rustc_infer/infer/region_constraints/leak_check.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::graph::scc::Sccs;
use rustc_data_structures::graph::vec_graph::VecGraph;
use rustc_index::Idx;
use rustc_middle::span_bug;
use rustc_middle::ty::error::TypeError;
use tracing::{debug, instrument};
use super::*;
use crate::infer::relate::RelateResult;
use crate::infer::snapshot::CombinedSnapshot;
impl<'tcx> RegionConstraintCollector<'_, 'tcx> {
/// Searches new universes created during `snapshot`, looking for
/// placeholders that may "leak" out from the universes they are contained
/// in. If any leaking placeholders are found, then an `Err` is returned
/// (typically leading to the snapshot being reversed). This algorithm
/// only looks at placeholders which cannot be named by `outer_universe`,
/// as this is the universe we're currently checking for a leak.
///
/// The leak check *used* to be the only way we had to handle higher-ranked
/// obligations. Now that we have integrated universes into the region
/// solvers, this is no longer the case, but we retain the leak check for
/// backwards compatibility purposes. In particular, it lets us make "early"
/// decisions about whether a region error will be reported that are used in
/// coherence and elsewhere -- see #56105 and #59490 for more details. The
/// eventual fate of the leak checker is not yet settled.
///
/// The leak checker works by searching for the following error patterns:
///
/// * P1: P2, where P1 != P2
/// * P1: R, where R is in some universe that cannot name P1
///
/// The idea here is that each of these patterns represents something that
/// the region solver would eventually report as an error, so we can detect
/// the error early. There is a fly in the ointment, though, in that this is
/// not entirely true. In particular, in the future, we may extend the
/// environment with implied bounds or other info about how placeholders
/// relate to regions in outer universes. In that case, `P1: R` for example
/// might become solvable.
///
/// # Summary of the implementation
///
/// The leak checks as follows. First, we construct a graph where `R2: R1`
/// implies `R2 -> R1`, and we compute the SCCs.
///
/// For each SCC S, we compute:
///
/// * what placeholder P it must be equal to, if any
/// * if there are multiple placeholders that must be equal, report an error because `P1: P2`
/// * the minimum universe of its constituents
///
/// Then we walk the SCCs in dependency order and compute
///
/// * what placeholder they must outlive transitively
/// * if they must also be equal to a placeholder, report an error because `P1: P2`
/// * minimum universe U of all SCCs they must outlive
/// * if they must also be equal to a placeholder P, and U cannot name P, report an error, as
/// that indicates `P: R` and `R` is in an incompatible universe
///
/// To improve performance and for the old trait solver caching to be sound, this takes
/// an optional snapshot in which case we only look at region constraints added in that
/// snapshot. If we were to not do that the `leak_check` during evaluation can rely on
/// region constraints added outside of that evaluation. As that is not reflected in the
/// cache key this would be unsound.
///
/// # Historical note
///
/// Older variants of the leak check used to report errors for these
/// patterns, but we no longer do:
///
/// * R: P1, even if R cannot name P1, because R = 'static is a valid sol'n
/// * R: P1, R: P2, as above
#[instrument(level = "debug", skip(self, tcx, only_consider_snapshot), ret)]
pub fn leak_check(
self,
tcx: TyCtxt<'tcx>,
outer_universe: ty::UniverseIndex,
max_universe: ty::UniverseIndex,
only_consider_snapshot: Option<&CombinedSnapshot<'tcx>>,
) -> RelateResult<'tcx, ()> {
if outer_universe == max_universe {
return Ok(());
}
let mini_graph = MiniGraph::new(tcx, &self, only_consider_snapshot);
let mut leak_check = LeakCheck::new(tcx, outer_universe, max_universe, mini_graph, self);
leak_check.assign_placeholder_values()?;
leak_check.propagate_scc_value()?;
Ok(())
}
}
struct LeakCheck<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
outer_universe: ty::UniverseIndex,
mini_graph: MiniGraph<'tcx>,
rcc: RegionConstraintCollector<'a, 'tcx>,
// Initially, for each SCC S, stores a placeholder `P` such that `S = P`
// must hold.
//
// Later, during the [`LeakCheck::propagate_scc_value`] function, this array
// is repurposed to store some placeholder `P` such that the weaker
// condition `S: P` must hold. (This is true if `S: S1` transitively and `S1
// = P`.)
scc_placeholders: IndexVec<LeakCheckScc, Option<ty::PlaceholderRegion>>,
// For each SCC S, track the minimum universe that flows into it. Note that
// this is both the minimum of the universes for every region that is a
// member of the SCC, but also if you have `R1: R2`, then the universe of
// `R2` must be less than the universe of `R1` (i.e., `R1` flows `R2`). To
// see that, imagine that you have `P1: R` -- in that case, `R` must be
// either the placeholder `P1` or the empty region in that same universe.
//
// To detect errors, we look for an SCC S where the values in
// `scc_placeholders[S]` (if any) cannot be stored into `scc_universes[S]`.
scc_universes: IndexVec<LeakCheckScc, SccUniverse<'tcx>>,
}
impl<'a, 'tcx> LeakCheck<'a, 'tcx> {
fn new(
tcx: TyCtxt<'tcx>,
outer_universe: ty::UniverseIndex,
max_universe: ty::UniverseIndex,
mini_graph: MiniGraph<'tcx>,
rcc: RegionConstraintCollector<'a, 'tcx>,
) -> Self {
let dummy_scc_universe = SccUniverse { universe: max_universe, region: None };
let num_sccs = mini_graph.sccs.num_sccs();
Self {
tcx,
outer_universe,
mini_graph,
rcc,
scc_placeholders: IndexVec::from_elem_n(None, num_sccs),
scc_universes: IndexVec::from_elem_n(dummy_scc_universe, num_sccs),
}
}
/// Compute what placeholders (if any) each SCC must be equal to.
/// Also compute the minimum universe of all the regions in each SCC.
fn assign_placeholder_values(&mut self) -> RelateResult<'tcx, ()> {
// First walk: find each placeholder that is from a newly created universe.
for (region, leak_check_node) in &self.mini_graph.nodes {
let scc = self.mini_graph.sccs.scc(*leak_check_node);
// Set the universe of each SCC to be the minimum of its constituent universes
let universe = self.rcc.universe(*region);
debug!(
"assign_placeholder_values: scc={:?} universe={:?} region={:?}",
scc, universe, region
);
self.scc_universes[scc].take_min(universe, *region);
// Detect those SCCs that directly contain a placeholder
if let ty::RePlaceholder(placeholder) = **region {
if self.outer_universe.cannot_name(placeholder.universe) {
// Update `scc_placeholders` to account for the fact that `P: S` must hold.
match self.scc_placeholders[scc] {
Some(p) => {
assert_ne!(p, placeholder);
return Err(self.placeholder_error(p, placeholder));
}
None => {
self.scc_placeholders[scc] = Some(placeholder);
}
}
}
}
}
Ok(())
}
/// For each SCC S, iterate over each successor S1 where `S: S1`:
///
/// * Compute
/// Iterate over each SCC `S` and ensure that, for each `S1` where `S1: S`,
/// `universe(S) <= universe(S1)`. This executes after
/// `assign_placeholder_values`, so `universe(S)` is already the minimum
/// universe of any of its direct constituents.
fn propagate_scc_value(&mut self) -> RelateResult<'tcx, ()> {
// Loop invariants:
//
// On start of the loop iteration for `scc1`:
//
// * `scc_universes[scc1]` contains the minimum universe of the
// constituents of `scc1`
// * `scc_placeholder[scc1]` stores the placeholder that `scc1` must
// be equal to (if any)
//
// For each successor `scc2` where `scc1: scc2`:
//
// * `scc_placeholder[scc2]` stores some placeholder `P` where
// `scc2: P` (if any)
// * `scc_universes[scc2]` contains the minimum universe of the
// constituents of `scc2` and any of its successors
for scc1 in self.mini_graph.sccs.all_sccs() {
debug!(
"propagate_scc_value: scc={:?} with universe {:?}",
scc1, self.scc_universes[scc1]
);
// Walk over each `scc2` such that `scc1: scc2` and compute:
//
// * `scc1_universe`: the minimum universe of `scc2` and the constituents of `scc1`
// * `succ_bound`: placeholder `P` that the successors must outlive, if any (if there
// are multiple, we pick one arbitrarily)
let mut scc1_universe = self.scc_universes[scc1];
let mut succ_bound = None;
for &scc2 in self.mini_graph.sccs.successors(scc1) {
let SccUniverse { universe: scc2_universe, region: scc2_region } =
self.scc_universes[scc2];
scc1_universe.take_min(scc2_universe, scc2_region.unwrap());
if let Some(b) = self.scc_placeholders[scc2] {
succ_bound = Some(b);
}
}
// Update minimum universe of scc1.
self.scc_universes[scc1] = scc1_universe;
// At this point, `scc_placeholders[scc1]` stores the placeholder that
// `scc1` must be equal to, if any.
if let Some(scc1_placeholder) = self.scc_placeholders[scc1] {
debug!(
"propagate_scc_value: scc1={:?} placeholder={:?} scc1_universe={:?}",
scc1, scc1_placeholder, scc1_universe
);
// Check if `P1: R` for some `R` in a universe that cannot name
// P1. That's an error.
if scc1_universe.universe.cannot_name(scc1_placeholder.universe) {
return Err(self.error(scc1_placeholder, scc1_universe.region.unwrap()));
}
// Check if we have some placeholder where `S: P2`
// (transitively). In that case, since `S = P1`, that implies
// `P1: P2`, which is an error condition.
if let Some(scc2_placeholder) = succ_bound {
assert_ne!(scc1_placeholder, scc2_placeholder);
return Err(self.placeholder_error(scc1_placeholder, scc2_placeholder));
}
} else {
// Otherwise, we can reach a placeholder if some successor can.
self.scc_placeholders[scc1] = succ_bound;
}
// At this point, `scc_placeholder[scc1]` stores some placeholder that `scc1` must
// outlive (if any).
}
Ok(())
}
fn placeholder_error(
&self,
placeholder1: ty::PlaceholderRegion,
placeholder2: ty::PlaceholderRegion,
) -> TypeError<'tcx> {
self.error(placeholder1, ty::Region::new_placeholder(self.tcx, placeholder2))
}
fn error(
&self,
placeholder: ty::PlaceholderRegion,
other_region: ty::Region<'tcx>,
) -> TypeError<'tcx> {
debug!("error: placeholder={:?}, other_region={:?}", placeholder, other_region);
TypeError::RegionsInsufficientlyPolymorphic(placeholder.bound, other_region)
}
}
// States we need to distinguish:
//
// * must be equal to a placeholder (i.e., a placeholder is in the SCC)
// * it could conflict with some other regions in the SCC in different universes
// * or a different placeholder
// * `P1: S` and `S` must be equal to a placeholder
// * `P1: S` and `S` is in an incompatible universe
//
// So if we
//
// (a) compute which placeholder (if any) each SCC must be equal to
// (b) compute its minimum universe
// (c) compute *some* placeholder where `S: P1` (any one will do)
//
// then we get an error if:
//
// - it must be equal to a placeholder `P1` and minimum universe cannot name `P1`
// - `S: P1` and minimum universe cannot name `P1`
// - `S: P1` and we must be equal to `P2`
//
// So we want to track:
//
// * Equal placeholder (if any)
// * Some bounding placeholder (if any)
// * Minimum universe
//
// * We compute equal placeholder + minimum universe of constituents in first pass
// * Then we walk in order and compute from our dependencies `S1` where `S: S1` (`S -> S1`)
// * bounding placeholder (if any)
// * minimum universe
// * And if we must be equal to a placeholder then we check it against
// * minimum universe
// * no bounding placeholder
/// Tracks the "minimum universe" for each SCC, along with some region that
/// caused it to change.
#[derive(Copy, Clone, Debug)]
struct SccUniverse<'tcx> {
/// For some SCC S, the minimum universe of:
///
/// * each region R in S
/// * each SCC S1 such that S: S1
universe: ty::UniverseIndex,
/// Some region that caused `universe` to be what it is.
region: Option<ty::Region<'tcx>>,
}
impl<'tcx> SccUniverse<'tcx> {
/// If `universe` is less than our current universe, then update
/// `self.universe` and `self.region`.
fn take_min(&mut self, universe: ty::UniverseIndex, region: ty::Region<'tcx>) {
if universe < self.universe || self.region.is_none() {
self.universe = universe;
self.region = Some(region);
}
}
}
rustc_index::newtype_index! {
#[orderable]
#[debug_format = "LeakCheckNode({})"]
struct LeakCheckNode {}
}
rustc_index::newtype_index! {
#[orderable]
#[debug_format = "LeakCheckScc({})"]
struct LeakCheckScc {}
}
/// Represents the graph of constraints. For each `R1: R2` constraint we create
/// an edge `R1 -> R2` in the graph.
struct MiniGraph<'tcx> {
/// Map from a region to the index of the node in the graph.
nodes: FxIndexMap<ty::Region<'tcx>, LeakCheckNode>,
/// Map from node index to SCC, and stores the successors of each SCC. All
/// the regions in the same SCC are equal to one another, and if `S1 -> S2`,
/// then `S1: S2`.
sccs: Sccs<LeakCheckNode, LeakCheckScc>,
}
impl<'tcx> MiniGraph<'tcx> {
fn new(
tcx: TyCtxt<'tcx>,
region_constraints: &RegionConstraintCollector<'_, 'tcx>,
only_consider_snapshot: Option<&CombinedSnapshot<'tcx>>,
) -> Self {
let mut nodes = FxIndexMap::default();
let mut edges = Vec::new();
// Note that if `R2: R1`, we get a callback `r1, r2`, so `target` is first parameter.
Self::iterate_region_constraints(
tcx,
region_constraints,
only_consider_snapshot,
|target, source| {
let source_node = Self::add_node(&mut nodes, source);
let target_node = Self::add_node(&mut nodes, target);
edges.push((source_node, target_node));
},
);
let graph = VecGraph::<_, false>::new(nodes.len(), edges);
let sccs = Sccs::new(&graph);
Self { nodes, sccs }
}
/// Invokes `each_edge(R1, R2)` for each edge where `R2: R1`
fn iterate_region_constraints(
tcx: TyCtxt<'tcx>,
region_constraints: &RegionConstraintCollector<'_, 'tcx>,
only_consider_snapshot: Option<&CombinedSnapshot<'tcx>>,
mut each_edge: impl FnMut(ty::Region<'tcx>, ty::Region<'tcx>),
) {
let mut each_constraint = |constraint| match constraint {
&Constraint::VarSubVar(a, b) => {
each_edge(ty::Region::new_var(tcx, a), ty::Region::new_var(tcx, b));
}
&Constraint::RegSubVar(a, b) => {
each_edge(a, ty::Region::new_var(tcx, b));
}
&Constraint::VarSubReg(a, b) => {
each_edge(ty::Region::new_var(tcx, a), b);
}
&Constraint::RegSubReg(a, b) => {
each_edge(a, b);
}
};
if let Some(snapshot) = only_consider_snapshot {
for undo_entry in
region_constraints.undo_log.region_constraints_in_snapshot(&snapshot.undo_snapshot)
{
match undo_entry {
&AddConstraint(i) => {
each_constraint(®ion_constraints.data().constraints[i].0);
}
&AddVerify(i) => span_bug!(
region_constraints.data().verifys[i].origin.span(),
"we never add verifications while doing higher-ranked things",
),
&AddCombination(..) | &AddVar(..) => {}
}
}
} else {
region_constraints
.data()
.constraints
.iter()
.for_each(|(constraint, _)| each_constraint(constraint));
}
}
fn add_node(
nodes: &mut FxIndexMap<ty::Region<'tcx>, LeakCheckNode>,
r: ty::Region<'tcx>,
) -> LeakCheckNode {
let l = nodes.len();
*nodes.entry(r).or_insert(LeakCheckNode::new(l))
}
}