2860 ///
2861 /// [LLVM bug]: https://github.com/llvm/llvm-project/issues/99547
2862 /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels
2863 pub BINARY_ASM_LABELS,
2864 Deny,
2865 "labels in inline assembly containing only 0 or 1 digits",
2866}
2867
2868declare_lint_pass!(AsmLabels => [NAMED_ASM_LABELS, BINARY_ASM_LABELS]);
2869
2870#[derive(Debug, Clone, Copy, PartialEq, Eq)]
2871enum AsmLabelKind {
2872 Named,
2873 FormatArg,
2874 Binary,
2875}
2876
2877impl<'tcx> LateLintPass<'tcx> for AsmLabels {
2878 fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) {
2879 if let hir::Expr {
2880 kind:
2881 hir::ExprKind::InlineAsm(hir::InlineAsm {
2882 asm_macro: asm_macro @ (AsmMacro::Asm | AsmMacro::NakedAsm),
2883 template_strs,
2884 options,
2885 ..
2886 }),
2887 ..
2888 } = expr
2889 {
2890 // Non-generic naked functions are allowed to define arbitrary
2891 // labels.
2892 if *asm_macro == AsmMacro::NakedAsm {
2893 let def_id = expr.hir_id.owner.def_id;
2894 if !cx.tcx.generics_of(def_id).requires_monomorphization(cx.tcx) {
2895 return;
2896 }
2897 }
2898
2899 // asm with `options(raw)` does not do replacement with `{` and `}`.
2900 let raw = options.contains(InlineAsmOptions::RAW);
2901
2902 for (template_sym, template_snippet, template_span) in template_strs.iter() {
2903 let template_str = template_sym.as_str();
2904 let find_label_span = |needle: &str| -> Option<Span> {
2905 if let Some(template_snippet) = template_snippet {
2906 let snippet = template_snippet.as_str();
2907 if let Some(pos) = snippet.find(needle) {
2908 let end = pos
2909 + snippet[pos..]
2910 .find(|c| c == ':')
2911 .unwrap_or(snippet[pos..].len() - 1);
2912 let inner = InnerSpan::new(pos, end);
2913 return Some(template_span.from_inner(inner));
2914 }
2915 }
2916
2917 None
2918 };
2919
2920 // diagnostics are emitted per-template, so this is created here as opposed to the outer loop
2921 let mut spans = Vec::new();
2922
2923 // A semicolon might not actually be specified as a separator for all targets, but
2924 // it seems like LLVM accepts it always.
2925 let statements = template_str.split(|c| matches!(c, '\n' | ';'));
2926 for statement in statements {
2927 // If there's a comment, trim it from the statement
2928 let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]);
2929
2930 // In this loop, if there is ever a non-label, no labels can come after it.
2931 let mut start_idx = 0;
2932 'label_loop: for (idx, _) in statement.match_indices(':') {
2933 let possible_label = statement[start_idx..idx].trim();
2934 let mut chars = possible_label.chars();
2935
2936 let Some(start) = chars.next() else {
2937 // Empty string means a leading ':' in this section, which is not a
2938 // label.
2939 break 'label_loop;
2940 };
2941
2942 // Whether a { bracket has been seen and its } hasn't been found yet.
2943 let mut in_bracket = false;
2944 let mut label_kind = AsmLabelKind::Named;
2945
2946 // A label can also start with a format arg, if it's not a raw asm block.
2947 if !raw && start == '{' {
2948 in_bracket = true;
2949 label_kind = AsmLabelKind::FormatArg;
2950 } else if matches!(start, '0' | '1') {
2951 // Binary labels have only the characters `0` or `1`.
2952 label_kind = AsmLabelKind::Binary;
2953 } else if !(start.is_ascii_alphabetic() || matches!(start, '.' | '_')) {
2954 // Named labels start with ASCII letters, `.` or `_`.
2955 // anything else is not a label
2956 break 'label_loop;
2957 }
2958
2959 for c in chars {
2960 // Inside a template format arg, any character is permitted for the
2961 // puproses of label detection because we assume that it can be
2962 // replaced with some other valid label string later. `options(raw)`
2963 // asm blocks cannot have format args, so they are excluded from this
2964 // special case.
2965 if !raw && in_bracket {
2966 if c == '{' {
2967 // Nested brackets are not allowed in format args, this cannot
2968 // be a label.
2969 break 'label_loop;
2970 }
2971
2972 if c == '}' {
2973 // The end of the format arg.
2974 in_bracket = false;
2975 }
2976 } else if !raw && c == '{' {
2977 // Start of a format arg.
2978 in_bracket = true;
2979 label_kind = AsmLabelKind::FormatArg;
2980 } else {
2981 let can_continue = match label_kind {
2982 // Format arg labels are considered to be named labels for the purposes
2983 // of continuing outside of their {} pair.
2984 AsmLabelKind::Named | AsmLabelKind::FormatArg => {
2985 c.is_ascii_alphanumeric() || matches!(c, '_' | '$')
2986 }
2987 AsmLabelKind::Binary => matches!(c, '0' | '1'),
2988 };
2989
2990 if !can_continue {
2991 // The potential label had an invalid character inside it, it
2992 // cannot be a label.
2993 break 'label_loop;
2994 }
2995 }
2996 }
2997
2998 // If all characters passed the label checks, this is a label.
2999 spans.push((find_label_span(possible_label), label_kind));
3000 start_idx = idx + 1;
3001 }
3002 }
3003
3004 for (span, label_kind) in spans {
3005 let missing_precise_span = span.is_none();
3006 let span = span.unwrap_or(*template_span);
3007 match label_kind {
3008 AsmLabelKind::Named => {
3009 cx.emit_span_lint(
3010 NAMED_ASM_LABELS,
3011 span,
3012 InvalidAsmLabel::Named { missing_precise_span },
3013 );
3014 }
3015 AsmLabelKind::FormatArg => {
3016 cx.emit_span_lint(
3017 NAMED_ASM_LABELS,
3018 span,
3019 InvalidAsmLabel::FormatArg { missing_precise_span },
3020 );
3021 }
3022 // the binary asm issue only occurs when using intel syntax on x86 targets
3023 AsmLabelKind::Binary
3024 if !options.contains(InlineAsmOptions::ATT_SYNTAX)
3025 && matches!(
3026 cx.tcx.sess.asm_arch,
3027 Some(InlineAsmArch::X86 | InlineAsmArch::X86_64) | None
3028 ) =>
3029 {
3030 cx.emit_span_lint(
3031 BINARY_ASM_LABELS,
3032 span,
3033 InvalidAsmLabel::Binary { missing_precise_span, span },
3034 )
3035 }
3036 // No lint on anything other than x86
3037 AsmLabelKind::Binary => (),
3038 };
3039 }
3040 }
3041 }
3042 }
3043}
3044
3045declare_lint! {
3046 /// The `special_module_name` lint detects module
3047 /// declarations for files that have a special meaning.
3048 ///
3049 /// ### Example
3050 ///
3051 /// ```rust,compile_fail
3052 /// mod lib;
3053 ///
3054 /// fn main() {
3055 /// lib::run();
3056 /// }
3057 /// ```
3058 ///
3059 /// {{produces}}
3060 ///
3061 /// ### Explanation
3062 ///
3063 /// Cargo recognizes `lib.rs` and `main.rs` as the root of a
3064 /// library or binary crate, so declaring them as modules
3065 /// will lead to miscompilation of the crate unless configured
3066 /// explicitly.
3067 ///
3068 /// To access a library from a binary target within the same crate,
3069 /// use `your_crate_name::` as the path instead of `lib::`:
3070 ///
3071 /// ```rust,compile_fail
3072 /// // bar/src/lib.rs
3073 /// fn run() {
3074 /// // ...
3075 /// }
3076 ///
3077 /// // bar/src/main.rs
3078 /// fn main() {
3079 /// bar::run();
3080 /// }
3081 /// ```
3082 ///
3083 /// Binary targets cannot be used as libraries and so declaring
3084 /// one as a module is not allowed.
3085 pub SPECIAL_MODULE_NAME,
3086 Warn,
3087 "module declarations for files with a special meaning",
3088}
3089
3090declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]);
3091
3092impl EarlyLintPass for SpecialModuleName {
3093 fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) {
3094 for item in &krate.items {
3095 if let ast::ItemKind::Mod(
3096 _,
3097 ident,
3098 ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No { .. }, _),
3099 ) = item.kind
3100 {
3101 if item.attrs.iter().any(|a| a.has_name(sym::path)) {
3102 continue;
3103 }
3104
3105 match ident.name.as_str() {
3106 "lib" => cx.emit_span_lint(
3107 SPECIAL_MODULE_NAME,
3108 item.span,
3109 BuiltinSpecialModuleNameUsed::Lib,
3110 ),
3111 "main" => cx.emit_span_lint(
3112 SPECIAL_MODULE_NAME,
3113 item.span,
3114 BuiltinSpecialModuleNameUsed::Main,
3115 ),
3116 _ => continue,
3117 }
3118 }
3119 }
3120 }
3121}