rustc_target/callconv/mod.rs
1use std::str::FromStr;
2use std::{fmt, iter};
3
4use rustc_abi::{
5 AddressSpace, Align, BackendRepr, ExternAbi, HasDataLayout, Primitive, Reg, RegKind, Scalar,
6 Size, TyAbiInterface, TyAndLayout,
7};
8use rustc_macros::HashStable_Generic;
9
10use crate::spec::{HasTargetSpec, HasWasmCAbiOpt, HasX86AbiOpt, WasmCAbi};
11
12mod aarch64;
13mod amdgpu;
14mod arm;
15mod avr;
16mod bpf;
17mod csky;
18mod hexagon;
19mod loongarch;
20mod m68k;
21mod mips;
22mod mips64;
23mod msp430;
24mod nvptx64;
25mod powerpc;
26mod powerpc64;
27mod riscv;
28mod s390x;
29mod sparc;
30mod sparc64;
31mod wasm;
32mod x86;
33mod x86_64;
34mod x86_win64;
35mod xtensa;
36
37#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
38pub enum PassMode {
39 /// Ignore the argument.
40 ///
41 /// The argument is either uninhabited or a ZST.
42 Ignore,
43 /// Pass the argument directly.
44 ///
45 /// The argument has a layout abi of `Scalar` or `Vector`.
46 /// Unfortunately due to past mistakes, in rare cases on wasm, it can also be `Aggregate`.
47 /// This is bad since it leaks LLVM implementation details into the ABI.
48 /// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
49 Direct(ArgAttributes),
50 /// Pass a pair's elements directly in two arguments.
51 ///
52 /// The argument has a layout abi of `ScalarPair`.
53 Pair(ArgAttributes, ArgAttributes),
54 /// Pass the argument after casting it. See the `CastTarget` docs for details.
55 ///
56 /// `pad_i32` indicates if a `Reg::i32()` dummy argument is emitted before the real argument.
57 Cast { pad_i32: bool, cast: Box<CastTarget> },
58 /// Pass the argument indirectly via a hidden pointer.
59 ///
60 /// The `meta_attrs` value, if any, is for the metadata (vtable or length) of an unsized
61 /// argument. (This is the only mode that supports unsized arguments.)
62 ///
63 /// `on_stack` defines that the value should be passed at a fixed stack offset in accordance to
64 /// the ABI rather than passed using a pointer. This corresponds to the `byval` LLVM argument
65 /// attribute. The `byval` argument will use a byte array with the same size as the Rust type
66 /// (which ensures that padding is preserved and that we do not rely on LLVM's struct layout),
67 /// and will use the alignment specified in `attrs.pointee_align` (if `Some`) or the type's
68 /// alignment (if `None`). This means that the alignment will not always
69 /// match the Rust type's alignment; see documentation of `pass_by_stack_offset` for more info.
70 ///
71 /// `on_stack` cannot be true for unsized arguments, i.e., when `meta_attrs` is `Some`.
72 Indirect { attrs: ArgAttributes, meta_attrs: Option<ArgAttributes>, on_stack: bool },
73}
74
75impl PassMode {
76 /// Checks if these two `PassMode` are equal enough to be considered "the same for all
77 /// function call ABIs". However, the `Layout` can also impact ABI decisions,
78 /// so that needs to be compared as well!
79 pub fn eq_abi(&self, other: &Self) -> bool {
80 match (self, other) {
81 (PassMode::Ignore, PassMode::Ignore) => true,
82 (PassMode::Direct(a1), PassMode::Direct(a2)) => a1.eq_abi(a2),
83 (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => a1.eq_abi(a2) && b1.eq_abi(b2),
84 (
85 PassMode::Cast { cast: c1, pad_i32: pad1 },
86 PassMode::Cast { cast: c2, pad_i32: pad2 },
87 ) => c1.eq_abi(c2) && pad1 == pad2,
88 (
89 PassMode::Indirect { attrs: a1, meta_attrs: None, on_stack: s1 },
90 PassMode::Indirect { attrs: a2, meta_attrs: None, on_stack: s2 },
91 ) => a1.eq_abi(a2) && s1 == s2,
92 (
93 PassMode::Indirect { attrs: a1, meta_attrs: Some(e1), on_stack: s1 },
94 PassMode::Indirect { attrs: a2, meta_attrs: Some(e2), on_stack: s2 },
95 ) => a1.eq_abi(a2) && e1.eq_abi(e2) && s1 == s2,
96 _ => false,
97 }
98 }
99}
100
101// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
102// of this module
103pub use attr_impl::ArgAttribute;
104
105#[allow(non_upper_case_globals)]
106#[allow(unused)]
107mod attr_impl {
108 use rustc_macros::HashStable_Generic;
109
110 // The subset of llvm::Attribute needed for arguments, packed into a bitfield.
111 #[derive(Clone, Copy, Default, Hash, PartialEq, Eq, HashStable_Generic)]
112 pub struct ArgAttribute(u8);
113 bitflags::bitflags! {
114 impl ArgAttribute: u8 {
115 const NoAlias = 1 << 1;
116 const NoCapture = 1 << 2;
117 const NonNull = 1 << 3;
118 const ReadOnly = 1 << 4;
119 const InReg = 1 << 5;
120 const NoUndef = 1 << 6;
121 }
122 }
123 rustc_data_structures::external_bitflags_debug! { ArgAttribute }
124}
125
126/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
127/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
128/// not necessary to extend the argument, this enum is ignored.
129#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
130pub enum ArgExtension {
131 None,
132 Zext,
133 Sext,
134}
135
136/// A compact representation of LLVM attributes (at least those relevant for this module)
137/// that can be manipulated without interacting with LLVM's Attribute machinery.
138#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
139pub struct ArgAttributes {
140 pub regular: ArgAttribute,
141 pub arg_ext: ArgExtension,
142 /// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
143 /// (corresponding to LLVM's dereferenceable_or_null attributes, i.e., it is okay for this to be
144 /// set on a null pointer, but all non-null pointers must be dereferenceable).
145 pub pointee_size: Size,
146 pub pointee_align: Option<Align>,
147}
148
149impl ArgAttributes {
150 pub fn new() -> Self {
151 ArgAttributes {
152 regular: ArgAttribute::default(),
153 arg_ext: ArgExtension::None,
154 pointee_size: Size::ZERO,
155 pointee_align: None,
156 }
157 }
158
159 pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
160 assert!(
161 self.arg_ext == ArgExtension::None || self.arg_ext == ext,
162 "cannot set {:?} when {:?} is already set",
163 ext,
164 self.arg_ext
165 );
166 self.arg_ext = ext;
167 self
168 }
169
170 pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
171 self.regular |= attr;
172 self
173 }
174
175 pub fn contains(&self, attr: ArgAttribute) -> bool {
176 self.regular.contains(attr)
177 }
178
179 /// Checks if these two `ArgAttributes` are equal enough to be considered "the same for all
180 /// function call ABIs".
181 pub fn eq_abi(&self, other: &Self) -> bool {
182 // There's only one regular attribute that matters for the call ABI: InReg.
183 // Everything else is things like noalias, dereferenceable, nonnull, ...
184 // (This also applies to pointee_size, pointee_align.)
185 if self.regular.contains(ArgAttribute::InReg) != other.regular.contains(ArgAttribute::InReg)
186 {
187 return false;
188 }
189 // We also compare the sign extension mode -- this could let the callee make assumptions
190 // about bits that conceptually were not even passed.
191 if self.arg_ext != other.arg_ext {
192 return false;
193 }
194 true
195 }
196}
197
198/// An argument passed entirely registers with the
199/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
200#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
201pub struct Uniform {
202 pub unit: Reg,
203
204 /// The total size of the argument, which can be:
205 /// * equal to `unit.size` (one scalar/vector),
206 /// * a multiple of `unit.size` (an array of scalar/vectors),
207 /// * if `unit.kind` is `Integer`, the last element can be shorter, i.e., `{ i64, i64, i32 }`
208 /// for 64-bit integers with a total size of 20 bytes. When the argument is actually passed,
209 /// this size will be rounded up to the nearest multiple of `unit.size`.
210 pub total: Size,
211
212 /// Indicate that the argument is consecutive, in the sense that either all values need to be
213 /// passed in register, or all on the stack. If they are passed on the stack, there should be
214 /// no additional padding between elements.
215 pub is_consecutive: bool,
216}
217
218impl From<Reg> for Uniform {
219 fn from(unit: Reg) -> Uniform {
220 Uniform { unit, total: unit.size, is_consecutive: false }
221 }
222}
223
224impl Uniform {
225 pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
226 self.unit.align(cx)
227 }
228
229 /// Pass using one or more values of the given type, without requiring them to be consecutive.
230 /// That is, some values may be passed in register and some on the stack.
231 pub fn new(unit: Reg, total: Size) -> Self {
232 Uniform { unit, total, is_consecutive: false }
233 }
234
235 /// Pass using one or more consecutive values of the given type. Either all values will be
236 /// passed in registers, or all on the stack.
237 pub fn consecutive(unit: Reg, total: Size) -> Self {
238 Uniform { unit, total, is_consecutive: true }
239 }
240}
241
242/// Describes the type used for `PassMode::Cast`.
243///
244/// Passing arguments in this mode works as follows: the registers in the `prefix` (the ones that
245/// are `Some`) get laid out one after the other (using `repr(C)` layout rules). Then the
246/// `rest.unit` register type gets repeated often enough to cover `rest.size`. This describes the
247/// actual type used for the call; the Rust type of the argument is then transmuted to this ABI type
248/// (and all data in the padding between the registers is dropped).
249#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
250pub struct CastTarget {
251 pub prefix: [Option<Reg>; 8],
252 pub rest: Uniform,
253 pub attrs: ArgAttributes,
254}
255
256impl From<Reg> for CastTarget {
257 fn from(unit: Reg) -> CastTarget {
258 CastTarget::from(Uniform::from(unit))
259 }
260}
261
262impl From<Uniform> for CastTarget {
263 fn from(uniform: Uniform) -> CastTarget {
264 CastTarget {
265 prefix: [None; 8],
266 rest: uniform,
267 attrs: ArgAttributes {
268 regular: ArgAttribute::default(),
269 arg_ext: ArgExtension::None,
270 pointee_size: Size::ZERO,
271 pointee_align: None,
272 },
273 }
274 }
275}
276
277impl CastTarget {
278 pub fn pair(a: Reg, b: Reg) -> CastTarget {
279 CastTarget {
280 prefix: [Some(a), None, None, None, None, None, None, None],
281 rest: Uniform::from(b),
282 attrs: ArgAttributes {
283 regular: ArgAttribute::default(),
284 arg_ext: ArgExtension::None,
285 pointee_size: Size::ZERO,
286 pointee_align: None,
287 },
288 }
289 }
290
291 /// When you only access the range containing valid data, you can use this unaligned size;
292 /// otherwise, use the safer `size` method.
293 pub fn unaligned_size<C: HasDataLayout>(&self, _cx: &C) -> Size {
294 // Prefix arguments are passed in specific designated registers
295 let prefix_size = self
296 .prefix
297 .iter()
298 .filter_map(|x| x.map(|reg| reg.size))
299 .fold(Size::ZERO, |acc, size| acc + size);
300 // Remaining arguments are passed in chunks of the unit size
301 let rest_size =
302 self.rest.unit.size * self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes());
303
304 prefix_size + rest_size
305 }
306
307 pub fn size<C: HasDataLayout>(&self, cx: &C) -> Size {
308 self.unaligned_size(cx).align_to(self.align(cx))
309 }
310
311 pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
312 self.prefix
313 .iter()
314 .filter_map(|x| x.map(|reg| reg.align(cx)))
315 .fold(cx.data_layout().aggregate_align.abi.max(self.rest.align(cx)), |acc, align| {
316 acc.max(align)
317 })
318 }
319
320 /// Checks if these two `CastTarget` are equal enough to be considered "the same for all
321 /// function call ABIs".
322 pub fn eq_abi(&self, other: &Self) -> bool {
323 let CastTarget { prefix: prefix_l, rest: rest_l, attrs: attrs_l } = self;
324 let CastTarget { prefix: prefix_r, rest: rest_r, attrs: attrs_r } = other;
325 prefix_l == prefix_r && rest_l == rest_r && attrs_l.eq_abi(attrs_r)
326 }
327}
328
329/// Information about how to pass an argument to,
330/// or return a value from, a function, under some ABI.
331#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
332pub struct ArgAbi<'a, Ty> {
333 pub layout: TyAndLayout<'a, Ty>,
334 pub mode: PassMode,
335}
336
337// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
338impl<'a, Ty: fmt::Display> fmt::Debug for ArgAbi<'a, Ty> {
339 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
340 let ArgAbi { layout, mode } = self;
341 f.debug_struct("ArgAbi").field("layout", layout).field("mode", mode).finish()
342 }
343}
344
345impl<'a, Ty> ArgAbi<'a, Ty> {
346 /// This defines the "default ABI" for that type, that is then later adjusted in `fn_abi_adjust_for_abi`.
347 pub fn new(
348 cx: &impl HasDataLayout,
349 layout: TyAndLayout<'a, Ty>,
350 scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, Scalar, Size) -> ArgAttributes,
351 ) -> Self {
352 let mode = match layout.backend_repr {
353 BackendRepr::Uninhabited => PassMode::Ignore,
354 BackendRepr::Scalar(scalar) => {
355 PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO))
356 }
357 BackendRepr::ScalarPair(a, b) => PassMode::Pair(
358 scalar_attrs(&layout, a, Size::ZERO),
359 scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
360 ),
361 BackendRepr::Vector { .. } => PassMode::Direct(ArgAttributes::new()),
362 BackendRepr::Memory { .. } => Self::indirect_pass_mode(&layout),
363 };
364 ArgAbi { layout, mode }
365 }
366
367 fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
368 let mut attrs = ArgAttributes::new();
369
370 // For non-immediate arguments the callee gets its own copy of
371 // the value on the stack, so there are no aliases. It's also
372 // program-invisible so can't possibly capture
373 attrs
374 .set(ArgAttribute::NoAlias)
375 .set(ArgAttribute::NoCapture)
376 .set(ArgAttribute::NonNull)
377 .set(ArgAttribute::NoUndef);
378 attrs.pointee_size = layout.size;
379 attrs.pointee_align = Some(layout.align.abi);
380
381 let meta_attrs = layout.is_unsized().then_some(ArgAttributes::new());
382
383 PassMode::Indirect { attrs, meta_attrs, on_stack: false }
384 }
385
386 /// Pass this argument directly instead. Should NOT be used!
387 /// Only exists because of past ABI mistakes that will take time to fix
388 /// (see <https://github.com/rust-lang/rust/issues/115666>).
389 pub fn make_direct_deprecated(&mut self) {
390 match self.mode {
391 PassMode::Indirect { .. } => {
392 self.mode = PassMode::Direct(ArgAttributes::new());
393 }
394 PassMode::Ignore | PassMode::Direct(_) | PassMode::Pair(_, _) => {} // already direct
395 _ => panic!("Tried to make {:?} direct", self.mode),
396 }
397 }
398
399 /// Pass this argument indirectly, by passing a (thin or wide) pointer to the argument instead.
400 /// This is valid for both sized and unsized arguments.
401 pub fn make_indirect(&mut self) {
402 match self.mode {
403 PassMode::Direct(_) | PassMode::Pair(_, _) => {
404 self.mode = Self::indirect_pass_mode(&self.layout);
405 }
406 PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
407 // already indirect
408 }
409 _ => panic!("Tried to make {:?} indirect", self.mode),
410 }
411 }
412
413 /// Same as `make_indirect`, but for arguments that are ignored. Only needed for ABIs that pass
414 /// ZSTs indirectly.
415 pub fn make_indirect_from_ignore(&mut self) {
416 match self.mode {
417 PassMode::Ignore => {
418 self.mode = Self::indirect_pass_mode(&self.layout);
419 }
420 PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
421 // already indirect
422 }
423 _ => panic!("Tried to make {:?} indirect (expected `PassMode::Ignore`)", self.mode),
424 }
425 }
426
427 /// Pass this argument indirectly, by placing it at a fixed stack offset.
428 /// This corresponds to the `byval` LLVM argument attribute.
429 /// This is only valid for sized arguments.
430 ///
431 /// `byval_align` specifies the alignment of the `byval` stack slot, which does not need to
432 /// correspond to the type's alignment. This will be `Some` if the target's ABI specifies that
433 /// stack slots used for arguments passed by-value have specific alignment requirements which
434 /// differ from the alignment used in other situations.
435 ///
436 /// If `None`, the type's alignment is used.
437 ///
438 /// If the resulting alignment differs from the type's alignment,
439 /// the argument will be copied to an alloca with sufficient alignment,
440 /// either in the caller (if the type's alignment is lower than the byval alignment)
441 /// or in the callee (if the type's alignment is higher than the byval alignment),
442 /// to ensure that Rust code never sees an underaligned pointer.
443 pub fn pass_by_stack_offset(&mut self, byval_align: Option<Align>) {
444 assert!(!self.layout.is_unsized(), "used byval ABI for unsized layout");
445 self.make_indirect();
446 match self.mode {
447 PassMode::Indirect { ref mut attrs, meta_attrs: _, ref mut on_stack } => {
448 *on_stack = true;
449
450 // Some platforms, like 32-bit x86, change the alignment of the type when passing
451 // `byval`. Account for that.
452 if let Some(byval_align) = byval_align {
453 // On all targets with byval align this is currently true, so let's assert it.
454 debug_assert!(byval_align >= Align::from_bytes(4).unwrap());
455 attrs.pointee_align = Some(byval_align);
456 }
457 }
458 _ => unreachable!(),
459 }
460 }
461
462 pub fn extend_integer_width_to(&mut self, bits: u64) {
463 // Only integers have signedness
464 if let BackendRepr::Scalar(scalar) = self.layout.backend_repr {
465 if let Primitive::Int(i, signed) = scalar.primitive() {
466 if i.size().bits() < bits {
467 if let PassMode::Direct(ref mut attrs) = self.mode {
468 if signed {
469 attrs.ext(ArgExtension::Sext)
470 } else {
471 attrs.ext(ArgExtension::Zext)
472 };
473 }
474 }
475 }
476 }
477 }
478
479 pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
480 self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32: false };
481 }
482
483 pub fn cast_to_and_pad_i32<T: Into<CastTarget>>(&mut self, target: T, pad_i32: bool) {
484 self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32 };
485 }
486
487 pub fn is_indirect(&self) -> bool {
488 matches!(self.mode, PassMode::Indirect { .. })
489 }
490
491 pub fn is_sized_indirect(&self) -> bool {
492 matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ })
493 }
494
495 pub fn is_unsized_indirect(&self) -> bool {
496 matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ })
497 }
498
499 pub fn is_ignore(&self) -> bool {
500 matches!(self.mode, PassMode::Ignore)
501 }
502
503 /// Checks if these two `ArgAbi` are equal enough to be considered "the same for all
504 /// function call ABIs".
505 pub fn eq_abi(&self, other: &Self) -> bool
506 where
507 Ty: PartialEq,
508 {
509 // Ideally we'd just compare the `mode`, but that is not enough -- for some modes LLVM will look
510 // at the type.
511 self.layout.eq_abi(&other.layout) && self.mode.eq_abi(&other.mode) && {
512 // `fn_arg_sanity_check` accepts `PassMode::Direct` for some aggregates.
513 // That elevates any type difference to an ABI difference since we just use the
514 // full Rust type as the LLVM argument/return type.
515 if matches!(self.mode, PassMode::Direct(..))
516 && matches!(self.layout.backend_repr, BackendRepr::Memory { .. })
517 {
518 // For aggregates in `Direct` mode to be compatible, the types need to be equal.
519 self.layout.ty == other.layout.ty
520 } else {
521 true
522 }
523 }
524 }
525}
526
527#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
528pub enum Conv {
529 // General language calling conventions, for which every target
530 // should have its own backend (e.g. LLVM) support.
531 C,
532 Rust,
533
534 Cold,
535 PreserveMost,
536 PreserveAll,
537
538 // Target-specific calling conventions.
539 ArmAapcs,
540 CCmseNonSecureCall,
541 CCmseNonSecureEntry,
542
543 Msp430Intr,
544
545 GpuKernel,
546
547 X86Fastcall,
548 X86Intr,
549 X86Stdcall,
550 X86ThisCall,
551 X86VectorCall,
552
553 X86_64SysV,
554 X86_64Win64,
555
556 AvrInterrupt,
557 AvrNonBlockingInterrupt,
558
559 RiscvInterrupt { kind: RiscvInterruptKind },
560}
561
562#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
563pub enum RiscvInterruptKind {
564 Machine,
565 Supervisor,
566}
567
568impl RiscvInterruptKind {
569 pub fn as_str(&self) -> &'static str {
570 match self {
571 Self::Machine => "machine",
572 Self::Supervisor => "supervisor",
573 }
574 }
575}
576
577/// Metadata describing how the arguments to a native function
578/// should be passed in order to respect the native ABI.
579///
580/// The signature represented by this type may not match the MIR function signature.
581/// Certain attributes, like `#[track_caller]` can introduce additional arguments, which are present in [`FnAbi`], but not in `FnSig`.
582/// While this difference is rarely relevant, it should still be kept in mind.
583///
584/// I will do my best to describe this structure, but these
585/// comments are reverse-engineered and may be inaccurate. -NDM
586#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
587pub struct FnAbi<'a, Ty> {
588 /// The type, layout, and information about how each argument is passed.
589 pub args: Box<[ArgAbi<'a, Ty>]>,
590
591 /// The layout, type, and the way a value is returned from this function.
592 pub ret: ArgAbi<'a, Ty>,
593
594 /// Marks this function as variadic (accepting a variable number of arguments).
595 pub c_variadic: bool,
596
597 /// The count of non-variadic arguments.
598 ///
599 /// Should only be different from args.len() when c_variadic is true.
600 /// This can be used to know whether an argument is variadic or not.
601 pub fixed_count: u32,
602 /// The calling convention of this function.
603 pub conv: Conv,
604 /// Indicates if an unwind may happen across a call to this function.
605 pub can_unwind: bool,
606}
607
608// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
609impl<'a, Ty: fmt::Display> fmt::Debug for FnAbi<'a, Ty> {
610 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
611 let FnAbi { args, ret, c_variadic, fixed_count, conv, can_unwind } = self;
612 f.debug_struct("FnAbi")
613 .field("args", args)
614 .field("ret", ret)
615 .field("c_variadic", c_variadic)
616 .field("fixed_count", fixed_count)
617 .field("conv", conv)
618 .field("can_unwind", can_unwind)
619 .finish()
620 }
621}
622
623impl<'a, Ty> FnAbi<'a, Ty> {
624 pub fn adjust_for_foreign_abi<C>(&mut self, cx: &C, abi: ExternAbi)
625 where
626 Ty: TyAbiInterface<'a, C> + Copy,
627 C: HasDataLayout + HasTargetSpec + HasWasmCAbiOpt + HasX86AbiOpt,
628 {
629 if abi == ExternAbi::X86Interrupt {
630 if let Some(arg) = self.args.first_mut() {
631 arg.pass_by_stack_offset(None);
632 }
633 return;
634 }
635
636 let spec = cx.target_spec();
637 match &spec.arch[..] {
638 "x86" => {
639 let (flavor, regparm) = match abi {
640 ExternAbi::Fastcall { .. } | ExternAbi::Vectorcall { .. } => {
641 (x86::Flavor::FastcallOrVectorcall, None)
642 }
643 ExternAbi::C { .. } | ExternAbi::Cdecl { .. } | ExternAbi::Stdcall { .. } => {
644 (x86::Flavor::General, cx.x86_abi_opt().regparm)
645 }
646 _ => (x86::Flavor::General, None),
647 };
648 let reg_struct_return = cx.x86_abi_opt().reg_struct_return;
649 let opts = x86::X86Options { flavor, regparm, reg_struct_return };
650 x86::compute_abi_info(cx, self, opts);
651 }
652 "x86_64" => match abi {
653 ExternAbi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
654 ExternAbi::Win64 { .. } | ExternAbi::Vectorcall { .. } => {
655 x86_win64::compute_abi_info(cx, self)
656 }
657 _ => {
658 if cx.target_spec().is_like_windows {
659 x86_win64::compute_abi_info(cx, self)
660 } else {
661 x86_64::compute_abi_info(cx, self)
662 }
663 }
664 },
665 "aarch64" | "arm64ec" => {
666 let kind = if cx.target_spec().is_like_osx {
667 aarch64::AbiKind::DarwinPCS
668 } else if cx.target_spec().is_like_windows {
669 aarch64::AbiKind::Win64
670 } else {
671 aarch64::AbiKind::AAPCS
672 };
673 aarch64::compute_abi_info(cx, self, kind)
674 }
675 "amdgpu" => amdgpu::compute_abi_info(cx, self),
676 "arm" => arm::compute_abi_info(cx, self),
677 "avr" => avr::compute_abi_info(self),
678 "loongarch64" => loongarch::compute_abi_info(cx, self),
679 "m68k" => m68k::compute_abi_info(self),
680 "csky" => csky::compute_abi_info(self),
681 "mips" | "mips32r6" => mips::compute_abi_info(cx, self),
682 "mips64" | "mips64r6" => mips64::compute_abi_info(cx, self),
683 "powerpc" => powerpc::compute_abi_info(cx, self),
684 "powerpc64" => powerpc64::compute_abi_info(cx, self),
685 "s390x" => s390x::compute_abi_info(cx, self),
686 "msp430" => msp430::compute_abi_info(self),
687 "sparc" => sparc::compute_abi_info(cx, self),
688 "sparc64" => sparc64::compute_abi_info(cx, self),
689 "nvptx64" => {
690 let abi = cx.target_spec().adjust_abi(abi, self.c_variadic);
691 if abi == ExternAbi::PtxKernel || abi == ExternAbi::GpuKernel {
692 nvptx64::compute_ptx_kernel_abi_info(cx, self)
693 } else {
694 nvptx64::compute_abi_info(self)
695 }
696 }
697 "hexagon" => hexagon::compute_abi_info(self),
698 "xtensa" => xtensa::compute_abi_info(cx, self),
699 "riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
700 "wasm32" => {
701 if spec.os == "unknown" && cx.wasm_c_abi_opt() == WasmCAbi::Legacy {
702 wasm::compute_wasm_abi_info(self)
703 } else {
704 wasm::compute_c_abi_info(cx, self)
705 }
706 }
707 "wasm64" => wasm::compute_c_abi_info(cx, self),
708 "bpf" => bpf::compute_abi_info(self),
709 arch => panic!("no lowering implemented for {arch}"),
710 }
711 }
712
713 pub fn adjust_for_rust_abi<C>(&mut self, cx: &C, abi: ExternAbi)
714 where
715 Ty: TyAbiInterface<'a, C> + Copy,
716 C: HasDataLayout + HasTargetSpec,
717 {
718 let spec = cx.target_spec();
719 match &spec.arch[..] {
720 "x86" => x86::compute_rust_abi_info(cx, self, abi),
721 "riscv32" | "riscv64" => riscv::compute_rust_abi_info(cx, self, abi),
722 "loongarch64" => loongarch::compute_rust_abi_info(cx, self, abi),
723 "aarch64" => aarch64::compute_rust_abi_info(cx, self),
724 _ => {}
725 };
726
727 for (arg_idx, arg) in self
728 .args
729 .iter_mut()
730 .enumerate()
731 .map(|(idx, arg)| (Some(idx), arg))
732 .chain(iter::once((None, &mut self.ret)))
733 {
734 if arg.is_ignore() {
735 continue;
736 }
737
738 if arg_idx.is_none()
739 && arg.layout.size > Primitive::Pointer(AddressSpace::DATA).size(cx) * 2
740 {
741 // Return values larger than 2 registers using a return area
742 // pointer. LLVM and Cranelift disagree about how to return
743 // values that don't fit in the registers designated for return
744 // values. LLVM will force the entire return value to be passed
745 // by return area pointer, while Cranelift will look at each IR level
746 // return value independently and decide to pass it in a
747 // register or not, which would result in the return value
748 // being passed partially in registers and partially through a
749 // return area pointer.
750 //
751 // While Cranelift may need to be fixed as the LLVM behavior is
752 // generally more correct with respect to the surface language,
753 // forcing this behavior in rustc itself makes it easier for
754 // other backends to conform to the Rust ABI and for the C ABI
755 // rustc already handles this behavior anyway.
756 //
757 // In addition LLVM's decision to pass the return value in
758 // registers or using a return area pointer depends on how
759 // exactly the return type is lowered to an LLVM IR type. For
760 // example `Option<u128>` can be lowered as `{ i128, i128 }`
761 // in which case the x86_64 backend would use a return area
762 // pointer, or it could be passed as `{ i32, i128 }` in which
763 // case the x86_64 backend would pass it in registers by taking
764 // advantage of an LLVM ABI extension that allows using 3
765 // registers for the x86_64 sysv call conv rather than the
766 // officially specified 2 registers.
767 //
768 // FIXME: Technically we should look at the amount of available
769 // return registers rather than guessing that there are 2
770 // registers for return values. In practice only a couple of
771 // architectures have less than 2 return registers. None of
772 // which supported by Cranelift.
773 //
774 // NOTE: This adjustment is only necessary for the Rust ABI as
775 // for other ABI's the calling convention implementations in
776 // rustc_target already ensure any return value which doesn't
777 // fit in the available amount of return registers is passed in
778 // the right way for the current target.
779 arg.make_indirect();
780 continue;
781 }
782
783 match arg.layout.backend_repr {
784 BackendRepr::Memory { .. } => {}
785
786 // This is a fun case! The gist of what this is doing is
787 // that we want callers and callees to always agree on the
788 // ABI of how they pass SIMD arguments. If we were to *not*
789 // make these arguments indirect then they'd be immediates
790 // in LLVM, which means that they'd used whatever the
791 // appropriate ABI is for the callee and the caller. That
792 // means, for example, if the caller doesn't have AVX
793 // enabled but the callee does, then passing an AVX argument
794 // across this boundary would cause corrupt data to show up.
795 //
796 // This problem is fixed by unconditionally passing SIMD
797 // arguments through memory between callers and callees
798 // which should get them all to agree on ABI regardless of
799 // target feature sets. Some more information about this
800 // issue can be found in #44367.
801 //
802 // Note that the intrinsic ABI is exempt here as
803 // that's how we connect up to LLVM and it's unstable
804 // anyway, we control all calls to it in libstd.
805 BackendRepr::Vector { .. }
806 if abi != ExternAbi::RustIntrinsic && spec.simd_types_indirect =>
807 {
808 arg.make_indirect();
809 continue;
810 }
811
812 _ => continue,
813 }
814 // Compute `Aggregate` ABI.
815
816 let is_indirect_not_on_stack =
817 matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
818 assert!(is_indirect_not_on_stack);
819
820 let size = arg.layout.size;
821 if !arg.layout.is_unsized() && size <= Primitive::Pointer(AddressSpace::DATA).size(cx) {
822 // We want to pass small aggregates as immediates, but using
823 // an LLVM aggregate type for this leads to bad optimizations,
824 // so we pick an appropriately sized integer type instead.
825 arg.cast_to(Reg { kind: RegKind::Integer, size });
826 }
827 }
828 }
829}
830
831impl FromStr for Conv {
832 type Err = String;
833
834 fn from_str(s: &str) -> Result<Self, Self::Err> {
835 match s {
836 "C" => Ok(Conv::C),
837 "Rust" => Ok(Conv::Rust),
838 "RustCold" => Ok(Conv::Rust),
839 "ArmAapcs" => Ok(Conv::ArmAapcs),
840 "CCmseNonSecureCall" => Ok(Conv::CCmseNonSecureCall),
841 "CCmseNonSecureEntry" => Ok(Conv::CCmseNonSecureEntry),
842 "Msp430Intr" => Ok(Conv::Msp430Intr),
843 "X86Fastcall" => Ok(Conv::X86Fastcall),
844 "X86Intr" => Ok(Conv::X86Intr),
845 "X86Stdcall" => Ok(Conv::X86Stdcall),
846 "X86ThisCall" => Ok(Conv::X86ThisCall),
847 "X86VectorCall" => Ok(Conv::X86VectorCall),
848 "X86_64SysV" => Ok(Conv::X86_64SysV),
849 "X86_64Win64" => Ok(Conv::X86_64Win64),
850 "GpuKernel" => Ok(Conv::GpuKernel),
851 "AvrInterrupt" => Ok(Conv::AvrInterrupt),
852 "AvrNonBlockingInterrupt" => Ok(Conv::AvrNonBlockingInterrupt),
853 "RiscvInterrupt(machine)" => {
854 Ok(Conv::RiscvInterrupt { kind: RiscvInterruptKind::Machine })
855 }
856 "RiscvInterrupt(supervisor)" => {
857 Ok(Conv::RiscvInterrupt { kind: RiscvInterruptKind::Supervisor })
858 }
859 _ => Err(format!("'{s}' is not a valid value for entry function call convention.")),
860 }
861 }
862}
863
864// Some types are used a lot. Make sure they don't unintentionally get bigger.
865#[cfg(target_pointer_width = "64")]
866mod size_asserts {
867 use rustc_data_structures::static_assert_size;
868
869 use super::*;
870 // tidy-alphabetical-start
871 static_assert_size!(ArgAbi<'_, usize>, 56);
872 static_assert_size!(FnAbi<'_, usize>, 80);
873 // tidy-alphabetical-end
874}