rustc_type_ir/
fold.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
//! A folding traversal mechanism for complex data structures that contain type
//! information.
//!
//! This is a modifying traversal. It consumes the data structure, producing a
//! (possibly) modified version of it. Both fallible and infallible versions are
//! available. The name is potentially confusing, because this traversal is more
//! like `Iterator::map` than `Iterator::fold`.
//!
//! This traversal has limited flexibility. Only a small number of "types of
//! interest" within the complex data structures can receive custom
//! modification. These are the ones containing the most important type-related
//! information, such as `Ty`, `Predicate`, `Region`, and `Const`.
//!
//! There are three traits involved in each traversal.
//! - `TypeFoldable`. This is implemented once for many types, including:
//!   - Types of interest, for which the methods delegate to the folder.
//!   - All other types, including generic containers like `Vec` and `Option`.
//!     It defines a "skeleton" of how they should be folded.
//! - `TypeSuperFoldable`. This is implemented only for recursive types of
//!   interest, and defines the folding "skeleton" for these types. (This
//!   excludes `Region` because it is non-recursive, i.e. it never contains
//!   other types of interest.)
//! - `TypeFolder`/`FallibleTypeFolder`. One of these is implemented for each
//!   folder. This defines how types of interest are folded.
//!
//! This means each fold is a mixture of (a) generic folding operations, and (b)
//! custom fold operations that are specific to the folder.
//! - The `TypeFoldable` impls handle most of the traversal, and call into
//!   `TypeFolder`/`FallibleTypeFolder` when they encounter a type of interest.
//! - A `TypeFolder`/`FallibleTypeFolder` may call into another `TypeFoldable`
//!   impl, because some of the types of interest are recursive and can contain
//!   other types of interest.
//! - A `TypeFolder`/`FallibleTypeFolder` may also call into a `TypeSuperFoldable`
//!   impl, because each folder might provide custom handling only for some types
//!   of interest, or only for some variants of each type of interest, and then
//!   use default traversal for the remaining cases.
//!
//! For example, if you have `struct S(Ty, U)` where `S: TypeFoldable` and `U:
//! TypeFoldable`, and an instance `s = S(ty, u)`, it would be folded like so:
//! ```text
//! s.fold_with(folder) calls
//! - ty.fold_with(folder) calls
//!   - folder.fold_ty(ty) may call
//!     - ty.super_fold_with(folder)
//! - u.fold_with(folder)
//! ```

use std::mem;

use rustc_index::{Idx, IndexVec};
use tracing::instrument;

use crate::data_structures::Lrc;
use crate::inherent::*;
use crate::visit::{TypeVisitable, TypeVisitableExt as _};
use crate::{self as ty, Interner};

#[cfg(feature = "nightly")]
type Never = !;

#[cfg(not(feature = "nightly"))]
type Never = std::convert::Infallible;

/// This trait is implemented for every type that can be folded,
/// providing the skeleton of the traversal.
///
/// To implement this conveniently, use the derive macro located in
/// `rustc_macros`.
///
/// This trait is a sub-trait of `TypeVisitable`. This is because many
/// `TypeFolder` instances use the methods in `TypeVisitableExt` while folding,
/// which means in practice almost every foldable type needs to also be
/// visitable. (However, there are some types that are visitable without being
/// foldable.)
pub trait TypeFoldable<I: Interner>: TypeVisitable<I> {
    /// The entry point for folding. To fold a value `t` with a folder `f`
    /// call: `t.try_fold_with(f)`.
    ///
    /// For most types, this just traverses the value, calling `try_fold_with`
    /// on each field/element.
    ///
    /// For types of interest (such as `Ty`), the implementation of this method
    /// calls a folder method specifically for that type (such as
    /// `F::try_fold_ty`). This is where control transfers from `TypeFoldable`
    /// to `TypeFolder`.
    fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error>;

    /// A convenient alternative to `try_fold_with` for use with infallible
    /// folders. Do not override this method, to ensure coherence with
    /// `try_fold_with`.
    fn fold_with<F: TypeFolder<I>>(self, folder: &mut F) -> Self {
        match self.try_fold_with(folder) {
            Ok(t) => t,
        }
    }
}

// This trait is implemented for types of interest.
pub trait TypeSuperFoldable<I: Interner>: TypeFoldable<I> {
    /// Provides a default fold for a recursive type of interest. This should
    /// only be called within `TypeFolder` methods, when a non-custom traversal
    /// is desired for the value of the type of interest passed to that method.
    /// For example, in `MyFolder::try_fold_ty(ty)`, it is valid to call
    /// `ty.try_super_fold_with(self)`, but any other folding should be done
    /// with `xyz.try_fold_with(self)`.
    fn try_super_fold_with<F: FallibleTypeFolder<I>>(
        self,
        folder: &mut F,
    ) -> Result<Self, F::Error>;

    /// A convenient alternative to `try_super_fold_with` for use with
    /// infallible folders. Do not override this method, to ensure coherence
    /// with `try_super_fold_with`.
    fn super_fold_with<F: TypeFolder<I>>(self, folder: &mut F) -> Self {
        match self.try_super_fold_with(folder) {
            Ok(t) => t,
        }
    }
}

/// This trait is implemented for every infallible folding traversal. There is
/// a fold method defined for every type of interest. Each such method has a
/// default that does an "identity" fold. Implementations of these methods
/// often fall back to a `super_fold_with` method if the primary argument
/// doesn't satisfy a particular condition.
///
/// A blanket implementation of [`FallibleTypeFolder`] will defer to
/// the infallible methods of this trait to ensure that the two APIs
/// are coherent.
pub trait TypeFolder<I: Interner>: FallibleTypeFolder<I, Error = Never> {
    fn cx(&self) -> I;

    fn fold_binder<T>(&mut self, t: ty::Binder<I, T>) -> ty::Binder<I, T>
    where
        T: TypeFoldable<I>,
    {
        t.super_fold_with(self)
    }

    fn fold_ty(&mut self, t: I::Ty) -> I::Ty {
        t.super_fold_with(self)
    }

    // The default region folder is a no-op because `Region` is non-recursive
    // and has no `super_fold_with` method to call.
    fn fold_region(&mut self, r: I::Region) -> I::Region {
        r
    }

    fn fold_const(&mut self, c: I::Const) -> I::Const {
        c.super_fold_with(self)
    }

    fn fold_predicate(&mut self, p: I::Predicate) -> I::Predicate {
        p.super_fold_with(self)
    }
}

/// This trait is implemented for every folding traversal. There is a fold
/// method defined for every type of interest. Each such method has a default
/// that does an "identity" fold.
///
/// A blanket implementation of this trait (that defers to the relevant
/// method of [`TypeFolder`]) is provided for all infallible folders in
/// order to ensure the two APIs are coherent.
pub trait FallibleTypeFolder<I: Interner>: Sized {
    type Error;

    fn cx(&self) -> I;

    fn try_fold_binder<T>(&mut self, t: ty::Binder<I, T>) -> Result<ty::Binder<I, T>, Self::Error>
    where
        T: TypeFoldable<I>,
    {
        t.try_super_fold_with(self)
    }

    fn try_fold_ty(&mut self, t: I::Ty) -> Result<I::Ty, Self::Error> {
        t.try_super_fold_with(self)
    }

    // The default region folder is a no-op because `Region` is non-recursive
    // and has no `super_fold_with` method to call.
    fn try_fold_region(&mut self, r: I::Region) -> Result<I::Region, Self::Error> {
        Ok(r)
    }

    fn try_fold_const(&mut self, c: I::Const) -> Result<I::Const, Self::Error> {
        c.try_super_fold_with(self)
    }

    fn try_fold_predicate(&mut self, p: I::Predicate) -> Result<I::Predicate, Self::Error> {
        p.try_super_fold_with(self)
    }
}

// This blanket implementation of the fallible trait for infallible folders
// delegates to infallible methods to ensure coherence.
impl<I: Interner, F> FallibleTypeFolder<I> for F
where
    F: TypeFolder<I>,
{
    type Error = Never;

    fn cx(&self) -> I {
        TypeFolder::cx(self)
    }

    fn try_fold_binder<T>(&mut self, t: ty::Binder<I, T>) -> Result<ty::Binder<I, T>, Never>
    where
        T: TypeFoldable<I>,
    {
        Ok(self.fold_binder(t))
    }

    fn try_fold_ty(&mut self, t: I::Ty) -> Result<I::Ty, Never> {
        Ok(self.fold_ty(t))
    }

    fn try_fold_region(&mut self, r: I::Region) -> Result<I::Region, Never> {
        Ok(self.fold_region(r))
    }

    fn try_fold_const(&mut self, c: I::Const) -> Result<I::Const, Never> {
        Ok(self.fold_const(c))
    }

    fn try_fold_predicate(&mut self, p: I::Predicate) -> Result<I::Predicate, Never> {
        Ok(self.fold_predicate(p))
    }
}

///////////////////////////////////////////////////////////////////////////
// Traversal implementations.

impl<I: Interner, T: TypeFoldable<I>, U: TypeFoldable<I>> TypeFoldable<I> for (T, U) {
    fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<(T, U), F::Error> {
        Ok((self.0.try_fold_with(folder)?, self.1.try_fold_with(folder)?))
    }
}

impl<I: Interner, A: TypeFoldable<I>, B: TypeFoldable<I>, C: TypeFoldable<I>> TypeFoldable<I>
    for (A, B, C)
{
    fn try_fold_with<F: FallibleTypeFolder<I>>(
        self,
        folder: &mut F,
    ) -> Result<(A, B, C), F::Error> {
        Ok((
            self.0.try_fold_with(folder)?,
            self.1.try_fold_with(folder)?,
            self.2.try_fold_with(folder)?,
        ))
    }
}

impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Option<T> {
    fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
        Ok(match self {
            Some(v) => Some(v.try_fold_with(folder)?),
            None => None,
        })
    }
}

impl<I: Interner, T: TypeFoldable<I>, E: TypeFoldable<I>> TypeFoldable<I> for Result<T, E> {
    fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
        Ok(match self {
            Ok(v) => Ok(v.try_fold_with(folder)?),
            Err(e) => Err(e.try_fold_with(folder)?),
        })
    }
}

impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Lrc<T> {
    fn try_fold_with<F: FallibleTypeFolder<I>>(mut self, folder: &mut F) -> Result<Self, F::Error> {
        // We merely want to replace the contained `T`, if at all possible,
        // so that we don't needlessly allocate a new `Lrc` or indeed clone
        // the contained type.
        unsafe {
            // First step is to ensure that we have a unique reference to
            // the contained type, which `Lrc::make_mut` will accomplish (by
            // allocating a new `Lrc` and cloning the `T` only if required).
            // This is done *before* casting to `Lrc<ManuallyDrop<T>>` so that
            // panicking during `make_mut` does not leak the `T`.
            Lrc::make_mut(&mut self);

            // Casting to `Lrc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
            // is `repr(transparent)`.
            let ptr = Lrc::into_raw(self).cast::<mem::ManuallyDrop<T>>();
            let mut unique = Lrc::from_raw(ptr);

            // Call to `Lrc::make_mut` above guarantees that `unique` is the
            // sole reference to the contained value, so we can avoid doing
            // a checked `get_mut` here.
            let slot = Lrc::get_mut(&mut unique).unwrap_unchecked();

            // Semantically move the contained type out from `unique`, fold
            // it, then move the folded value back into `unique`. Should
            // folding fail, `ManuallyDrop` ensures that the "moved-out"
            // value is not re-dropped.
            let owned = mem::ManuallyDrop::take(slot);
            let folded = owned.try_fold_with(folder)?;
            *slot = mem::ManuallyDrop::new(folded);

            // Cast back to `Lrc<T>`.
            Ok(Lrc::from_raw(Lrc::into_raw(unique).cast()))
        }
    }
}

impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Box<T> {
    fn try_fold_with<F: FallibleTypeFolder<I>>(mut self, folder: &mut F) -> Result<Self, F::Error> {
        *self = (*self).try_fold_with(folder)?;
        Ok(self)
    }
}

impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Vec<T> {
    fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
        self.into_iter().map(|t| t.try_fold_with(folder)).collect()
    }
}

impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Box<[T]> {
    fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
        Vec::from(self).try_fold_with(folder).map(Vec::into_boxed_slice)
    }
}

impl<I: Interner, T: TypeFoldable<I>, Ix: Idx> TypeFoldable<I> for IndexVec<Ix, T> {
    fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
        self.raw.try_fold_with(folder).map(IndexVec::from_raw)
    }
}

///////////////////////////////////////////////////////////////////////////
// Shifter
//
// Shifts the De Bruijn indices on all escaping bound vars by a
// fixed amount. Useful in instantiation or when otherwise introducing
// a binding level that is not intended to capture the existing bound
// vars. See comment on `shift_vars_through_binders` method in
// `rustc_middle/src/ty/generic_args.rs` for more details.

struct Shifter<I: Interner> {
    cx: I,
    current_index: ty::DebruijnIndex,
    amount: u32,
}

impl<I: Interner> Shifter<I> {
    fn new(cx: I, amount: u32) -> Self {
        Shifter { cx, current_index: ty::INNERMOST, amount }
    }
}

impl<I: Interner> TypeFolder<I> for Shifter<I> {
    fn cx(&self) -> I {
        self.cx
    }

    fn fold_binder<T: TypeFoldable<I>>(&mut self, t: ty::Binder<I, T>) -> ty::Binder<I, T> {
        self.current_index.shift_in(1);
        let t = t.super_fold_with(self);
        self.current_index.shift_out(1);
        t
    }

    fn fold_region(&mut self, r: I::Region) -> I::Region {
        match r.kind() {
            ty::ReBound(debruijn, br) if debruijn >= self.current_index => {
                let debruijn = debruijn.shifted_in(self.amount);
                Region::new_bound(self.cx, debruijn, br)
            }
            _ => r,
        }
    }

    fn fold_ty(&mut self, ty: I::Ty) -> I::Ty {
        match ty.kind() {
            ty::Bound(debruijn, bound_ty) if debruijn >= self.current_index => {
                let debruijn = debruijn.shifted_in(self.amount);
                Ty::new_bound(self.cx, debruijn, bound_ty)
            }

            _ if ty.has_vars_bound_at_or_above(self.current_index) => ty.super_fold_with(self),
            _ => ty,
        }
    }

    fn fold_const(&mut self, ct: I::Const) -> I::Const {
        match ct.kind() {
            ty::ConstKind::Bound(debruijn, bound_ct) if debruijn >= self.current_index => {
                let debruijn = debruijn.shifted_in(self.amount);
                Const::new_bound(self.cx, debruijn, bound_ct)
            }
            _ => ct.super_fold_with(self),
        }
    }

    fn fold_predicate(&mut self, p: I::Predicate) -> I::Predicate {
        if p.has_vars_bound_at_or_above(self.current_index) { p.super_fold_with(self) } else { p }
    }
}

pub fn shift_region<I: Interner>(cx: I, region: I::Region, amount: u32) -> I::Region {
    match region.kind() {
        ty::ReBound(debruijn, br) if amount > 0 => {
            Region::new_bound(cx, debruijn.shifted_in(amount), br)
        }
        _ => region,
    }
}

#[instrument(level = "trace", skip(cx), ret)]
pub fn shift_vars<I: Interner, T>(cx: I, value: T, amount: u32) -> T
where
    T: TypeFoldable<I>,
{
    if amount == 0 || !value.has_escaping_bound_vars() {
        value
    } else {
        value.fold_with(&mut Shifter::new(cx, amount))
    }
}