cargo/core/compiler/fingerprint/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
//! Tracks changes to determine if something needs to be recompiled.
//!
//! This module implements change-tracking so that Cargo can know whether or
//! not something needs to be recompiled. A Cargo [`Unit`] can be either "dirty"
//! (needs to be recompiled) or "fresh" (it does not need to be recompiled).
//!
//! ## Mechanisms affecting freshness
//!
//! There are several mechanisms that influence a Unit's freshness:
//!
//! - The [`Fingerprint`] is a hash, saved to the filesystem in the
//! `.fingerprint` directory, that tracks information about the Unit. If the
//! fingerprint is missing (such as the first time the unit is being
//! compiled), then the unit is dirty. If any of the fingerprint fields
//! change (like the name of the source file), then the Unit is considered
//! dirty.
//!
//! The `Fingerprint` also tracks the fingerprints of all its dependencies,
//! so a change in a dependency will propagate the "dirty" status up.
//!
//! - Filesystem mtime tracking is also used to check if a unit is dirty.
//! See the section below on "Mtime comparison" for more details. There
//! are essentially two parts to mtime tracking:
//!
//! 1. The mtime of a Unit's output files is compared to the mtime of all
//! its dependencies' output file mtimes (see
//! [`check_filesystem`]). If any output is missing, or is
//! older than a dependency's output, then the unit is dirty.
//! 2. The mtime of a Unit's source files is compared to the mtime of its
//! dep-info file in the fingerprint directory (see [`find_stale_file`]).
//! The dep-info file is used as an anchor to know when the last build of
//! the unit was done. See the "dep-info files" section below for more
//! details. If any input files are missing, or are newer than the
//! dep-info, then the unit is dirty.
//!
//! - Alternatively if you're using the unstable feature `checksum-freshness`
//! mtimes are ignored entirely in favor of comparing first the file size, and
//! then the checksum with a known prior value emitted by rustc. Only nightly
//! rustc will emit the needed metadata at the time of writing. This is dependent
//! on the unstable feature `-Z checksum-hash-algorithm`.
//!
//! Note: Fingerprinting is not a perfect solution. Filesystem mtime tracking
//! is notoriously imprecise and problematic. Only a small part of the
//! environment is captured. This is a balance of performance, simplicity, and
//! completeness. Sandboxing, hashing file contents, tracking every file
//! access, environment variable, and network operation would ensure more
//! reliable and reproducible builds at the cost of being complex, slow, and
//! platform-dependent.
//!
//! ## Fingerprints and Metadata
//!
//! The [`Metadata`] hash is a hash added to the output filenames to isolate
//! each unit. See its documentationfor more details.
//! NOTE: Not all output files are isolated via filename hashes (like dylibs).
//! The fingerprint directory uses a hash, but sometimes units share the same
//! fingerprint directory (when they don't have Metadata) so care should be
//! taken to handle this!
//!
//! Fingerprints and Metadata are similar, and track some of the same things.
//! The Metadata contains information that is required to keep Units separate.
//! The Fingerprint includes additional information that should cause a
//! recompile, but it is desired to reuse the same filenames. A comparison
//! of what is tracked:
//!
//! Value | Fingerprint | Metadata
//! -------------------------------------------|-------------|----------
//! rustc | ✓ | ✓
//! [`Profile`] | ✓ | ✓
//! `cargo rustc` extra args | ✓ | ✓
//! [`CompileMode`] | ✓ | ✓
//! Target Name | ✓ | ✓
//! TargetKind (bin/lib/etc.) | ✓ | ✓
//! Enabled Features | ✓ | ✓
//! Declared Features | ✓ |
//! Immediate dependency’s hashes | ✓[^1] | ✓
//! [`CompileKind`] (host/target) | ✓ | ✓
//! __CARGO_DEFAULT_LIB_METADATA[^4] | | ✓
//! package_id | | ✓
//! authors, description, homepage, repo | ✓ |
//! Target src path relative to ws | ✓ |
//! Target flags (test/bench/for_host/edition) | ✓ |
//! -C incremental=… flag | ✓ |
//! mtime of sources | ✓[^3] |
//! RUSTFLAGS/RUSTDOCFLAGS | ✓ |
//! [`Lto`] flags | ✓ | ✓
//! config settings[^5] | ✓ |
//! is_std | | ✓
//! `[lints]` table[^6] | ✓ |
//! `[lints.rust.unexpected_cfgs.check-cfg]` | ✓ |
//!
//! [^1]: Build script and bin dependencies are not included.
//!
//! [^3]: See below for details on mtime tracking.
//!
//! [^4]: `__CARGO_DEFAULT_LIB_METADATA` is set by rustbuild to embed the
//! release channel (bootstrap/stable/beta/nightly) in libstd.
//!
//! [^5]: Config settings that are not otherwise captured anywhere else.
//! Currently, this is only `doc.extern-map`.
//!
//! [^6]: Via [`Manifest::lint_rustflags`][crate::core::Manifest::lint_rustflags]
//!
//! When deciding what should go in the Metadata vs the Fingerprint, consider
//! that some files (like dylibs) do not have a hash in their filename. Thus,
//! if a value changes, only the fingerprint will detect the change (consider,
//! for example, swapping between different features). Fields that are only in
//! Metadata generally aren't relevant to the fingerprint because they
//! fundamentally change the output (like target vs host changes the directory
//! where it is emitted).
//!
//! ## Fingerprint files
//!
//! Fingerprint information is stored in the
//! `target/{debug,release}/.fingerprint/` directory. Each Unit is stored in a
//! separate directory. Each Unit directory contains:
//!
//! - A file with a 16 hex-digit hash. This is the Fingerprint hash, used for
//! quick loading and comparison.
//! - A `.json` file that contains details about the Fingerprint. This is only
//! used to log details about *why* a fingerprint is considered dirty.
//! `CARGO_LOG=cargo::core::compiler::fingerprint=trace cargo build` can be
//! used to display this log information.
//! - A "dep-info" file which is a translation of rustc's `*.d` dep-info files
//! to a Cargo-specific format that tweaks file names and is optimized for
//! reading quickly.
//! - An `invoked.timestamp` file whose filesystem mtime is updated every time
//! the Unit is built. This is used for capturing the time when the build
//! starts, to detect if files are changed in the middle of the build. See
//! below for more details.
//!
//! Note that some units are a little different. A Unit for *running* a build
//! script or for `rustdoc` does not have a dep-info file (it's not
//! applicable). Build script `invoked.timestamp` files are in the build
//! output directory.
//!
//! ## Fingerprint calculation
//!
//! After the list of Units has been calculated, the Units are added to the
//! [`JobQueue`]. As each one is added, the fingerprint is calculated, and the
//! dirty/fresh status is recorded. A closure is used to update the fingerprint
//! on-disk when the Unit successfully finishes. The closure will recompute the
//! Fingerprint based on the updated information. If the Unit fails to compile,
//! the fingerprint is not updated.
//!
//! Fingerprints are cached in the [`BuildRunner`]. This makes computing
//! Fingerprints faster, but also is necessary for properly updating
//! dependency information. Since a Fingerprint includes the Fingerprints of
//! all dependencies, when it is updated, by using `Arc` clones, it
//! automatically picks up the updates to its dependencies.
//!
//! ### dep-info files
//!
//! Cargo has several kinds of "dep info" files:
//!
//! * dep-info files generated by `rustc`.
//! * Fingerprint dep-info files translated from the first one.
//! * dep-info for external build system integration.
//! * Unstable `-Zbinary-dep-depinfo`.
//!
//! #### `rustc` dep-info files
//!
//! Cargo passes the `--emit=dep-info` flag to `rustc` so that `rustc` will
//! generate a "dep info" file (with the `.d` extension). This is a
//! Makefile-like syntax that includes all of the source files used to build
//! the crate. This file is used by Cargo to know which files to check to see
//! if the crate will need to be rebuilt. Example:
//!
//! ```makefile
//! /path/to/target/debug/deps/cargo-b6219d178925203d: src/bin/main.rs src/bin/cargo/cli.rs # … etc.
//! ```
//!
//! #### Fingerprint dep-info files
//!
//! After `rustc` exits successfully, Cargo will read the first kind of dep
//! info file and translate it into a binary format that is stored in the
//! fingerprint directory ([`translate_dep_info`]).
//!
//! These are used to quickly scan for any changed files. The mtime of the
//! fingerprint dep-info file itself is used as the reference for comparing the
//! source files to determine if any of the source files have been modified
//! (see [below](#mtime-comparison) for more detail).
//!
//! Note that Cargo parses the special `# env-var:...` comments in dep-info
//! files to learn about environment variables that the rustc compile depends on.
//! Cargo then later uses this to trigger a recompile if a referenced env var
//! changes (even if the source didn't change).
//!
//! #### dep-info files for build system integration.
//!
//! There is also a third dep-info file. Cargo will extend the file created by
//! rustc with some additional information and saves this into the output
//! directory. This is intended for build system integration. See the
//! [`output_depinfo`] function for more detail.
//!
//! #### -Zbinary-dep-depinfo
//!
//! `rustc` has an experimental flag `-Zbinary-dep-depinfo`. This causes
//! `rustc` to include binary files (like rlibs) in the dep-info file. This is
//! primarily to support rustc development, so that Cargo can check the
//! implicit dependency to the standard library (which lives in the sysroot).
//! We want Cargo to recompile whenever the standard library rlib/dylibs
//! change, and this is a generic mechanism to make that work.
//!
//! ### Mtime comparison
//!
//! The use of modification timestamps is the most common way a unit will be
//! determined to be dirty or fresh between builds. There are many subtle
//! issues and edge cases with mtime comparisons. This gives a high-level
//! overview, but you'll need to read the code for the gritty details. Mtime
//! handling is different for different unit kinds. The different styles are
//! driven by the [`Fingerprint::local`] field, which is set based on the unit
//! kind.
//!
//! The status of whether or not the mtime is "stale" or "up-to-date" is
//! stored in [`Fingerprint::fs_status`].
//!
//! All units will compare the mtime of its newest output file with the mtimes
//! of the outputs of all its dependencies. If any output file is missing,
//! then the unit is stale. If any dependency is newer, the unit is stale.
//!
//! #### Normal package mtime handling
//!
//! [`LocalFingerprint::CheckDepInfo`] is used for checking the mtime of
//! packages. It compares the mtime of the input files (the source files) to
//! the mtime of the dep-info file (which is written last after a build is
//! finished). If the dep-info is missing, the unit is stale (it has never
//! been built). The list of input files comes from the dep-info file. See the
//! section above for details on dep-info files.
//!
//! Also note that although registry and git packages use [`CheckDepInfo`], none
//! of their source files are included in the dep-info (see
//! [`translate_dep_info`]), so for those kinds no mtime checking is done
//! (unless `-Zbinary-dep-depinfo` is used). Repository and git packages are
//! static, so there is no need to check anything.
//!
//! When a build is complete, the mtime of the dep-info file in the
//! fingerprint directory is modified to rewind it to the time when the build
//! started. This is done by creating an `invoked.timestamp` file when the
//! build starts to capture the start time. The mtime is rewound to the start
//! to handle the case where the user modifies a source file while a build is
//! running. Cargo can't know whether or not the file was included in the
//! build, so it takes a conservative approach of assuming the file was *not*
//! included, and it should be rebuilt during the next build.
//!
//! #### Rustdoc mtime handling
//!
//! Rustdoc does not emit a dep-info file, so Cargo currently has a relatively
//! simple system for detecting rebuilds. [`LocalFingerprint::Precalculated`] is
//! used for rustdoc units. For registry packages, this is the package
//! version. For git packages, it is the git hash. For path packages, it is
//! the a string of the mtime of the newest file in the package.
//!
//! There are some known bugs with how this works, so it should be improved at
//! some point.
//!
//! #### Build script mtime handling
//!
//! Build script mtime handling runs in different modes. There is the "old
//! style" where the build script does not emit any `rerun-if` directives. In
//! this mode, Cargo will use [`LocalFingerprint::Precalculated`]. See the
//! "rustdoc" section above how it works.
//!
//! In the new-style, each `rerun-if` directive is translated to the
//! corresponding [`LocalFingerprint`] variant. The [`RerunIfChanged`] variant
//! compares the mtime of the given filenames against the mtime of the
//! "output" file.
//!
//! Similar to normal units, the build script "output" file mtime is rewound
//! to the time just before the build script is executed to handle mid-build
//! modifications.
//!
//! ## Considerations for inclusion in a fingerprint
//!
//! Over time we've realized a few items which historically were included in
//! fingerprint hashings should not actually be included. Examples are:
//!
//! * Modification time values. We strive to never include a modification time
//! inside a `Fingerprint` to get hashed into an actual value. While
//! theoretically fine to do, in practice this causes issues with common
//! applications like Docker. Docker, after a layer is built, will zero out
//! the nanosecond part of all filesystem modification times. This means that
//! the actual modification time is different for all build artifacts, which
//! if we tracked the actual values of modification times would cause
//! unnecessary recompiles. To fix this we instead only track paths which are
//! relevant. These paths are checked dynamically to see if they're up to
//! date, and the modification time doesn't make its way into the fingerprint
//! hash.
//!
//! * Absolute path names. We strive to maintain a property where if you rename
//! a project directory Cargo will continue to preserve all build artifacts
//! and reuse the cache. This means that we can't ever hash an absolute path
//! name. Instead we always hash relative path names and the "root" is passed
//! in at runtime dynamically. Some of this is best effort, but the general
//! idea is that we assume all accesses within a crate stay within that
//! crate.
//!
//! These are pretty tricky to test for unfortunately, but we should have a good
//! test suite nowadays and lord knows Cargo gets enough testing in the wild!
//!
//! ## Build scripts
//!
//! The *running* of a build script ([`CompileMode::RunCustomBuild`]) is treated
//! significantly different than all other Unit kinds. It has its own function
//! for calculating the Fingerprint ([`calculate_run_custom_build`]) and has some
//! unique considerations. It does not track the same information as a normal
//! Unit. The information tracked depends on the `rerun-if-changed` and
//! `rerun-if-env-changed` statements produced by the build script. If the
//! script does not emit either of these statements, the Fingerprint runs in
//! "old style" mode where an mtime change of *any* file in the package will
//! cause the build script to be re-run. Otherwise, the fingerprint *only*
//! tracks the individual "rerun-if" items listed by the build script.
//!
//! The "rerun-if" statements from a *previous* build are stored in the build
//! output directory in a file called `output`. Cargo parses this file when
//! the Unit for that build script is prepared for the [`JobQueue`]. The
//! Fingerprint code can then use that information to compute the Fingerprint
//! and compare against the old fingerprint hash.
//!
//! Care must be taken with build script Fingerprints because the
//! [`Fingerprint::local`] value may be changed after the build script runs
//! (such as if the build script adds or removes "rerun-if" items).
//!
//! Another complication is if a build script is overridden. In that case, the
//! fingerprint is the hash of the output of the override.
//!
//! ## Special considerations
//!
//! Registry dependencies do not track the mtime of files. This is because
//! registry dependencies are not expected to change (if a new version is
//! used, the Package ID will change, causing a rebuild). Cargo currently
//! partially works with Docker caching. When a Docker image is built, it has
//! normal mtime information. However, when a step is cached, the nanosecond
//! portions of all files is zeroed out. Currently this works, but care must
//! be taken for situations like these.
//!
//! HFS on macOS only supports 1 second timestamps. This causes a significant
//! number of problems, particularly with Cargo's testsuite which does rapid
//! builds in succession. Other filesystems have various degrees of
//! resolution.
//!
//! Various weird filesystems (such as network filesystems) also can cause
//! complications. Network filesystems may track the time on the server
//! (except when the time is set manually such as with
//! `filetime::set_file_times`). Not all filesystems support modifying the
//! mtime.
//!
//! See the [`A-rebuild-detection`] label on the issue tracker for more.
//!
//! [`check_filesystem`]: Fingerprint::check_filesystem
//! [`Metadata`]: crate::core::compiler::Metadata
//! [`Profile`]: crate::core::profiles::Profile
//! [`CompileMode`]: crate::core::compiler::CompileMode
//! [`Lto`]: crate::core::compiler::Lto
//! [`CompileKind`]: crate::core::compiler::CompileKind
//! [`JobQueue`]: super::job_queue::JobQueue
//! [`output_depinfo`]: super::output_depinfo()
//! [`CheckDepInfo`]: LocalFingerprint::CheckDepInfo
//! [`RerunIfChanged`]: LocalFingerprint::RerunIfChanged
//! [`CompileMode::RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
//! [`A-rebuild-detection`]: https://github.com/rust-lang/cargo/issues?q=is%3Aissue+is%3Aopen+label%3AA-rebuild-detection
mod dirty_reason;
use std::collections::hash_map::{Entry, HashMap};
use std::env;
use std::fmt::{self, Display};
use std::fs::{self, File};
use std::hash::{self, Hash, Hasher};
use std::io::{self, Read};
use std::path::{Path, PathBuf};
use std::str::{self, from_utf8, FromStr};
use std::sync::{Arc, Mutex};
use std::time::SystemTime;
use anyhow::{bail, format_err, Context as _};
use cargo_util::{paths, ProcessBuilder, Sha256};
use filetime::FileTime;
use serde::de;
use serde::ser;
use serde::{Deserialize, Serialize};
use tracing::{debug, info};
use crate::core::compiler::unit_graph::UnitDep;
use crate::core::Package;
use crate::util::errors::CargoResult;
use crate::util::interning::InternedString;
use crate::util::{self, try_canonicalize};
use crate::util::{internal, path_args, StableHasher};
use crate::{GlobalContext, CARGO_ENV};
use super::custom_build::BuildDeps;
use super::{BuildContext, BuildRunner, FileFlavor, Job, Unit, Work};
pub use dirty_reason::DirtyReason;
/// Determines if a [`Unit`] is up-to-date, and if not prepares necessary work to
/// update the persisted fingerprint.
///
/// This function will inspect `Unit`, calculate a fingerprint for it, and then
/// return an appropriate [`Job`] to run. The returned `Job` will be a noop if
/// `unit` is considered "fresh", or if it was previously built and cached.
/// Otherwise the `Job` returned will write out the true fingerprint to the
/// filesystem, to be executed after the unit's work has completed.
///
/// The `force` flag is a way to force the `Job` to be "dirty", or always
/// update the fingerprint. **Beware using this flag** because it does not
/// transitively propagate throughout the dependency graph, it only forces this
/// one unit which is very unlikely to be what you want unless you're
/// exclusively talking about top-level units.
#[tracing::instrument(
skip(build_runner, unit),
fields(package_id = %unit.pkg.package_id(), target = unit.target.name())
)]
pub fn prepare_target(
build_runner: &mut BuildRunner<'_, '_>,
unit: &Unit,
force: bool,
) -> CargoResult<Job> {
let bcx = build_runner.bcx;
let loc = build_runner.files().fingerprint_file_path(unit, "");
debug!("fingerprint at: {}", loc.display());
// Figure out if this unit is up to date. After calculating the fingerprint
// compare it to an old version, if any, and attempt to print diagnostic
// information about failed comparisons to aid in debugging.
let fingerprint = calculate(build_runner, unit)?;
let mtime_on_use = build_runner.bcx.gctx.cli_unstable().mtime_on_use;
let dirty_reason = compare_old_fingerprint(unit, &loc, &*fingerprint, mtime_on_use, force);
let Some(dirty_reason) = dirty_reason else {
return Ok(Job::new_fresh());
};
// We're going to rebuild, so ensure the source of the crate passes all
// verification checks before we build it.
//
// The `Source::verify` method is intended to allow sources to execute
// pre-build checks to ensure that the relevant source code is all
// up-to-date and as expected. This is currently used primarily for
// directory sources which will use this hook to perform an integrity check
// on all files in the source to ensure they haven't changed. If they have
// changed then an error is issued.
let source_id = unit.pkg.package_id().source_id();
let sources = bcx.packages.sources();
let source = sources
.get(source_id)
.ok_or_else(|| internal("missing package source"))?;
source.verify(unit.pkg.package_id())?;
// Clear out the old fingerprint file if it exists. This protects when
// compilation is interrupted leaving a corrupt file. For example, a
// project with a lib.rs and integration test (two units):
//
// 1. Build the library and integration test.
// 2. Make a change to lib.rs (NOT the integration test).
// 3. Build the integration test, hit Ctrl-C while linking. With gcc, this
// will leave behind an incomplete executable (zero size, or partially
// written). NOTE: The library builds successfully, it is the linking
// of the integration test that we are interrupting.
// 4. Build the integration test again.
//
// Without the following line, then step 3 will leave a valid fingerprint
// on the disk. Then step 4 will think the integration test is "fresh"
// because:
//
// - There is a valid fingerprint hash on disk (written in step 1).
// - The mtime of the output file (the corrupt integration executable
// written in step 3) is newer than all of its dependencies.
// - The mtime of the integration test fingerprint dep-info file (written
// in step 1) is newer than the integration test's source files, because
// we haven't modified any of its source files.
//
// But the executable is corrupt and needs to be rebuilt. Clearing the
// fingerprint at step 3 ensures that Cargo never mistakes a partially
// written output as up-to-date.
if loc.exists() {
// Truncate instead of delete so that compare_old_fingerprint will
// still log the reason for the fingerprint failure instead of just
// reporting "failed to read fingerprint" during the next build if
// this build fails.
paths::write(&loc, b"")?;
}
let write_fingerprint = if unit.mode.is_run_custom_build() {
// For build scripts the `local` field of the fingerprint may change
// while we're executing it. For example it could be in the legacy
// "consider everything a dependency mode" and then we switch to "deps
// are explicitly specified" mode.
//
// To handle this movement we need to regenerate the `local` field of a
// build script's fingerprint after it's executed. We do this by
// using the `build_script_local_fingerprints` function which returns a
// thunk we can invoke on a foreign thread to calculate this.
let build_script_outputs = Arc::clone(&build_runner.build_script_outputs);
let metadata = build_runner.get_run_build_script_metadata(unit);
let (gen_local, _overridden) = build_script_local_fingerprints(build_runner, unit);
let output_path = build_runner.build_explicit_deps[unit]
.build_script_output
.clone();
Work::new(move |_| {
let outputs = build_script_outputs.lock().unwrap();
let output = outputs
.get(metadata)
.expect("output must exist after running");
let deps = BuildDeps::new(&output_path, Some(output));
// FIXME: it's basically buggy that we pass `None` to `call_box`
// here. See documentation on `build_script_local_fingerprints`
// below for more information. Despite this just try to proceed and
// hobble along if it happens to return `Some`.
if let Some(new_local) = (gen_local)(&deps, None)? {
*fingerprint.local.lock().unwrap() = new_local;
}
write_fingerprint(&loc, &fingerprint)
})
} else {
Work::new(move |_| write_fingerprint(&loc, &fingerprint))
};
Ok(Job::new_dirty(write_fingerprint, dirty_reason))
}
/// Dependency edge information for fingerprints. This is generated for each
/// dependency and is stored in a [`Fingerprint`].
#[derive(Clone)]
struct DepFingerprint {
/// The hash of the package id that this dependency points to
pkg_id: u64,
/// The crate name we're using for this dependency, which if we change we'll
/// need to recompile!
name: InternedString,
/// Whether or not this dependency is flagged as a public dependency or not.
public: bool,
/// Whether or not this dependency is an rmeta dependency or a "full"
/// dependency. In the case of an rmeta dependency our dependency edge only
/// actually requires the rmeta from what we depend on, so when checking
/// mtime information all files other than the rmeta can be ignored.
only_requires_rmeta: bool,
/// The dependency's fingerprint we recursively point to, containing all the
/// other hash information we'd otherwise need.
fingerprint: Arc<Fingerprint>,
}
/// A fingerprint can be considered to be a "short string" representing the
/// state of a world for a package.
///
/// If a fingerprint ever changes, then the package itself needs to be
/// recompiled. Inputs to the fingerprint include source code modifications,
/// compiler flags, compiler version, etc. This structure is not simply a
/// `String` due to the fact that some fingerprints cannot be calculated lazily.
///
/// Path sources, for example, use the mtime of the corresponding dep-info file
/// as a fingerprint (all source files must be modified *before* this mtime).
/// This dep-info file is not generated, however, until after the crate is
/// compiled. As a result, this structure can be thought of as a fingerprint
/// to-be. The actual value can be calculated via [`hash_u64()`], but the operation
/// may fail as some files may not have been generated.
///
/// Note that dependencies are taken into account for fingerprints because rustc
/// requires that whenever an upstream crate is recompiled that all downstream
/// dependents are also recompiled. This is typically tracked through
/// [`DependencyQueue`], but it also needs to be retained here because Cargo can
/// be interrupted while executing, losing the state of the [`DependencyQueue`]
/// graph.
///
/// [`hash_u64()`]: crate::core::compiler::fingerprint::Fingerprint::hash_u64
/// [`DependencyQueue`]: crate::util::DependencyQueue
#[derive(Serialize, Deserialize)]
pub struct Fingerprint {
/// Hash of the version of `rustc` used.
rustc: u64,
/// Sorted list of cfg features enabled.
features: String,
/// Sorted list of all the declared cfg features.
declared_features: String,
/// Hash of the `Target` struct, including the target name,
/// package-relative source path, edition, etc.
target: u64,
/// Hash of the [`Profile`], [`CompileMode`], and any extra flags passed via
/// `cargo rustc` or `cargo rustdoc`.
///
/// [`Profile`]: crate::core::profiles::Profile
/// [`CompileMode`]: crate::core::compiler::CompileMode
profile: u64,
/// Hash of the path to the base source file. This is relative to the
/// workspace root for path members, or absolute for other sources.
path: u64,
/// Fingerprints of dependencies.
deps: Vec<DepFingerprint>,
/// Information about the inputs that affect this Unit (such as source
/// file mtimes or build script environment variables).
local: Mutex<Vec<LocalFingerprint>>,
/// Cached hash of the [`Fingerprint`] struct. Used to improve performance
/// for hashing.
#[serde(skip)]
memoized_hash: Mutex<Option<u64>>,
/// RUSTFLAGS/RUSTDOCFLAGS environment variable value (or config value).
rustflags: Vec<String>,
/// Hash of some metadata from the manifest, such as "authors", or
/// "description", which are exposed as environment variables during
/// compilation.
metadata: u64,
/// Hash of various config settings that change how things are compiled.
config: u64,
/// The rustc target. This is only relevant for `.json` files, otherwise
/// the metadata hash segregates the units.
compile_kind: u64,
/// Description of whether the filesystem status for this unit is up to date
/// or should be considered stale.
#[serde(skip)]
fs_status: FsStatus,
/// Files, relative to `target_root`, that are produced by the step that
/// this `Fingerprint` represents. This is used to detect when the whole
/// fingerprint is out of date if this is missing, or if previous
/// fingerprints output files are regenerated and look newer than this one.
#[serde(skip)]
outputs: Vec<PathBuf>,
}
/// Indication of the status on the filesystem for a particular unit.
#[derive(Clone, Default, Debug)]
pub enum FsStatus {
/// This unit is to be considered stale, even if hash information all
/// matches.
#[default]
Stale,
/// File system inputs have changed (or are missing), or there were
/// changes to the environment variables that affect this unit. See
/// the variants of [`StaleItem`] for more information.
StaleItem(StaleItem),
/// A dependency was stale.
StaleDependency {
name: InternedString,
dep_mtime: FileTime,
max_mtime: FileTime,
},
/// A dependency was stale.
StaleDepFingerprint { name: InternedString },
/// This unit is up-to-date. All outputs and their corresponding mtime are
/// listed in the payload here for other dependencies to compare against.
UpToDate { mtimes: HashMap<PathBuf, FileTime> },
}
impl FsStatus {
fn up_to_date(&self) -> bool {
match self {
FsStatus::UpToDate { .. } => true,
FsStatus::Stale
| FsStatus::StaleItem(_)
| FsStatus::StaleDependency { .. }
| FsStatus::StaleDepFingerprint { .. } => false,
}
}
}
impl Serialize for DepFingerprint {
fn serialize<S>(&self, ser: S) -> Result<S::Ok, S::Error>
where
S: ser::Serializer,
{
(
&self.pkg_id,
&self.name,
&self.public,
&self.fingerprint.hash_u64(),
)
.serialize(ser)
}
}
impl<'de> Deserialize<'de> for DepFingerprint {
fn deserialize<D>(d: D) -> Result<DepFingerprint, D::Error>
where
D: de::Deserializer<'de>,
{
let (pkg_id, name, public, hash) = <(u64, String, bool, u64)>::deserialize(d)?;
Ok(DepFingerprint {
pkg_id,
name: InternedString::new(&name),
public,
fingerprint: Arc::new(Fingerprint {
memoized_hash: Mutex::new(Some(hash)),
..Fingerprint::new()
}),
// This field is never read since it's only used in
// `check_filesystem` which isn't used by fingerprints loaded from
// disk.
only_requires_rmeta: false,
})
}
}
/// A `LocalFingerprint` represents something that we use to detect direct
/// changes to a `Fingerprint`.
///
/// This is where we track file information, env vars, etc. This
/// `LocalFingerprint` struct is hashed and if the hash changes will force a
/// recompile of any fingerprint it's included into. Note that the "local"
/// terminology comes from the fact that it only has to do with one crate, and
/// `Fingerprint` tracks the transitive propagation of fingerprint changes.
///
/// Note that because this is hashed its contents are carefully managed. Like
/// mentioned in the above module docs, we don't want to hash absolute paths or
/// mtime information.
///
/// Also note that a `LocalFingerprint` is used in `check_filesystem` to detect
/// when the filesystem contains stale information (based on mtime currently).
/// The paths here don't change much between compilations but they're used as
/// inputs when we probe the filesystem looking at information.
#[derive(Debug, Serialize, Deserialize, Hash)]
enum LocalFingerprint {
/// This is a precalculated fingerprint which has an opaque string we just
/// hash as usual. This variant is primarily used for rustdoc where we
/// don't have a dep-info file to compare against.
///
/// This is also used for build scripts with no `rerun-if-*` statements, but
/// that's overall a mistake and causes bugs in Cargo. We shouldn't use this
/// for build scripts.
Precalculated(String),
/// This is used for crate compilations. The `dep_info` file is a relative
/// path anchored at `target_root(...)` to the dep-info file that Cargo
/// generates (which is a custom serialization after parsing rustc's own
/// `dep-info` output).
///
/// The `dep_info` file, when present, also lists a number of other files
/// for us to look at. If any of those files are newer than this file then
/// we need to recompile.
///
/// If the `checksum` bool is true then the dep_info file is expected to
/// contain file checksums instead of file mtimes.
CheckDepInfo { dep_info: PathBuf, checksum: bool },
/// This represents a nonempty set of `rerun-if-changed` annotations printed
/// out by a build script. The `output` file is a relative file anchored at
/// `target_root(...)` which is the actual output of the build script. That
/// output has already been parsed and the paths printed out via
/// `rerun-if-changed` are listed in `paths`. The `paths` field is relative
/// to `pkg.root()`
///
/// This is considered up-to-date if all of the `paths` are older than
/// `output`, otherwise we need to recompile.
RerunIfChanged {
output: PathBuf,
paths: Vec<PathBuf>,
},
/// This represents a single `rerun-if-env-changed` annotation printed by a
/// build script. The exact env var and value are hashed here. There's no
/// filesystem dependence here, and if the values are changed the hash will
/// change forcing a recompile.
RerunIfEnvChanged { var: String, val: Option<String> },
}
/// See [`FsStatus::StaleItem`].
#[derive(Clone, Debug)]
pub enum StaleItem {
MissingFile(PathBuf),
UnableToReadFile(PathBuf),
FailedToReadMetadata(PathBuf),
FileSizeChanged {
path: PathBuf,
old_size: u64,
new_size: u64,
},
ChangedFile {
reference: PathBuf,
reference_mtime: FileTime,
stale: PathBuf,
stale_mtime: FileTime,
},
ChangedChecksum {
source: PathBuf,
stored_checksum: Checksum,
new_checksum: Checksum,
},
MissingChecksum(PathBuf),
ChangedEnv {
var: String,
previous: Option<String>,
current: Option<String>,
},
}
impl LocalFingerprint {
/// Read the environment variable of the given env `key`, and creates a new
/// [`LocalFingerprint::RerunIfEnvChanged`] for it.
///
// TODO: This is allowed at this moment. Should figure out if it makes
// sense if permitting to read env from the config system.
#[allow(clippy::disallowed_methods)]
fn from_env<K: AsRef<str>>(key: K) -> LocalFingerprint {
let key = key.as_ref();
let var = key.to_owned();
let val = env::var(key).ok();
LocalFingerprint::RerunIfEnvChanged { var, val }
}
/// Checks dynamically at runtime if this `LocalFingerprint` has a stale
/// item inside of it.
///
/// The main purpose of this function is to handle two different ways
/// fingerprints can be invalidated:
///
/// * One is a dependency listed in rustc's dep-info files is invalid. Note
/// that these could either be env vars or files. We check both here.
///
/// * Another is the `rerun-if-changed` directive from build scripts. This
/// is where we'll find whether files have actually changed
fn find_stale_item(
&self,
mtime_cache: &mut HashMap<PathBuf, FileTime>,
checksum_cache: &mut HashMap<PathBuf, Checksum>,
pkg_root: &Path,
target_root: &Path,
cargo_exe: &Path,
gctx: &GlobalContext,
) -> CargoResult<Option<StaleItem>> {
match self {
// We need to parse `dep_info`, learn about the crate's dependencies.
//
// For each env var we see if our current process's env var still
// matches, and for each file we see if any of them are newer than
// the `dep_info` file itself whose mtime represents the start of
// rustc.
LocalFingerprint::CheckDepInfo { dep_info, checksum } => {
let dep_info = target_root.join(dep_info);
let Some(info) = parse_dep_info(pkg_root, target_root, &dep_info)? else {
return Ok(Some(StaleItem::MissingFile(dep_info)));
};
for (key, previous) in info.env.iter() {
let current = if key == CARGO_ENV {
Some(
cargo_exe
.to_str()
.ok_or_else(|| {
format_err!(
"cargo exe path {} must be valid UTF-8",
cargo_exe.display()
)
})?
.to_string(),
)
} else {
gctx.get_env(key).ok()
};
if current == *previous {
continue;
}
return Ok(Some(StaleItem::ChangedEnv {
var: key.clone(),
previous: previous.clone(),
current,
}));
}
if *checksum {
Ok(find_stale_file(
mtime_cache,
checksum_cache,
&dep_info,
info.files.iter().map(|(file, checksum)| (file, *checksum)),
*checksum,
))
} else {
Ok(find_stale_file(
mtime_cache,
checksum_cache,
&dep_info,
info.files.into_keys().map(|p| (p, None)),
*checksum,
))
}
}
// We need to verify that no paths listed in `paths` are newer than
// the `output` path itself, or the last time the build script ran.
LocalFingerprint::RerunIfChanged { output, paths } => Ok(find_stale_file(
mtime_cache,
checksum_cache,
&target_root.join(output),
paths.iter().map(|p| (pkg_root.join(p), None)),
false,
)),
// These have no dependencies on the filesystem, and their values
// are included natively in the `Fingerprint` hash so nothing
// tocheck for here.
LocalFingerprint::RerunIfEnvChanged { .. } => Ok(None),
LocalFingerprint::Precalculated(..) => Ok(None),
}
}
fn kind(&self) -> &'static str {
match self {
LocalFingerprint::Precalculated(..) => "precalculated",
LocalFingerprint::CheckDepInfo { .. } => "dep-info",
LocalFingerprint::RerunIfChanged { .. } => "rerun-if-changed",
LocalFingerprint::RerunIfEnvChanged { .. } => "rerun-if-env-changed",
}
}
}
impl Fingerprint {
fn new() -> Fingerprint {
Fingerprint {
rustc: 0,
target: 0,
profile: 0,
path: 0,
features: String::new(),
declared_features: String::new(),
deps: Vec::new(),
local: Mutex::new(Vec::new()),
memoized_hash: Mutex::new(None),
rustflags: Vec::new(),
metadata: 0,
config: 0,
compile_kind: 0,
fs_status: FsStatus::Stale,
outputs: Vec::new(),
}
}
/// For performance reasons fingerprints will memoize their own hash, but
/// there's also internal mutability with its `local` field which can
/// change, for example with build scripts, during a build.
///
/// This method can be used to bust all memoized hashes just before a build
/// to ensure that after a build completes everything is up-to-date.
pub fn clear_memoized(&self) {
*self.memoized_hash.lock().unwrap() = None;
}
fn hash_u64(&self) -> u64 {
if let Some(s) = *self.memoized_hash.lock().unwrap() {
return s;
}
let ret = util::hash_u64(self);
*self.memoized_hash.lock().unwrap() = Some(ret);
ret
}
/// Compares this fingerprint with an old version which was previously
/// serialized to filesystem.
///
/// The purpose of this is exclusively to produce a diagnostic message
/// [`DirtyReason`], indicating why we're recompiling something.
fn compare(&self, old: &Fingerprint) -> DirtyReason {
if self.rustc != old.rustc {
return DirtyReason::RustcChanged;
}
if self.features != old.features {
return DirtyReason::FeaturesChanged {
old: old.features.clone(),
new: self.features.clone(),
};
}
if self.declared_features != old.declared_features {
return DirtyReason::DeclaredFeaturesChanged {
old: old.declared_features.clone(),
new: self.declared_features.clone(),
};
}
if self.target != old.target {
return DirtyReason::TargetConfigurationChanged;
}
if self.path != old.path {
return DirtyReason::PathToSourceChanged;
}
if self.profile != old.profile {
return DirtyReason::ProfileConfigurationChanged;
}
if self.rustflags != old.rustflags {
return DirtyReason::RustflagsChanged {
old: old.rustflags.clone(),
new: self.rustflags.clone(),
};
}
if self.metadata != old.metadata {
return DirtyReason::MetadataChanged;
}
if self.config != old.config {
return DirtyReason::ConfigSettingsChanged;
}
if self.compile_kind != old.compile_kind {
return DirtyReason::CompileKindChanged;
}
let my_local = self.local.lock().unwrap();
let old_local = old.local.lock().unwrap();
if my_local.len() != old_local.len() {
return DirtyReason::LocalLengthsChanged;
}
for (new, old) in my_local.iter().zip(old_local.iter()) {
match (new, old) {
(LocalFingerprint::Precalculated(a), LocalFingerprint::Precalculated(b)) => {
if a != b {
return DirtyReason::PrecalculatedComponentsChanged {
old: b.to_string(),
new: a.to_string(),
};
}
}
(
LocalFingerprint::CheckDepInfo {
dep_info: adep,
checksum: checksum_a,
},
LocalFingerprint::CheckDepInfo {
dep_info: bdep,
checksum: checksum_b,
},
) => {
if adep != bdep {
return DirtyReason::DepInfoOutputChanged {
old: bdep.clone(),
new: adep.clone(),
};
}
if checksum_a != checksum_b {
return DirtyReason::ChecksumUseChanged { old: *checksum_b };
}
}
(
LocalFingerprint::RerunIfChanged {
output: aout,
paths: apaths,
},
LocalFingerprint::RerunIfChanged {
output: bout,
paths: bpaths,
},
) => {
if aout != bout {
return DirtyReason::RerunIfChangedOutputFileChanged {
old: bout.clone(),
new: aout.clone(),
};
}
if apaths != bpaths {
return DirtyReason::RerunIfChangedOutputPathsChanged {
old: bpaths.clone(),
new: apaths.clone(),
};
}
}
(
LocalFingerprint::RerunIfEnvChanged {
var: akey,
val: avalue,
},
LocalFingerprint::RerunIfEnvChanged {
var: bkey,
val: bvalue,
},
) => {
if *akey != *bkey {
return DirtyReason::EnvVarsChanged {
old: bkey.clone(),
new: akey.clone(),
};
}
if *avalue != *bvalue {
return DirtyReason::EnvVarChanged {
name: akey.clone(),
old_value: bvalue.clone(),
new_value: avalue.clone(),
};
}
}
(a, b) => {
return DirtyReason::LocalFingerprintTypeChanged {
old: b.kind(),
new: a.kind(),
}
}
}
}
if self.deps.len() != old.deps.len() {
return DirtyReason::NumberOfDependenciesChanged {
old: old.deps.len(),
new: self.deps.len(),
};
}
for (a, b) in self.deps.iter().zip(old.deps.iter()) {
if a.name != b.name {
return DirtyReason::UnitDependencyNameChanged {
old: b.name,
new: a.name,
};
}
if a.fingerprint.hash_u64() != b.fingerprint.hash_u64() {
return DirtyReason::UnitDependencyInfoChanged {
new_name: a.name,
new_fingerprint: a.fingerprint.hash_u64(),
old_name: b.name,
old_fingerprint: b.fingerprint.hash_u64(),
};
}
}
if !self.fs_status.up_to_date() {
return DirtyReason::FsStatusOutdated(self.fs_status.clone());
}
// This typically means some filesystem modifications happened or
// something transitive was odd. In general we should strive to provide
// a better error message than this, so if you see this message a lot it
// likely means this method needs to be updated!
DirtyReason::NothingObvious
}
/// Dynamically inspect the local filesystem to update the `fs_status` field
/// of this `Fingerprint`.
///
/// This function is used just after a `Fingerprint` is constructed to check
/// the local state of the filesystem and propagate any dirtiness from
/// dependencies up to this unit as well. This function assumes that the
/// unit starts out as [`FsStatus::Stale`] and then it will optionally switch
/// it to `UpToDate` if it can.
fn check_filesystem(
&mut self,
mtime_cache: &mut HashMap<PathBuf, FileTime>,
checksum_cache: &mut HashMap<PathBuf, Checksum>,
pkg_root: &Path,
target_root: &Path,
cargo_exe: &Path,
gctx: &GlobalContext,
) -> CargoResult<()> {
assert!(!self.fs_status.up_to_date());
let mut mtimes = HashMap::new();
// Get the `mtime` of all outputs. Optionally update their mtime
// afterwards based on the `mtime_on_use` flag. Afterwards we want the
// minimum mtime as it's the one we'll be comparing to inputs and
// dependencies.
for output in self.outputs.iter() {
let mtime = match paths::mtime(output) {
Ok(mtime) => mtime,
// This path failed to report its `mtime`. It probably doesn't
// exists, so leave ourselves as stale and bail out.
Err(e) => {
debug!("failed to get mtime of {:?}: {}", output, e);
return Ok(());
}
};
assert!(mtimes.insert(output.clone(), mtime).is_none());
}
let opt_max = mtimes.iter().max_by_key(|kv| kv.1);
let Some((max_path, max_mtime)) = opt_max else {
// We had no output files. This means we're an overridden build
// script and we're just always up to date because we aren't
// watching the filesystem.
self.fs_status = FsStatus::UpToDate { mtimes };
return Ok(());
};
debug!(
"max output mtime for {:?} is {:?} {}",
pkg_root, max_path, max_mtime
);
for dep in self.deps.iter() {
let dep_mtimes = match &dep.fingerprint.fs_status {
FsStatus::UpToDate { mtimes } => mtimes,
// If our dependency is stale, so are we, so bail out.
FsStatus::Stale
| FsStatus::StaleItem(_)
| FsStatus::StaleDependency { .. }
| FsStatus::StaleDepFingerprint { .. } => {
self.fs_status = FsStatus::StaleDepFingerprint { name: dep.name };
return Ok(());
}
};
// If our dependency edge only requires the rmeta file to be present
// then we only need to look at that one output file, otherwise we
// need to consider all output files to see if we're out of date.
let (dep_path, dep_mtime) = if dep.only_requires_rmeta {
dep_mtimes
.iter()
.find(|(path, _mtime)| {
path.extension().and_then(|s| s.to_str()) == Some("rmeta")
})
.expect("failed to find rmeta")
} else {
match dep_mtimes.iter().max_by_key(|kv| kv.1) {
Some(dep_mtime) => dep_mtime,
// If our dependencies is up to date and has no filesystem
// interactions, then we can move on to the next dependency.
None => continue,
}
};
debug!(
"max dep mtime for {:?} is {:?} {}",
pkg_root, dep_path, dep_mtime
);
// If the dependency is newer than our own output then it was
// recompiled previously. We transitively become stale ourselves in
// that case, so bail out.
//
// Note that this comparison should probably be `>=`, not `>`, but
// for a discussion of why it's `>` see the discussion about #5918
// below in `find_stale`.
if dep_mtime > max_mtime {
info!(
"dependency on `{}` is newer than we are {} > {} {:?}",
dep.name, dep_mtime, max_mtime, pkg_root
);
self.fs_status = FsStatus::StaleDependency {
name: dep.name,
dep_mtime: *dep_mtime,
max_mtime: *max_mtime,
};
return Ok(());
}
}
// If we reached this far then all dependencies are up to date. Check
// all our `LocalFingerprint` information to see if we have any stale
// files for this package itself. If we do find something log a helpful
// message and bail out so we stay stale.
for local in self.local.get_mut().unwrap().iter() {
if let Some(item) = local.find_stale_item(
mtime_cache,
checksum_cache,
pkg_root,
target_root,
cargo_exe,
gctx,
)? {
item.log();
self.fs_status = FsStatus::StaleItem(item);
return Ok(());
}
}
// Everything was up to date! Record such.
self.fs_status = FsStatus::UpToDate { mtimes };
debug!("filesystem up-to-date {:?}", pkg_root);
Ok(())
}
}
impl hash::Hash for Fingerprint {
fn hash<H: Hasher>(&self, h: &mut H) {
let Fingerprint {
rustc,
ref features,
ref declared_features,
target,
path,
profile,
ref deps,
ref local,
metadata,
config,
compile_kind,
ref rustflags,
..
} = *self;
let local = local.lock().unwrap();
(
rustc,
features,
declared_features,
target,
path,
profile,
&*local,
metadata,
config,
compile_kind,
rustflags,
)
.hash(h);
h.write_usize(deps.len());
for DepFingerprint {
pkg_id,
name,
public,
fingerprint,
only_requires_rmeta: _, // static property, no need to hash
} in deps
{
pkg_id.hash(h);
name.hash(h);
public.hash(h);
// use memoized dep hashes to avoid exponential blowup
h.write_u64(fingerprint.hash_u64());
}
}
}
impl DepFingerprint {
fn new(
build_runner: &mut BuildRunner<'_, '_>,
parent: &Unit,
dep: &UnitDep,
) -> CargoResult<DepFingerprint> {
let fingerprint = calculate(build_runner, &dep.unit)?;
// We need to be careful about what we hash here. We have a goal of
// supporting renaming a project directory and not rebuilding
// everything. To do that, however, we need to make sure that the cwd
// doesn't make its way into any hashes, and one source of that is the
// `SourceId` for `path` packages.
//
// We already have a requirement that `path` packages all have unique
// names (sort of for this same reason), so if the package source is a
// `path` then we just hash the name, but otherwise we hash the full
// id as it won't change when the directory is renamed.
let pkg_id = if dep.unit.pkg.package_id().source_id().is_path() {
util::hash_u64(dep.unit.pkg.package_id().name())
} else {
util::hash_u64(dep.unit.pkg.package_id())
};
Ok(DepFingerprint {
pkg_id,
name: dep.extern_crate_name,
public: dep.public,
fingerprint,
only_requires_rmeta: build_runner.only_requires_rmeta(parent, &dep.unit),
})
}
}
impl StaleItem {
/// Use the `log` crate to log a hopefully helpful message in diagnosing
/// what file is considered stale and why. This is intended to be used in
/// conjunction with `CARGO_LOG` to determine why Cargo is recompiling
/// something. Currently there's no user-facing usage of this other than
/// that.
fn log(&self) {
match self {
StaleItem::MissingFile(path) => {
info!("stale: missing {:?}", path);
}
StaleItem::UnableToReadFile(path) => {
info!("stale: unable to read {:?}", path);
}
StaleItem::FailedToReadMetadata(path) => {
info!("stale: couldn't read metadata {:?}", path);
}
StaleItem::ChangedFile {
reference,
reference_mtime,
stale,
stale_mtime,
} => {
info!("stale: changed {:?}", stale);
info!(" (vs) {:?}", reference);
info!(" {:?} < {:?}", reference_mtime, stale_mtime);
}
StaleItem::FileSizeChanged {
path,
new_size,
old_size,
} => {
info!("stale: changed {:?}", path);
info!("prior file size {old_size}");
info!(" new file size {new_size}");
}
StaleItem::ChangedChecksum {
source,
stored_checksum,
new_checksum,
} => {
info!("stale: changed {:?}", source);
info!("prior checksum {stored_checksum}");
info!(" new checksum {new_checksum}");
}
StaleItem::MissingChecksum(path) => {
info!("stale: no prior checksum {:?}", path);
}
StaleItem::ChangedEnv {
var,
previous,
current,
} => {
info!("stale: changed env {:?}", var);
info!(" {:?} != {:?}", previous, current);
}
}
}
}
/// Calculates the fingerprint for a [`Unit`].
///
/// This fingerprint is used by Cargo to learn about when information such as:
///
/// * A non-path package changes (changes version, changes revision, etc).
/// * Any dependency changes
/// * The compiler changes
/// * The set of features a package is built with changes
/// * The profile a target is compiled with changes (e.g., opt-level changes)
/// * Any other compiler flags change that will affect the result
///
/// Information like file modification time is only calculated for path
/// dependencies.
fn calculate(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> CargoResult<Arc<Fingerprint>> {
// This function is slammed quite a lot, so the result is memoized.
if let Some(s) = build_runner.fingerprints.get(unit) {
return Ok(Arc::clone(s));
}
let mut fingerprint = if unit.mode.is_run_custom_build() {
calculate_run_custom_build(build_runner, unit)?
} else if unit.mode.is_doc_test() {
panic!("doc tests do not fingerprint");
} else {
calculate_normal(build_runner, unit)?
};
// After we built the initial `Fingerprint` be sure to update the
// `fs_status` field of it.
let target_root = target_root(build_runner);
let cargo_exe = build_runner.bcx.gctx.cargo_exe()?;
fingerprint.check_filesystem(
&mut build_runner.mtime_cache,
&mut build_runner.checksum_cache,
unit.pkg.root(),
&target_root,
cargo_exe,
build_runner.bcx.gctx,
)?;
let fingerprint = Arc::new(fingerprint);
build_runner
.fingerprints
.insert(unit.clone(), Arc::clone(&fingerprint));
Ok(fingerprint)
}
/// Calculate a fingerprint for a "normal" unit, or anything that's not a build
/// script. This is an internal helper of [`calculate`], don't call directly.
fn calculate_normal(
build_runner: &mut BuildRunner<'_, '_>,
unit: &Unit,
) -> CargoResult<Fingerprint> {
let deps = {
// Recursively calculate the fingerprint for all of our dependencies.
//
// Skip fingerprints of binaries because they don't actually induce a
// recompile, they're just dependencies in the sense that they need to be
// built. The only exception here are artifact dependencies,
// which is an actual dependency that needs a recompile.
//
// Create Vec since mutable build_runner is needed in closure.
let deps = Vec::from(build_runner.unit_deps(unit));
let mut deps = deps
.into_iter()
.filter(|dep| !dep.unit.target.is_bin() || dep.unit.artifact.is_true())
.map(|dep| DepFingerprint::new(build_runner, unit, &dep))
.collect::<CargoResult<Vec<_>>>()?;
deps.sort_by(|a, b| a.pkg_id.cmp(&b.pkg_id));
deps
};
// Afterwards calculate our own fingerprint information.
let target_root = target_root(build_runner);
let local = if unit.mode.is_doc() || unit.mode.is_doc_scrape() {
// rustdoc does not have dep-info files.
let fingerprint = pkg_fingerprint(build_runner.bcx, &unit.pkg).with_context(|| {
format!(
"failed to determine package fingerprint for documenting {}",
unit.pkg
)
})?;
vec![LocalFingerprint::Precalculated(fingerprint)]
} else {
let dep_info = dep_info_loc(build_runner, unit);
let dep_info = dep_info.strip_prefix(&target_root).unwrap().to_path_buf();
vec![LocalFingerprint::CheckDepInfo {
dep_info,
checksum: build_runner.bcx.gctx.cli_unstable().checksum_freshness,
}]
};
// Figure out what the outputs of our unit is, and we'll be storing them
// into the fingerprint as well.
let outputs = build_runner
.outputs(unit)?
.iter()
.filter(|output| !matches!(output.flavor, FileFlavor::DebugInfo | FileFlavor::Auxiliary))
.map(|output| output.path.clone())
.collect();
// Fill out a bunch more information that we'll be tracking typically
// hashed to take up less space on disk as we just need to know when things
// change.
let extra_flags = if unit.mode.is_doc() || unit.mode.is_doc_scrape() {
&unit.rustdocflags
} else {
&unit.rustflags
}
.to_vec();
let profile_hash = util::hash_u64((
&unit.profile,
unit.mode,
build_runner.bcx.extra_args_for(unit),
build_runner.lto[unit],
unit.pkg.manifest().lint_rustflags(),
));
// Include metadata since it is exposed as environment variables.
let m = unit.pkg.manifest().metadata();
let metadata = util::hash_u64((&m.authors, &m.description, &m.homepage, &m.repository));
let mut config = StableHasher::new();
if let Some(linker) = build_runner.compilation.target_linker(unit.kind) {
linker.hash(&mut config);
}
if unit.mode.is_doc() && build_runner.bcx.gctx.cli_unstable().rustdoc_map {
if let Ok(map) = build_runner.bcx.gctx.doc_extern_map() {
map.hash(&mut config);
}
}
if let Some(allow_features) = &build_runner.bcx.gctx.cli_unstable().allow_features {
allow_features.hash(&mut config);
}
let compile_kind = unit.kind.fingerprint_hash();
let mut declared_features = unit.pkg.summary().features().keys().collect::<Vec<_>>();
declared_features.sort(); // to avoid useless rebuild if the user orders it's features
// differently
Ok(Fingerprint {
rustc: util::hash_u64(&build_runner.bcx.rustc().verbose_version),
target: util::hash_u64(&unit.target),
profile: profile_hash,
// Note that .0 is hashed here, not .1 which is the cwd. That doesn't
// actually affect the output artifact so there's no need to hash it.
path: util::hash_u64(path_args(build_runner.bcx.ws, unit).0),
features: format!("{:?}", unit.features),
declared_features: format!("{declared_features:?}"),
deps,
local: Mutex::new(local),
memoized_hash: Mutex::new(None),
metadata,
config: config.finish(),
compile_kind,
rustflags: extra_flags,
fs_status: FsStatus::Stale,
outputs,
})
}
/// Calculate a fingerprint for an "execute a build script" unit. This is an
/// internal helper of [`calculate`], don't call directly.
fn calculate_run_custom_build(
build_runner: &mut BuildRunner<'_, '_>,
unit: &Unit,
) -> CargoResult<Fingerprint> {
assert!(unit.mode.is_run_custom_build());
// Using the `BuildDeps` information we'll have previously parsed and
// inserted into `build_explicit_deps` built an initial snapshot of the
// `LocalFingerprint` list for this build script. If we previously executed
// the build script this means we'll be watching files and env vars.
// Otherwise if we haven't previously executed it we'll just start watching
// the whole crate.
let (gen_local, overridden) = build_script_local_fingerprints(build_runner, unit);
let deps = &build_runner.build_explicit_deps[unit];
let local = (gen_local)(
deps,
Some(&|| {
const IO_ERR_MESSAGE: &str = "\
An I/O error happened. Please make sure you can access the file.
By default, if your project contains a build script, cargo scans all files in
it to determine whether a rebuild is needed. If you don't expect to access the
file, specify `rerun-if-changed` in your build script.
See https://doc.rust-lang.org/cargo/reference/build-scripts.html#rerun-if-changed for more information.";
pkg_fingerprint(build_runner.bcx, &unit.pkg).map_err(|err| {
let mut message = format!("failed to determine package fingerprint for build script for {}", unit.pkg);
if err.root_cause().is::<io::Error>() {
message = format!("{}\n{}", message, IO_ERR_MESSAGE)
}
err.context(message)
})
}),
)?
.unwrap();
let output = deps.build_script_output.clone();
// Include any dependencies of our execution, which is typically just the
// compilation of the build script itself. (if the build script changes we
// should be rerun!). Note though that if we're an overridden build script
// we have no dependencies so no need to recurse in that case.
let deps = if overridden {
// Overridden build scripts don't need to track deps.
vec![]
} else {
// Create Vec since mutable build_runner is needed in closure.
let deps = Vec::from(build_runner.unit_deps(unit));
deps.into_iter()
.map(|dep| DepFingerprint::new(build_runner, unit, &dep))
.collect::<CargoResult<Vec<_>>>()?
};
let rustflags = unit.rustflags.to_vec();
Ok(Fingerprint {
local: Mutex::new(local),
rustc: util::hash_u64(&build_runner.bcx.rustc().verbose_version),
deps,
outputs: if overridden { Vec::new() } else { vec![output] },
rustflags,
// Most of the other info is blank here as we don't really include it
// in the execution of the build script, but... this may be a latent
// bug in Cargo.
..Fingerprint::new()
})
}
/// Get ready to compute the [`LocalFingerprint`] values
/// for a [`RunCustomBuild`] unit.
///
/// This function has, what's on the surface, a seriously wonky interface.
/// You'll call this function and it'll return a closure and a boolean. The
/// boolean is pretty simple in that it indicates whether the `unit` has been
/// overridden via `.cargo/config.toml`. The closure is much more complicated.
///
/// This closure is intended to capture any local state necessary to compute
/// the `LocalFingerprint` values for this unit. It is `Send` and `'static` to
/// be sent to other threads as well (such as when we're executing build
/// scripts). That deduplication is the rationale for the closure at least.
///
/// The arguments to the closure are a bit weirder, though, and I'll apologize
/// in advance for the weirdness too. The first argument to the closure is a
/// `&BuildDeps`. This is the parsed version of a build script, and when Cargo
/// starts up this is cached from previous runs of a build script. After a
/// build script executes the output file is reparsed and passed in here.
///
/// The second argument is the weirdest, it's *optionally* a closure to
/// call [`pkg_fingerprint`]. The `pkg_fingerprint` requires access to
/// "source map" located in `Context`. That's very non-`'static` and
/// non-`Send`, so it can't be used on other threads, such as when we invoke
/// this after a build script has finished. The `Option` allows us to for sure
/// calculate it on the main thread at the beginning, and then swallow the bug
/// for now where a worker thread after a build script has finished doesn't
/// have access. Ideally there would be no second argument or it would be more
/// "first class" and not an `Option` but something that can be sent between
/// threads. In any case, it's a bug for now.
///
/// This isn't the greatest of interfaces, and if there's suggestions to
/// improve please do so!
///
/// FIXME(#6779) - see all the words above
///
/// [`RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
fn build_script_local_fingerprints(
build_runner: &mut BuildRunner<'_, '_>,
unit: &Unit,
) -> (
Box<
dyn FnOnce(
&BuildDeps,
Option<&dyn Fn() -> CargoResult<String>>,
) -> CargoResult<Option<Vec<LocalFingerprint>>>
+ Send,
>,
bool,
) {
assert!(unit.mode.is_run_custom_build());
// First up, if this build script is entirely overridden, then we just
// return the hash of what we overrode it with. This is the easy case!
if let Some(fingerprint) = build_script_override_fingerprint(build_runner, unit) {
debug!("override local fingerprints deps {}", unit.pkg);
return (
Box::new(
move |_: &BuildDeps, _: Option<&dyn Fn() -> CargoResult<String>>| {
Ok(Some(vec![fingerprint]))
},
),
true, // this is an overridden build script
);
}
// ... Otherwise this is a "real" build script and we need to return a real
// closure. Our returned closure classifies the build script based on
// whether it prints `rerun-if-*`. If it *doesn't* print this it's where the
// magical second argument comes into play, which fingerprints a whole
// package. Remember that the fact that this is an `Option` is a bug, but a
// longstanding bug, in Cargo. Recent refactorings just made it painfully
// obvious.
let pkg_root = unit.pkg.root().to_path_buf();
let target_dir = target_root(build_runner);
let calculate =
move |deps: &BuildDeps, pkg_fingerprint: Option<&dyn Fn() -> CargoResult<String>>| {
if deps.rerun_if_changed.is_empty() && deps.rerun_if_env_changed.is_empty() {
match pkg_fingerprint {
// FIXME: this is somewhat buggy with respect to docker and
// weird filesystems. The `Precalculated` variant
// constructed below will, for `path` dependencies, contain
// a stringified version of the mtime for the local crate.
// This violates one of the things we describe in this
// module's doc comment, never hashing mtimes. We should
// figure out a better scheme where a package fingerprint
// may be a string (like for a registry) or a list of files
// (like for a path dependency). Those list of files would
// be stored here rather than the mtime of them.
Some(f) => {
let s = f()?;
debug!(
"old local fingerprints deps {:?} precalculated={:?}",
pkg_root, s
);
return Ok(Some(vec![LocalFingerprint::Precalculated(s)]));
}
None => return Ok(None),
}
}
// Ok so now we're in "new mode" where we can have files listed as
// dependencies as well as env vars listed as dependencies. Process
// them all here.
Ok(Some(local_fingerprints_deps(deps, &target_dir, &pkg_root)))
};
// Note that `false` == "not overridden"
(Box::new(calculate), false)
}
/// Create a [`LocalFingerprint`] for an overridden build script.
/// Returns None if it is not overridden.
fn build_script_override_fingerprint(
build_runner: &mut BuildRunner<'_, '_>,
unit: &Unit,
) -> Option<LocalFingerprint> {
// Build script output is only populated at this stage when it is
// overridden.
let build_script_outputs = build_runner.build_script_outputs.lock().unwrap();
let metadata = build_runner.get_run_build_script_metadata(unit);
// Returns None if it is not overridden.
let output = build_script_outputs.get(metadata)?;
let s = format!(
"overridden build state with hash: {}",
util::hash_u64(output)
);
Some(LocalFingerprint::Precalculated(s))
}
/// Compute the [`LocalFingerprint`] values for a [`RunCustomBuild`] unit for
/// non-overridden new-style build scripts only. This is only used when `deps`
/// is already known to have a nonempty `rerun-if-*` somewhere.
///
/// [`RunCustomBuild`]: crate::core::compiler::CompileMode::RunCustomBuild
fn local_fingerprints_deps(
deps: &BuildDeps,
target_root: &Path,
pkg_root: &Path,
) -> Vec<LocalFingerprint> {
debug!("new local fingerprints deps {:?}", pkg_root);
let mut local = Vec::new();
if !deps.rerun_if_changed.is_empty() {
// Note that like the module comment above says we are careful to never
// store an absolute path in `LocalFingerprint`, so ensure that we strip
// absolute prefixes from them.
let output = deps
.build_script_output
.strip_prefix(target_root)
.unwrap()
.to_path_buf();
let paths = deps
.rerun_if_changed
.iter()
.map(|p| p.strip_prefix(pkg_root).unwrap_or(p).to_path_buf())
.collect();
local.push(LocalFingerprint::RerunIfChanged { output, paths });
}
local.extend(
deps.rerun_if_env_changed
.iter()
.map(LocalFingerprint::from_env),
);
local
}
/// Writes the short fingerprint hash value to `<loc>`
/// and logs detailed JSON information to `<loc>.json`.
fn write_fingerprint(loc: &Path, fingerprint: &Fingerprint) -> CargoResult<()> {
debug_assert_ne!(fingerprint.rustc, 0);
// fingerprint::new().rustc == 0, make sure it doesn't make it to the file system.
// This is mostly so outside tools can reliably find out what rust version this file is for,
// as we can use the full hash.
let hash = fingerprint.hash_u64();
debug!("write fingerprint ({:x}) : {}", hash, loc.display());
paths::write(loc, util::to_hex(hash).as_bytes())?;
let json = serde_json::to_string(fingerprint).unwrap();
if cfg!(debug_assertions) {
let f: Fingerprint = serde_json::from_str(&json).unwrap();
assert_eq!(f.hash_u64(), hash);
}
paths::write(&loc.with_extension("json"), json.as_bytes())?;
Ok(())
}
/// Prepare for work when a package starts to build
pub fn prepare_init(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> CargoResult<()> {
let new1 = build_runner.files().fingerprint_dir(unit);
// Doc tests have no output, thus no fingerprint.
if !new1.exists() && !unit.mode.is_doc_test() {
paths::create_dir_all(&new1)?;
}
Ok(())
}
/// Returns the location that the dep-info file will show up at
/// for the [`Unit`] specified.
pub fn dep_info_loc(build_runner: &mut BuildRunner<'_, '_>, unit: &Unit) -> PathBuf {
build_runner.files().fingerprint_file_path(unit, "dep-")
}
/// Returns an absolute path that target directory.
/// All paths are rewritten to be relative to this.
fn target_root(build_runner: &BuildRunner<'_, '_>) -> PathBuf {
build_runner.bcx.ws.target_dir().into_path_unlocked()
}
/// Reads the value from the old fingerprint hash file and compare.
///
/// If dirty, it then restores the detailed information
/// from the fingerprint JSON file, and provides an rich dirty reason.
fn compare_old_fingerprint(
unit: &Unit,
old_hash_path: &Path,
new_fingerprint: &Fingerprint,
mtime_on_use: bool,
forced: bool,
) -> Option<DirtyReason> {
if mtime_on_use {
// update the mtime so other cleaners know we used it
let t = FileTime::from_system_time(SystemTime::now());
debug!("mtime-on-use forcing {:?} to {}", old_hash_path, t);
paths::set_file_time_no_err(old_hash_path, t);
}
let compare = _compare_old_fingerprint(old_hash_path, new_fingerprint);
match compare.as_ref() {
Ok(None) => {}
Ok(Some(reason)) => {
info!(
"fingerprint dirty for {}/{:?}/{:?}",
unit.pkg, unit.mode, unit.target,
);
info!(" dirty: {reason:?}");
}
Err(e) => {
info!(
"fingerprint error for {}/{:?}/{:?}",
unit.pkg, unit.mode, unit.target,
);
info!(" err: {e:?}");
}
}
match compare {
Ok(None) if forced => Some(DirtyReason::Forced),
Ok(reason) => reason,
Err(_) => Some(DirtyReason::FreshBuild),
}
}
fn _compare_old_fingerprint(
old_hash_path: &Path,
new_fingerprint: &Fingerprint,
) -> CargoResult<Option<DirtyReason>> {
let old_fingerprint_short = paths::read(old_hash_path)?;
let new_hash = new_fingerprint.hash_u64();
if util::to_hex(new_hash) == old_fingerprint_short && new_fingerprint.fs_status.up_to_date() {
return Ok(None);
}
let old_fingerprint_json = paths::read(&old_hash_path.with_extension("json"))?;
let old_fingerprint: Fingerprint = serde_json::from_str(&old_fingerprint_json)
.with_context(|| internal("failed to deserialize json"))?;
// Fingerprint can be empty after a failed rebuild (see comment in prepare_target).
if !old_fingerprint_short.is_empty() {
debug_assert_eq!(
util::to_hex(old_fingerprint.hash_u64()),
old_fingerprint_short
);
}
Ok(Some(new_fingerprint.compare(&old_fingerprint)))
}
/// Parses Cargo's internal [`EncodedDepInfo`] structure that was previously
/// serialized to disk.
///
/// Note that this is not rustc's `*.d` files.
///
/// Also note that rustc's `*.d` files are translated to Cargo-specific
/// `EncodedDepInfo` files after compilations have finished in
/// [`translate_dep_info`].
///
/// Returns `None` if the file is corrupt or couldn't be read from disk. This
/// indicates that the crate should likely be rebuilt.
pub fn parse_dep_info(
pkg_root: &Path,
target_root: &Path,
dep_info: &Path,
) -> CargoResult<Option<RustcDepInfo>> {
let Ok(data) = paths::read_bytes(dep_info) else {
return Ok(None);
};
let Some(info) = EncodedDepInfo::parse(&data) else {
tracing::warn!("failed to parse cargo's dep-info at {:?}", dep_info);
return Ok(None);
};
let mut ret = RustcDepInfo::default();
ret.env = info.env;
ret.files
.extend(info.files.into_iter().map(|(ty, path, checksum_info)| {
(
make_absolute_path(ty, pkg_root, target_root, path),
checksum_info.and_then(|(file_len, checksum)| {
Checksum::from_str(&checksum).ok().map(|c| (file_len, c))
}),
)
}));
Ok(Some(ret))
}
fn make_absolute_path(
ty: DepInfoPathType,
pkg_root: &Path,
target_root: &Path,
path: PathBuf,
) -> PathBuf {
match ty {
DepInfoPathType::PackageRootRelative => pkg_root.join(path),
// N.B. path might be absolute here in which case the join will have no effect
DepInfoPathType::TargetRootRelative => target_root.join(path),
}
}
/// Calculates the fingerprint of a unit thats contains no dep-info files.
fn pkg_fingerprint(bcx: &BuildContext<'_, '_>, pkg: &Package) -> CargoResult<String> {
let source_id = pkg.package_id().source_id();
let sources = bcx.packages.sources();
let source = sources
.get(source_id)
.ok_or_else(|| internal("missing package source"))?;
source.fingerprint(pkg)
}
/// The `reference` file is considered as "stale" if any file from `paths` has a newer mtime.
fn find_stale_file<I, P>(
mtime_cache: &mut HashMap<PathBuf, FileTime>,
checksum_cache: &mut HashMap<PathBuf, Checksum>,
reference: &Path,
paths: I,
use_checksums: bool,
) -> Option<StaleItem>
where
I: IntoIterator<Item = (P, Option<(u64, Checksum)>)>,
P: AsRef<Path>,
{
let Ok(reference_mtime) = paths::mtime(reference) else {
return Some(StaleItem::MissingFile(reference.to_path_buf()));
};
let skipable_dirs = if let Ok(cargo_home) = home::cargo_home() {
let skipable_dirs: Vec<_> = ["git", "registry"]
.into_iter()
.map(|subfolder| cargo_home.join(subfolder))
.collect();
Some(skipable_dirs)
} else {
None
};
for (path, prior_checksum) in paths {
let path = path.as_ref();
// Assuming anything in cargo_home/{git, registry} is immutable
// (see also #9455 about marking the src directory readonly) which avoids rebuilds when CI
// caches $CARGO_HOME/registry/{index, cache} and $CARGO_HOME/git/db across runs, keeping
// the content the same but changing the mtime.
if let Some(ref skipable_dirs) = skipable_dirs {
if skipable_dirs.iter().any(|dir| path.starts_with(dir)) {
continue;
}
}
if use_checksums {
let Some((file_len, prior_checksum)) = prior_checksum else {
return Some(StaleItem::MissingChecksum(path.to_path_buf()));
};
let path_buf = path.to_path_buf();
let path_checksum = match checksum_cache.entry(path_buf) {
Entry::Occupied(o) => *o.get(),
Entry::Vacant(v) => {
let Ok(current_file_len) = fs::metadata(&path).map(|m| m.len()) else {
return Some(StaleItem::FailedToReadMetadata(path.to_path_buf()));
};
let Ok(file) = File::open(path) else {
return Some(StaleItem::MissingFile(path.to_path_buf()));
};
if current_file_len != file_len {
return Some(StaleItem::FileSizeChanged {
path: path.to_path_buf(),
new_size: current_file_len,
old_size: file_len,
});
}
let Ok(checksum) = Checksum::compute(prior_checksum.algo, file) else {
return Some(StaleItem::UnableToReadFile(path.to_path_buf()));
};
*v.insert(checksum)
}
};
if path_checksum == prior_checksum {
continue;
}
return Some(StaleItem::ChangedChecksum {
source: path.to_path_buf(),
stored_checksum: prior_checksum,
new_checksum: path_checksum,
});
} else {
let path_mtime = match mtime_cache.entry(path.to_path_buf()) {
Entry::Occupied(o) => *o.get(),
Entry::Vacant(v) => {
let Ok(mtime) = paths::mtime_recursive(path) else {
return Some(StaleItem::MissingFile(path.to_path_buf()));
};
*v.insert(mtime)
}
};
// TODO: fix #5918.
// Note that equal mtimes should be considered "stale". For filesystems with
// not much timestamp precision like 1s this is would be a conservative approximation
// to handle the case where a file is modified within the same second after
// a build starts. We want to make sure that incremental rebuilds pick that up!
//
// For filesystems with nanosecond precision it's been seen in the wild that
// its "nanosecond precision" isn't really nanosecond-accurate. It turns out that
// kernels may cache the current time so files created at different times actually
// list the same nanosecond precision. Some digging on #5919 picked up that the
// kernel caches the current time between timer ticks, which could mean that if
// a file is updated at most 10ms after a build starts then Cargo may not
// pick up the build changes.
//
// All in all, an equality check here would be a conservative assumption that,
// if equal, files were changed just after a previous build finished.
// Unfortunately this became problematic when (in #6484) cargo switch to more accurately
// measuring the start time of builds.
if path_mtime <= reference_mtime {
continue;
}
return Some(StaleItem::ChangedFile {
reference: reference.to_path_buf(),
reference_mtime,
stale: path.to_path_buf(),
stale_mtime: path_mtime,
});
}
}
debug!(
"all paths up-to-date relative to {:?} mtime={}",
reference, reference_mtime
);
None
}
/// Tells the associated path in [`EncodedDepInfo::files`] is relative to package root,
/// target root, or absolute.
#[derive(Debug, Eq, PartialEq, Hash, Copy, Clone)]
enum DepInfoPathType {
/// src/, e.g. src/lib.rs
PackageRootRelative,
/// target/debug/deps/lib...
/// or an absolute path /.../sysroot/...
TargetRootRelative,
}
/// Parses the dep-info file coming out of rustc into a Cargo-specific format.
///
/// This function will parse `rustc_dep_info` as a makefile-style dep info to
/// learn about the all files which a crate depends on. This is then
/// re-serialized into the `cargo_dep_info` path in a Cargo-specific format.
///
/// The `pkg_root` argument here is the absolute path to the directory
/// containing `Cargo.toml` for this crate that was compiled. The paths listed
/// in the rustc dep-info file may or may not be absolute but we'll want to
/// consider all of them relative to the `root` specified.
///
/// The `rustc_cwd` argument is the absolute path to the cwd of the compiler
/// when it was invoked.
///
/// If the `allow_package` argument is true, then package-relative paths are
/// included. If it is false, then package-relative paths are skipped and
/// ignored (typically used for registry or git dependencies where we assume
/// the source never changes, and we don't want the cost of running `stat` on
/// all those files). See the module-level docs for the note about
/// `-Zbinary-dep-depinfo` for more details on why this is done.
///
/// The serialized Cargo format will contain a list of files, all of which are
/// relative if they're under `root`. or absolute if they're elsewhere.
pub fn translate_dep_info(
rustc_dep_info: &Path,
cargo_dep_info: &Path,
rustc_cwd: &Path,
pkg_root: &Path,
target_root: &Path,
rustc_cmd: &ProcessBuilder,
allow_package: bool,
) -> CargoResult<()> {
let depinfo = parse_rustc_dep_info(rustc_dep_info)?;
let target_root = try_canonicalize(target_root)?;
let pkg_root = try_canonicalize(pkg_root)?;
let mut on_disk_info = EncodedDepInfo::default();
on_disk_info.env = depinfo.env;
// This is a bit of a tricky statement, but here we're *removing* the
// dependency on environment variables that were defined specifically for
// the command itself. Environment variables returned by `get_envs` includes
// environment variables like:
//
// * `OUT_DIR` if applicable
// * env vars added by a build script, if any
//
// The general idea here is that the dep info file tells us what, when
// changed, should cause us to rebuild the crate. These environment
// variables are synthesized by Cargo and/or the build script, and the
// intention is that their values are tracked elsewhere for whether the
// crate needs to be rebuilt.
//
// For example a build script says when it needs to be rerun and otherwise
// it's assumed to produce the same output, so we're guaranteed that env
// vars defined by the build script will always be the same unless the build
// script itself reruns, in which case the crate will rerun anyway.
//
// For things like `OUT_DIR` it's a bit sketchy for now. Most of the time
// that's used for code generation but this is technically buggy where if
// you write a binary that does `println!("{}", env!("OUT_DIR"))` we won't
// recompile that if you move the target directory. Hopefully that's not too
// bad of an issue for now...
//
// This also includes `CARGO` since if the code is explicitly wanting to
// know that path, it should be rebuilt if it changes. The CARGO path is
// not tracked elsewhere in the fingerprint.
on_disk_info
.env
.retain(|(key, _)| !rustc_cmd.get_envs().contains_key(key) || key == CARGO_ENV);
let serialize_path = |file| {
// The path may be absolute or relative, canonical or not. Make sure
// it is canonicalized so we are comparing the same kinds of paths.
let abs_file = rustc_cwd.join(file);
// If canonicalization fails, just use the abs path. There is currently
// a bug where --remap-path-prefix is affecting .d files, causing them
// to point to non-existent paths.
let canon_file = try_canonicalize(&abs_file).unwrap_or_else(|_| abs_file.clone());
let (ty, path) = if let Ok(stripped) = canon_file.strip_prefix(&target_root) {
(DepInfoPathType::TargetRootRelative, stripped)
} else if let Ok(stripped) = canon_file.strip_prefix(&pkg_root) {
if !allow_package {
return None;
}
(DepInfoPathType::PackageRootRelative, stripped)
} else {
// It's definitely not target root relative, but this is an absolute path (since it was
// joined to rustc_cwd) and as such re-joining it later to the target root will have no
// effect.
(DepInfoPathType::TargetRootRelative, &*abs_file)
};
Some((ty, path.to_owned()))
};
for (file, checksum_info) in depinfo.files {
let Some((path_type, path)) = serialize_path(file) else {
continue;
};
on_disk_info.files.push((
path_type,
path,
checksum_info.map(|(len, checksum)| (len, checksum.to_string())),
));
}
paths::write(cargo_dep_info, on_disk_info.serialize()?)?;
Ok(())
}
/// The representation of the `.d` dep-info file generated by rustc
#[derive(Default)]
pub struct RustcDepInfo {
/// The list of files that the main target in the dep-info file depends on.
pub files: HashMap<PathBuf, Option<(u64, Checksum)>>,
/// The list of environment variables we found that the rustc compilation
/// depends on.
///
/// The first element of the pair is the name of the env var and the second
/// item is the value. `Some` means that the env var was set, and `None`
/// means that the env var wasn't actually set and the compilation depends
/// on it not being set.
pub env: Vec<(String, Option<String>)>,
}
/// Same as [`RustcDepInfo`] except avoids absolute paths as much as possible to
/// allow moving around the target directory.
///
/// This is also stored in an optimized format to make parsing it fast because
/// Cargo will read it for crates on all future compilations.
#[derive(Default)]
struct EncodedDepInfo {
files: Vec<(DepInfoPathType, PathBuf, Option<(u64, String)>)>,
env: Vec<(String, Option<String>)>,
}
impl EncodedDepInfo {
fn parse(mut bytes: &[u8]) -> Option<EncodedDepInfo> {
let bytes = &mut bytes;
let nfiles = read_usize(bytes)?;
let mut files = Vec::with_capacity(nfiles);
for _ in 0..nfiles {
let ty = match read_u8(bytes)? {
0 => DepInfoPathType::PackageRootRelative,
1 => DepInfoPathType::TargetRootRelative,
_ => return None,
};
let path_bytes = read_bytes(bytes)?;
let path = paths::bytes2path(path_bytes).ok()?;
let has_checksum = read_bool(bytes)?;
let checksum_info = has_checksum
.then(|| {
let file_len = read_u64(bytes);
let checksum_string = read_bytes(bytes)
.map(Vec::from)
.and_then(|v| String::from_utf8(v).ok());
file_len.zip(checksum_string)
})
.flatten();
files.push((ty, path, checksum_info));
}
let nenv = read_usize(bytes)?;
let mut env = Vec::with_capacity(nenv);
for _ in 0..nenv {
let key = str::from_utf8(read_bytes(bytes)?).ok()?.to_string();
let val = match read_u8(bytes)? {
0 => None,
1 => Some(str::from_utf8(read_bytes(bytes)?).ok()?.to_string()),
_ => return None,
};
env.push((key, val));
}
return Some(EncodedDepInfo { files, env });
fn read_usize(bytes: &mut &[u8]) -> Option<usize> {
let ret = bytes.get(..4)?;
*bytes = &bytes[4..];
Some(u32::from_le_bytes(ret.try_into().unwrap()) as usize)
}
fn read_u64(bytes: &mut &[u8]) -> Option<u64> {
let ret = bytes.get(..8)?;
*bytes = &bytes[8..];
Some(u64::from_le_bytes(ret.try_into().unwrap()))
}
fn read_bool(bytes: &mut &[u8]) -> Option<bool> {
read_u8(bytes).map(|b| b != 0)
}
fn read_u8(bytes: &mut &[u8]) -> Option<u8> {
let ret = *bytes.get(0)?;
*bytes = &bytes[1..];
Some(ret)
}
fn read_bytes<'a>(bytes: &mut &'a [u8]) -> Option<&'a [u8]> {
let n = read_usize(bytes)? as usize;
let ret = bytes.get(..n)?;
*bytes = &bytes[n..];
Some(ret)
}
}
fn serialize(&self) -> CargoResult<Vec<u8>> {
let mut ret = Vec::new();
let dst = &mut ret;
write_usize(dst, self.files.len());
for (ty, file, checksum_info) in self.files.iter() {
match ty {
DepInfoPathType::PackageRootRelative => dst.push(0),
DepInfoPathType::TargetRootRelative => dst.push(1),
}
write_bytes(dst, paths::path2bytes(file)?);
write_bool(dst, checksum_info.is_some());
if let Some((len, checksum)) = checksum_info {
write_u64(dst, *len);
write_bytes(dst, checksum);
}
}
write_usize(dst, self.env.len());
for (key, val) in self.env.iter() {
write_bytes(dst, key);
match val {
None => dst.push(0),
Some(val) => {
dst.push(1);
write_bytes(dst, val);
}
}
}
return Ok(ret);
fn write_bytes(dst: &mut Vec<u8>, val: impl AsRef<[u8]>) {
let val = val.as_ref();
write_usize(dst, val.len());
dst.extend_from_slice(val);
}
fn write_usize(dst: &mut Vec<u8>, val: usize) {
dst.extend(&u32::to_le_bytes(val as u32));
}
fn write_u64(dst: &mut Vec<u8>, val: u64) {
dst.extend(&u64::to_le_bytes(val));
}
fn write_bool(dst: &mut Vec<u8>, val: bool) {
dst.push(u8::from(val));
}
}
}
/// Parse the `.d` dep-info file generated by rustc.
pub fn parse_rustc_dep_info(rustc_dep_info: &Path) -> CargoResult<RustcDepInfo> {
let contents = paths::read(rustc_dep_info)?;
let mut ret = RustcDepInfo::default();
let mut found_deps = false;
for line in contents.lines() {
if let Some(rest) = line.strip_prefix("# env-dep:") {
let mut parts = rest.splitn(2, '=');
let Some(env_var) = parts.next() else {
continue;
};
let env_val = match parts.next() {
Some(s) => Some(unescape_env(s)?),
None => None,
};
ret.env.push((unescape_env(env_var)?, env_val));
} else if let Some(pos) = line.find(": ") {
if found_deps {
continue;
}
found_deps = true;
let mut deps = line[pos + 2..].split_whitespace();
while let Some(s) = deps.next() {
let mut file = s.to_string();
while file.ends_with('\\') {
file.pop();
file.push(' ');
file.push_str(deps.next().ok_or_else(|| {
internal("malformed dep-info format, trailing \\".to_string())
})?);
}
ret.files.entry(file.into()).or_default();
}
} else if let Some(rest) = line.strip_prefix("# checksum:") {
let mut parts = rest.splitn(3, ' ');
let Some(checksum) = parts.next().map(Checksum::from_str).transpose()? else {
continue;
};
let Some(Ok(file_len)) = parts
.next()
.and_then(|s| s.strip_prefix("file_len:").map(|s| s.parse::<u64>()))
else {
continue;
};
let Some(path) = parts.next().map(PathBuf::from) else {
continue;
};
ret.files.insert(path, Some((file_len, checksum)));
}
}
return Ok(ret);
// rustc tries to fit env var names and values all on a single line, which
// means it needs to escape `\r` and `\n`. The escape syntax used is "\n"
// which means that `\` also needs to be escaped.
fn unescape_env(s: &str) -> CargoResult<String> {
let mut ret = String::with_capacity(s.len());
let mut chars = s.chars();
while let Some(c) = chars.next() {
if c != '\\' {
ret.push(c);
continue;
}
match chars.next() {
Some('\\') => ret.push('\\'),
Some('n') => ret.push('\n'),
Some('r') => ret.push('\r'),
Some(c) => bail!("unknown escape character `{}`", c),
None => bail!("unterminated escape character"),
}
}
Ok(ret)
}
}
/// Some algorithms are here to ensure compatibility with possible rustc outputs.
/// The presence of an algorithm here is not a suggestion that it's fit for use.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum ChecksumAlgo {
Sha256,
Blake3,
}
impl ChecksumAlgo {
fn hash_len(&self) -> usize {
match self {
ChecksumAlgo::Sha256 | ChecksumAlgo::Blake3 => 32,
}
}
}
impl FromStr for ChecksumAlgo {
type Err = InvalidChecksum;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"sha256" => Ok(Self::Sha256),
"blake3" => Ok(Self::Blake3),
_ => Err(InvalidChecksum::InvalidChecksumAlgo),
}
}
}
impl Display for ChecksumAlgo {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
ChecksumAlgo::Sha256 => "sha256",
ChecksumAlgo::Blake3 => "blake3",
})
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct Checksum {
algo: ChecksumAlgo,
/// If the algorithm uses fewer than 32 bytes, then the remaining bytes will be zero.
value: [u8; 32],
}
impl Checksum {
pub fn new(algo: ChecksumAlgo, value: [u8; 32]) -> Self {
Self { algo, value }
}
pub fn compute(algo: ChecksumAlgo, contents: impl Read) -> Result<Self, io::Error> {
// Buffer size is the recommended amount to fully leverage SIMD instructions on AVX-512 as per
// blake3 documentation.
let mut buf = vec![0; 16 * 1024];
let mut ret = Self {
algo,
value: [0; 32],
};
let len = algo.hash_len();
let value = &mut ret.value[..len];
fn digest<T>(
mut hasher: T,
mut update: impl FnMut(&mut T, &[u8]),
finish: impl FnOnce(T, &mut [u8]),
mut contents: impl Read,
buf: &mut [u8],
value: &mut [u8],
) -> Result<(), io::Error> {
loop {
let bytes_read = contents.read(buf)?;
if bytes_read == 0 {
break;
}
update(&mut hasher, &buf[0..bytes_read]);
}
finish(hasher, value);
Ok(())
}
match algo {
ChecksumAlgo::Sha256 => {
digest(
Sha256::new(),
|h, b| {
h.update(b);
},
|mut h, out| out.copy_from_slice(&h.finish()),
contents,
&mut buf,
value,
)?;
}
ChecksumAlgo::Blake3 => {
digest(
blake3::Hasher::new(),
|h, b| {
h.update(b);
},
|h, out| out.copy_from_slice(h.finalize().as_bytes()),
contents,
&mut buf,
value,
)?;
}
}
Ok(ret)
}
pub fn algo(&self) -> ChecksumAlgo {
self.algo
}
pub fn value(&self) -> &[u8; 32] {
&self.value
}
}
impl FromStr for Checksum {
type Err = InvalidChecksum;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut parts = s.split('=');
let Some(algo) = parts.next().map(ChecksumAlgo::from_str).transpose()? else {
return Err(InvalidChecksum::InvalidFormat);
};
let Some(checksum) = parts.next() else {
return Err(InvalidChecksum::InvalidFormat);
};
let mut value = [0; 32];
if hex::decode_to_slice(checksum, &mut value[0..algo.hash_len()]).is_err() {
return Err(InvalidChecksum::InvalidChecksum(algo));
}
Ok(Self { algo, value })
}
}
impl Display for Checksum {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let mut checksum = [0; 64];
let hash_len = self.algo.hash_len();
hex::encode_to_slice(&self.value[0..hash_len], &mut checksum[0..(hash_len * 2)])
.map_err(|_| fmt::Error)?;
write!(
f,
"{}={}",
self.algo,
from_utf8(&checksum[0..(hash_len * 2)]).unwrap_or_default()
)
}
}
#[derive(Debug, thiserror::Error)]
pub enum InvalidChecksum {
#[error("algorithm portion incorrect, expected `sha256`, or `blake3`")]
InvalidChecksumAlgo,
#[error("expected {} hexadecimal digits in checksum portion", .0.hash_len() * 2)]
InvalidChecksum(ChecksumAlgo),
#[error("expected a string with format \"algorithm=hex_checksum\"")]
InvalidFormat,
}