rustc_arena/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
//! The arena, a fast but limited type of allocator.
//!
//! Arenas are a type of allocator that destroy the objects within, all at
//! once, once the arena itself is destroyed. They do not support deallocation
//! of individual objects while the arena itself is still alive. The benefit
//! of an arena is very fast allocation; just a pointer bump.
//!
//! This crate implements several kinds of arena.

// tidy-alphabetical-start
#![allow(clippy::mut_from_ref)] // Arena allocators are one place where this pattern is fine.
#![allow(internal_features)]
#![cfg_attr(test, feature(test))]
#![deny(unsafe_op_in_unsafe_fn)]
#![doc(
    html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/",
    test(no_crate_inject, attr(deny(warnings)))
)]
#![doc(rust_logo)]
#![feature(core_intrinsics)]
#![feature(decl_macro)]
#![feature(dropck_eyepatch)]
#![feature(maybe_uninit_slice)]
#![feature(rustc_attrs)]
#![feature(rustdoc_internals)]
#![feature(strict_provenance)]
#![warn(unreachable_pub)]
// tidy-alphabetical-end

use std::alloc::Layout;
use std::cell::{Cell, RefCell};
use std::marker::PhantomData;
use std::mem::{self, MaybeUninit};
use std::ptr::{self, NonNull};
use std::{cmp, intrinsics, slice};

use smallvec::SmallVec;

/// This calls the passed function while ensuring it won't be inlined into the caller.
#[inline(never)]
#[cold]
fn outline<F: FnOnce() -> R, R>(f: F) -> R {
    f()
}

struct ArenaChunk<T = u8> {
    /// The raw storage for the arena chunk.
    storage: NonNull<[MaybeUninit<T>]>,
    /// The number of valid entries in the chunk.
    entries: usize,
}

unsafe impl<#[may_dangle] T> Drop for ArenaChunk<T> {
    fn drop(&mut self) {
        unsafe { drop(Box::from_raw(self.storage.as_mut())) }
    }
}

impl<T> ArenaChunk<T> {
    #[inline]
    unsafe fn new(capacity: usize) -> ArenaChunk<T> {
        ArenaChunk {
            storage: NonNull::from(Box::leak(Box::new_uninit_slice(capacity))),
            entries: 0,
        }
    }

    /// Destroys this arena chunk.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `len` elements of this chunk have been initialized.
    #[inline]
    unsafe fn destroy(&mut self, len: usize) {
        // The branch on needs_drop() is an -O1 performance optimization.
        // Without the branch, dropping TypedArena<T> takes linear time.
        if mem::needs_drop::<T>() {
            // SAFETY: The caller must ensure that `len` elements of this chunk have
            // been initialized.
            unsafe {
                let slice = self.storage.as_mut();
                ptr::drop_in_place(MaybeUninit::slice_assume_init_mut(&mut slice[..len]));
            }
        }
    }

    // Returns a pointer to the first allocated object.
    #[inline]
    fn start(&mut self) -> *mut T {
        self.storage.as_ptr() as *mut T
    }

    // Returns a pointer to the end of the allocated space.
    #[inline]
    fn end(&mut self) -> *mut T {
        unsafe {
            if mem::size_of::<T>() == 0 {
                // A pointer as large as possible for zero-sized elements.
                ptr::without_provenance_mut(!0)
            } else {
                self.start().add(self.storage.len())
            }
        }
    }
}

// The arenas start with PAGE-sized chunks, and then each new chunk is twice as
// big as its predecessor, up until we reach HUGE_PAGE-sized chunks, whereupon
// we stop growing. This scales well, from arenas that are barely used up to
// arenas that are used for 100s of MiBs. Note also that the chosen sizes match
// the usual sizes of pages and huge pages on Linux.
const PAGE: usize = 4096;
const HUGE_PAGE: usize = 2 * 1024 * 1024;

/// An arena that can hold objects of only one type.
pub struct TypedArena<T> {
    /// A pointer to the next object to be allocated.
    ptr: Cell<*mut T>,

    /// A pointer to the end of the allocated area. When this pointer is
    /// reached, a new chunk is allocated.
    end: Cell<*mut T>,

    /// A vector of arena chunks.
    chunks: RefCell<Vec<ArenaChunk<T>>>,

    /// Marker indicating that dropping the arena causes its owned
    /// instances of `T` to be dropped.
    _own: PhantomData<T>,
}

impl<T> Default for TypedArena<T> {
    /// Creates a new `TypedArena`.
    fn default() -> TypedArena<T> {
        TypedArena {
            // We set both `ptr` and `end` to 0 so that the first call to
            // alloc() will trigger a grow().
            ptr: Cell::new(ptr::null_mut()),
            end: Cell::new(ptr::null_mut()),
            chunks: Default::default(),
            _own: PhantomData,
        }
    }
}

impl<T> TypedArena<T> {
    /// Allocates an object in the `TypedArena`, returning a reference to it.
    #[inline]
    pub fn alloc(&self, object: T) -> &mut T {
        if self.ptr == self.end {
            self.grow(1)
        }

        unsafe {
            if mem::size_of::<T>() == 0 {
                self.ptr.set(self.ptr.get().wrapping_byte_add(1));
                let ptr = ptr::NonNull::<T>::dangling().as_ptr();
                // Don't drop the object. This `write` is equivalent to `forget`.
                ptr::write(ptr, object);
                &mut *ptr
            } else {
                let ptr = self.ptr.get();
                // Advance the pointer.
                self.ptr.set(self.ptr.get().add(1));
                // Write into uninitialized memory.
                ptr::write(ptr, object);
                &mut *ptr
            }
        }
    }

    #[inline]
    fn can_allocate(&self, additional: usize) -> bool {
        // FIXME: this should *likely* use `offset_from`, but more
        // investigation is needed (including running tests in miri).
        let available_bytes = self.end.get().addr() - self.ptr.get().addr();
        let additional_bytes = additional.checked_mul(mem::size_of::<T>()).unwrap();
        available_bytes >= additional_bytes
    }

    #[inline]
    fn alloc_raw_slice(&self, len: usize) -> *mut T {
        assert!(mem::size_of::<T>() != 0);
        assert!(len != 0);

        // Ensure the current chunk can fit `len` objects.
        if !self.can_allocate(len) {
            self.grow(len);
            debug_assert!(self.can_allocate(len));
        }

        let start_ptr = self.ptr.get();
        // SAFETY: `can_allocate`/`grow` ensures that there is enough space for
        // `len` elements.
        unsafe { self.ptr.set(start_ptr.add(len)) };
        start_ptr
    }

    /// Allocates the elements of this iterator into a contiguous slice in the `TypedArena`.
    ///
    /// Note: for reasons of reentrancy and panic safety we collect into a `SmallVec<[_; 8]>` before
    /// storing the elements in the arena.
    #[inline]
    pub fn alloc_from_iter<I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
        // Despite the similarlty with `DroplessArena`, we cannot reuse their fast case. The reason
        // is subtle: these arenas are reentrant. In other words, `iter` may very well be holding a
        // reference to `self` and adding elements to the arena during iteration.
        //
        // For this reason, if we pre-allocated any space for the elements of this iterator, we'd
        // have to track that some uninitialized elements are followed by some initialized elements,
        // else we might accidentally drop uninitialized memory if something panics or if the
        // iterator doesn't fill all the length we expected.
        //
        // So we collect all the elements beforehand, which takes care of reentrancy and panic
        // safety. This function is much less hot than `DroplessArena::alloc_from_iter`, so it
        // doesn't need to be hyper-optimized.
        assert!(mem::size_of::<T>() != 0);

        let mut vec: SmallVec<[_; 8]> = iter.into_iter().collect();
        if vec.is_empty() {
            return &mut [];
        }
        // Move the content to the arena by copying and then forgetting it.
        let len = vec.len();
        let start_ptr = self.alloc_raw_slice(len);
        unsafe {
            vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
            vec.set_len(0);
            slice::from_raw_parts_mut(start_ptr, len)
        }
    }

    /// Grows the arena.
    #[inline(never)]
    #[cold]
    fn grow(&self, additional: usize) {
        unsafe {
            // We need the element size to convert chunk sizes (ranging from
            // PAGE to HUGE_PAGE bytes) to element counts.
            let elem_size = cmp::max(1, mem::size_of::<T>());
            let mut chunks = self.chunks.borrow_mut();
            let mut new_cap;
            if let Some(last_chunk) = chunks.last_mut() {
                // If a type is `!needs_drop`, we don't need to keep track of how many elements
                // the chunk stores - the field will be ignored anyway.
                if mem::needs_drop::<T>() {
                    // FIXME: this should *likely* use `offset_from`, but more
                    // investigation is needed (including running tests in miri).
                    let used_bytes = self.ptr.get().addr() - last_chunk.start().addr();
                    last_chunk.entries = used_bytes / mem::size_of::<T>();
                }

                // If the previous chunk's len is less than HUGE_PAGE
                // bytes, then this chunk will be least double the previous
                // chunk's size.
                new_cap = last_chunk.storage.len().min(HUGE_PAGE / elem_size / 2);
                new_cap *= 2;
            } else {
                new_cap = PAGE / elem_size;
            }
            // Also ensure that this chunk can fit `additional`.
            new_cap = cmp::max(additional, new_cap);

            let mut chunk = ArenaChunk::<T>::new(new_cap);
            self.ptr.set(chunk.start());
            self.end.set(chunk.end());
            chunks.push(chunk);
        }
    }

    // Drops the contents of the last chunk. The last chunk is partially empty, unlike all other
    // chunks.
    fn clear_last_chunk(&self, last_chunk: &mut ArenaChunk<T>) {
        // Determine how much was filled.
        let start = last_chunk.start().addr();
        // We obtain the value of the pointer to the first uninitialized element.
        let end = self.ptr.get().addr();
        // We then calculate the number of elements to be dropped in the last chunk,
        // which is the filled area's length.
        let diff = if mem::size_of::<T>() == 0 {
            // `T` is ZST. It can't have a drop flag, so the value here doesn't matter. We get
            // the number of zero-sized values in the last and only chunk, just out of caution.
            // Recall that `end` was incremented for each allocated value.
            end - start
        } else {
            // FIXME: this should *likely* use `offset_from`, but more
            // investigation is needed (including running tests in miri).
            (end - start) / mem::size_of::<T>()
        };
        // Pass that to the `destroy` method.
        unsafe {
            last_chunk.destroy(diff);
        }
        // Reset the chunk.
        self.ptr.set(last_chunk.start());
    }
}

unsafe impl<#[may_dangle] T> Drop for TypedArena<T> {
    fn drop(&mut self) {
        unsafe {
            // Determine how much was filled.
            let mut chunks_borrow = self.chunks.borrow_mut();
            if let Some(mut last_chunk) = chunks_borrow.pop() {
                // Drop the contents of the last chunk.
                self.clear_last_chunk(&mut last_chunk);
                // The last chunk will be dropped. Destroy all other chunks.
                for chunk in chunks_borrow.iter_mut() {
                    chunk.destroy(chunk.entries);
                }
            }
            // Box handles deallocation of `last_chunk` and `self.chunks`.
        }
    }
}

unsafe impl<T: Send> Send for TypedArena<T> {}

#[inline(always)]
fn align_down(val: usize, align: usize) -> usize {
    debug_assert!(align.is_power_of_two());
    val & !(align - 1)
}

#[inline(always)]
fn align_up(val: usize, align: usize) -> usize {
    debug_assert!(align.is_power_of_two());
    (val + align - 1) & !(align - 1)
}

// Pointer alignment is common in compiler types, so keep `DroplessArena` aligned to them
// to optimize away alignment code.
const DROPLESS_ALIGNMENT: usize = mem::align_of::<usize>();

/// An arena that can hold objects of multiple different types that impl `Copy`
/// and/or satisfy `!mem::needs_drop`.
pub struct DroplessArena {
    /// A pointer to the start of the free space.
    start: Cell<*mut u8>,

    /// A pointer to the end of free space.
    ///
    /// The allocation proceeds downwards from the end of the chunk towards the
    /// start. (This is slightly simpler and faster than allocating upwards,
    /// see <https://fitzgeraldnick.com/2019/11/01/always-bump-downwards.html>.)
    /// When this pointer crosses the start pointer, a new chunk is allocated.
    ///
    /// This is kept aligned to DROPLESS_ALIGNMENT.
    end: Cell<*mut u8>,

    /// A vector of arena chunks.
    chunks: RefCell<Vec<ArenaChunk>>,
}

unsafe impl Send for DroplessArena {}

impl Default for DroplessArena {
    #[inline]
    fn default() -> DroplessArena {
        DroplessArena {
            // We set both `start` and `end` to 0 so that the first call to
            // alloc() will trigger a grow().
            start: Cell::new(ptr::null_mut()),
            end: Cell::new(ptr::null_mut()),
            chunks: Default::default(),
        }
    }
}

impl DroplessArena {
    #[inline(never)]
    #[cold]
    fn grow(&self, layout: Layout) {
        // Add some padding so we can align `self.end` while
        // still fitting in a `layout` allocation.
        let additional = layout.size() + cmp::max(DROPLESS_ALIGNMENT, layout.align()) - 1;

        unsafe {
            let mut chunks = self.chunks.borrow_mut();
            let mut new_cap;
            if let Some(last_chunk) = chunks.last_mut() {
                // There is no need to update `last_chunk.entries` because that
                // field isn't used by `DroplessArena`.

                // If the previous chunk's len is less than HUGE_PAGE
                // bytes, then this chunk will be least double the previous
                // chunk's size.
                new_cap = last_chunk.storage.len().min(HUGE_PAGE / 2);
                new_cap *= 2;
            } else {
                new_cap = PAGE;
            }
            // Also ensure that this chunk can fit `additional`.
            new_cap = cmp::max(additional, new_cap);

            let mut chunk = ArenaChunk::new(align_up(new_cap, PAGE));
            self.start.set(chunk.start());

            // Align the end to DROPLESS_ALIGNMENT.
            let end = align_down(chunk.end().addr(), DROPLESS_ALIGNMENT);

            // Make sure we don't go past `start`. This should not happen since the allocation
            // should be at least DROPLESS_ALIGNMENT - 1 bytes.
            debug_assert!(chunk.start().addr() <= end);

            self.end.set(chunk.end().with_addr(end));

            chunks.push(chunk);
        }
    }

    #[inline]
    pub fn alloc_raw(&self, layout: Layout) -> *mut u8 {
        assert!(layout.size() != 0);

        // This loop executes once or twice: if allocation fails the first
        // time, the `grow` ensures it will succeed the second time.
        loop {
            let start = self.start.get().addr();
            let old_end = self.end.get();
            let end = old_end.addr();

            // Align allocated bytes so that `self.end` stays aligned to
            // DROPLESS_ALIGNMENT.
            let bytes = align_up(layout.size(), DROPLESS_ALIGNMENT);

            // Tell LLVM that `end` is aligned to DROPLESS_ALIGNMENT.
            unsafe { intrinsics::assume(end == align_down(end, DROPLESS_ALIGNMENT)) };

            if let Some(sub) = end.checked_sub(bytes) {
                let new_end = align_down(sub, layout.align());
                if start <= new_end {
                    let new_end = old_end.with_addr(new_end);
                    // `new_end` is aligned to DROPLESS_ALIGNMENT as `align_down`
                    // preserves alignment as both `end` and `bytes` are already
                    // aligned to DROPLESS_ALIGNMENT.
                    self.end.set(new_end);
                    return new_end;
                }
            }

            // No free space left. Allocate a new chunk to satisfy the request.
            // On failure the grow will panic or abort.
            self.grow(layout);
        }
    }

    #[inline]
    pub fn alloc<T>(&self, object: T) -> &mut T {
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);

        let mem = self.alloc_raw(Layout::new::<T>()) as *mut T;

        unsafe {
            // Write into uninitialized memory.
            ptr::write(mem, object);
            &mut *mem
        }
    }

    /// Allocates a slice of objects that are copied into the `DroplessArena`, returning a mutable
    /// reference to it. Will panic if passed a zero-sized type.
    ///
    /// Panics:
    ///
    ///  - Zero-sized types
    ///  - Zero-length slices
    #[inline]
    pub fn alloc_slice<T>(&self, slice: &[T]) -> &mut [T]
    where
        T: Copy,
    {
        assert!(!mem::needs_drop::<T>());
        assert!(mem::size_of::<T>() != 0);
        assert!(!slice.is_empty());

        let mem = self.alloc_raw(Layout::for_value::<[T]>(slice)) as *mut T;

        unsafe {
            mem.copy_from_nonoverlapping(slice.as_ptr(), slice.len());
            slice::from_raw_parts_mut(mem, slice.len())
        }
    }

    /// Used by `Lift` to check whether this slice is allocated
    /// in this arena.
    #[inline]
    pub fn contains_slice<T>(&self, slice: &[T]) -> bool {
        for chunk in self.chunks.borrow_mut().iter_mut() {
            let ptr = slice.as_ptr().cast::<u8>().cast_mut();
            if chunk.start() <= ptr && chunk.end() >= ptr {
                return true;
            }
        }
        false
    }

    /// Allocates a string slice that is copied into the `DroplessArena`, returning a
    /// reference to it. Will panic if passed an empty string.
    ///
    /// Panics:
    ///
    ///  - Zero-length string
    #[inline]
    pub fn alloc_str(&self, string: &str) -> &str {
        let slice = self.alloc_slice(string.as_bytes());

        // SAFETY: the result has a copy of the same valid UTF-8 bytes.
        unsafe { std::str::from_utf8_unchecked(slice) }
    }

    /// # Safety
    ///
    /// The caller must ensure that `mem` is valid for writes up to `size_of::<T>() * len`, and that
    /// that memory stays allocated and not shared for the lifetime of `self`. This must hold even
    /// if `iter.next()` allocates onto `self`.
    #[inline]
    unsafe fn write_from_iter<T, I: Iterator<Item = T>>(
        &self,
        mut iter: I,
        len: usize,
        mem: *mut T,
    ) -> &mut [T] {
        let mut i = 0;
        // Use a manual loop since LLVM manages to optimize it better for
        // slice iterators
        loop {
            // SAFETY: The caller must ensure that `mem` is valid for writes up to
            // `size_of::<T>() * len`.
            unsafe {
                match iter.next() {
                    Some(value) if i < len => mem.add(i).write(value),
                    Some(_) | None => {
                        // We only return as many items as the iterator gave us, even
                        // though it was supposed to give us `len`
                        return slice::from_raw_parts_mut(mem, i);
                    }
                }
            }
            i += 1;
        }
    }

    #[inline]
    pub fn alloc_from_iter<T, I: IntoIterator<Item = T>>(&self, iter: I) -> &mut [T] {
        // Warning: this function is reentrant: `iter` could hold a reference to `&self` and
        // allocate additional elements while we're iterating.
        let iter = iter.into_iter();
        assert!(mem::size_of::<T>() != 0);
        assert!(!mem::needs_drop::<T>());

        let size_hint = iter.size_hint();

        match size_hint {
            (min, Some(max)) if min == max => {
                // We know the exact number of elements the iterator expects to produce here.
                let len = min;

                if len == 0 {
                    return &mut [];
                }

                let mem = self.alloc_raw(Layout::array::<T>(len).unwrap()) as *mut T;
                // SAFETY: `write_from_iter` doesn't touch `self`. It only touches the slice we just
                // reserved. If the iterator panics or doesn't output `len` elements, this will
                // leave some unallocated slots in the arena, which is fine because we do not call
                // `drop`.
                unsafe { self.write_from_iter(iter, len, mem) }
            }
            (_, _) => {
                outline(move || -> &mut [T] {
                    // Takes care of reentrancy.
                    let mut vec: SmallVec<[_; 8]> = iter.collect();
                    if vec.is_empty() {
                        return &mut [];
                    }
                    // Move the content to the arena by copying it and then forgetting
                    // the content of the SmallVec
                    unsafe {
                        let len = vec.len();
                        let start_ptr =
                            self.alloc_raw(Layout::for_value::<[T]>(vec.as_slice())) as *mut T;
                        vec.as_ptr().copy_to_nonoverlapping(start_ptr, len);
                        vec.set_len(0);
                        slice::from_raw_parts_mut(start_ptr, len)
                    }
                })
            }
        }
    }
}

/// Declare an `Arena` containing one dropless arena and many typed arenas (the
/// types of the typed arenas are specified by the arguments).
///
/// There are three cases of interest.
/// - Types that are `Copy`: these need not be specified in the arguments. They
///   will use the `DroplessArena`.
/// - Types that are `!Copy` and `!Drop`: these must be specified in the
///   arguments. An empty `TypedArena` will be created for each one, but the
///   `DroplessArena` will always be used and the `TypedArena` will stay empty.
///   This is odd but harmless, because an empty arena allocates no memory.
/// - Types that are `!Copy` and `Drop`: these must be specified in the
///   arguments. The `TypedArena` will be used for them.
///
#[rustc_macro_transparency = "semitransparent"]
pub macro declare_arena([$($a:tt $name:ident: $ty:ty,)*]) {
    #[derive(Default)]
    pub struct Arena<'tcx> {
        pub dropless: $crate::DroplessArena,
        $($name: $crate::TypedArena<$ty>,)*
    }

    pub trait ArenaAllocatable<'tcx, C = rustc_arena::IsNotCopy>: Sized {
        #[allow(clippy::mut_from_ref)]
        fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut Self;
        #[allow(clippy::mut_from_ref)]
        fn allocate_from_iter(
            arena: &'tcx Arena<'tcx>,
            iter: impl ::std::iter::IntoIterator<Item = Self>,
        ) -> &'tcx mut [Self];
    }

    // Any type that impls `Copy` can be arena-allocated in the `DroplessArena`.
    impl<'tcx, T: Copy> ArenaAllocatable<'tcx, rustc_arena::IsCopy> for T {
        #[inline]
        #[allow(clippy::mut_from_ref)]
        fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut Self {
            arena.dropless.alloc(self)
        }
        #[inline]
        #[allow(clippy::mut_from_ref)]
        fn allocate_from_iter(
            arena: &'tcx Arena<'tcx>,
            iter: impl ::std::iter::IntoIterator<Item = Self>,
        ) -> &'tcx mut [Self] {
            arena.dropless.alloc_from_iter(iter)
        }
    }
    $(
        impl<'tcx> ArenaAllocatable<'tcx, rustc_arena::IsNotCopy> for $ty {
            #[inline]
            fn allocate_on(self, arena: &'tcx Arena<'tcx>) -> &'tcx mut Self {
                if !::std::mem::needs_drop::<Self>() {
                    arena.dropless.alloc(self)
                } else {
                    arena.$name.alloc(self)
                }
            }

            #[inline]
            #[allow(clippy::mut_from_ref)]
            fn allocate_from_iter(
                arena: &'tcx Arena<'tcx>,
                iter: impl ::std::iter::IntoIterator<Item = Self>,
            ) -> &'tcx mut [Self] {
                if !::std::mem::needs_drop::<Self>() {
                    arena.dropless.alloc_from_iter(iter)
                } else {
                    arena.$name.alloc_from_iter(iter)
                }
            }
        }
    )*

    impl<'tcx> Arena<'tcx> {
        #[inline]
        #[allow(clippy::mut_from_ref)]
        pub fn alloc<T: ArenaAllocatable<'tcx, C>, C>(&'tcx self, value: T) -> &mut T {
            value.allocate_on(self)
        }

        // Any type that impls `Copy` can have slices be arena-allocated in the `DroplessArena`.
        #[inline]
        #[allow(clippy::mut_from_ref)]
        pub fn alloc_slice<T: ::std::marker::Copy>(&self, value: &[T]) -> &mut [T] {
            if value.is_empty() {
                return &mut [];
            }
            self.dropless.alloc_slice(value)
        }

        #[inline]
        pub fn alloc_str(&self, string: &str) -> &str {
            if string.is_empty() {
                return "";
            }
            self.dropless.alloc_str(string)
        }

        #[allow(clippy::mut_from_ref)]
        pub fn alloc_from_iter<T: ArenaAllocatable<'tcx, C>, C>(
            &'tcx self,
            iter: impl ::std::iter::IntoIterator<Item = T>,
        ) -> &mut [T] {
            T::allocate_from_iter(self, iter)
        }
    }
}

// Marker types that let us give different behaviour for arenas allocating
// `Copy` types vs `!Copy` types.
pub struct IsCopy;
pub struct IsNotCopy;

#[cfg(test)]
mod tests;