rustc_hir_typeck/fallback.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
use std::cell::OnceCell;
use rustc_data_structures::graph::iterate::DepthFirstSearch;
use rustc_data_structures::graph::vec_graph::VecGraph;
use rustc_data_structures::graph::{self};
use rustc_data_structures::unord::{UnordBag, UnordMap, UnordSet};
use rustc_hir as hir;
use rustc_hir::HirId;
use rustc_hir::intravisit::Visitor;
use rustc_infer::infer::{DefineOpaqueTypes, InferOk};
use rustc_middle::bug;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable};
use rustc_session::lint;
use rustc_span::def_id::LocalDefId;
use rustc_span::{DUMMY_SP, Span};
use rustc_trait_selection::traits::{ObligationCause, ObligationCtxt};
use tracing::debug;
use crate::{FnCtxt, TypeckRootCtxt, errors};
#[derive(Copy, Clone)]
pub(crate) enum DivergingFallbackBehavior {
/// Always fallback to `()` (aka "always spontaneous decay")
ToUnit,
/// Sometimes fallback to `!`, but mainly fallback to `()` so that most of the crates are not broken.
ContextDependent,
/// Always fallback to `!` (which should be equivalent to never falling back + not making
/// never-to-any coercions unless necessary)
ToNever,
/// Don't fallback at all
NoFallback,
}
impl<'tcx> FnCtxt<'_, 'tcx> {
/// Performs type inference fallback, setting `FnCtxt::fallback_has_occurred`
/// if fallback has occurred.
pub(super) fn type_inference_fallback(&self) {
debug!(
"type-inference-fallback start obligations: {:#?}",
self.fulfillment_cx.borrow_mut().pending_obligations()
);
// All type checking constraints were added, try to fallback unsolved variables.
self.select_obligations_where_possible(|_| {});
debug!(
"type-inference-fallback post selection obligations: {:#?}",
self.fulfillment_cx.borrow_mut().pending_obligations()
);
let fallback_occurred = self.fallback_types() | self.fallback_effects();
if !fallback_occurred {
return;
}
// We now see if we can make progress. This might cause us to
// unify inference variables for opaque types, since we may
// have unified some other type variables during the first
// phase of fallback. This means that we only replace
// inference variables with their underlying opaque types as a
// last resort.
//
// In code like this:
//
// ```rust
// type MyType = impl Copy;
// fn produce() -> MyType { true }
// fn bad_produce() -> MyType { panic!() }
// ```
//
// we want to unify the opaque inference variable in `bad_produce`
// with the diverging fallback for `panic!` (e.g. `()` or `!`).
// This will produce a nice error message about conflicting concrete
// types for `MyType`.
//
// If we had tried to fallback the opaque inference variable to `MyType`,
// we will generate a confusing type-check error that does not explicitly
// refer to opaque types.
self.select_obligations_where_possible(|_| {});
}
fn fallback_types(&self) -> bool {
// Check if we have any unresolved variables. If not, no need for fallback.
let unresolved_variables = self.unresolved_variables();
if unresolved_variables.is_empty() {
return false;
}
let diverging_fallback = self
.calculate_diverging_fallback(&unresolved_variables, self.diverging_fallback_behavior);
// We do fallback in two passes, to try to generate
// better error messages.
// The first time, we do *not* replace opaque types.
let mut fallback_occurred = false;
for ty in unresolved_variables {
debug!("unsolved_variable = {:?}", ty);
fallback_occurred |= self.fallback_if_possible(ty, &diverging_fallback);
}
fallback_occurred
}
fn fallback_effects(&self) -> bool {
let unsolved_effects = self.unsolved_effects();
if unsolved_effects.is_empty() {
return false;
}
// not setting the `fallback_has_occurred` field here because
// that field is only used for type fallback diagnostics.
for effect in unsolved_effects {
let expected = self.tcx.consts.true_;
let cause = self.misc(DUMMY_SP);
match self.at(&cause, self.param_env).eq(DefineOpaqueTypes::Yes, expected, effect) {
Ok(InferOk { obligations, value: () }) => {
self.register_predicates(obligations);
}
Err(e) => {
bug!("cannot eq unsolved effect: {e:?}")
}
}
}
true
}
// Tries to apply a fallback to `ty` if it is an unsolved variable.
//
// - Unconstrained ints are replaced with `i32`.
//
// - Unconstrained floats are replaced with `f64`.
//
// - Non-numerics may get replaced with `()` or `!`, depending on
// how they were categorized by `calculate_diverging_fallback`
// (and the setting of `#![feature(never_type_fallback)]`).
//
// Fallback becomes very dubious if we have encountered
// type-checking errors. In that case, fallback to Error.
//
// Sets `FnCtxt::fallback_has_occurred` if fallback is performed
// during this call.
fn fallback_if_possible(
&self,
ty: Ty<'tcx>,
diverging_fallback: &UnordMap<Ty<'tcx>, Ty<'tcx>>,
) -> bool {
// Careful: we do NOT shallow-resolve `ty`. We know that `ty`
// is an unsolved variable, and we determine its fallback
// based solely on how it was created, not what other type
// variables it may have been unified with since then.
//
// The reason this matters is that other attempts at fallback
// may (in principle) conflict with this fallback, and we wish
// to generate a type error in that case. (However, this
// actually isn't true right now, because we're only using the
// builtin fallback rules. This would be true if we were using
// user-supplied fallbacks. But it's still useful to write the
// code to detect bugs.)
//
// (Note though that if we have a general type variable `?T`
// that is then unified with an integer type variable `?I`
// that ultimately never gets resolved to a special integral
// type, `?T` is not considered unsolved, but `?I` is. The
// same is true for float variables.)
let fallback = match ty.kind() {
_ if let Some(e) = self.tainted_by_errors() => Ty::new_error(self.tcx, e),
ty::Infer(ty::IntVar(_)) => self.tcx.types.i32,
ty::Infer(ty::FloatVar(_)) => self.tcx.types.f64,
_ => match diverging_fallback.get(&ty) {
Some(&fallback_ty) => fallback_ty,
None => return false,
},
};
debug!("fallback_if_possible(ty={:?}): defaulting to `{:?}`", ty, fallback);
let span = ty.ty_vid().map_or(DUMMY_SP, |vid| self.infcx.type_var_origin(vid).span);
self.demand_eqtype(span, ty, fallback);
self.fallback_has_occurred.set(true);
true
}
/// The "diverging fallback" system is rather complicated. This is
/// a result of our need to balance 'do the right thing' with
/// backwards compatibility.
///
/// "Diverging" type variables are variables created when we
/// coerce a `!` type into an unbound type variable `?X`. If they
/// never wind up being constrained, the "right and natural" thing
/// is that `?X` should "fallback" to `!`. This means that e.g. an
/// expression like `Some(return)` will ultimately wind up with a
/// type like `Option<!>` (presuming it is not assigned or
/// constrained to have some other type).
///
/// However, the fallback used to be `()` (before the `!` type was
/// added). Moreover, there are cases where the `!` type 'leaks
/// out' from dead code into type variables that affect live
/// code. The most common case is something like this:
///
/// ```rust
/// # fn foo() -> i32 { 4 }
/// match foo() {
/// 22 => Default::default(), // call this type `?D`
/// _ => return, // return has type `!`
/// } // call the type of this match `?M`
/// ```
///
/// Here, coercing the type `!` into `?M` will create a diverging
/// type variable `?X` where `?X <: ?M`. We also have that `?D <:
/// ?M`. If `?M` winds up unconstrained, then `?X` will
/// fallback. If it falls back to `!`, then all the type variables
/// will wind up equal to `!` -- this includes the type `?D`
/// (since `!` doesn't implement `Default`, we wind up a "trait
/// not implemented" error in code like this). But since the
/// original fallback was `()`, this code used to compile with `?D
/// = ()`. This is somewhat surprising, since `Default::default()`
/// on its own would give an error because the types are
/// insufficiently constrained.
///
/// Our solution to this dilemma is to modify diverging variables
/// so that they can *either* fallback to `!` (the default) or to
/// `()` (the backwards compatibility case). We decide which
/// fallback to use based on whether there is a coercion pattern
/// like this:
///
/// ```ignore (not-rust)
/// ?Diverging -> ?V
/// ?NonDiverging -> ?V
/// ?V != ?NonDiverging
/// ```
///
/// Here `?Diverging` represents some diverging type variable and
/// `?NonDiverging` represents some non-diverging type
/// variable. `?V` can be any type variable (diverging or not), so
/// long as it is not equal to `?NonDiverging`.
///
/// Intuitively, what we are looking for is a case where a
/// "non-diverging" type variable (like `?M` in our example above)
/// is coerced *into* some variable `?V` that would otherwise
/// fallback to `!`. In that case, we make `?V` fallback to `!`,
/// along with anything that would flow into `?V`.
///
/// The algorithm we use:
/// * Identify all variables that are coerced *into* by a
/// diverging variable. Do this by iterating over each
/// diverging, unsolved variable and finding all variables
/// reachable from there. Call that set `D`.
/// * Walk over all unsolved, non-diverging variables, and find
/// any variable that has an edge into `D`.
fn calculate_diverging_fallback(
&self,
unresolved_variables: &[Ty<'tcx>],
behavior: DivergingFallbackBehavior,
) -> UnordMap<Ty<'tcx>, Ty<'tcx>> {
debug!("calculate_diverging_fallback({:?})", unresolved_variables);
// Construct a coercion graph where an edge `A -> B` indicates
// a type variable is that is coerced
let coercion_graph = self.create_coercion_graph();
// Extract the unsolved type inference variable vids; note that some
// unsolved variables are integer/float variables and are excluded.
let unsolved_vids = unresolved_variables.iter().filter_map(|ty| ty.ty_vid());
// Compute the diverging root vids D -- that is, the root vid of
// those type variables that (a) are the target of a coercion from
// a `!` type and (b) have not yet been solved.
//
// These variables are the ones that are targets for fallback to
// either `!` or `()`.
let diverging_roots: UnordSet<ty::TyVid> = self
.diverging_type_vars
.borrow()
.items()
.map(|&ty| self.shallow_resolve(ty))
.filter_map(|ty| ty.ty_vid())
.map(|vid| self.root_var(vid))
.collect();
debug!(
"calculate_diverging_fallback: diverging_type_vars={:?}",
self.diverging_type_vars.borrow()
);
debug!("calculate_diverging_fallback: diverging_roots={:?}", diverging_roots);
// Find all type variables that are reachable from a diverging
// type variable. These will typically default to `!`, unless
// we find later that they are *also* reachable from some
// other type variable outside this set.
let mut roots_reachable_from_diverging = DepthFirstSearch::new(&coercion_graph);
let mut diverging_vids = vec![];
let mut non_diverging_vids = vec![];
for unsolved_vid in unsolved_vids {
let root_vid = self.root_var(unsolved_vid);
debug!(
"calculate_diverging_fallback: unsolved_vid={:?} root_vid={:?} diverges={:?}",
unsolved_vid,
root_vid,
diverging_roots.contains(&root_vid),
);
if diverging_roots.contains(&root_vid) {
diverging_vids.push(unsolved_vid);
roots_reachable_from_diverging.push_start_node(root_vid);
debug!(
"calculate_diverging_fallback: root_vid={:?} reaches {:?}",
root_vid,
graph::depth_first_search(&coercion_graph, root_vid).collect::<Vec<_>>()
);
// drain the iterator to visit all nodes reachable from this node
roots_reachable_from_diverging.complete_search();
} else {
non_diverging_vids.push(unsolved_vid);
}
}
debug!(
"calculate_diverging_fallback: roots_reachable_from_diverging={:?}",
roots_reachable_from_diverging,
);
// Find all type variables N0 that are not reachable from a
// diverging variable, and then compute the set reachable from
// N0, which we call N. These are the *non-diverging* type
// variables. (Note that this set consists of "root variables".)
let mut roots_reachable_from_non_diverging = DepthFirstSearch::new(&coercion_graph);
for &non_diverging_vid in &non_diverging_vids {
let root_vid = self.root_var(non_diverging_vid);
if roots_reachable_from_diverging.visited(root_vid) {
continue;
}
roots_reachable_from_non_diverging.push_start_node(root_vid);
roots_reachable_from_non_diverging.complete_search();
}
debug!(
"calculate_diverging_fallback: roots_reachable_from_non_diverging={:?}",
roots_reachable_from_non_diverging,
);
debug!("obligations: {:#?}", self.fulfillment_cx.borrow_mut().pending_obligations());
// For each diverging variable, figure out whether it can
// reach a member of N. If so, it falls back to `()`. Else
// `!`.
let mut diverging_fallback = UnordMap::with_capacity(diverging_vids.len());
let unsafe_infer_vars = OnceCell::new();
self.lint_obligations_broken_by_never_type_fallback_change(behavior, &diverging_vids);
for &diverging_vid in &diverging_vids {
let diverging_ty = Ty::new_var(self.tcx, diverging_vid);
let root_vid = self.root_var(diverging_vid);
let can_reach_non_diverging = graph::depth_first_search(&coercion_graph, root_vid)
.any(|n| roots_reachable_from_non_diverging.visited(n));
let infer_var_infos: UnordBag<_> = self
.infer_var_info
.borrow()
.items()
.filter(|&(vid, _)| self.infcx.root_var(*vid) == root_vid)
.map(|(_, info)| *info)
.collect();
let found_infer_var_info = ty::InferVarInfo {
self_in_trait: infer_var_infos.items().any(|info| info.self_in_trait),
output: infer_var_infos.items().any(|info| info.output),
};
let mut fallback_to = |ty| {
self.lint_never_type_fallback_flowing_into_unsafe_code(
&unsafe_infer_vars,
&coercion_graph,
root_vid,
);
diverging_fallback.insert(diverging_ty, ty);
};
match behavior {
DivergingFallbackBehavior::ToUnit => {
debug!("fallback to () - legacy: {:?}", diverging_vid);
fallback_to(self.tcx.types.unit);
}
DivergingFallbackBehavior::ContextDependent => {
if found_infer_var_info.self_in_trait && found_infer_var_info.output {
// This case falls back to () to ensure that the code pattern in
// tests/ui/never_type/fallback-closure-ret.rs continues to
// compile when never_type_fallback is enabled.
//
// This rule is not readily explainable from first principles,
// but is rather intended as a patchwork fix to ensure code
// which compiles before the stabilization of never type
// fallback continues to work.
//
// Typically this pattern is encountered in a function taking a
// closure as a parameter, where the return type of that closure
// (checked by `relationship.output`) is expected to implement
// some trait (checked by `relationship.self_in_trait`). This
// can come up in non-closure cases too, so we do not limit this
// rule to specifically `FnOnce`.
//
// When the closure's body is something like `panic!()`, the
// return type would normally be inferred to `!`. However, it
// needs to fall back to `()` in order to still compile, as the
// trait is specifically implemented for `()` but not `!`.
//
// For details on the requirements for these relationships to be
// set, see the relationship finding module in
// compiler/rustc_trait_selection/src/traits/relationships.rs.
debug!("fallback to () - found trait and projection: {:?}", diverging_vid);
fallback_to(self.tcx.types.unit);
} else if can_reach_non_diverging {
debug!("fallback to () - reached non-diverging: {:?}", diverging_vid);
fallback_to(self.tcx.types.unit);
} else {
debug!("fallback to ! - all diverging: {:?}", diverging_vid);
fallback_to(self.tcx.types.never);
}
}
DivergingFallbackBehavior::ToNever => {
debug!(
"fallback to ! - `rustc_never_type_mode = \"fallback_to_never\")`: {:?}",
diverging_vid
);
fallback_to(self.tcx.types.never);
}
DivergingFallbackBehavior::NoFallback => {
debug!(
"no fallback - `rustc_never_type_mode = \"no_fallback\"`: {:?}",
diverging_vid
);
}
}
}
diverging_fallback
}
fn lint_never_type_fallback_flowing_into_unsafe_code(
&self,
unsafe_infer_vars: &OnceCell<UnordMap<ty::TyVid, (HirId, Span, UnsafeUseReason)>>,
coercion_graph: &VecGraph<ty::TyVid, true>,
root_vid: ty::TyVid,
) {
let unsafe_infer_vars = unsafe_infer_vars.get_or_init(|| {
let unsafe_infer_vars = compute_unsafe_infer_vars(self.root_ctxt, self.body_id);
debug!(?unsafe_infer_vars);
unsafe_infer_vars
});
let affected_unsafe_infer_vars =
graph::depth_first_search_as_undirected(&coercion_graph, root_vid)
.filter_map(|x| unsafe_infer_vars.get(&x).copied())
.collect::<Vec<_>>();
for (hir_id, span, reason) in affected_unsafe_infer_vars {
self.tcx.emit_node_span_lint(
lint::builtin::NEVER_TYPE_FALLBACK_FLOWING_INTO_UNSAFE,
hir_id,
span,
match reason {
UnsafeUseReason::Call => errors::NeverTypeFallbackFlowingIntoUnsafe::Call,
UnsafeUseReason::Method => errors::NeverTypeFallbackFlowingIntoUnsafe::Method,
UnsafeUseReason::Path => errors::NeverTypeFallbackFlowingIntoUnsafe::Path,
UnsafeUseReason::UnionField => {
errors::NeverTypeFallbackFlowingIntoUnsafe::UnionField
}
UnsafeUseReason::Deref => errors::NeverTypeFallbackFlowingIntoUnsafe::Deref,
},
);
}
}
fn lint_obligations_broken_by_never_type_fallback_change(
&self,
behavior: DivergingFallbackBehavior,
diverging_vids: &[ty::TyVid],
) {
let DivergingFallbackBehavior::ToUnit = behavior else { return };
// Fallback happens if and only if there are diverging variables
if diverging_vids.is_empty() {
return;
}
// Returns errors which happen if fallback is set to `fallback`
let remaining_errors_if_fallback_to = |fallback| {
self.probe(|_| {
let obligations = self.fulfillment_cx.borrow().pending_obligations();
let ocx = ObligationCtxt::new_with_diagnostics(&self.infcx);
ocx.register_obligations(obligations.iter().cloned());
for &diverging_vid in diverging_vids {
let diverging_ty = Ty::new_var(self.tcx, diverging_vid);
ocx.eq(&ObligationCause::dummy(), self.param_env, diverging_ty, fallback)
.expect("expected diverging var to be unconstrained");
}
ocx.select_where_possible()
})
};
// If we have no errors with `fallback = ()`, but *do* have errors with `fallback = !`,
// then this code will be broken by the never type fallback change.qba
let unit_errors = remaining_errors_if_fallback_to(self.tcx.types.unit);
if unit_errors.is_empty()
&& let mut never_errors = remaining_errors_if_fallback_to(self.tcx.types.never)
&& let [ref mut never_error, ..] = never_errors.as_mut_slice()
{
self.adjust_fulfillment_error_for_expr_obligation(never_error);
self.tcx.emit_node_span_lint(
lint::builtin::DEPENDENCY_ON_UNIT_NEVER_TYPE_FALLBACK,
self.tcx.local_def_id_to_hir_id(self.body_id),
self.tcx.def_span(self.body_id),
errors::DependencyOnUnitNeverTypeFallback {
obligation_span: never_error.obligation.cause.span,
obligation: never_error.obligation.predicate,
},
)
}
}
/// Returns a graph whose nodes are (unresolved) inference variables and where
/// an edge `?A -> ?B` indicates that the variable `?A` is coerced to `?B`.
fn create_coercion_graph(&self) -> VecGraph<ty::TyVid, true> {
let pending_obligations = self.fulfillment_cx.borrow_mut().pending_obligations();
debug!("create_coercion_graph: pending_obligations={:?}", pending_obligations);
let coercion_edges: Vec<(ty::TyVid, ty::TyVid)> = pending_obligations
.into_iter()
.filter_map(|obligation| {
// The predicates we are looking for look like `Coerce(?A -> ?B)`.
// They will have no bound variables.
obligation.predicate.kind().no_bound_vars()
})
.filter_map(|atom| {
// We consider both subtyping and coercion to imply 'flow' from
// some position in the code `a` to a different position `b`.
// This is then used to determine which variables interact with
// live code, and as such must fall back to `()` to preserve
// soundness.
//
// In practice currently the two ways that this happens is
// coercion and subtyping.
let (a, b) = match atom {
ty::PredicateKind::Coerce(ty::CoercePredicate { a, b }) => (a, b),
ty::PredicateKind::Subtype(ty::SubtypePredicate { a_is_expected: _, a, b }) => {
(a, b)
}
_ => return None,
};
let a_vid = self.root_vid(a)?;
let b_vid = self.root_vid(b)?;
Some((a_vid, b_vid))
})
.collect();
debug!("create_coercion_graph: coercion_edges={:?}", coercion_edges);
let num_ty_vars = self.num_ty_vars();
VecGraph::new(num_ty_vars, coercion_edges)
}
/// If `ty` is an unresolved type variable, returns its root vid.
fn root_vid(&self, ty: Ty<'tcx>) -> Option<ty::TyVid> {
Some(self.root_var(self.shallow_resolve(ty).ty_vid()?))
}
}
#[derive(Debug, Copy, Clone)]
pub(crate) enum UnsafeUseReason {
Call,
Method,
Path,
UnionField,
Deref,
}
/// Finds all type variables which are passed to an `unsafe` operation.
///
/// For example, for this function `f`:
/// ```ignore (demonstrative)
/// fn f() {
/// unsafe {
/// let x /* ?X */ = core::mem::zeroed();
/// // ^^^^^^^^^^^^^^^^^^^ -- hir_id, span, reason
///
/// let y = core::mem::zeroed::<Option<_ /* ?Y */>>();
/// // ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -- hir_id, span, reason
/// }
/// }
/// ```
///
/// `compute_unsafe_infer_vars` will return `{ id(?X) -> (hir_id, span, Call) }`
fn compute_unsafe_infer_vars<'a, 'tcx>(
root_ctxt: &'a TypeckRootCtxt<'tcx>,
body_id: LocalDefId,
) -> UnordMap<ty::TyVid, (HirId, Span, UnsafeUseReason)> {
let body =
root_ctxt.tcx.hir().maybe_body_owned_by(body_id).expect("body id must have an owner");
let mut res = UnordMap::default();
struct UnsafeInferVarsVisitor<'a, 'tcx> {
root_ctxt: &'a TypeckRootCtxt<'tcx>,
res: &'a mut UnordMap<ty::TyVid, (HirId, Span, UnsafeUseReason)>,
}
impl Visitor<'_> for UnsafeInferVarsVisitor<'_, '_> {
fn visit_expr(&mut self, ex: &'_ hir::Expr<'_>) {
let typeck_results = self.root_ctxt.typeck_results.borrow();
match ex.kind {
hir::ExprKind::MethodCall(..) => {
if let Some(def_id) = typeck_results.type_dependent_def_id(ex.hir_id)
&& let method_ty = self.root_ctxt.tcx.type_of(def_id).instantiate_identity()
&& let sig = method_ty.fn_sig(self.root_ctxt.tcx)
&& let hir::Safety::Unsafe = sig.safety()
{
let mut collector = InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::Method),
res: self.res,
};
// Collect generic arguments (incl. `Self`) of the method
typeck_results
.node_args(ex.hir_id)
.types()
.for_each(|t| t.visit_with(&mut collector));
}
}
hir::ExprKind::Call(func, ..) => {
let func_ty = typeck_results.expr_ty(func);
if func_ty.is_fn()
&& let sig = func_ty.fn_sig(self.root_ctxt.tcx)
&& let hir::Safety::Unsafe = sig.safety()
{
let mut collector = InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::Call),
res: self.res,
};
// Try collecting generic arguments of the function.
// Note that we do this below for any paths (that don't have to be called),
// but there we do it with a different span/reason.
// This takes priority.
typeck_results
.node_args(func.hir_id)
.types()
.for_each(|t| t.visit_with(&mut collector));
// Also check the return type, for cases like `returns_unsafe_fn_ptr()()`
sig.output().visit_with(&mut collector);
}
}
// Check paths which refer to functions.
// We do this, instead of only checking `Call` to make sure the lint can't be
// avoided by storing unsafe function in a variable.
hir::ExprKind::Path(_) => {
let ty = typeck_results.expr_ty(ex);
// If this path refers to an unsafe function, collect inference variables which may affect it.
// `is_fn` excludes closures, but those can't be unsafe.
if ty.is_fn()
&& let sig = ty.fn_sig(self.root_ctxt.tcx)
&& let hir::Safety::Unsafe = sig.safety()
{
let mut collector = InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::Path),
res: self.res,
};
// Collect generic arguments of the function
typeck_results
.node_args(ex.hir_id)
.types()
.for_each(|t| t.visit_with(&mut collector));
}
}
hir::ExprKind::Unary(hir::UnOp::Deref, pointer) => {
if let ty::RawPtr(pointee, _) = typeck_results.expr_ty(pointer).kind() {
pointee.visit_with(&mut InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::Deref),
res: self.res,
});
}
}
hir::ExprKind::Field(base, _) => {
let base_ty = typeck_results.expr_ty(base);
if base_ty.is_union() {
typeck_results.expr_ty(ex).visit_with(&mut InferVarCollector {
value: (ex.hir_id, ex.span, UnsafeUseReason::UnionField),
res: self.res,
});
}
}
_ => (),
};
hir::intravisit::walk_expr(self, ex);
}
}
struct InferVarCollector<'r, V> {
value: V,
res: &'r mut UnordMap<ty::TyVid, V>,
}
impl<'tcx, V: Copy> ty::TypeVisitor<TyCtxt<'tcx>> for InferVarCollector<'_, V> {
fn visit_ty(&mut self, t: Ty<'tcx>) {
if let Some(vid) = t.ty_vid() {
_ = self.res.try_insert(vid, self.value);
} else {
t.super_visit_with(self)
}
}
}
UnsafeInferVarsVisitor { root_ctxt, res: &mut res }.visit_expr(&body.value);
debug!(?res, "collected the following unsafe vars for {body_id:?}");
res
}