1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
use super::*;
use crate::infer::snapshot::CombinedSnapshot;
use rustc_data_structures::fx::FxIndexMap;
use rustc_data_structures::graph::{scc::Sccs, vec_graph::VecGraph};
use rustc_index::Idx;
use rustc_middle::ty::error::TypeError;
use rustc_middle::ty::relate::RelateResult;

impl<'tcx> RegionConstraintCollector<'_, 'tcx> {
    /// Searches new universes created during `snapshot`, looking for
    /// placeholders that may "leak" out from the universes they are contained
    /// in. If any leaking placeholders are found, then an `Err` is returned
    /// (typically leading to the snapshot being reversed). This algorithm
    /// only looks at placeholders which cannot be named by `outer_universe`,
    /// as this is the universe we're currently checking for a leak.
    ///
    /// The leak check *used* to be the only way we had to handle higher-ranked
    /// obligations. Now that we have integrated universes into the region
    /// solvers, this is no longer the case, but we retain the leak check for
    /// backwards compatibility purposes. In particular, it lets us make "early"
    /// decisions about whether a region error will be reported that are used in
    /// coherence and elsewhere -- see #56105 and #59490 for more details. The
    /// eventual fate of the leak checker is not yet settled.
    ///
    /// The leak checker works by searching for the following error patterns:
    ///
    /// * P1: P2, where P1 != P2
    /// * P1: R, where R is in some universe that cannot name P1
    ///
    /// The idea here is that each of these patterns represents something that
    /// the region solver would eventually report as an error, so we can detect
    /// the error early. There is a fly in the ointment, though, in that this is
    /// not entirely true. In particular, in the future, we may extend the
    /// environment with implied bounds or other info about how placeholders
    /// relate to regions in outer universes. In that case, `P1: R` for example
    /// might become solvable.
    ///
    /// # Summary of the implementation
    ///
    /// The leak checks as follows. First, we construct a graph where `R2: R1`
    /// implies `R2 -> R1`, and we compute the SCCs.
    ///
    /// For each SCC S, we compute:
    ///
    /// * what placeholder P it must be equal to, if any
    ///   * if there are multiple placeholders that must be equal, report an error because `P1: P2`
    /// * the minimum universe of its constituents
    ///
    /// Then we walk the SCCs in dependency order and compute
    ///
    /// * what placeholder they must outlive transitively
    ///   * if they must also be equal to a placeholder, report an error because `P1: P2`
    /// * minimum universe U of all SCCs they must outlive
    ///   * if they must also be equal to a placeholder P, and U cannot name P, report an error, as that
    ///     indicates `P: R` and `R` is in an incompatible universe
    ///
    /// To improve performance and for the old trait solver caching to be sound, this takes
    /// an optional snapshot in which case we only look at region constraints added in that
    /// snapshot. If we were to not do that the `leak_check` during evaluation can rely on
    /// region constraints added outside of that evaluation. As that is not reflected in the
    /// cache key this would be unsound.
    ///
    /// # Historical note
    ///
    /// Older variants of the leak check used to report errors for these
    /// patterns, but we no longer do:
    ///
    /// * R: P1, even if R cannot name P1, because R = 'static is a valid sol'n
    /// * R: P1, R: P2, as above
    #[instrument(level = "debug", skip(self, tcx, only_consider_snapshot), ret)]
    pub fn leak_check(
        &mut self,
        tcx: TyCtxt<'tcx>,
        outer_universe: ty::UniverseIndex,
        max_universe: ty::UniverseIndex,
        only_consider_snapshot: Option<&CombinedSnapshot<'tcx>>,
    ) -> RelateResult<'tcx, ()> {
        if outer_universe == max_universe {
            return Ok(());
        }

        let mini_graph = &MiniGraph::new(tcx, self, only_consider_snapshot);

        let mut leak_check = LeakCheck::new(tcx, outer_universe, max_universe, mini_graph, self);
        leak_check.assign_placeholder_values()?;
        leak_check.propagate_scc_value()?;
        Ok(())
    }
}

struct LeakCheck<'a, 'b, 'tcx> {
    tcx: TyCtxt<'tcx>,
    outer_universe: ty::UniverseIndex,
    mini_graph: &'a MiniGraph<'tcx>,
    rcc: &'a mut RegionConstraintCollector<'b, 'tcx>,

    // Initially, for each SCC S, stores a placeholder `P` such that `S = P`
    // must hold.
    //
    // Later, during the [`LeakCheck::propagate_scc_value`] function, this array
    // is repurposed to store some placeholder `P` such that the weaker
    // condition `S: P` must hold. (This is true if `S: S1` transitively and `S1
    // = P`.)
    scc_placeholders: IndexVec<LeakCheckScc, Option<ty::PlaceholderRegion>>,

    // For each SCC S, track the minimum universe that flows into it. Note that
    // this is both the minimum of the universes for every region that is a
    // member of the SCC, but also if you have `R1: R2`, then the universe of
    // `R2` must be less than the universe of `R1` (i.e., `R1` flows `R2`). To
    // see that, imagine that you have `P1: R` -- in that case, `R` must be
    // either the placeholder `P1` or the empty region in that same universe.
    //
    // To detect errors, we look for an SCC S where the values in
    // `scc_values[S]` (if any) cannot be stored into `scc_universes[S]`.
    scc_universes: IndexVec<LeakCheckScc, SccUniverse<'tcx>>,
}

impl<'a, 'b, 'tcx> LeakCheck<'a, 'b, 'tcx> {
    fn new(
        tcx: TyCtxt<'tcx>,
        outer_universe: ty::UniverseIndex,
        max_universe: ty::UniverseIndex,
        mini_graph: &'a MiniGraph<'tcx>,
        rcc: &'a mut RegionConstraintCollector<'b, 'tcx>,
    ) -> Self {
        let dummy_scc_universe = SccUniverse { universe: max_universe, region: None };
        Self {
            tcx,
            outer_universe,
            mini_graph,
            rcc,
            scc_placeholders: IndexVec::from_elem_n(None, mini_graph.sccs.num_sccs()),
            scc_universes: IndexVec::from_elem_n(dummy_scc_universe, mini_graph.sccs.num_sccs()),
        }
    }

    /// Compute what placeholders (if any) each SCC must be equal to.
    /// Also compute the minimum universe of all the regions in each SCC.
    fn assign_placeholder_values(&mut self) -> RelateResult<'tcx, ()> {
        // First walk: find each placeholder that is from a newly created universe.
        for (region, leak_check_node) in &self.mini_graph.nodes {
            let scc = self.mini_graph.sccs.scc(*leak_check_node);

            // Set the universe of each SCC to be the minimum of its constituent universes
            let universe = self.rcc.universe(*region);
            debug!(
                "assign_placeholder_values: scc={:?} universe={:?} region={:?}",
                scc, universe, region
            );
            self.scc_universes[scc].take_min(universe, *region);

            // Detect those SCCs that directly contain a placeholder
            if let ty::RePlaceholder(placeholder) = **region {
                if self.outer_universe.cannot_name(placeholder.universe) {
                    self.assign_scc_value(scc, placeholder)?;
                }
            }
        }

        Ok(())
    }

    // assign_scc_value(S, P): Update `scc_values` to account for the fact that `P: S` must hold.
    // This may create an error.
    fn assign_scc_value(
        &mut self,
        scc: LeakCheckScc,
        placeholder: ty::PlaceholderRegion,
    ) -> RelateResult<'tcx, ()> {
        match self.scc_placeholders[scc] {
            Some(p) => {
                assert_ne!(p, placeholder);
                return Err(self.placeholder_error(p, placeholder));
            }
            None => {
                self.scc_placeholders[scc] = Some(placeholder);
            }
        };

        Ok(())
    }

    /// For each SCC S, iterate over each successor S1 where `S: S1`:
    ///
    /// * Compute
    /// Iterate over each SCC `S` and ensure that, for each `S1` where `S1: S`,
    /// `universe(S) <= universe(S1)`. This executes after
    /// `assign_placeholder_values`, so `universe(S)` is already the minimum
    /// universe of any of its direct constituents.
    fn propagate_scc_value(&mut self) -> RelateResult<'tcx, ()> {
        // Loop invariants:
        //
        // On start of the loop iteration for `scc1`:
        //
        // * `scc_universes[scc1]` contains the minimum universe of the
        //   constituents of `scc1`
        // * `scc_placeholder[scc1]` stores the placeholder that `scc1` must
        //   be equal to (if any)
        //
        // For each successor `scc2` where `scc1: scc2`:
        //
        // * `scc_placeholder[scc2]` stores some placeholder `P` where
        //   `scc2: P` (if any)
        // * `scc_universes[scc2]` contains the minimum universe of the
        //   constituents of `scc2` and any of its successors
        for scc1 in self.mini_graph.sccs.all_sccs() {
            debug!(
                "propagate_scc_value: scc={:?} with universe {:?}",
                scc1, self.scc_universes[scc1]
            );

            // Walk over each `scc2` such that `scc1: scc2` and compute:
            //
            // * `scc1_universe`: the minimum universe of `scc2` and the constituents of `scc1`
            // * `succ_bound`: placeholder `P` that the successors must outlive, if any (if there are multiple,
            //   we pick one arbitrarily)
            let mut scc1_universe = self.scc_universes[scc1];
            let mut succ_bound = None;
            for &scc2 in self.mini_graph.sccs.successors(scc1) {
                let SccUniverse { universe: scc2_universe, region: scc2_region } =
                    self.scc_universes[scc2];

                scc1_universe.take_min(scc2_universe, scc2_region.unwrap());

                if let Some(b) = self.scc_placeholders[scc2] {
                    succ_bound = Some(b);
                }
            }

            // Update minimum universe of scc1.
            self.scc_universes[scc1] = scc1_universe;

            // At this point, `scc_placeholders[scc1]` stores the placeholder that
            // `scc1` must be equal to, if any.
            if let Some(scc1_placeholder) = self.scc_placeholders[scc1] {
                debug!(
                    "propagate_scc_value: scc1={:?} placeholder={:?} scc1_universe={:?}",
                    scc1, scc1_placeholder, scc1_universe
                );

                // Check if `P1: R` for some `R` in a universe that cannot name
                // P1. That's an error.
                if scc1_universe.universe.cannot_name(scc1_placeholder.universe) {
                    return Err(self.error(scc1_placeholder, scc1_universe.region.unwrap()));
                }

                // Check if we have some placeholder where `S: P2`
                // (transitively). In that case, since `S = P1`, that implies
                // `P1: P2`, which is an error condition.
                if let Some(scc2_placeholder) = succ_bound {
                    assert_ne!(scc1_placeholder, scc2_placeholder);
                    return Err(self.placeholder_error(scc1_placeholder, scc2_placeholder));
                }
            } else {
                // Otherwise, we can reach a placeholder if some successor can.
                self.scc_placeholders[scc1] = succ_bound;
            }

            // At this point, `scc_placeholder[scc1]` stores some placeholder that `scc1` must outlive (if any).
        }
        Ok(())
    }

    fn placeholder_error(
        &self,
        placeholder1: ty::PlaceholderRegion,
        placeholder2: ty::PlaceholderRegion,
    ) -> TypeError<'tcx> {
        self.error(placeholder1, ty::Region::new_placeholder(self.tcx, placeholder2))
    }

    fn error(
        &self,
        placeholder: ty::PlaceholderRegion,
        other_region: ty::Region<'tcx>,
    ) -> TypeError<'tcx> {
        debug!("error: placeholder={:?}, other_region={:?}", placeholder, other_region);
        TypeError::RegionsInsufficientlyPolymorphic(placeholder.bound.kind, other_region)
    }
}

// States we need to distinguish:
//
// * must be equal to a placeholder (i.e., a placeholder is in the SCC)
//     * it could conflict with some other regions in the SCC in different universes
//     * or a different placeholder
// * `P1: S` and `S` must be equal to a placeholder
// * `P1: S` and `S` is in an incompatible universe
//
// So if we
//
// (a) compute which placeholder (if any) each SCC must be equal to
// (b) compute its minimum universe
// (c) compute *some* placeholder where `S: P1` (any one will do)
//
// then we get an error if:
//
// - it must be equal to a placeholder `P1` and minimum universe cannot name `P1`
// - `S: P1` and minimum universe cannot name `P1`
// - `S: P1` and we must be equal to `P2`
//
// So we want to track:
//
// * Equal placeholder (if any)
// * Some bounding placeholder (if any)
// * Minimum universe
//
// * We compute equal placeholder + minimum universe of constituents in first pass
// * Then we walk in order and compute from our dependencies `S1` where `S: S1` (`S -> S1`)
//   * bounding placeholder (if any)
//   * minimum universe
// * And if we must be equal to a placeholder then we check it against
//   * minimum universe
//   * no bounding placeholder

/// Tracks the "minimum universe" for each SCC, along with some region that
/// caused it to change.
#[derive(Copy, Clone, Debug)]
struct SccUniverse<'tcx> {
    /// For some SCC S, the minimum universe of:
    ///
    /// * each region R in S
    /// * each SCC S1 such that S: S1
    universe: ty::UniverseIndex,

    /// Some region that caused `universe` to be what it is.
    region: Option<ty::Region<'tcx>>,
}

impl<'tcx> SccUniverse<'tcx> {
    /// If `universe` is less than our current universe, then update
    /// `self.universe` and `self.region`.
    fn take_min(&mut self, universe: ty::UniverseIndex, region: ty::Region<'tcx>) {
        if universe < self.universe || self.region.is_none() {
            self.universe = universe;
            self.region = Some(region);
        }
    }
}

rustc_index::newtype_index! {
    #[orderable]
    #[debug_format = "LeakCheckNode({})"]
    struct LeakCheckNode {}
}

rustc_index::newtype_index! {
    #[orderable]
    #[debug_format = "LeakCheckScc({})"]
    struct LeakCheckScc {}
}

/// Represents the graph of constraints. For each `R1: R2` constraint we create
/// an edge `R1 -> R2` in the graph.
struct MiniGraph<'tcx> {
    /// Map from a region to the index of the node in the graph.
    nodes: FxIndexMap<ty::Region<'tcx>, LeakCheckNode>,

    /// Map from node index to SCC, and stores the successors of each SCC. All
    /// the regions in the same SCC are equal to one another, and if `S1 -> S2`,
    /// then `S1: S2`.
    sccs: Sccs<LeakCheckNode, LeakCheckScc>,
}

impl<'tcx> MiniGraph<'tcx> {
    fn new(
        tcx: TyCtxt<'tcx>,
        region_constraints: &RegionConstraintCollector<'_, 'tcx>,
        only_consider_snapshot: Option<&CombinedSnapshot<'tcx>>,
    ) -> Self {
        let mut nodes = FxIndexMap::default();
        let mut edges = Vec::new();

        // Note that if `R2: R1`, we get a callback `r1, r2`, so `target` is first parameter.
        Self::iterate_region_constraints(
            tcx,
            region_constraints,
            only_consider_snapshot,
            |target, source| {
                let source_node = Self::add_node(&mut nodes, source);
                let target_node = Self::add_node(&mut nodes, target);
                edges.push((source_node, target_node));
            },
        );
        let graph = VecGraph::<_, false>::new(nodes.len(), edges);
        let sccs = Sccs::new(&graph);
        Self { nodes, sccs }
    }

    /// Invokes `each_edge(R1, R2)` for each edge where `R2: R1`
    fn iterate_region_constraints(
        tcx: TyCtxt<'tcx>,
        region_constraints: &RegionConstraintCollector<'_, 'tcx>,
        only_consider_snapshot: Option<&CombinedSnapshot<'tcx>>,
        mut each_edge: impl FnMut(ty::Region<'tcx>, ty::Region<'tcx>),
    ) {
        let mut each_constraint = |constraint| match constraint {
            &Constraint::VarSubVar(a, b) => {
                each_edge(ty::Region::new_var(tcx, a), ty::Region::new_var(tcx, b));
            }
            &Constraint::RegSubVar(a, b) => {
                each_edge(a, ty::Region::new_var(tcx, b));
            }
            &Constraint::VarSubReg(a, b) => {
                each_edge(ty::Region::new_var(tcx, a), b);
            }
            &Constraint::RegSubReg(a, b) => {
                each_edge(a, b);
            }
        };

        if let Some(snapshot) = only_consider_snapshot {
            for undo_entry in
                region_constraints.undo_log.region_constraints_in_snapshot(&snapshot.undo_snapshot)
            {
                match undo_entry {
                    &AddConstraint(i) => {
                        each_constraint(&region_constraints.data().constraints[i].0);
                    }
                    &AddVerify(i) => span_bug!(
                        region_constraints.data().verifys[i].origin.span(),
                        "we never add verifications while doing higher-ranked things",
                    ),
                    &AddCombination(..) | &AddVar(..) => {}
                }
            }
        } else {
            region_constraints
                .data()
                .constraints
                .iter()
                .for_each(|(constraint, _)| each_constraint(constraint));
        }
    }

    fn add_node(
        nodes: &mut FxIndexMap<ty::Region<'tcx>, LeakCheckNode>,
        r: ty::Region<'tcx>,
    ) -> LeakCheckNode {
        let l = nodes.len();
        *nodes.entry(r).or_insert(LeakCheckNode::new(l))
    }
}