cargo/core/compiler/fingerprint/mod.rs
1//! Tracks changes to determine if something needs to be recompiled.
2//!
3//! This module implements change-tracking so that Cargo can know whether or
4//! not something needs to be recompiled. A Cargo [`Unit`] can be either "dirty"
5//! (needs to be recompiled) or "fresh" (it does not need to be recompiled).
6//!
7//! ## Mechanisms affecting freshness
8//!
9//! There are several mechanisms that influence a Unit's freshness:
10//!
11//! - The [`Fingerprint`] is a hash, saved to the filesystem in the
12//! `.fingerprint` directory, that tracks information about the Unit. If the
13//! fingerprint is missing (such as the first time the unit is being
14//! compiled), then the unit is dirty. If any of the fingerprint fields
15//! change (like the name of the source file), then the Unit is considered
16//! dirty.
17//!
18//! The `Fingerprint` also tracks the fingerprints of all its dependencies,
19//! so a change in a dependency will propagate the "dirty" status up.
20//!
21//! - Filesystem mtime tracking is also used to check if a unit is dirty.
22//! See the section below on "Mtime comparison" for more details. There
23//! are essentially two parts to mtime tracking:
24//!
25//! 1. The mtime of a Unit's output files is compared to the mtime of all
26//! its dependencies' output file mtimes (see
27//! [`check_filesystem`]). If any output is missing, or is
28//! older than a dependency's output, then the unit is dirty.
29//! 2. The mtime of a Unit's source files is compared to the mtime of its
30//! dep-info file in the fingerprint directory (see [`find_stale_file`]).
31//! The dep-info file is used as an anchor to know when the last build of
32//! the unit was done. See the "dep-info files" section below for more
33//! details. If any input files are missing, or are newer than the
34//! dep-info, then the unit is dirty.
35//!
36//! - Alternatively if you're using the unstable feature `checksum-freshness`
37//! mtimes are ignored entirely in favor of comparing first the file size, and
38//! then the checksum with a known prior value emitted by rustc. Only nightly
39//! rustc will emit the needed metadata at the time of writing. This is dependent
40//! on the unstable feature `-Z checksum-hash-algorithm`.
41//!
42//! Note: Fingerprinting is not a perfect solution. Filesystem mtime tracking
43//! is notoriously imprecise and problematic. Only a small part of the
44//! environment is captured. This is a balance of performance, simplicity, and
45//! completeness. Sandboxing, hashing file contents, tracking every file
46//! access, environment variable, and network operation would ensure more
47//! reliable and reproducible builds at the cost of being complex, slow, and
48//! platform-dependent.
49//!
50//! ## Fingerprints and [`UnitHash`]s
51//!
52//! [`Metadata`] tracks several [`UnitHash`]s, including
53//! [`Metadata::unit_id`], [`Metadata::c_metadata`], and [`Metadata::c_extra_filename`].
54//! See its documentation for more details.
55//!
56//! NOTE: Not all output files are isolated via filename hashes (like dylibs).
57//! The fingerprint directory uses a hash, but sometimes units share the same
58//! fingerprint directory (when they don't have Metadata) so care should be
59//! taken to handle this!
60//!
61//! Fingerprints and [`UnitHash`]s are similar, and track some of the same things.
62//! [`UnitHash`]s contains information that is required to keep Units separate.
63//! The Fingerprint includes additional information that should cause a
64//! recompile, but it is desired to reuse the same filenames. A comparison
65//! of what is tracked:
66//!
67//! Value | Fingerprint | `Metadata::unit_id` | `Metadata::c_metadata` | `Metadata::c_extra_filename`
68//! -------------------------------------------|-------------|---------------------|------------------------|----------
69//! rustc | ✓ | ✓ | ✓ | ✓
70//! [`Profile`] | ✓ | ✓ | ✓ | ✓
71//! `cargo rustc` extra args | ✓ | ✓[^7] | | ✓[^7]
72//! [`CompileMode`] | ✓ | ✓ | ✓ | ✓
73//! Target Name | ✓ | ✓ | ✓ | ✓
74//! `TargetKind` (bin/lib/etc.) | ✓ | ✓ | ✓ | ✓
75//! Enabled Features | ✓ | ✓ | ✓ | ✓
76//! Declared Features | ✓ | | |
77//! Immediate dependency’s hashes | ✓[^1] | ✓ | ✓ | ✓
78//! [`CompileKind`] (host/target) | ✓ | ✓ | ✓ | ✓
79//! `__CARGO_DEFAULT_LIB_METADATA`[^4] | | ✓ | ✓ | ✓
80//! `package_id` | | ✓ | ✓ | ✓
81//! Target src path relative to ws | ✓ | | |
82//! Target flags (test/bench/for_host/edition) | ✓ | | |
83//! -C incremental=… flag | ✓ | | |
84//! mtime of sources | ✓[^3] | | |
85//! RUSTFLAGS/RUSTDOCFLAGS | ✓ | ✓[^7] | | ✓[^7]
86//! [`Lto`] flags | ✓ | ✓ | ✓ | ✓
87//! config settings[^5] | ✓ | | |
88//! `is_std` | | ✓ | ✓ | ✓
89//! `[lints]` table[^6] | ✓ | | |
90//! `[lints.rust.unexpected_cfgs.check-cfg]` | ✓ | | |
91//!
92//! [^1]: Build script and bin dependencies are not included.
93//!
94//! [^3]: See below for details on mtime tracking.
95//!
96//! [^4]: `__CARGO_DEFAULT_LIB_METADATA` is set by rustbuild to embed the
97//! release channel (bootstrap/stable/beta/nightly) in libstd.
98//!
99//! [^5]: Config settings that are not otherwise captured anywhere else.
100//! Currently, this is only `doc.extern-map`.
101//!
102//! [^6]: Via [`Manifest::lint_rustflags`][crate::core::Manifest::lint_rustflags]
103//!
104//! [^7]: extra-flags and RUSTFLAGS are conditionally excluded when `--remap-path-prefix` is
105//! present to avoid breaking build reproducibility while we wait for trim-paths
106//!
107//! When deciding what should go in the Metadata vs the Fingerprint, consider
108//! that some files (like dylibs) do not have a hash in their filename. Thus,
109//! if a value changes, only the fingerprint will detect the change (consider,
110//! for example, swapping between different features). Fields that are only in
111//! Metadata generally aren't relevant to the fingerprint because they
112//! fundamentally change the output (like target vs host changes the directory
113//! where it is emitted).
114//!
115//! ## Fingerprint files
116//!
117//! Fingerprint information is stored in the
118//! `target/{debug,release}/.fingerprint/` directory. Each Unit is stored in a
119//! separate directory. Each Unit directory contains:
120//!
121//! - A file with a 16 hex-digit hash. This is the Fingerprint hash, used for
122//! quick loading and comparison.
123//! - A `.json` file that contains details about the Fingerprint. This is only
124//! used to log details about *why* a fingerprint is considered dirty.
125//! `CARGO_LOG=cargo::core::compiler::fingerprint=trace cargo build` can be
126//! used to display this log information.
127//! - A "dep-info" file which is a translation of rustc's `*.d` dep-info files
128//! to a Cargo-specific format that tweaks file names and is optimized for
129//! reading quickly.
130//! - An `invoked.timestamp` file whose filesystem mtime is updated every time
131//! the Unit is built. This is used for capturing the time when the build
132//! starts, to detect if files are changed in the middle of the build. See
133//! below for more details.
134//!
135//! Note that some units are a little different. A Unit for *running* a build
136//! script or for `rustdoc` does not have a dep-info file (it's not
137//! applicable). Build script `invoked.timestamp` files are in the build
138//! output directory.
139//!
140//! ## Fingerprint calculation
141//!
142//! After the list of Units has been calculated, the Units are added to the
143//! [`JobQueue`]. As each one is added, the fingerprint is calculated, and the
144//! dirty/fresh status is recorded. A closure is used to update the fingerprint
145//! on-disk when the Unit successfully finishes. The closure will recompute the
146//! Fingerprint based on the updated information. If the Unit fails to compile,
147//! the fingerprint is not updated.
148//!
149//! Fingerprints are cached in the [`BuildRunner`]. This makes computing
150//! Fingerprints faster, but also is necessary for properly updating
151//! dependency information. Since a Fingerprint includes the Fingerprints of
152//! all dependencies, when it is updated, by using `Arc` clones, it
153//! automatically picks up the updates to its dependencies.
154//!
155//! ### dep-info files
156//!
157//! Cargo has several kinds of "dep info" files:
158//!
159//! * dep-info files generated by `rustc`.
160//! * Fingerprint dep-info files translated from the first one.
161//! * dep-info for external build system integration.
162//! * Unstable `-Zbinary-dep-depinfo`.
163//!
164//! #### `rustc` dep-info files
165//!
166//! Cargo passes the `--emit=dep-info` flag to `rustc` so that `rustc` will
167//! generate a "dep info" file (with the `.d` extension). This is a
168//! Makefile-like syntax that includes all of the source files used to build
169//! the crate. This file is used by Cargo to know which files to check to see
170//! if the crate will need to be rebuilt. Example:
171//!
172//! ```makefile
173//! /path/to/target/debug/deps/cargo-b6219d178925203d: src/bin/main.rs src/bin/cargo/cli.rs # … etc.
174//! ```
175//!
176//! #### Fingerprint dep-info files
177//!
178//! After `rustc` exits successfully, Cargo will read the first kind of dep
179//! info file and translate it into a binary format that is stored in the
180//! fingerprint directory ([`translate_dep_info`]).
181//!
182//! These are used to quickly scan for any changed files. The mtime of the
183//! fingerprint dep-info file itself is used as the reference for comparing the
184//! source files to determine if any of the source files have been modified
185//! (see [below](#mtime-comparison) for more detail).
186//!
187//! Note that Cargo parses the special `# env-var:...` comments in dep-info
188//! files to learn about environment variables that the rustc compile depends on.
189//! Cargo then later uses this to trigger a recompile if a referenced env var
190//! changes (even if the source didn't change).
191//! This also includes env vars generated from Cargo metadata like `CARGO_PKG_DESCRIPTION`.
192//! (See [`crate::core::manifest::ManifestMetadata`]
193//!
194//! #### dep-info files for build system integration.
195//!
196//! There is also a third dep-info file. Cargo will extend the file created by
197//! rustc with some additional information and saves this into the output
198//! directory. This is intended for build system integration. See the
199//! [`output_depinfo`] function for more detail.
200//!
201//! #### -Zbinary-dep-depinfo
202//!
203//! `rustc` has an experimental flag `-Zbinary-dep-depinfo`. This causes
204//! `rustc` to include binary files (like rlibs) in the dep-info file. This is
205//! primarily to support rustc development, so that Cargo can check the
206//! implicit dependency to the standard library (which lives in the sysroot).
207//! We want Cargo to recompile whenever the standard library rlib/dylibs
208//! change, and this is a generic mechanism to make that work.
209//!
210//! ### Mtime comparison
211//!
212//! The use of modification timestamps is the most common way a unit will be
213//! determined to be dirty or fresh between builds. There are many subtle
214//! issues and edge cases with mtime comparisons. This gives a high-level
215//! overview, but you'll need to read the code for the gritty details. Mtime
216//! handling is different for different unit kinds. The different styles are
217//! driven by the [`Fingerprint::local`] field, which is set based on the unit
218//! kind.
219//!
220//! The status of whether or not the mtime is "stale" or "up-to-date" is
221//! stored in [`Fingerprint::fs_status`].
222//!
223//! All units will compare the mtime of its newest output file with the mtimes
224//! of the outputs of all its dependencies. If any output file is missing,
225//! then the unit is stale. If any dependency is newer, the unit is stale.
226//!
227//! #### Normal package mtime handling
228//!
229//! [`LocalFingerprint::CheckDepInfo`] is used for checking the mtime of
230//! packages. It compares the mtime of the input files (the source files) to
231//! the mtime of the dep-info file (which is written last after a build is
232//! finished). If the dep-info is missing, the unit is stale (it has never
233//! been built). The list of input files comes from the dep-info file. See the
234//! section above for details on dep-info files.
235//!
236//! Also note that although registry and git packages use [`CheckDepInfo`], none
237//! of their source files are included in the dep-info (see
238//! [`translate_dep_info`]), so for those kinds no mtime checking is done
239//! (unless `-Zbinary-dep-depinfo` is used). Repository and git packages are
240//! static, so there is no need to check anything.
241//!
242//! When a build is complete, the mtime of the dep-info file in the
243//! fingerprint directory is modified to rewind it to the time when the build
244//! started. This is done by creating an `invoked.timestamp` file when the
245//! build starts to capture the start time. The mtime is rewound to the start
246//! to handle the case where the user modifies a source file while a build is
247//! running. Cargo can't know whether or not the file was included in the
248//! build, so it takes a conservative approach of assuming the file was *not*
249//! included, and it should be rebuilt during the next build.
250//!
251//! #### Rustdoc mtime handling
252//!
253//! Rustdoc does not emit a dep-info file, so Cargo currently has a relatively
254//! simple system for detecting rebuilds. [`LocalFingerprint::Precalculated`] is
255//! used for rustdoc units. For registry packages, this is the package
256//! version. For git packages, it is the git hash. For path packages, it is
257//! the a string of the mtime of the newest file in the package.
258//!
259//! There are some known bugs with how this works, so it should be improved at
260//! some point.
261//!
262//! #### Build script mtime handling
263//!
264//! Build script mtime handling runs in different modes. There is the "old
265//! style" where the build script does not emit any `rerun-if` directives. In
266//! this mode, Cargo will use [`LocalFingerprint::Precalculated`]. See the
267//! "rustdoc" section above how it works.
268//!
269//! In the new-style, each `rerun-if` directive is translated to the
270//! corresponding [`LocalFingerprint`] variant. The [`RerunIfChanged`] variant
271//! compares the mtime of the given filenames against the mtime of the
272//! "output" file.
273//!
274//! Similar to normal units, the build script "output" file mtime is rewound
275//! to the time just before the build script is executed to handle mid-build
276//! modifications.
277//!
278//! ## Considerations for inclusion in a fingerprint
279//!
280//! Over time we've realized a few items which historically were included in
281//! fingerprint hashings should not actually be included. Examples are:
282//!
283//! * Modification time values. We strive to never include a modification time
284//! inside a `Fingerprint` to get hashed into an actual value. While
285//! theoretically fine to do, in practice this causes issues with common
286//! applications like Docker. Docker, after a layer is built, will zero out
287//! the nanosecond part of all filesystem modification times. This means that
288//! the actual modification time is different for all build artifacts, which
289//! if we tracked the actual values of modification times would cause
290//! unnecessary recompiles. To fix this we instead only track paths which are
291//! relevant. These paths are checked dynamically to see if they're up to
292//! date, and the modification time doesn't make its way into the fingerprint
293//! hash.
294//!
295//! * Absolute path names. We strive to maintain a property where if you rename
296//! a project directory Cargo will continue to preserve all build artifacts
297//! and reuse the cache. This means that we can't ever hash an absolute path
298//! name. Instead we always hash relative path names and the "root" is passed
299//! in at runtime dynamically. Some of this is best effort, but the general
300//! idea is that we assume all accesses within a crate stay within that
301//! crate.
302//!
303//! These are pretty tricky to test for unfortunately, but we should have a good
304//! test suite nowadays and lord knows Cargo gets enough testing in the wild!
305//!
306//! ## Build scripts
307//!
308//! The *running* of a build script ([`CompileMode::RunCustomBuild`]) is treated
309//! significantly different than all other Unit kinds. It has its own function
310//! for calculating the Fingerprint ([`calculate_run_custom_build`]) and has some
311//! unique considerations. It does not track the same information as a normal
312//! Unit. The information tracked depends on the `rerun-if-changed` and
313//! `rerun-if-env-changed` statements produced by the build script. If the
314//! script does not emit either of these statements, the Fingerprint runs in
315//! "old style" mode where an mtime change of *any* file in the package will
316//! cause the build script to be re-run. Otherwise, the fingerprint *only*
317//! tracks the individual "rerun-if" items listed by the build script.
318//!
319//! The "rerun-if" statements from a *previous* build are stored in the build
320//! output directory in a file called `output`. Cargo parses this file when
321//! the Unit for that build script is prepared for the [`JobQueue`]. The
322//! Fingerprint code can then use that information to compute the Fingerprint
323//! and compare against the old fingerprint hash.
324//!
325//! Care must be taken with build script Fingerprints because the
326//! [`Fingerprint::local`] value may be changed after the build script runs
327//! (such as if the build script adds or removes "rerun-if" items).
328//!
329//! Another complication is if a build script is overridden. In that case, the
330//! fingerprint is the hash of the output of the override.
331//!
332//! ## Special considerations
333//!
334//! Registry dependencies do not track the mtime of files. This is because
335//! registry dependencies are not expected to change (if a new version is
336//! used, the Package ID will change, causing a rebuild). Cargo currently
337//! partially works with Docker caching. When a Docker image is built, it has
338//! normal mtime information. However, when a step is cached, the nanosecond
339//! portions of all files is zeroed out. Currently this works, but care must
340//! be taken for situations like these.
341//!
342//! HFS on macOS only supports 1 second timestamps. This causes a significant
343//! number of problems, particularly with Cargo's testsuite which does rapid
344//! builds in succession. Other filesystems have various degrees of
345//! resolution.
346//!
347//! Various weird filesystems (such as network filesystems) also can cause
348//! complications. Network filesystems may track the time on the server
349//! (except when the time is set manually such as with
350//! `filetime::set_file_times`). Not all filesystems support modifying the
351//! mtime.
352//!
353//! See the [`A-rebuild-detection`] label on the issue tracker for more.
354//!
355//! [`check_filesystem`]: Fingerprint::check_filesystem
356//! [`Metadata`]: crate::core::compiler::Metadata
357//! [`Metadata::unit_id`]: crate::core::compiler::Metadata::unit_id
358//! [`Metadata::c_metadata`]: crate::core::compiler::Metadata::c_metadata
359//! [`Metadata::c_extra_filename`]: crate::core::compiler::Metadata::c_extra_filename
360//! [`UnitHash`]: crate::core::compiler::UnitHash
361//! [`Profile`]: crate::core::profiles::Profile
362//! [`CompileMode`]: crate::core::compiler::CompileMode
363//! [`Lto`]: crate::core::compiler::Lto
364//! [`CompileKind`]: crate::core::compiler::CompileKind
365//! [`JobQueue`]: super::job_queue::JobQueue
366//! [`output_depinfo`]: super::output_depinfo()
367//! [`CheckDepInfo`]: LocalFingerprint::CheckDepInfo
368//! [`RerunIfChanged`]: LocalFingerprint::RerunIfChanged
369//! [`CompileMode::RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
370//! [`A-rebuild-detection`]: https://github.com/rust-lang/cargo/issues?q=is%3Aissue+is%3Aopen+label%3AA-rebuild-detection
371
372mod dep_info;
373mod dirty_reason;
374
375use std::collections::hash_map::{Entry, HashMap};
376use std::env;
377use std::ffi::OsString;
378use std::fs;
379use std::fs::File;
380use std::hash::{self, Hash, Hasher};
381use std::io::{self};
382use std::path::{Path, PathBuf};
383use std::sync::{Arc, Mutex};
384use std::time::SystemTime;
385
386use anyhow::format_err;
387use anyhow::Context as _;
388use cargo_util::paths;
389use filetime::FileTime;
390use serde::de;
391use serde::ser;
392use serde::{Deserialize, Serialize};
393use tracing::{debug, info};
394
395use crate::core::compiler::unit_graph::UnitDep;
396use crate::core::Package;
397use crate::util;
398use crate::util::errors::CargoResult;
399use crate::util::interning::InternedString;
400use crate::util::{internal, path_args, StableHasher};
401use crate::{GlobalContext, CARGO_ENV};
402
403use super::custom_build::BuildDeps;
404use super::{BuildContext, BuildRunner, FileFlavor, Job, Unit, Work};
405
406pub use self::dep_info::parse_dep_info;
407pub use self::dep_info::parse_rustc_dep_info;
408pub use self::dep_info::translate_dep_info;
409pub use self::dep_info::Checksum;
410pub use self::dirty_reason::DirtyReason;
411
412/// Determines if a [`Unit`] is up-to-date, and if not prepares necessary work to
413/// update the persisted fingerprint.
414///
415/// This function will inspect `Unit`, calculate a fingerprint for it, and then
416/// return an appropriate [`Job`] to run. The returned `Job` will be a noop if
417/// `unit` is considered "fresh", or if it was previously built and cached.
418/// Otherwise the `Job` returned will write out the true fingerprint to the
419/// filesystem, to be executed after the unit's work has completed.
420///
421/// The `force` flag is a way to force the `Job` to be "dirty", or always
422/// update the fingerprint. **Beware using this flag** because it does not
423/// transitively propagate throughout the dependency graph, it only forces this
424/// one unit which is very unlikely to be what you want unless you're
425/// exclusively talking about top-level units.
426#[tracing::instrument(
427 skip(build_runner, unit),
428 fields(package_id = %unit.pkg.package_id(), target = unit.target.name())
429)]
430pub fn prepare_target(
431 build_runner: &mut BuildRunner<'_, '_>,
432 unit: &Unit,
433 force: bool,
434) -> CargoResult<Job> {
435 let bcx = build_runner.bcx;
436 let loc = build_runner.files().fingerprint_file_path(unit, "");
437
438 debug!("fingerprint at: {}", loc.display());
439
440 // Figure out if this unit is up to date. After calculating the fingerprint
441 // compare it to an old version, if any, and attempt to print diagnostic
442 // information about failed comparisons to aid in debugging.
443 let fingerprint = calculate(build_runner, unit)?;
444 let mtime_on_use = build_runner.bcx.gctx.cli_unstable().mtime_on_use;
445 let dirty_reason = compare_old_fingerprint(unit, &loc, &*fingerprint, mtime_on_use, force);
446
447 let Some(dirty_reason) = dirty_reason else {
448 return Ok(Job::new_fresh());
449 };
450
451 // We're going to rebuild, so ensure the source of the crate passes all
452 // verification checks before we build it.
453 //
454 // The `Source::verify` method is intended to allow sources to execute
455 // pre-build checks to ensure that the relevant source code is all
456 // up-to-date and as expected. This is currently used primarily for
457 // directory sources which will use this hook to perform an integrity check
458 // on all files in the source to ensure they haven't changed. If they have
459 // changed then an error is issued.
460 let source_id = unit.pkg.package_id().source_id();
461 let sources = bcx.packages.sources();
462 let source = sources
463 .get(source_id)
464 .ok_or_else(|| internal("missing package source"))?;
465 source.verify(unit.pkg.package_id())?;
466
467 // Clear out the old fingerprint file if it exists. This protects when
468 // compilation is interrupted leaving a corrupt file. For example, a
469 // project with a lib.rs and integration test (two units):
470 //
471 // 1. Build the library and integration test.
472 // 2. Make a change to lib.rs (NOT the integration test).
473 // 3. Build the integration test, hit Ctrl-C while linking. With gcc, this
474 // will leave behind an incomplete executable (zero size, or partially
475 // written). NOTE: The library builds successfully, it is the linking
476 // of the integration test that we are interrupting.
477 // 4. Build the integration test again.
478 //
479 // Without the following line, then step 3 will leave a valid fingerprint
480 // on the disk. Then step 4 will think the integration test is "fresh"
481 // because:
482 //
483 // - There is a valid fingerprint hash on disk (written in step 1).
484 // - The mtime of the output file (the corrupt integration executable
485 // written in step 3) is newer than all of its dependencies.
486 // - The mtime of the integration test fingerprint dep-info file (written
487 // in step 1) is newer than the integration test's source files, because
488 // we haven't modified any of its source files.
489 //
490 // But the executable is corrupt and needs to be rebuilt. Clearing the
491 // fingerprint at step 3 ensures that Cargo never mistakes a partially
492 // written output as up-to-date.
493 if loc.exists() {
494 // Truncate instead of delete so that compare_old_fingerprint will
495 // still log the reason for the fingerprint failure instead of just
496 // reporting "failed to read fingerprint" during the next build if
497 // this build fails.
498 paths::write(&loc, b"")?;
499 }
500
501 let write_fingerprint = if unit.mode.is_run_custom_build() {
502 // For build scripts the `local` field of the fingerprint may change
503 // while we're executing it. For example it could be in the legacy
504 // "consider everything a dependency mode" and then we switch to "deps
505 // are explicitly specified" mode.
506 //
507 // To handle this movement we need to regenerate the `local` field of a
508 // build script's fingerprint after it's executed. We do this by
509 // using the `build_script_local_fingerprints` function which returns a
510 // thunk we can invoke on a foreign thread to calculate this.
511 let build_script_outputs = Arc::clone(&build_runner.build_script_outputs);
512 let metadata = build_runner.get_run_build_script_metadata(unit);
513 let (gen_local, _overridden) = build_script_local_fingerprints(build_runner, unit)?;
514 let output_path = build_runner.build_explicit_deps[unit]
515 .build_script_output
516 .clone();
517 Work::new(move |_| {
518 let outputs = build_script_outputs.lock().unwrap();
519 let output = outputs
520 .get(metadata)
521 .expect("output must exist after running");
522 let deps = BuildDeps::new(&output_path, Some(output));
523
524 // FIXME: it's basically buggy that we pass `None` to `call_box`
525 // here. See documentation on `build_script_local_fingerprints`
526 // below for more information. Despite this just try to proceed and
527 // hobble along if it happens to return `Some`.
528 if let Some(new_local) = (gen_local)(&deps, None)? {
529 *fingerprint.local.lock().unwrap() = new_local;
530 }
531
532 write_fingerprint(&loc, &fingerprint)
533 })
534 } else {
535 Work::new(move |_| write_fingerprint(&loc, &fingerprint))
536 };
537
538 Ok(Job::new_dirty(write_fingerprint, dirty_reason))
539}
540
541/// Dependency edge information for fingerprints. This is generated for each
542/// dependency and is stored in a [`Fingerprint`].
543#[derive(Clone)]
544struct DepFingerprint {
545 /// The hash of the package id that this dependency points to
546 pkg_id: u64,
547 /// The crate name we're using for this dependency, which if we change we'll
548 /// need to recompile!
549 name: InternedString,
550 /// Whether or not this dependency is flagged as a public dependency or not.
551 public: bool,
552 /// Whether or not this dependency is an rmeta dependency or a "full"
553 /// dependency. In the case of an rmeta dependency our dependency edge only
554 /// actually requires the rmeta from what we depend on, so when checking
555 /// mtime information all files other than the rmeta can be ignored.
556 only_requires_rmeta: bool,
557 /// The dependency's fingerprint we recursively point to, containing all the
558 /// other hash information we'd otherwise need.
559 fingerprint: Arc<Fingerprint>,
560}
561
562/// A fingerprint can be considered to be a "short string" representing the
563/// state of a world for a package.
564///
565/// If a fingerprint ever changes, then the package itself needs to be
566/// recompiled. Inputs to the fingerprint include source code modifications,
567/// compiler flags, compiler version, etc. This structure is not simply a
568/// `String` due to the fact that some fingerprints cannot be calculated lazily.
569///
570/// Path sources, for example, use the mtime of the corresponding dep-info file
571/// as a fingerprint (all source files must be modified *before* this mtime).
572/// This dep-info file is not generated, however, until after the crate is
573/// compiled. As a result, this structure can be thought of as a fingerprint
574/// to-be. The actual value can be calculated via [`hash_u64()`], but the operation
575/// may fail as some files may not have been generated.
576///
577/// Note that dependencies are taken into account for fingerprints because rustc
578/// requires that whenever an upstream crate is recompiled that all downstream
579/// dependents are also recompiled. This is typically tracked through
580/// [`DependencyQueue`], but it also needs to be retained here because Cargo can
581/// be interrupted while executing, losing the state of the [`DependencyQueue`]
582/// graph.
583///
584/// [`hash_u64()`]: crate::core::compiler::fingerprint::Fingerprint::hash_u64
585/// [`DependencyQueue`]: crate::util::DependencyQueue
586#[derive(Serialize, Deserialize)]
587pub struct Fingerprint {
588 /// Hash of the version of `rustc` used.
589 rustc: u64,
590 /// Sorted list of cfg features enabled.
591 features: String,
592 /// Sorted list of all the declared cfg features.
593 declared_features: String,
594 /// Hash of the `Target` struct, including the target name,
595 /// package-relative source path, edition, etc.
596 target: u64,
597 /// Hash of the [`Profile`], [`CompileMode`], and any extra flags passed via
598 /// `cargo rustc` or `cargo rustdoc`.
599 ///
600 /// [`Profile`]: crate::core::profiles::Profile
601 /// [`CompileMode`]: crate::core::compiler::CompileMode
602 profile: u64,
603 /// Hash of the path to the base source file. This is relative to the
604 /// workspace root for path members, or absolute for other sources.
605 path: u64,
606 /// Fingerprints of dependencies.
607 deps: Vec<DepFingerprint>,
608 /// Information about the inputs that affect this Unit (such as source
609 /// file mtimes or build script environment variables).
610 local: Mutex<Vec<LocalFingerprint>>,
611 /// Cached hash of the [`Fingerprint`] struct. Used to improve performance
612 /// for hashing.
613 #[serde(skip)]
614 memoized_hash: Mutex<Option<u64>>,
615 /// RUSTFLAGS/RUSTDOCFLAGS environment variable value (or config value).
616 rustflags: Vec<String>,
617 /// Hash of various config settings that change how things are compiled.
618 config: u64,
619 /// The rustc target. This is only relevant for `.json` files, otherwise
620 /// the metadata hash segregates the units.
621 compile_kind: u64,
622 /// Description of whether the filesystem status for this unit is up to date
623 /// or should be considered stale.
624 #[serde(skip)]
625 fs_status: FsStatus,
626 /// Files, relative to `target_root`, that are produced by the step that
627 /// this `Fingerprint` represents. This is used to detect when the whole
628 /// fingerprint is out of date if this is missing, or if previous
629 /// fingerprints output files are regenerated and look newer than this one.
630 #[serde(skip)]
631 outputs: Vec<PathBuf>,
632}
633
634/// Indication of the status on the filesystem for a particular unit.
635#[derive(Clone, Default, Debug)]
636pub enum FsStatus {
637 /// This unit is to be considered stale, even if hash information all
638 /// matches.
639 #[default]
640 Stale,
641
642 /// File system inputs have changed (or are missing), or there were
643 /// changes to the environment variables that affect this unit. See
644 /// the variants of [`StaleItem`] for more information.
645 StaleItem(StaleItem),
646
647 /// A dependency was stale.
648 StaleDependency {
649 name: InternedString,
650 dep_mtime: FileTime,
651 max_mtime: FileTime,
652 },
653
654 /// A dependency was stale.
655 StaleDepFingerprint { name: InternedString },
656
657 /// This unit is up-to-date. All outputs and their corresponding mtime are
658 /// listed in the payload here for other dependencies to compare against.
659 UpToDate { mtimes: HashMap<PathBuf, FileTime> },
660}
661
662impl FsStatus {
663 fn up_to_date(&self) -> bool {
664 match self {
665 FsStatus::UpToDate { .. } => true,
666 FsStatus::Stale
667 | FsStatus::StaleItem(_)
668 | FsStatus::StaleDependency { .. }
669 | FsStatus::StaleDepFingerprint { .. } => false,
670 }
671 }
672}
673
674impl Serialize for DepFingerprint {
675 fn serialize<S>(&self, ser: S) -> Result<S::Ok, S::Error>
676 where
677 S: ser::Serializer,
678 {
679 (
680 &self.pkg_id,
681 &self.name,
682 &self.public,
683 &self.fingerprint.hash_u64(),
684 )
685 .serialize(ser)
686 }
687}
688
689impl<'de> Deserialize<'de> for DepFingerprint {
690 fn deserialize<D>(d: D) -> Result<DepFingerprint, D::Error>
691 where
692 D: de::Deserializer<'de>,
693 {
694 let (pkg_id, name, public, hash) = <(u64, String, bool, u64)>::deserialize(d)?;
695 Ok(DepFingerprint {
696 pkg_id,
697 name: InternedString::new(&name),
698 public,
699 fingerprint: Arc::new(Fingerprint {
700 memoized_hash: Mutex::new(Some(hash)),
701 ..Fingerprint::new()
702 }),
703 // This field is never read since it's only used in
704 // `check_filesystem` which isn't used by fingerprints loaded from
705 // disk.
706 only_requires_rmeta: false,
707 })
708 }
709}
710
711/// A `LocalFingerprint` represents something that we use to detect direct
712/// changes to a `Fingerprint`.
713///
714/// This is where we track file information, env vars, etc. This
715/// `LocalFingerprint` struct is hashed and if the hash changes will force a
716/// recompile of any fingerprint it's included into. Note that the "local"
717/// terminology comes from the fact that it only has to do with one crate, and
718/// `Fingerprint` tracks the transitive propagation of fingerprint changes.
719///
720/// Note that because this is hashed its contents are carefully managed. Like
721/// mentioned in the above module docs, we don't want to hash absolute paths or
722/// mtime information.
723///
724/// Also note that a `LocalFingerprint` is used in `check_filesystem` to detect
725/// when the filesystem contains stale information (based on mtime currently).
726/// The paths here don't change much between compilations but they're used as
727/// inputs when we probe the filesystem looking at information.
728#[derive(Debug, Serialize, Deserialize, Hash)]
729enum LocalFingerprint {
730 /// This is a precalculated fingerprint which has an opaque string we just
731 /// hash as usual. This variant is primarily used for rustdoc where we
732 /// don't have a dep-info file to compare against.
733 ///
734 /// This is also used for build scripts with no `rerun-if-*` statements, but
735 /// that's overall a mistake and causes bugs in Cargo. We shouldn't use this
736 /// for build scripts.
737 Precalculated(String),
738
739 /// This is used for crate compilations. The `dep_info` file is a relative
740 /// path anchored at `target_root(...)` to the dep-info file that Cargo
741 /// generates (which is a custom serialization after parsing rustc's own
742 /// `dep-info` output).
743 ///
744 /// The `dep_info` file, when present, also lists a number of other files
745 /// for us to look at. If any of those files are newer than this file then
746 /// we need to recompile.
747 ///
748 /// If the `checksum` bool is true then the `dep_info` file is expected to
749 /// contain file checksums instead of file mtimes.
750 CheckDepInfo { dep_info: PathBuf, checksum: bool },
751
752 /// This represents a nonempty set of `rerun-if-changed` annotations printed
753 /// out by a build script. The `output` file is a relative file anchored at
754 /// `target_root(...)` which is the actual output of the build script. That
755 /// output has already been parsed and the paths printed out via
756 /// `rerun-if-changed` are listed in `paths`. The `paths` field is relative
757 /// to `pkg.root()`
758 ///
759 /// This is considered up-to-date if all of the `paths` are older than
760 /// `output`, otherwise we need to recompile.
761 RerunIfChanged {
762 output: PathBuf,
763 paths: Vec<PathBuf>,
764 },
765
766 /// This represents a single `rerun-if-env-changed` annotation printed by a
767 /// build script. The exact env var and value are hashed here. There's no
768 /// filesystem dependence here, and if the values are changed the hash will
769 /// change forcing a recompile.
770 RerunIfEnvChanged { var: String, val: Option<String> },
771}
772
773/// See [`FsStatus::StaleItem`].
774#[derive(Clone, Debug)]
775pub enum StaleItem {
776 MissingFile(PathBuf),
777 UnableToReadFile(PathBuf),
778 FailedToReadMetadata(PathBuf),
779 FileSizeChanged {
780 path: PathBuf,
781 old_size: u64,
782 new_size: u64,
783 },
784 ChangedFile {
785 reference: PathBuf,
786 reference_mtime: FileTime,
787 stale: PathBuf,
788 stale_mtime: FileTime,
789 },
790 ChangedChecksum {
791 source: PathBuf,
792 stored_checksum: Checksum,
793 new_checksum: Checksum,
794 },
795 MissingChecksum(PathBuf),
796 ChangedEnv {
797 var: String,
798 previous: Option<String>,
799 current: Option<String>,
800 },
801}
802
803impl LocalFingerprint {
804 /// Read the environment variable of the given env `key`, and creates a new
805 /// [`LocalFingerprint::RerunIfEnvChanged`] for it. The `env_config` is used firstly
806 /// to check if the env var is set in the config system as some envs need to be overridden.
807 /// If not, it will fallback to `std::env::var`.
808 ///
809 // TODO: `std::env::var` is allowed at this moment. Should figure out
810 // if it makes sense if permitting to read env from the env snapshot.
811 #[allow(clippy::disallowed_methods)]
812 fn from_env<K: AsRef<str>>(
813 key: K,
814 env_config: &Arc<HashMap<String, OsString>>,
815 ) -> LocalFingerprint {
816 let key = key.as_ref();
817 let var = key.to_owned();
818 let val = if let Some(val) = env_config.get(key) {
819 val.to_str().map(ToOwned::to_owned)
820 } else {
821 env::var(key).ok()
822 };
823 LocalFingerprint::RerunIfEnvChanged { var, val }
824 }
825
826 /// Checks dynamically at runtime if this `LocalFingerprint` has a stale
827 /// item inside of it.
828 ///
829 /// The main purpose of this function is to handle two different ways
830 /// fingerprints can be invalidated:
831 ///
832 /// * One is a dependency listed in rustc's dep-info files is invalid. Note
833 /// that these could either be env vars or files. We check both here.
834 ///
835 /// * Another is the `rerun-if-changed` directive from build scripts. This
836 /// is where we'll find whether files have actually changed
837 fn find_stale_item(
838 &self,
839 mtime_cache: &mut HashMap<PathBuf, FileTime>,
840 checksum_cache: &mut HashMap<PathBuf, Checksum>,
841 pkg: &Package,
842 target_root: &Path,
843 cargo_exe: &Path,
844 gctx: &GlobalContext,
845 ) -> CargoResult<Option<StaleItem>> {
846 let pkg_root = pkg.root();
847 match self {
848 // We need to parse `dep_info`, learn about the crate's dependencies.
849 //
850 // For each env var we see if our current process's env var still
851 // matches, and for each file we see if any of them are newer than
852 // the `dep_info` file itself whose mtime represents the start of
853 // rustc.
854 LocalFingerprint::CheckDepInfo { dep_info, checksum } => {
855 let dep_info = target_root.join(dep_info);
856 let Some(info) = parse_dep_info(pkg_root, target_root, &dep_info)? else {
857 return Ok(Some(StaleItem::MissingFile(dep_info)));
858 };
859 for (key, previous) in info.env.iter() {
860 if let Some(value) = pkg.manifest().metadata().env_var(key.as_str()) {
861 if Some(value.as_ref()) == previous.as_deref() {
862 continue;
863 }
864 }
865
866 let current = if key == CARGO_ENV {
867 Some(cargo_exe.to_str().ok_or_else(|| {
868 format_err!(
869 "cargo exe path {} must be valid UTF-8",
870 cargo_exe.display()
871 )
872 })?)
873 } else {
874 if let Some(value) = gctx.env_config()?.get(key) {
875 value.to_str()
876 } else {
877 gctx.get_env(key).ok()
878 }
879 };
880 if current == previous.as_deref() {
881 continue;
882 }
883 return Ok(Some(StaleItem::ChangedEnv {
884 var: key.clone(),
885 previous: previous.clone(),
886 current: current.map(Into::into),
887 }));
888 }
889 if *checksum {
890 Ok(find_stale_file(
891 mtime_cache,
892 checksum_cache,
893 &dep_info,
894 info.files.iter().map(|(file, checksum)| (file, *checksum)),
895 *checksum,
896 ))
897 } else {
898 Ok(find_stale_file(
899 mtime_cache,
900 checksum_cache,
901 &dep_info,
902 info.files.into_keys().map(|p| (p, None)),
903 *checksum,
904 ))
905 }
906 }
907
908 // We need to verify that no paths listed in `paths` are newer than
909 // the `output` path itself, or the last time the build script ran.
910 LocalFingerprint::RerunIfChanged { output, paths } => Ok(find_stale_file(
911 mtime_cache,
912 checksum_cache,
913 &target_root.join(output),
914 paths.iter().map(|p| (pkg_root.join(p), None)),
915 false,
916 )),
917
918 // These have no dependencies on the filesystem, and their values
919 // are included natively in the `Fingerprint` hash so nothing
920 // tocheck for here.
921 LocalFingerprint::RerunIfEnvChanged { .. } => Ok(None),
922 LocalFingerprint::Precalculated(..) => Ok(None),
923 }
924 }
925
926 fn kind(&self) -> &'static str {
927 match self {
928 LocalFingerprint::Precalculated(..) => "precalculated",
929 LocalFingerprint::CheckDepInfo { .. } => "dep-info",
930 LocalFingerprint::RerunIfChanged { .. } => "rerun-if-changed",
931 LocalFingerprint::RerunIfEnvChanged { .. } => "rerun-if-env-changed",
932 }
933 }
934}
935
936impl Fingerprint {
937 fn new() -> Fingerprint {
938 Fingerprint {
939 rustc: 0,
940 target: 0,
941 profile: 0,
942 path: 0,
943 features: String::new(),
944 declared_features: String::new(),
945 deps: Vec::new(),
946 local: Mutex::new(Vec::new()),
947 memoized_hash: Mutex::new(None),
948 rustflags: Vec::new(),
949 config: 0,
950 compile_kind: 0,
951 fs_status: FsStatus::Stale,
952 outputs: Vec::new(),
953 }
954 }
955
956 /// For performance reasons fingerprints will memoize their own hash, but
957 /// there's also internal mutability with its `local` field which can
958 /// change, for example with build scripts, during a build.
959 ///
960 /// This method can be used to bust all memoized hashes just before a build
961 /// to ensure that after a build completes everything is up-to-date.
962 pub fn clear_memoized(&self) {
963 *self.memoized_hash.lock().unwrap() = None;
964 }
965
966 fn hash_u64(&self) -> u64 {
967 if let Some(s) = *self.memoized_hash.lock().unwrap() {
968 return s;
969 }
970 let ret = util::hash_u64(self);
971 *self.memoized_hash.lock().unwrap() = Some(ret);
972 ret
973 }
974
975 /// Compares this fingerprint with an old version which was previously
976 /// serialized to filesystem.
977 ///
978 /// The purpose of this is exclusively to produce a diagnostic message
979 /// [`DirtyReason`], indicating why we're recompiling something.
980 fn compare(&self, old: &Fingerprint) -> DirtyReason {
981 if self.rustc != old.rustc {
982 return DirtyReason::RustcChanged;
983 }
984 if self.features != old.features {
985 return DirtyReason::FeaturesChanged {
986 old: old.features.clone(),
987 new: self.features.clone(),
988 };
989 }
990 if self.declared_features != old.declared_features {
991 return DirtyReason::DeclaredFeaturesChanged {
992 old: old.declared_features.clone(),
993 new: self.declared_features.clone(),
994 };
995 }
996 if self.target != old.target {
997 return DirtyReason::TargetConfigurationChanged;
998 }
999 if self.path != old.path {
1000 return DirtyReason::PathToSourceChanged;
1001 }
1002 if self.profile != old.profile {
1003 return DirtyReason::ProfileConfigurationChanged;
1004 }
1005 if self.rustflags != old.rustflags {
1006 return DirtyReason::RustflagsChanged {
1007 old: old.rustflags.clone(),
1008 new: self.rustflags.clone(),
1009 };
1010 }
1011 if self.config != old.config {
1012 return DirtyReason::ConfigSettingsChanged;
1013 }
1014 if self.compile_kind != old.compile_kind {
1015 return DirtyReason::CompileKindChanged;
1016 }
1017 let my_local = self.local.lock().unwrap();
1018 let old_local = old.local.lock().unwrap();
1019 if my_local.len() != old_local.len() {
1020 return DirtyReason::LocalLengthsChanged;
1021 }
1022 for (new, old) in my_local.iter().zip(old_local.iter()) {
1023 match (new, old) {
1024 (LocalFingerprint::Precalculated(a), LocalFingerprint::Precalculated(b)) => {
1025 if a != b {
1026 return DirtyReason::PrecalculatedComponentsChanged {
1027 old: b.to_string(),
1028 new: a.to_string(),
1029 };
1030 }
1031 }
1032 (
1033 LocalFingerprint::CheckDepInfo {
1034 dep_info: adep,
1035 checksum: checksum_a,
1036 },
1037 LocalFingerprint::CheckDepInfo {
1038 dep_info: bdep,
1039 checksum: checksum_b,
1040 },
1041 ) => {
1042 if adep != bdep {
1043 return DirtyReason::DepInfoOutputChanged {
1044 old: bdep.clone(),
1045 new: adep.clone(),
1046 };
1047 }
1048 if checksum_a != checksum_b {
1049 return DirtyReason::ChecksumUseChanged { old: *checksum_b };
1050 }
1051 }
1052 (
1053 LocalFingerprint::RerunIfChanged {
1054 output: aout,
1055 paths: apaths,
1056 },
1057 LocalFingerprint::RerunIfChanged {
1058 output: bout,
1059 paths: bpaths,
1060 },
1061 ) => {
1062 if aout != bout {
1063 return DirtyReason::RerunIfChangedOutputFileChanged {
1064 old: bout.clone(),
1065 new: aout.clone(),
1066 };
1067 }
1068 if apaths != bpaths {
1069 return DirtyReason::RerunIfChangedOutputPathsChanged {
1070 old: bpaths.clone(),
1071 new: apaths.clone(),
1072 };
1073 }
1074 }
1075 (
1076 LocalFingerprint::RerunIfEnvChanged {
1077 var: akey,
1078 val: avalue,
1079 },
1080 LocalFingerprint::RerunIfEnvChanged {
1081 var: bkey,
1082 val: bvalue,
1083 },
1084 ) => {
1085 if *akey != *bkey {
1086 return DirtyReason::EnvVarsChanged {
1087 old: bkey.clone(),
1088 new: akey.clone(),
1089 };
1090 }
1091 if *avalue != *bvalue {
1092 return DirtyReason::EnvVarChanged {
1093 name: akey.clone(),
1094 old_value: bvalue.clone(),
1095 new_value: avalue.clone(),
1096 };
1097 }
1098 }
1099 (a, b) => {
1100 return DirtyReason::LocalFingerprintTypeChanged {
1101 old: b.kind(),
1102 new: a.kind(),
1103 }
1104 }
1105 }
1106 }
1107
1108 if self.deps.len() != old.deps.len() {
1109 return DirtyReason::NumberOfDependenciesChanged {
1110 old: old.deps.len(),
1111 new: self.deps.len(),
1112 };
1113 }
1114 for (a, b) in self.deps.iter().zip(old.deps.iter()) {
1115 if a.name != b.name {
1116 return DirtyReason::UnitDependencyNameChanged {
1117 old: b.name,
1118 new: a.name,
1119 };
1120 }
1121
1122 if a.fingerprint.hash_u64() != b.fingerprint.hash_u64() {
1123 return DirtyReason::UnitDependencyInfoChanged {
1124 new_name: a.name,
1125 new_fingerprint: a.fingerprint.hash_u64(),
1126 old_name: b.name,
1127 old_fingerprint: b.fingerprint.hash_u64(),
1128 };
1129 }
1130 }
1131
1132 if !self.fs_status.up_to_date() {
1133 return DirtyReason::FsStatusOutdated(self.fs_status.clone());
1134 }
1135
1136 // This typically means some filesystem modifications happened or
1137 // something transitive was odd. In general we should strive to provide
1138 // a better error message than this, so if you see this message a lot it
1139 // likely means this method needs to be updated!
1140 DirtyReason::NothingObvious
1141 }
1142
1143 /// Dynamically inspect the local filesystem to update the `fs_status` field
1144 /// of this `Fingerprint`.
1145 ///
1146 /// This function is used just after a `Fingerprint` is constructed to check
1147 /// the local state of the filesystem and propagate any dirtiness from
1148 /// dependencies up to this unit as well. This function assumes that the
1149 /// unit starts out as [`FsStatus::Stale`] and then it will optionally switch
1150 /// it to `UpToDate` if it can.
1151 fn check_filesystem(
1152 &mut self,
1153 mtime_cache: &mut HashMap<PathBuf, FileTime>,
1154 checksum_cache: &mut HashMap<PathBuf, Checksum>,
1155 pkg: &Package,
1156 target_root: &Path,
1157 cargo_exe: &Path,
1158 gctx: &GlobalContext,
1159 ) -> CargoResult<()> {
1160 assert!(!self.fs_status.up_to_date());
1161
1162 let pkg_root = pkg.root();
1163 let mut mtimes = HashMap::new();
1164
1165 // Get the `mtime` of all outputs. Optionally update their mtime
1166 // afterwards based on the `mtime_on_use` flag. Afterwards we want the
1167 // minimum mtime as it's the one we'll be comparing to inputs and
1168 // dependencies.
1169 for output in self.outputs.iter() {
1170 let mtime = match paths::mtime(output) {
1171 Ok(mtime) => mtime,
1172
1173 // This path failed to report its `mtime`. It probably doesn't
1174 // exists, so leave ourselves as stale and bail out.
1175 Err(e) => {
1176 debug!("failed to get mtime of {:?}: {}", output, e);
1177 return Ok(());
1178 }
1179 };
1180 assert!(mtimes.insert(output.clone(), mtime).is_none());
1181 }
1182
1183 let opt_max = mtimes.iter().max_by_key(|kv| kv.1);
1184 let Some((max_path, max_mtime)) = opt_max else {
1185 // We had no output files. This means we're an overridden build
1186 // script and we're just always up to date because we aren't
1187 // watching the filesystem.
1188 self.fs_status = FsStatus::UpToDate { mtimes };
1189 return Ok(());
1190 };
1191 debug!(
1192 "max output mtime for {:?} is {:?} {}",
1193 pkg_root, max_path, max_mtime
1194 );
1195
1196 for dep in self.deps.iter() {
1197 let dep_mtimes = match &dep.fingerprint.fs_status {
1198 FsStatus::UpToDate { mtimes } => mtimes,
1199 // If our dependency is stale, so are we, so bail out.
1200 FsStatus::Stale
1201 | FsStatus::StaleItem(_)
1202 | FsStatus::StaleDependency { .. }
1203 | FsStatus::StaleDepFingerprint { .. } => {
1204 self.fs_status = FsStatus::StaleDepFingerprint { name: dep.name };
1205 return Ok(());
1206 }
1207 };
1208
1209 // If our dependency edge only requires the rmeta file to be present
1210 // then we only need to look at that one output file, otherwise we
1211 // need to consider all output files to see if we're out of date.
1212 let (dep_path, dep_mtime) = if dep.only_requires_rmeta {
1213 dep_mtimes
1214 .iter()
1215 .find(|(path, _mtime)| {
1216 path.extension().and_then(|s| s.to_str()) == Some("rmeta")
1217 })
1218 .expect("failed to find rmeta")
1219 } else {
1220 match dep_mtimes.iter().max_by_key(|kv| kv.1) {
1221 Some(dep_mtime) => dep_mtime,
1222 // If our dependencies is up to date and has no filesystem
1223 // interactions, then we can move on to the next dependency.
1224 None => continue,
1225 }
1226 };
1227 debug!(
1228 "max dep mtime for {:?} is {:?} {}",
1229 pkg_root, dep_path, dep_mtime
1230 );
1231
1232 // If the dependency is newer than our own output then it was
1233 // recompiled previously. We transitively become stale ourselves in
1234 // that case, so bail out.
1235 //
1236 // Note that this comparison should probably be `>=`, not `>`, but
1237 // for a discussion of why it's `>` see the discussion about #5918
1238 // below in `find_stale`.
1239 if dep_mtime > max_mtime {
1240 info!(
1241 "dependency on `{}` is newer than we are {} > {} {:?}",
1242 dep.name, dep_mtime, max_mtime, pkg_root
1243 );
1244
1245 self.fs_status = FsStatus::StaleDependency {
1246 name: dep.name,
1247 dep_mtime: *dep_mtime,
1248 max_mtime: *max_mtime,
1249 };
1250
1251 return Ok(());
1252 }
1253 }
1254
1255 // If we reached this far then all dependencies are up to date. Check
1256 // all our `LocalFingerprint` information to see if we have any stale
1257 // files for this package itself. If we do find something log a helpful
1258 // message and bail out so we stay stale.
1259 for local in self.local.get_mut().unwrap().iter() {
1260 if let Some(item) = local.find_stale_item(
1261 mtime_cache,
1262 checksum_cache,
1263 pkg,
1264 target_root,
1265 cargo_exe,
1266 gctx,
1267 )? {
1268 item.log();
1269 self.fs_status = FsStatus::StaleItem(item);
1270 return Ok(());
1271 }
1272 }
1273
1274 // Everything was up to date! Record such.
1275 self.fs_status = FsStatus::UpToDate { mtimes };
1276 debug!("filesystem up-to-date {:?}", pkg_root);
1277
1278 Ok(())
1279 }
1280}
1281
1282impl hash::Hash for Fingerprint {
1283 fn hash<H: Hasher>(&self, h: &mut H) {
1284 let Fingerprint {
1285 rustc,
1286 ref features,
1287 ref declared_features,
1288 target,
1289 path,
1290 profile,
1291 ref deps,
1292 ref local,
1293 config,
1294 compile_kind,
1295 ref rustflags,
1296 ..
1297 } = *self;
1298 let local = local.lock().unwrap();
1299 (
1300 rustc,
1301 features,
1302 declared_features,
1303 target,
1304 path,
1305 profile,
1306 &*local,
1307 config,
1308 compile_kind,
1309 rustflags,
1310 )
1311 .hash(h);
1312
1313 h.write_usize(deps.len());
1314 for DepFingerprint {
1315 pkg_id,
1316 name,
1317 public,
1318 fingerprint,
1319 only_requires_rmeta: _, // static property, no need to hash
1320 } in deps
1321 {
1322 pkg_id.hash(h);
1323 name.hash(h);
1324 public.hash(h);
1325 // use memoized dep hashes to avoid exponential blowup
1326 h.write_u64(fingerprint.hash_u64());
1327 }
1328 }
1329}
1330
1331impl DepFingerprint {
1332 fn new(
1333 build_runner: &mut BuildRunner<'_, '_>,
1334 parent: &Unit,
1335 dep: &UnitDep,
1336 ) -> CargoResult<DepFingerprint> {
1337 let fingerprint = calculate(build_runner, &dep.unit)?;
1338 // We need to be careful about what we hash here. We have a goal of
1339 // supporting renaming a project directory and not rebuilding
1340 // everything. To do that, however, we need to make sure that the cwd
1341 // doesn't make its way into any hashes, and one source of that is the
1342 // `SourceId` for `path` packages.
1343 //
1344 // We already have a requirement that `path` packages all have unique
1345 // names (sort of for this same reason), so if the package source is a
1346 // `path` then we just hash the name, but otherwise we hash the full
1347 // id as it won't change when the directory is renamed.
1348 let pkg_id = if dep.unit.pkg.package_id().source_id().is_path() {
1349 util::hash_u64(dep.unit.pkg.package_id().name())
1350 } else {
1351 util::hash_u64(dep.unit.pkg.package_id())
1352 };
1353
1354 Ok(DepFingerprint {
1355 pkg_id,
1356 name: dep.extern_crate_name,
1357 public: dep.public,
1358 fingerprint,
1359 only_requires_rmeta: build_runner.only_requires_rmeta(parent, &dep.unit),
1360 })
1361 }
1362}
1363
1364impl StaleItem {
1365 /// Use the `log` crate to log a hopefully helpful message in diagnosing
1366 /// what file is considered stale and why. This is intended to be used in
1367 /// conjunction with `CARGO_LOG` to determine why Cargo is recompiling
1368 /// something. Currently there's no user-facing usage of this other than
1369 /// that.
1370 fn log(&self) {
1371 match self {
1372 StaleItem::MissingFile(path) => {
1373 info!("stale: missing {:?}", path);
1374 }
1375 StaleItem::UnableToReadFile(path) => {
1376 info!("stale: unable to read {:?}", path);
1377 }
1378 StaleItem::FailedToReadMetadata(path) => {
1379 info!("stale: couldn't read metadata {:?}", path);
1380 }
1381 StaleItem::ChangedFile {
1382 reference,
1383 reference_mtime,
1384 stale,
1385 stale_mtime,
1386 } => {
1387 info!("stale: changed {:?}", stale);
1388 info!(" (vs) {:?}", reference);
1389 info!(" {:?} < {:?}", reference_mtime, stale_mtime);
1390 }
1391 StaleItem::FileSizeChanged {
1392 path,
1393 new_size,
1394 old_size,
1395 } => {
1396 info!("stale: changed {:?}", path);
1397 info!("prior file size {old_size}");
1398 info!(" new file size {new_size}");
1399 }
1400 StaleItem::ChangedChecksum {
1401 source,
1402 stored_checksum,
1403 new_checksum,
1404 } => {
1405 info!("stale: changed {:?}", source);
1406 info!("prior checksum {stored_checksum}");
1407 info!(" new checksum {new_checksum}");
1408 }
1409 StaleItem::MissingChecksum(path) => {
1410 info!("stale: no prior checksum {:?}", path);
1411 }
1412 StaleItem::ChangedEnv {
1413 var,
1414 previous,
1415 current,
1416 } => {
1417 info!("stale: changed env {:?}", var);
1418 info!(" {:?} != {:?}", previous, current);
1419 }
1420 }
1421 }
1422}
1423
1424/// Calculates the fingerprint for a [`Unit`].
1425///
1426/// This fingerprint is used by Cargo to learn about when information such as:
1427///
1428/// * A non-path package changes (changes version, changes revision, etc).
1429/// * Any dependency changes
1430/// * The compiler changes
1431/// * The set of features a package is built with changes
1432/// * The profile a target is compiled with changes (e.g., opt-level changes)
1433/// * Any other compiler flags change that will affect the result
1434///
1435/// Information like file modification time is only calculated for path
1436/// dependencies.
1437fn calculate(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> CargoResult<Arc<Fingerprint>> {
1438 // This function is slammed quite a lot, so the result is memoized.
1439 if let Some(s) = build_runner.fingerprints.get(unit) {
1440 return Ok(Arc::clone(s));
1441 }
1442 let mut fingerprint = if unit.mode.is_run_custom_build() {
1443 calculate_run_custom_build(build_runner, unit)?
1444 } else if unit.mode.is_doc_test() {
1445 panic!("doc tests do not fingerprint");
1446 } else {
1447 calculate_normal(build_runner, unit)?
1448 };
1449
1450 // After we built the initial `Fingerprint` be sure to update the
1451 // `fs_status` field of it.
1452 let target_root = target_root(build_runner);
1453 let cargo_exe = build_runner.bcx.gctx.cargo_exe()?;
1454 fingerprint.check_filesystem(
1455 &mut build_runner.mtime_cache,
1456 &mut build_runner.checksum_cache,
1457 &unit.pkg,
1458 &target_root,
1459 cargo_exe,
1460 build_runner.bcx.gctx,
1461 )?;
1462
1463 let fingerprint = Arc::new(fingerprint);
1464 build_runner
1465 .fingerprints
1466 .insert(unit.clone(), Arc::clone(&fingerprint));
1467 Ok(fingerprint)
1468}
1469
1470/// Calculate a fingerprint for a "normal" unit, or anything that's not a build
1471/// script. This is an internal helper of [`calculate`], don't call directly.
1472fn calculate_normal(
1473 build_runner: &mut BuildRunner<'_, '_>,
1474 unit: &Unit,
1475) -> CargoResult<Fingerprint> {
1476 let deps = {
1477 // Recursively calculate the fingerprint for all of our dependencies.
1478 //
1479 // Skip fingerprints of binaries because they don't actually induce a
1480 // recompile, they're just dependencies in the sense that they need to be
1481 // built. The only exception here are artifact dependencies,
1482 // which is an actual dependency that needs a recompile.
1483 //
1484 // Create Vec since mutable build_runner is needed in closure.
1485 let deps = Vec::from(build_runner.unit_deps(unit));
1486 let mut deps = deps
1487 .into_iter()
1488 .filter(|dep| !dep.unit.target.is_bin() || dep.unit.artifact.is_true())
1489 .map(|dep| DepFingerprint::new(build_runner, unit, &dep))
1490 .collect::<CargoResult<Vec<_>>>()?;
1491 deps.sort_by(|a, b| a.pkg_id.cmp(&b.pkg_id));
1492 deps
1493 };
1494
1495 // Afterwards calculate our own fingerprint information.
1496 let target_root = target_root(build_runner);
1497 let local = if unit.mode.is_doc() || unit.mode.is_doc_scrape() {
1498 // rustdoc does not have dep-info files.
1499 let fingerprint = pkg_fingerprint(build_runner.bcx, &unit.pkg).with_context(|| {
1500 format!(
1501 "failed to determine package fingerprint for documenting {}",
1502 unit.pkg
1503 )
1504 })?;
1505 vec![LocalFingerprint::Precalculated(fingerprint)]
1506 } else {
1507 let dep_info = dep_info_loc(build_runner, unit);
1508 let dep_info = dep_info.strip_prefix(&target_root).unwrap().to_path_buf();
1509 vec![LocalFingerprint::CheckDepInfo {
1510 dep_info,
1511 checksum: build_runner.bcx.gctx.cli_unstable().checksum_freshness,
1512 }]
1513 };
1514
1515 // Figure out what the outputs of our unit is, and we'll be storing them
1516 // into the fingerprint as well.
1517 let outputs = build_runner
1518 .outputs(unit)?
1519 .iter()
1520 .filter(|output| !matches!(output.flavor, FileFlavor::DebugInfo | FileFlavor::Auxiliary))
1521 .map(|output| output.path.clone())
1522 .collect();
1523
1524 // Fill out a bunch more information that we'll be tracking typically
1525 // hashed to take up less space on disk as we just need to know when things
1526 // change.
1527 let extra_flags = if unit.mode.is_doc() || unit.mode.is_doc_scrape() {
1528 &unit.rustdocflags
1529 } else {
1530 &unit.rustflags
1531 }
1532 .to_vec();
1533
1534 let profile_hash = util::hash_u64((
1535 &unit.profile,
1536 unit.mode,
1537 build_runner.bcx.extra_args_for(unit),
1538 build_runner.lto[unit],
1539 unit.pkg.manifest().lint_rustflags(),
1540 ));
1541 let mut config = StableHasher::new();
1542 if let Some(linker) = build_runner.compilation.target_linker(unit.kind) {
1543 linker.hash(&mut config);
1544 }
1545 if unit.mode.is_doc() && build_runner.bcx.gctx.cli_unstable().rustdoc_map {
1546 if let Ok(map) = build_runner.bcx.gctx.doc_extern_map() {
1547 map.hash(&mut config);
1548 }
1549 }
1550 if let Some(allow_features) = &build_runner.bcx.gctx.cli_unstable().allow_features {
1551 allow_features.hash(&mut config);
1552 }
1553 let compile_kind = unit.kind.fingerprint_hash();
1554 let mut declared_features = unit.pkg.summary().features().keys().collect::<Vec<_>>();
1555 declared_features.sort(); // to avoid useless rebuild if the user orders it's features
1556 // differently
1557 Ok(Fingerprint {
1558 rustc: util::hash_u64(&build_runner.bcx.rustc().verbose_version),
1559 target: util::hash_u64(&unit.target),
1560 profile: profile_hash,
1561 // Note that .0 is hashed here, not .1 which is the cwd. That doesn't
1562 // actually affect the output artifact so there's no need to hash it.
1563 path: util::hash_u64(path_args(build_runner.bcx.ws, unit).0),
1564 features: format!("{:?}", unit.features),
1565 declared_features: format!("{declared_features:?}"),
1566 deps,
1567 local: Mutex::new(local),
1568 memoized_hash: Mutex::new(None),
1569 config: Hasher::finish(&config),
1570 compile_kind,
1571 rustflags: extra_flags,
1572 fs_status: FsStatus::Stale,
1573 outputs,
1574 })
1575}
1576
1577/// Calculate a fingerprint for an "execute a build script" unit. This is an
1578/// internal helper of [`calculate`], don't call directly.
1579fn calculate_run_custom_build(
1580 build_runner: &mut BuildRunner<'_, '_>,
1581 unit: &Unit,
1582) -> CargoResult<Fingerprint> {
1583 assert!(unit.mode.is_run_custom_build());
1584 // Using the `BuildDeps` information we'll have previously parsed and
1585 // inserted into `build_explicit_deps` built an initial snapshot of the
1586 // `LocalFingerprint` list for this build script. If we previously executed
1587 // the build script this means we'll be watching files and env vars.
1588 // Otherwise if we haven't previously executed it we'll just start watching
1589 // the whole crate.
1590 let (gen_local, overridden) = build_script_local_fingerprints(build_runner, unit)?;
1591 let deps = &build_runner.build_explicit_deps[unit];
1592 let local = (gen_local)(
1593 deps,
1594 Some(&|| {
1595 const IO_ERR_MESSAGE: &str = "\
1596An I/O error happened. Please make sure you can access the file.
1597
1598By default, if your project contains a build script, cargo scans all files in
1599it to determine whether a rebuild is needed. If you don't expect to access the
1600file, specify `rerun-if-changed` in your build script.
1601See https://doc.rust-lang.org/cargo/reference/build-scripts.html#rerun-if-changed for more information.";
1602 pkg_fingerprint(build_runner.bcx, &unit.pkg).map_err(|err| {
1603 let mut message = format!("failed to determine package fingerprint for build script for {}", unit.pkg);
1604 if err.root_cause().is::<io::Error>() {
1605 message = format!("{}\n{}", message, IO_ERR_MESSAGE)
1606 }
1607 err.context(message)
1608 })
1609 }),
1610 )?
1611 .unwrap();
1612 let output = deps.build_script_output.clone();
1613
1614 // Include any dependencies of our execution, which is typically just the
1615 // compilation of the build script itself. (if the build script changes we
1616 // should be rerun!). Note though that if we're an overridden build script
1617 // we have no dependencies so no need to recurse in that case.
1618 let deps = if overridden {
1619 // Overridden build scripts don't need to track deps.
1620 vec![]
1621 } else {
1622 // Create Vec since mutable build_runner is needed in closure.
1623 let deps = Vec::from(build_runner.unit_deps(unit));
1624 deps.into_iter()
1625 .map(|dep| DepFingerprint::new(build_runner, unit, &dep))
1626 .collect::<CargoResult<Vec<_>>>()?
1627 };
1628
1629 let rustflags = unit.rustflags.to_vec();
1630
1631 Ok(Fingerprint {
1632 local: Mutex::new(local),
1633 rustc: util::hash_u64(&build_runner.bcx.rustc().verbose_version),
1634 deps,
1635 outputs: if overridden { Vec::new() } else { vec![output] },
1636 rustflags,
1637
1638 // Most of the other info is blank here as we don't really include it
1639 // in the execution of the build script, but... this may be a latent
1640 // bug in Cargo.
1641 ..Fingerprint::new()
1642 })
1643}
1644
1645/// Get ready to compute the [`LocalFingerprint`] values
1646/// for a [`RunCustomBuild`] unit.
1647///
1648/// This function has, what's on the surface, a seriously wonky interface.
1649/// You'll call this function and it'll return a closure and a boolean. The
1650/// boolean is pretty simple in that it indicates whether the `unit` has been
1651/// overridden via `.cargo/config.toml`. The closure is much more complicated.
1652///
1653/// This closure is intended to capture any local state necessary to compute
1654/// the `LocalFingerprint` values for this unit. It is `Send` and `'static` to
1655/// be sent to other threads as well (such as when we're executing build
1656/// scripts). That deduplication is the rationale for the closure at least.
1657///
1658/// The arguments to the closure are a bit weirder, though, and I'll apologize
1659/// in advance for the weirdness too. The first argument to the closure is a
1660/// `&BuildDeps`. This is the parsed version of a build script, and when Cargo
1661/// starts up this is cached from previous runs of a build script. After a
1662/// build script executes the output file is reparsed and passed in here.
1663///
1664/// The second argument is the weirdest, it's *optionally* a closure to
1665/// call [`pkg_fingerprint`]. The `pkg_fingerprint` requires access to
1666/// "source map" located in `Context`. That's very non-`'static` and
1667/// non-`Send`, so it can't be used on other threads, such as when we invoke
1668/// this after a build script has finished. The `Option` allows us to for sure
1669/// calculate it on the main thread at the beginning, and then swallow the bug
1670/// for now where a worker thread after a build script has finished doesn't
1671/// have access. Ideally there would be no second argument or it would be more
1672/// "first class" and not an `Option` but something that can be sent between
1673/// threads. In any case, it's a bug for now.
1674///
1675/// This isn't the greatest of interfaces, and if there's suggestions to
1676/// improve please do so!
1677///
1678/// FIXME(#6779) - see all the words above
1679///
1680/// [`RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
1681fn build_script_local_fingerprints(
1682 build_runner: &mut BuildRunner<'_, '_>,
1683 unit: &Unit,
1684) -> CargoResult<(
1685 Box<
1686 dyn FnOnce(
1687 &BuildDeps,
1688 Option<&dyn Fn() -> CargoResult<String>>,
1689 ) -> CargoResult<Option<Vec<LocalFingerprint>>>
1690 + Send,
1691 >,
1692 bool,
1693)> {
1694 assert!(unit.mode.is_run_custom_build());
1695 // First up, if this build script is entirely overridden, then we just
1696 // return the hash of what we overrode it with. This is the easy case!
1697 if let Some(fingerprint) = build_script_override_fingerprint(build_runner, unit) {
1698 debug!("override local fingerprints deps {}", unit.pkg);
1699 return Ok((
1700 Box::new(
1701 move |_: &BuildDeps, _: Option<&dyn Fn() -> CargoResult<String>>| {
1702 Ok(Some(vec![fingerprint]))
1703 },
1704 ),
1705 true, // this is an overridden build script
1706 ));
1707 }
1708
1709 // ... Otherwise this is a "real" build script and we need to return a real
1710 // closure. Our returned closure classifies the build script based on
1711 // whether it prints `rerun-if-*`. If it *doesn't* print this it's where the
1712 // magical second argument comes into play, which fingerprints a whole
1713 // package. Remember that the fact that this is an `Option` is a bug, but a
1714 // longstanding bug, in Cargo. Recent refactorings just made it painfully
1715 // obvious.
1716 let pkg_root = unit.pkg.root().to_path_buf();
1717 let target_dir = target_root(build_runner);
1718 let env_config = Arc::clone(build_runner.bcx.gctx.env_config()?);
1719 let calculate =
1720 move |deps: &BuildDeps, pkg_fingerprint: Option<&dyn Fn() -> CargoResult<String>>| {
1721 if deps.rerun_if_changed.is_empty() && deps.rerun_if_env_changed.is_empty() {
1722 match pkg_fingerprint {
1723 // FIXME: this is somewhat buggy with respect to docker and
1724 // weird filesystems. The `Precalculated` variant
1725 // constructed below will, for `path` dependencies, contain
1726 // a stringified version of the mtime for the local crate.
1727 // This violates one of the things we describe in this
1728 // module's doc comment, never hashing mtimes. We should
1729 // figure out a better scheme where a package fingerprint
1730 // may be a string (like for a registry) or a list of files
1731 // (like for a path dependency). Those list of files would
1732 // be stored here rather than the mtime of them.
1733 Some(f) => {
1734 let s = f()?;
1735 debug!(
1736 "old local fingerprints deps {:?} precalculated={:?}",
1737 pkg_root, s
1738 );
1739 return Ok(Some(vec![LocalFingerprint::Precalculated(s)]));
1740 }
1741 None => return Ok(None),
1742 }
1743 }
1744
1745 // Ok so now we're in "new mode" where we can have files listed as
1746 // dependencies as well as env vars listed as dependencies. Process
1747 // them all here.
1748 Ok(Some(local_fingerprints_deps(
1749 deps,
1750 &target_dir,
1751 &pkg_root,
1752 &env_config,
1753 )))
1754 };
1755
1756 // Note that `false` == "not overridden"
1757 Ok((Box::new(calculate), false))
1758}
1759
1760/// Create a [`LocalFingerprint`] for an overridden build script.
1761/// Returns None if it is not overridden.
1762fn build_script_override_fingerprint(
1763 build_runner: &mut BuildRunner<'_, '_>,
1764 unit: &Unit,
1765) -> Option<LocalFingerprint> {
1766 // Build script output is only populated at this stage when it is
1767 // overridden.
1768 let build_script_outputs = build_runner.build_script_outputs.lock().unwrap();
1769 let metadata = build_runner.get_run_build_script_metadata(unit);
1770 // Returns None if it is not overridden.
1771 let output = build_script_outputs.get(metadata)?;
1772 let s = format!(
1773 "overridden build state with hash: {}",
1774 util::hash_u64(output)
1775 );
1776 Some(LocalFingerprint::Precalculated(s))
1777}
1778
1779/// Compute the [`LocalFingerprint`] values for a [`RunCustomBuild`] unit for
1780/// non-overridden new-style build scripts only. This is only used when `deps`
1781/// is already known to have a nonempty `rerun-if-*` somewhere.
1782///
1783/// [`RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
1784fn local_fingerprints_deps(
1785 deps: &BuildDeps,
1786 target_root: &Path,
1787 pkg_root: &Path,
1788 env_config: &Arc<HashMap<String, OsString>>,
1789) -> Vec<LocalFingerprint> {
1790 debug!("new local fingerprints deps {:?}", pkg_root);
1791 let mut local = Vec::new();
1792
1793 if !deps.rerun_if_changed.is_empty() {
1794 // Note that like the module comment above says we are careful to never
1795 // store an absolute path in `LocalFingerprint`, so ensure that we strip
1796 // absolute prefixes from them.
1797 let output = deps
1798 .build_script_output
1799 .strip_prefix(target_root)
1800 .unwrap()
1801 .to_path_buf();
1802 let paths = deps
1803 .rerun_if_changed
1804 .iter()
1805 .map(|p| p.strip_prefix(pkg_root).unwrap_or(p).to_path_buf())
1806 .collect();
1807 local.push(LocalFingerprint::RerunIfChanged { output, paths });
1808 }
1809
1810 local.extend(
1811 deps.rerun_if_env_changed
1812 .iter()
1813 .map(|s| LocalFingerprint::from_env(s, env_config)),
1814 );
1815
1816 local
1817}
1818
1819/// Writes the short fingerprint hash value to `<loc>`
1820/// and logs detailed JSON information to `<loc>.json`.
1821fn write_fingerprint(loc: &Path, fingerprint: &Fingerprint) -> CargoResult<()> {
1822 debug_assert_ne!(fingerprint.rustc, 0);
1823 // fingerprint::new().rustc == 0, make sure it doesn't make it to the file system.
1824 // This is mostly so outside tools can reliably find out what rust version this file is for,
1825 // as we can use the full hash.
1826 let hash = fingerprint.hash_u64();
1827 debug!("write fingerprint ({:x}) : {}", hash, loc.display());
1828 paths::write(loc, util::to_hex(hash).as_bytes())?;
1829
1830 let json = serde_json::to_string(fingerprint).unwrap();
1831 if cfg!(debug_assertions) {
1832 let f: Fingerprint = serde_json::from_str(&json).unwrap();
1833 assert_eq!(f.hash_u64(), hash);
1834 }
1835 paths::write(&loc.with_extension("json"), json.as_bytes())?;
1836 Ok(())
1837}
1838
1839/// Prepare for work when a package starts to build
1840pub fn prepare_init(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> CargoResult<()> {
1841 let new1 = build_runner.files().fingerprint_dir(unit);
1842
1843 // Doc tests have no output, thus no fingerprint.
1844 if !new1.exists() && !unit.mode.is_doc_test() {
1845 paths::create_dir_all(&new1)?;
1846 }
1847
1848 Ok(())
1849}
1850
1851/// Returns the location that the dep-info file will show up at
1852/// for the [`Unit`] specified.
1853pub fn dep_info_loc(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> PathBuf {
1854 build_runner.files().fingerprint_file_path(unit, "dep-")
1855}
1856
1857/// Returns an absolute path that target directory.
1858/// All paths are rewritten to be relative to this.
1859fn target_root(build_runner: &BuildRunner<'_, '_>) -> PathBuf {
1860 build_runner.bcx.ws.target_dir().into_path_unlocked()
1861}
1862
1863/// Reads the value from the old fingerprint hash file and compare.
1864///
1865/// If dirty, it then restores the detailed information
1866/// from the fingerprint JSON file, and provides an rich dirty reason.
1867fn compare_old_fingerprint(
1868 unit: &Unit,
1869 old_hash_path: &Path,
1870 new_fingerprint: &Fingerprint,
1871 mtime_on_use: bool,
1872 forced: bool,
1873) -> Option<DirtyReason> {
1874 if mtime_on_use {
1875 // update the mtime so other cleaners know we used it
1876 let t = FileTime::from_system_time(SystemTime::now());
1877 debug!("mtime-on-use forcing {:?} to {}", old_hash_path, t);
1878 paths::set_file_time_no_err(old_hash_path, t);
1879 }
1880
1881 let compare = _compare_old_fingerprint(old_hash_path, new_fingerprint);
1882
1883 match compare.as_ref() {
1884 Ok(None) => {}
1885 Ok(Some(reason)) => {
1886 info!(
1887 "fingerprint dirty for {}/{:?}/{:?}",
1888 unit.pkg, unit.mode, unit.target,
1889 );
1890 info!(" dirty: {reason:?}");
1891 }
1892 Err(e) => {
1893 info!(
1894 "fingerprint error for {}/{:?}/{:?}",
1895 unit.pkg, unit.mode, unit.target,
1896 );
1897 info!(" err: {e:?}");
1898 }
1899 }
1900
1901 match compare {
1902 Ok(None) if forced => Some(DirtyReason::Forced),
1903 Ok(reason) => reason,
1904 Err(_) => Some(DirtyReason::FreshBuild),
1905 }
1906}
1907
1908fn _compare_old_fingerprint(
1909 old_hash_path: &Path,
1910 new_fingerprint: &Fingerprint,
1911) -> CargoResult<Option<DirtyReason>> {
1912 let old_fingerprint_short = paths::read(old_hash_path)?;
1913
1914 let new_hash = new_fingerprint.hash_u64();
1915
1916 if util::to_hex(new_hash) == old_fingerprint_short && new_fingerprint.fs_status.up_to_date() {
1917 return Ok(None);
1918 }
1919
1920 let old_fingerprint_json = paths::read(&old_hash_path.with_extension("json"))?;
1921 let old_fingerprint: Fingerprint = serde_json::from_str(&old_fingerprint_json)
1922 .with_context(|| internal("failed to deserialize json"))?;
1923 // Fingerprint can be empty after a failed rebuild (see comment in prepare_target).
1924 if !old_fingerprint_short.is_empty() {
1925 debug_assert_eq!(
1926 util::to_hex(old_fingerprint.hash_u64()),
1927 old_fingerprint_short
1928 );
1929 }
1930
1931 Ok(Some(new_fingerprint.compare(&old_fingerprint)))
1932}
1933
1934/// Calculates the fingerprint of a unit thats contains no dep-info files.
1935fn pkg_fingerprint(bcx: &BuildContext<'_, '_>, pkg: &Package) -> CargoResult<String> {
1936 let source_id = pkg.package_id().source_id();
1937 let sources = bcx.packages.sources();
1938
1939 let source = sources
1940 .get(source_id)
1941 .ok_or_else(|| internal("missing package source"))?;
1942 source.fingerprint(pkg)
1943}
1944
1945/// The `reference` file is considered as "stale" if any file from `paths` has a newer mtime.
1946fn find_stale_file<I, P>(
1947 mtime_cache: &mut HashMap<PathBuf, FileTime>,
1948 checksum_cache: &mut HashMap<PathBuf, Checksum>,
1949 reference: &Path,
1950 paths: I,
1951 use_checksums: bool,
1952) -> Option<StaleItem>
1953where
1954 I: IntoIterator<Item = (P, Option<(u64, Checksum)>)>,
1955 P: AsRef<Path>,
1956{
1957 let Ok(reference_mtime) = paths::mtime(reference) else {
1958 return Some(StaleItem::MissingFile(reference.to_path_buf()));
1959 };
1960
1961 let skipable_dirs = if let Ok(cargo_home) = home::cargo_home() {
1962 let skipable_dirs: Vec<_> = ["git", "registry"]
1963 .into_iter()
1964 .map(|subfolder| cargo_home.join(subfolder))
1965 .collect();
1966 Some(skipable_dirs)
1967 } else {
1968 None
1969 };
1970 for (path, prior_checksum) in paths {
1971 let path = path.as_ref();
1972
1973 // Assuming anything in cargo_home/{git, registry} is immutable
1974 // (see also #9455 about marking the src directory readonly) which avoids rebuilds when CI
1975 // caches $CARGO_HOME/registry/{index, cache} and $CARGO_HOME/git/db across runs, keeping
1976 // the content the same but changing the mtime.
1977 if let Some(ref skipable_dirs) = skipable_dirs {
1978 if skipable_dirs.iter().any(|dir| path.starts_with(dir)) {
1979 continue;
1980 }
1981 }
1982 if use_checksums {
1983 let Some((file_len, prior_checksum)) = prior_checksum else {
1984 return Some(StaleItem::MissingChecksum(path.to_path_buf()));
1985 };
1986 let path_buf = path.to_path_buf();
1987
1988 let path_checksum = match checksum_cache.entry(path_buf) {
1989 Entry::Occupied(o) => *o.get(),
1990 Entry::Vacant(v) => {
1991 let Ok(current_file_len) = fs::metadata(&path).map(|m| m.len()) else {
1992 return Some(StaleItem::FailedToReadMetadata(path.to_path_buf()));
1993 };
1994 if current_file_len != file_len {
1995 return Some(StaleItem::FileSizeChanged {
1996 path: path.to_path_buf(),
1997 new_size: current_file_len,
1998 old_size: file_len,
1999 });
2000 }
2001 let Ok(file) = File::open(path) else {
2002 return Some(StaleItem::MissingFile(path.to_path_buf()));
2003 };
2004 let Ok(checksum) = Checksum::compute(prior_checksum.algo(), file) else {
2005 return Some(StaleItem::UnableToReadFile(path.to_path_buf()));
2006 };
2007 *v.insert(checksum)
2008 }
2009 };
2010 if path_checksum == prior_checksum {
2011 continue;
2012 }
2013 return Some(StaleItem::ChangedChecksum {
2014 source: path.to_path_buf(),
2015 stored_checksum: prior_checksum,
2016 new_checksum: path_checksum,
2017 });
2018 } else {
2019 let path_mtime = match mtime_cache.entry(path.to_path_buf()) {
2020 Entry::Occupied(o) => *o.get(),
2021 Entry::Vacant(v) => {
2022 let Ok(mtime) = paths::mtime_recursive(path) else {
2023 return Some(StaleItem::MissingFile(path.to_path_buf()));
2024 };
2025 *v.insert(mtime)
2026 }
2027 };
2028
2029 // TODO: fix #5918.
2030 // Note that equal mtimes should be considered "stale". For filesystems with
2031 // not much timestamp precision like 1s this is would be a conservative approximation
2032 // to handle the case where a file is modified within the same second after
2033 // a build starts. We want to make sure that incremental rebuilds pick that up!
2034 //
2035 // For filesystems with nanosecond precision it's been seen in the wild that
2036 // its "nanosecond precision" isn't really nanosecond-accurate. It turns out that
2037 // kernels may cache the current time so files created at different times actually
2038 // list the same nanosecond precision. Some digging on #5919 picked up that the
2039 // kernel caches the current time between timer ticks, which could mean that if
2040 // a file is updated at most 10ms after a build starts then Cargo may not
2041 // pick up the build changes.
2042 //
2043 // All in all, an equality check here would be a conservative assumption that,
2044 // if equal, files were changed just after a previous build finished.
2045 // Unfortunately this became problematic when (in #6484) cargo switch to more accurately
2046 // measuring the start time of builds.
2047 if path_mtime <= reference_mtime {
2048 continue;
2049 }
2050
2051 return Some(StaleItem::ChangedFile {
2052 reference: reference.to_path_buf(),
2053 reference_mtime,
2054 stale: path.to_path_buf(),
2055 stale_mtime: path_mtime,
2056 });
2057 }
2058 }
2059
2060 debug!(
2061 "all paths up-to-date relative to {:?} mtime={}",
2062 reference, reference_mtime
2063 );
2064 None
2065}