rustc_const_eval/interpret/projection.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
//! This file implements "place projections"; basically a symmetric API for 3 types: MPlaceTy, OpTy, PlaceTy.
//!
//! OpTy and PlaceTy generally work by "let's see if we are actually an MPlaceTy, and do something custom if not".
//! For PlaceTy, the custom thing is basically always to call `force_allocation` and then use the MPlaceTy logic anyway.
//! For OpTy, the custom thing on field pojections has to be pretty clever (since `Operand::Immediate` can have fields),
//! but for array/slice operations it only has to worry about `Operand::Uninit`. That makes the value part trivial,
//! but we still need to do bounds checking and adjust the layout. To not duplicate that with MPlaceTy, we actually
//! implement the logic on OpTy, and MPlaceTy calls that.
use std::marker::PhantomData;
use std::ops::Range;
use rustc_middle::ty::Ty;
use rustc_middle::ty::layout::{LayoutOf, TyAndLayout};
use rustc_middle::{bug, mir, span_bug, ty};
use rustc_target::abi::{self, Size, VariantIdx};
use tracing::{debug, instrument};
use super::{
InterpCx, InterpResult, MPlaceTy, Machine, MemPlaceMeta, OpTy, Provenance, Scalar, err_ub,
interp_ok, throw_ub, throw_unsup,
};
/// Describes the constraints placed on offset-projections.
#[derive(Copy, Clone, Debug)]
pub enum OffsetMode {
/// The offset has to be inbounds, like `ptr::offset`.
Inbounds,
/// No constraints, just wrap around the edge of the address space.
Wrapping,
}
/// A thing that we can project into, and that has a layout.
pub trait Projectable<'tcx, Prov: Provenance>: Sized + std::fmt::Debug {
/// Get the layout.
fn layout(&self) -> TyAndLayout<'tcx>;
/// Get the metadata of a wide value.
fn meta(&self) -> MemPlaceMeta<Prov>;
/// Get the length of a slice/string/array stored here.
fn len<M: Machine<'tcx, Provenance = Prov>>(
&self,
ecx: &InterpCx<'tcx, M>,
) -> InterpResult<'tcx, u64> {
let layout = self.layout();
if layout.is_unsized() {
// We need to consult `meta` metadata
match layout.ty.kind() {
ty::Slice(..) | ty::Str => self.meta().unwrap_meta().to_target_usize(ecx),
_ => bug!("len not supported on unsized type {:?}", layout.ty),
}
} else {
// Go through the layout. There are lots of types that support a length,
// e.g., SIMD types. (But not all repr(simd) types even have FieldsShape::Array!)
match layout.fields {
abi::FieldsShape::Array { count, .. } => interp_ok(count),
_ => bug!("len not supported on sized type {:?}", layout.ty),
}
}
}
/// Offset the value by the given amount, replacing the layout and metadata.
fn offset_with_meta<M: Machine<'tcx, Provenance = Prov>>(
&self,
offset: Size,
mode: OffsetMode,
meta: MemPlaceMeta<Prov>,
layout: TyAndLayout<'tcx>,
ecx: &InterpCx<'tcx, M>,
) -> InterpResult<'tcx, Self>;
fn offset<M: Machine<'tcx, Provenance = Prov>>(
&self,
offset: Size,
layout: TyAndLayout<'tcx>,
ecx: &InterpCx<'tcx, M>,
) -> InterpResult<'tcx, Self> {
assert!(layout.is_sized());
// We sometimes do pointer arithmetic with this function, disregarding the source type.
// So we don't check the sizes here.
self.offset_with_meta(offset, OffsetMode::Inbounds, MemPlaceMeta::None, layout, ecx)
}
/// This does an offset-by-zero, which is effectively a transmute. Note however that
/// not all transmutes are supported by all projectables -- specifically, if this is an
/// `OpTy` or `ImmTy`, the new layout must have almost the same ABI as the old one
/// (only changing the `valid_range` is allowed and turning integers into pointers).
fn transmute<M: Machine<'tcx, Provenance = Prov>>(
&self,
layout: TyAndLayout<'tcx>,
ecx: &InterpCx<'tcx, M>,
) -> InterpResult<'tcx, Self> {
assert!(self.layout().is_sized() && layout.is_sized());
assert_eq!(self.layout().size, layout.size);
self.offset_with_meta(Size::ZERO, OffsetMode::Wrapping, MemPlaceMeta::None, layout, ecx)
}
/// Convert this to an `OpTy`. This might be an irreversible transformation, but is useful for
/// reading from this thing.
fn to_op<M: Machine<'tcx, Provenance = Prov>>(
&self,
ecx: &InterpCx<'tcx, M>,
) -> InterpResult<'tcx, OpTy<'tcx, M::Provenance>>;
}
/// A type representing iteration over the elements of an array.
pub struct ArrayIterator<'a, 'tcx, Prov: Provenance, P: Projectable<'tcx, Prov>> {
base: &'a P,
range: Range<u64>,
stride: Size,
field_layout: TyAndLayout<'tcx>,
_phantom: PhantomData<Prov>, // otherwise it says `Prov` is never used...
}
impl<'a, 'tcx, Prov: Provenance, P: Projectable<'tcx, Prov>> ArrayIterator<'a, 'tcx, Prov, P> {
/// Should be the same `ecx` on each call, and match the one used to create the iterator.
pub fn next<M: Machine<'tcx, Provenance = Prov>>(
&mut self,
ecx: &InterpCx<'tcx, M>,
) -> InterpResult<'tcx, Option<(u64, P)>> {
let Some(idx) = self.range.next() else { return interp_ok(None) };
// We use `Wrapping` here since the offset has already been checked when the iterator was created.
interp_ok(Some((
idx,
self.base.offset_with_meta(
self.stride * idx,
OffsetMode::Wrapping,
MemPlaceMeta::None,
self.field_layout,
ecx,
)?,
)))
}
}
// FIXME: Working around https://github.com/rust-lang/rust/issues/54385
impl<'tcx, Prov, M> InterpCx<'tcx, M>
where
Prov: Provenance,
M: Machine<'tcx, Provenance = Prov>,
{
/// Offset a pointer to project to a field of a struct/union. Unlike `place_field`, this is
/// always possible without allocating, so it can take `&self`. Also return the field's layout.
/// This supports both struct and array fields, but not slices!
///
/// This also works for arrays, but then the `usize` index type is restricting.
/// For indexing into arrays, use `mplace_index`.
pub fn project_field<P: Projectable<'tcx, M::Provenance>>(
&self,
base: &P,
field: usize,
) -> InterpResult<'tcx, P> {
// Slices nominally have length 0, so they will panic somewhere in `fields.offset`.
debug_assert!(
!matches!(base.layout().ty.kind(), ty::Slice(..)),
"`field` projection called on a slice -- call `index` projection instead"
);
let offset = base.layout().fields.offset(field);
// Computing the layout does normalization, so we get a normalized type out of this
// even if the field type is non-normalized (possible e.g. via associated types).
let field_layout = base.layout().field(self, field);
// Offset may need adjustment for unsized fields.
let (meta, offset) = if field_layout.is_unsized() {
assert!(!base.layout().is_sized());
let base_meta = base.meta();
// Re-use parent metadata to determine dynamic field layout.
// With custom DSTS, this *will* execute user-defined code, but the same
// happens at run-time so that's okay.
match self.size_and_align_of(&base_meta, &field_layout)? {
Some((_, align)) => {
// For packed types, we need to cap alignment.
let align = if let ty::Adt(def, _) = base.layout().ty.kind()
&& let Some(packed) = def.repr().pack
{
align.min(packed)
} else {
align
};
(base_meta, offset.align_to(align))
}
None if offset == Size::ZERO => {
// If the offset is 0, then rounding it up to alignment wouldn't change anything,
// so we can do this even for types where we cannot determine the alignment.
(base_meta, offset)
}
None => {
// We cannot know the alignment of this field, so we cannot adjust.
throw_unsup!(ExternTypeField)
}
}
} else {
// base_meta could be present; we might be accessing a sized field of an unsized
// struct.
(MemPlaceMeta::None, offset)
};
base.offset_with_meta(offset, OffsetMode::Inbounds, meta, field_layout, self)
}
/// Downcasting to an enum variant.
pub fn project_downcast<P: Projectable<'tcx, M::Provenance>>(
&self,
base: &P,
variant: VariantIdx,
) -> InterpResult<'tcx, P> {
assert!(!base.meta().has_meta());
// Downcasts only change the layout.
// (In particular, no check about whether this is even the active variant -- that's by design,
// see https://github.com/rust-lang/rust/issues/93688#issuecomment-1032929496.)
// So we just "offset" by 0.
let layout = base.layout().for_variant(self, variant);
// This variant may in fact be uninhabited.
// See <https://github.com/rust-lang/rust/issues/120337>.
// This cannot be `transmute` as variants *can* have a smaller size than the entire enum.
base.offset(Size::ZERO, layout, self)
}
/// Compute the offset and field layout for accessing the given index.
pub fn project_index<P: Projectable<'tcx, M::Provenance>>(
&self,
base: &P,
index: u64,
) -> InterpResult<'tcx, P> {
// Not using the layout method because we want to compute on u64
let (offset, field_layout) = match base.layout().fields {
abi::FieldsShape::Array { stride, count: _ } => {
// `count` is nonsense for slices, use the dynamic length instead.
let len = base.len(self)?;
if index >= len {
// This can only be reached in ConstProp and non-rustc-MIR.
throw_ub!(BoundsCheckFailed { len, index });
}
// With raw slices, `len` can be so big that this *can* overflow.
let offset = self
.compute_size_in_bytes(stride, index)
.ok_or_else(|| err_ub!(PointerArithOverflow))?;
// All fields have the same layout.
let field_layout = base.layout().field(self, 0);
(offset, field_layout)
}
_ => span_bug!(
self.cur_span(),
"`mplace_index` called on non-array type {:?}",
base.layout().ty
),
};
base.offset(offset, field_layout, self)
}
/// Converts a repr(simd) value into an array of the right size, such that `project_index`
/// accesses the SIMD elements. Also returns the number of elements.
pub fn project_to_simd<P: Projectable<'tcx, M::Provenance>>(
&self,
base: &P,
) -> InterpResult<'tcx, (P, u64)> {
assert!(base.layout().ty.ty_adt_def().unwrap().repr().simd());
// SIMD types must be newtypes around arrays, so all we have to do is project to their only field.
let array = self.project_field(base, 0)?;
let len = array.len(self)?;
interp_ok((array, len))
}
fn project_constant_index<P: Projectable<'tcx, M::Provenance>>(
&self,
base: &P,
offset: u64,
min_length: u64,
from_end: bool,
) -> InterpResult<'tcx, P> {
let n = base.len(self)?;
if n < min_length {
// This can only be reached in ConstProp and non-rustc-MIR.
throw_ub!(BoundsCheckFailed { len: min_length, index: n });
}
let index = if from_end {
assert!(0 < offset && offset <= min_length);
n.checked_sub(offset).unwrap()
} else {
assert!(offset < min_length);
offset
};
self.project_index(base, index)
}
/// Iterates over all fields of an array. Much more efficient than doing the
/// same by repeatedly calling `project_index`.
pub fn project_array_fields<'a, P: Projectable<'tcx, M::Provenance>>(
&self,
base: &'a P,
) -> InterpResult<'tcx, ArrayIterator<'a, 'tcx, M::Provenance, P>> {
let abi::FieldsShape::Array { stride, .. } = base.layout().fields else {
span_bug!(self.cur_span(), "project_array_fields: expected an array layout");
};
let len = base.len(self)?;
let field_layout = base.layout().field(self, 0);
// Ensure that all the offsets are in-bounds once, up-front.
debug!("project_array_fields: {base:?} {len}");
base.offset(len * stride, self.layout_of(self.tcx.types.unit).unwrap(), self)?;
// Create the iterator.
interp_ok(ArrayIterator {
base,
range: 0..len,
stride,
field_layout,
_phantom: PhantomData,
})
}
/// Subslicing
fn project_subslice<P: Projectable<'tcx, M::Provenance>>(
&self,
base: &P,
from: u64,
to: u64,
from_end: bool,
) -> InterpResult<'tcx, P> {
let len = base.len(self)?; // also asserts that we have a type where this makes sense
let actual_to = if from_end {
if from.checked_add(to).is_none_or(|to| to > len) {
// This can only be reached in ConstProp and non-rustc-MIR.
throw_ub!(BoundsCheckFailed { len: len, index: from.saturating_add(to) });
}
len.checked_sub(to).unwrap()
} else {
to
};
// Not using layout method because that works with usize, and does not work with slices
// (that have count 0 in their layout).
let from_offset = match base.layout().fields {
abi::FieldsShape::Array { stride, .. } => stride * from, // `Size` multiplication is checked
_ => {
span_bug!(
self.cur_span(),
"unexpected layout of index access: {:#?}",
base.layout()
)
}
};
// Compute meta and new layout
let inner_len = actual_to.checked_sub(from).unwrap();
let (meta, ty) = match base.layout().ty.kind() {
// It is not nice to match on the type, but that seems to be the only way to
// implement this.
ty::Array(inner, _) => {
(MemPlaceMeta::None, Ty::new_array(self.tcx.tcx, *inner, inner_len))
}
ty::Slice(..) => {
let len = Scalar::from_target_usize(inner_len, self);
(MemPlaceMeta::Meta(len), base.layout().ty)
}
_ => {
span_bug!(
self.cur_span(),
"cannot subslice non-array type: `{:?}`",
base.layout().ty
)
}
};
let layout = self.layout_of(ty)?;
base.offset_with_meta(from_offset, OffsetMode::Inbounds, meta, layout, self)
}
/// Applying a general projection
#[instrument(skip(self), level = "trace")]
pub fn project<P>(&self, base: &P, proj_elem: mir::PlaceElem<'tcx>) -> InterpResult<'tcx, P>
where
P: Projectable<'tcx, M::Provenance> + From<MPlaceTy<'tcx, M::Provenance>> + std::fmt::Debug,
{
use rustc_middle::mir::ProjectionElem::*;
interp_ok(match proj_elem {
OpaqueCast(ty) => {
span_bug!(self.cur_span(), "OpaqueCast({ty}) encountered after borrowck")
}
// We don't want anything happening here, this is here as a dummy.
Subtype(_) => base.transmute(base.layout(), self)?,
Field(field, _) => self.project_field(base, field.index())?,
Downcast(_, variant) => self.project_downcast(base, variant)?,
Deref => self.deref_pointer(&base.to_op(self)?)?.into(),
Index(local) => {
let layout = self.layout_of(self.tcx.types.usize)?;
let n = self.local_to_op(local, Some(layout))?;
let n = self.read_target_usize(&n)?;
self.project_index(base, n)?
}
ConstantIndex { offset, min_length, from_end } => {
self.project_constant_index(base, offset, min_length, from_end)?
}
Subslice { from, to, from_end } => self.project_subslice(base, from, to, from_end)?,
})
}
}